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On Wireless Scheduling With Partial Channel-State
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Abstract—A time-slotted queueing system for a wireless down-
link with multiple flows and a single server is considered, with
exogenous arrivals and time-varying channels. It is assumed that
only one user can be serviced in a single time slot. Unlike much
recent work on this problem, attention is drawn to the case where
the server can obtain only partial information about the instanta-
neous state of the channel. In each time slot, the server is allowed
to specify a single subset of flows from a collection of observable
subsets, observe the current service rates for that subset, and
subsequently pick a user to serve. The stability region for such a
system is provided. An online scheduling algorithm is presented
that uses information about marginal distributions to pick the
subset and the Max-Weight rule to pick a flow within the subset,
and which is provably throughput-optimal. In the case where
the observable subsets are all disjoint, or where the subsets and
channel statistics are symmetric, it is shown that a simple sched-
uling algorithm—Max-Sum-Queue—that essentially picks subsets
having the largest squared-sum of queues, followed by picking a
user using Max-Weight within the subset, is throughput-optimal.

Index Terms—Partial information, throughput optimality, wire-
less scheduling.

I. INTRODUCTION

T HERE has been much recent interest in scheduling over
wireless cellular networks where channel state informa-

tion is available at the base-station [2]–[4]. A canonical system
consists of a base-station (the server) and a collection of mo-
bile users (the queues). Time is slotted (typically of the order
of a millisecond), like in the high-speed Worldwide Interop-
erability for Microwave Access (WiMAX) [5], Ultra Mobile
Broadband (UMB), Global System for Mobile Communications
(GSM)-based High-Speed Downlink Packet Access (HSDPA),
and Evolution-Data Optimized (EV-DO) communications tech-
nologies. In each time-slot, the channel state, i.e., the channel
quality such as the signal to interference-plus-noise ratio (SINR)
or data rate that can be sustained over the time-slot to the mobile,
is potentially available via a feedback channel from the mobile
terminals to the base-station. Based on the load (packets queued
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at the base-station) as well as the channel state, the base-station
schedules users for channel access at each time-slot.

As the capacity of the wireless system increases, growing
numbers of users will be connected to the base-station at any
given time. As a result, schemes wherein all users transmit
channel state feedback to the base-station may become unten-
able, due to feedback bandwidth constraints. One approach to
mitigate this problem is for the base-station to request channel
state information from a (small) subcollection of users and
make scheduling decisions based on this partial channel state
information. Our goal is to understand how the base-station
can intelligently decide which subsets of the users to sample to
obtain partial channel state information, and how to schedule
users based on this information. Furthermore, we are interested
in understanding how this partial information degrades the
stability region, i.e., what is the effect of partial information on
the capacity of a wireless network.

We characterize the exact stability region given any set
of observable subsets, and we provide an algorithm that is
throughput-optimal. Unlike the full-information case studied
in e.g., [2] that requires no distributional information, our
algorithm requires knowledge of the marginals of the channel
state distribution for the observable subsets. For the special case
of symmetric flows, we provide a simpler throughput-optimal
algorithm that requires no such information. We further show
that the reduction in the stability region is due precisely to the
inability to observe the full instantaneous state, as opposed to
failure to obtain the full joint distribution of the channel state.
Indeed we show that knowledge of the full distribution may
not yield a larger stability region, unless the observable subsets
themselves are enlarged.

A. Main Contributions

We consider a base-station system serving users and chan-
nels, with each user generating data, and with channels which
have an arbitrary joint distribution over a finite state-space (the
channel is assumed to be independent across time but not across
users), and the server not having knowledge of the channel joint
distribution.

In each time-slot, the base-station is allowed to acquire
channel state1 from one among a predefined collection of
subsets of channels. For example, in a ten-user system, the
constraint could be that we can acquire channel state from at
most three users per time-slot (we note, though, that our main

1At each time-slot, the complete channel state is a � dimensional vector,
with the �th component of the vector corresponding to the data rate that can be
sustained to the �th mobile user over the time-slot if this user is chosen by the
scheduler. Correspondingly, the partial channel state corresponds to a subvector
of this � dimensional vector.

0018-9448/$26.00 © 2011 IEEE
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results are completely general with respect to the structure of
the observable subset collection). We henceforth refer to this as
a system with partial channel-state information.

The scheduling task at each time-slot is to first determine the
subset of channels for which channel state will be acquired and
then determine a single user to schedule from within this subset.
In this paper, we characterize the stability region for this mul-
tiuser system, and develop algorithms that achieve the full sta-
bility region. Specifically, the main contributions in this paper
are as follows.

1) We derive the stability region for a system with users
and an arbitrary collection of observable subsets (i.e., a col-
lection of subsets of users for which the channel state can
be simultaneously acquired), and for any joint channel dis-
tribution across users where channel realizations are inde-
pendent and identically distributed over time. The stability
region corresponds to the set of arrival rates that can be
sustained such that the queues at the base-station are stable
(positive recurrent).
We demonstrate that the stability region with partial
channel state information can be described by the convex
hull of “local” stability regions for the observable user
subsets. These local regions are completely characterized
by a simple class of scheduling policies commonly called
Static Split Service rules (e.g., [2]).
A numerical example is presented that illustrates the degra-
dation in the stability region as the amount of channel
state information decreases (i.e., when there are fewer
simultaneously observable channels).

2) The characterization of the stability region shows that it
is completely determined by just the marginal statistics of
the aggregate channel over observable subsets. It also leads
to the important counterintuitive result that additional in-
formation about the joint distribution of the channel state,
even if provided to the scheduler at all times, cannot help
increase throughput. In other words, the degradation of the
stability region is precisely due to the lack of capability
to observe channel state, as opposed to lack of knowledge
about how the channel state is distributed.

3) Next, we develop a queue-length based “online” sched-
uling policy that uses queue-length information along with
knowledge of subset-marginal distributions, and which is
throughput-optimal, i.e., the policy attains all rate points
within the stability region. The policy consists of two
stages: In each time slot, (a) the base-station first deter-
mines the subset of channel measurements to observe.
This is done using the expected rates over the observ-
able subsets weighted by the actual queue lengths at the
base-station; and (b) within the chosen subset, the policy
uses the Max-Weight rule [6], [2] which uses the product
of the actual channel rate (received from the mobile in the
chosen subset) and the actual queue-length to make the
scheduling decision.

4) We develop a simpler online policy (the Max-Sum-Queue
rule) that requires no distributional information. In the first
stage, this policy determines the subset of users chosen
by only the queue lengths and does not use the expected
channel rates. The Max-Sum-Queue policy chooses that

subset over which the sum of the squares of the queue-
lengths is largest. The second stage is the same as before,
namely, the Max-Weight policy restricted to the chosen
subset. We show that if the observable subsets are disjoint
or the observable subsets and channels are symmetric, this
policy is throughput-optimal. Finally, we provide an ex-
ample to show that in general this policy is not throughput
optimal if the symmetric-channel-and-observable-subsets/
disjoint-observable-subsets condition is not met.

B. Related Work

There has been much work in developing scheduling algo-
rithms for downlink wireless systems for various performance
metrics that include stability, utility maximization and proba-
bilistic delay guarantees [6]–[13]. However, the above studies
primarily focus on the case where complete channel state infor-
mation is available at the base-station, and thus consider prob-
lems orthogonal to the main issues in this paper.

In the context of partial channel information, related work
includes that of [14] where the authors study the problem of a
server (terminal) accessing time varying channels which are
independent across users and time (e.g., a multichannel MAC).
The server has a cost for (sequentially) probing channels, with
a channel dependent probing cost, and gains a reward which
depends on the user and the probed state, if a packet is trans-
mitted successfully. The authors formulate the problem of min-
imizing the expected cost (probing cost minus reward for trans-
missions) where the cost functions and the channel probabilities
are known to the server. They further develop constant factor
(within the optimal cost) approximation algorithms that operate
in polynomial time for both the saturated data case, as well
as when the user (terminal) generates packets according to a
Markov chain. The authors in [15] and [16] have earlier consid-
ered the special cases with equal probing costs and identically
distributed channels. Recent results in this context include [17]
where the authors develop structural properties of the optimal
probing strategy using a dynamic programming approach, and
[18] which treats the problem of optimal channel probing and
scheduling for stability, for Markovian channels independent
across users, in a Markov-decision-theoretic framework and de-
rives polynomial-time computable optimal policies or approxi-
mations in certain cases.

For systems with channels that are independent across users
and with infinitely backlogged data at the base-station, there
has been work considering limited feedback from the mobile
users to the base-station. In these studies, the mobiles use thresh-
olds to determine if their channel quality is “good enough,” and
if so, send their channel state information to the base-station
[19]–[23].

A closely related work that appeared subsequent to the con-
ference version of this work is [24], which proposes empirical
sampling and learning of incomplete channel state statistics in
order to maximize a convex utility of rates while maintaining
stability. The work in this paper is, to the best of our knowl-
edge, the first to consider characterizing stability of these wire-
less networks under availability of limited channel state infor-
mation, while obtaining corresponding throughput optimal ef-
ficient algorithms. In particular, the work here differs signifi-
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cantly from the previous work described above in the sense of
investigating stability in the presence of partial channel state in-
formation. Also, we emphasize the need for efficient scheduling
rules based on feedback received via queue length information.

II. SYSTEM MODEL AND DEFINITIONS

Throughout the paper, we assume a common probability
space which supports all random variables and
random processes.

Consider a time-slotted model of users serviced by a
single server across unidirectional communication channels

. An integer number of data packets arrive
at the input of every channel at the beginning of a time slot,
to be serviced by the server. Packets get queued at the inputs
of channels if they are not immediately transmitted. We assume
that at most one of the channels can be activated for transmission
in a single time slot.

Further, in any given time slot , the set of
channels assumes a state from a finite set of aggregate
channel states , with the channel state re-
maining constant within each time slot. In each channel state

, every channel assumes a data service rate of ,
i.e., a maximum of packets can be served from queue (cor-
responding to channel ) when the aggregate channel is in state
. Henceforth, we identify each state with its -dimen-

sional vector of service rates , and treat as a random
vector which can take any such value .

The random channel state process is assumed
to be an independent and identically distributed (i.i.d.) discrete-
time random process taking values from the finite state space

. For , let . Observe that the channel
state process is i.i.d. across time only, and can have any joint
distribution across users (i.e., across channels).

Let us denote by the number of packets that arrive at

channel at time slot , and let .

The packet arrival process at the input of
each channel , , is assumed to be a nonneg-
ative finite-state irreducible discrete-time Markov chain in its
stationary distribution. We call the arrival
rate at channel . Each arrival process is taken to
be independent of all other processes.

Our channel observations are limited to a given collection of
subsets of (whose union is assumed to be ) called the col-
lection of observable subsets. Let us denote this collection of
observable subsets by . In the example
of Section III-B, is a set of three channels and the set con-
tains all subsets of size two. In a given time slot, an observable
subset is said to be in a substate

if .
Denote by the -length substate random vector that is
the projection of onto coordinates .

Similar to the treatment in [2], we define the state of the
system to be the random process where

, augmented by the state of the arrivals.
Here, denotes the length of the packet queue for channel

at time slot .

We model the system state as evolving via the action of a
scheduling policy. A scheduling policy is a pair of maps

, where is a map from the state of the system
to a fixed probability distribution on the set of observable
subsets , and is a map which takes restricted to a
particular observable subset, along with its substate, into a
fixed probability distribution on the channels which comprise
the subset. Such a scheduling policy is applied to select a
transmitting channel using two steps. At every time slot , in
the first step, we pick an observable set randomly according
to the distribution after which we are able to sample
the substate of the chosen observable set. Then, according the
distribution on the observable set and its substate ,
we pick a channel for transmission from . Following
this choice of channel, the queue length evolves in the
standard sense as ,
whereas all the other queue lengths , evolve as

. This scheduling model differs
from the one in [2] in that this is a two-stage procedure where
the subset to be sampled in the first step is a function of only
queue information and not the instantaneous channel state.

Under a scheduling policy , the state is a discrete-time
countable-state Markov chain, which we further assume to be
irreducible and aperiodic. This can, for example, be satisfied if
the arrival and channel process marginal distributions have pos-
itive probability on a finite subset of the nonnegative integer lat-
tice . Weaker conditions suffice by using different
notions of stability, e.g., that there is a nonempty positive recur-
rent set of states, and an associated finite subset which is entered
in finite time with probability one [2]. However, to avoid purely
technical complications, we assume that the support of the ar-
rival and channel state processes are such that the scheduling
policies we consider render the Markov Chain to be aperiodic
and irreducible (see also Section III in [25]).

A rate vector is said to be supported
by a scheduling policy if the Markov chain is ergodic or
positive recurrent under scheduling using , when the arrival
rates at the inputs of channels are , re-
spectively. In other words a policy supports an arrival rate vector
if the input packet queues at all channels in the system remain
stable under the policy. Associated with each policy is its rate

region . The achiev-
able rate region or throughput region or stability region is
then defined to be the union of the rate regions for all possible
scheduling policies . A rate vector is said to be achievable
if it is supported by some scheduling policy. Likewise, a set or
region is said to be achievable if all its elements are
achievable. A scheduling policy is said to be throughput-optimal
if it supports all vectors in the achievable rate region.

We wish to characterize the achievable rate region for the
model we have described. Henceforth, we shall naturally as-
sume that all the subsets in are maximal with respect to set
inclusion.

III. THE ACHIEVABLE RATE REGION

In the first part of this section, we show two main results.
First, we characterize the achievable rate region for any collec-
tion of observable subsets . Next, we show that this region is
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attained using a special class of scheduling policies called Static
Split Service (SSS) rules [2]. The reason they are called so is
that they are independent of the queue lengths at every time slot
and rely only on the channel state to make randomized sched-
uling decisions. We present an example in which we explicitly
describe the achievable rate region for a system of three chan-
nels, under different partial information structures. The final part
of this section characterizes ‘good’ or optimal SSS scheduling
rules.

A. Description of the Throughput Region

Consider an observable subset
where .

Let denote the -dimensional subspace of where
coordinates with indices other than are zero. If only
users from are served, then any stabilizable rate must lie in

. Denote this stabilizable rate region by . Applying
[2, Theorem 1] to the subset , we can describe the achievable
rate region when only is allowed to be picked in the first
scheduling step.

Lemma 1: There exists a scheduling policy stabilizing a
rate vector if and only if there exists a stochastic
matrix such that

Here, is the set of substates of is the marginal prob-
ability of the substate and is the service rate for channel

in substate .
The matrix defines an SSS rule for the subset . The rows
of correspond to every substate of and the columns of
correspond to every channel in . When is in the substate

, the SSS rule picks channel for trans-
mission with probability .

Lemma 1 states that the stability region for scheduling using
is the convex polytope . The following theorem estab-

lishes that the stability region for the whole system is the convex
hull of such polytopes.

Theorem 1: The achievable region for the whole system
is the convex hull of the stabilizable regions in each subspace

, for

The theorem says that any rate vector in the stability region
can be supported by timesharing across observable subsets and
across users within subsets. The proof of the theorem follows
from the following two lemmas which establish matching inner
and outer bounds on the region .

Lemma 2: is achievable.
Proof: Let be the total number of observable subsets.

By definition, if ,
then there exist nonnegative reals with and

such that . This shows that the
static service split (SSS) scheduling rule which chooses each
subset with probability and each user in with a suitable

probability to ensure a mean service rate of stabilizes the
system.

Next, we show that no more rate vectors are achievable.

Lemma 3: If is achievable, then . In particular,
can be achieved by a global SSS scheduling rule parametrized

by a stochastic matrix of the form

(1)

where are stochastic matrices as described above, and is
a probability distribution on the maximal observable subsets, .
Similar to the notion of an SSS rule for a maximal observable
subset, the matrix above defines a global SSS rule for our
system. A scheduling policy implementing this global SSS rule
selects a subset in the first step with probability and sub-
sequently uses the subset SSS rule to pick a queue in . The
(long-term) service rate such a rule provides to queue is

(2)

and the throughput region is essentially the set of all
as and range from 0 to 1 with

and , for each and .
See Appendix A for the proof of Lemma 3.
Implications of the result: According to Theorem 1:
• The rate region is a function of the service rates of the

channels and marginal probabilities over the observable
subsets only, and does not explicitly depend upon the
overall joint probability distribution of all the channels. In
other words, two systems of channels with different overall
joint distributions but with identical marginal distributions

on all observable subsets are indistinguishable to
scheduling policies which use partial information, from
the point of view of long-term service rates that can be
achieved.

• Suppose a scheduling policy with partial channel state in-
formation is aided by a ‘genie’ which furnishes the policy
with the joint probability distribution of all the channel
states. Theorem 1 says that this additional joint distri-
bution information cannot help the scheduler enlarge the
throughput region. Intuitively, this can be understood in
two ways—
1) The scheduler’s action of observing the channel states

of only a subset of channels (in a time slot) forces
the scheduler to work (in the sense of service rates)
in the subspace corresponding to that subset in -di-
mensional space. Coupled with the fact that only one
subset can be observed per time slot, scheduling in
this case reduces to timesharing between service rates
attainable within observable subsets. This holds even
when the entire joint distribution of channel states is
known in advance, and is the reason why a scheduler
with knowledge of the joint distribution cannot im-
prove the throughput region outside the convex hull of
the throughput regions of the observable subsets.

2) Being able to observe the entire set of channel state
realizations and directly schedule a channel allows for
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TABLE I
PROBABILITY ASSIGNMENTS FOR THREE-CHANNEL SYSTEM

more global SSS rules compared to the restricted set of
SSS rules that can be achieved by picking a subset of
channels to observe and scheduling a channel within
the subset. This limitation on the available space
of static rules in the case of reduced instantaneous
channel state information leads to the diminishment
of the throughput region.

B. Example: Rate Region for Three Symmetric Channels

In this part of the section we derive the throughput region
for a system of three channels by applying Theorem 1. We con-
sider three subset structures—completely observable, pairwise
observable and singleton observable - and demonstrate how the
throughput region shrinks with reduction in the available partial
information.

Consider a system of three channels
in which the system can take one of eight possible states

(Table I), and where each of the channels takes
a rate of either or in every state. We denote the 8
values that specify the joint distribution of all three channels
by as shown in the table. Further, let us assume
that which corresponds to an i.i.d.
system of channels. We compute the throughput region for the
following channel state information structures.

1) Complete Channel State Information: Let
, i.e., all channels are simultaneously observ-

able. For this lone observable subset , we have
•
•
•

, etc.
In this case, where is the set of all
rate vectors , for
which there exists a stochastic 8 3 matrix such
that

and

With for all , we get the three-dimensional throughput
region shown in Fig. 1.

2) Pairwise Channel State Information: Let
, i.e., at most a pair of chan-

nels is simultaneously observable. Recalling the notation used
in the system model, for the observable subset
we have

•
•

Fig. 1. Rate region for 3 channels with complete channel state information.

• , etc.
and similarly for the other observable subsets and

. In this case

The subset throughput region , say, is the set of
all rate vectors , , for which
there exists a stochastic 4 2 matrix such that

In general, for the subset with
and for all , the orthogonal projec-

tion of onto the plane is as shown in Fig. 2.
Accordingly, the throughput region for the system is depicted
in Fig. 3. Observe that:

• The throughput region is now a function only of the mar-
ginal probabilities ,
etc.

• The throughput region of Fig. 3 has shrunk compared to the
region in Fig. 1 due to the pairwise observability constraint.

3) Singleton Channel State Information: Let
, i.e., only the state of one channel can

be observed in the first scheduling step. In this case

Each observable subset now has only two substates with corre-
sponding rates and ; for instance, for the observable subset

:
•
• ,
•

and similarly for the other observable subsets and
. The subset throughput region , say, is the
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Fig. 2. Rate region for 2 channels � and � , with complete channel state in-
formation.

Fig. 3. Rate region for 3 channels with pairwise and singleton channel state
information.

set of all rate vectors , for which there
exists a stochastic 2 1 matrix such that

Using for all , we get that is just the
line segment joining (0,0,0) and , and likewise
for and . Thus the throughput region is the
dotted simplex which is shown in Fig. 2. Observe that:

• The throughput region is now a function only of the mar-
ginal probabilities ,
etc.

• The simplex is strictly smaller than the throughput re-
gion with pairwise channel state information, due to the
singleton observability constraint.

C. The “Regret” of a Partial Information Scheduler

We have seen that the throughput region of a system with
partial channel state information depends only on the marginal
channel state distributions over observable subsets. Let a collec-
tion of observable subsets be fixed. Given a joint channel state
distribution that induces marginals over the observable subsets,
the set of rate vectors that belong to the throughput region with
complete channel state information exclusive of the throughput
region with partial channel state information is a measure of
how much a partial information scheduler which ‘knows’ the

joint channel distribution would ‘regret’ not being able to ob-
serve the full instantaneous channel state.

However, given only the marginals over observable subsets,
there are, in general, many joint distributions that are consistent
with the marginals. In this situation, a natural measure of how
much a partial information scheduler would ‘regret’ not being
able to observe the full instantaneous channel state is the set
of rate vectors that belong to the throughput region for every
joint distribution consistent with the given marginals on the ob-
servable subsets exclusive of the throughput region with par-
tial channel state information. In other words, this ‘regret re-
gion’ is the intersection of the throughput regions for all systems
with a consistent joint channel state distribution, excluding the
throughput region with partial channel state information over
the observable subsets. In this section, we present two exam-
ples—the first example demonstrating that the regret region is
empty and the second example showing that the regret region
can be nonempty (i.e., any scheduling policy with complete
channel state information can guaranteeably support more rates
than all policies with partial channel state information).

1) Consider the example of the previous section with pair-
wise channel state information, i.e.,

. Suppose we know
the pairwise marginals to be as follows:

, .
Note that the i.i.d. joint distribution
used earlier agrees with these pairwise marginals.
These pairwise constraints give us a feasible set of pos-
sible joint channel distributions: it is the set of vectors

in the simplex that satisfy the equations
,

etc. In matrix form, these constraints along with the sim-
plex constraints become

...
...

with for all . The set of solutions for the vector
is the set of convex combinations of the

vectors
and , i.e.

The i.i.d. joint distribution cor-
responds to . Let denote the throughput region
with complete channel state information when the joint dis-
tribution of channel states is . As before denotes
the throughput region with pairwise partial information, as
in Fig. 3. Since due to the joint distribu-
tions agreeing with the marginals, we must have
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The hexagonal face of in Fig. 3 represents the max-
imum sum rate that can be supported, and is described by

. We observe that for the rate region
, the sum can be at most , showing

that . Thus we get . This shows
that —the set of rates which can guaranteeably be
supported by scheduling policies with complete state infor-
mation given pairwise marginals—is no more than —the
set of rates which can be supported by policies with partial
channel state information.

2) Our next example illustrates that in gen-
eral. Consider two channels and which take two states
each—rate 1 and rate 2. The aggregate channel thus takes
one out of four states in each time slot, with the corre-
sponding rate pairs being (1,1), (1,2), (2,1), and
(2,2). Let the (joint) probabilities of these states be denoted
by , , and , respectively. We denote the (sin-
gleton) observable subsets by and .
Let us constrain the distribution by insisting that
the marginals be as follows:

and

These are verified to be valid marginals; for instance, the
joint probability distributions and

induce these marginals. In fact,
we can parametrize the set of all valid joint distributions
which yield these marginals by

From the marginal distribution, we get and
, hence the achievable rate region with par-

tial (singleton) channel state information is as in Fig. 4(a).
However, the full channel state information rate region as-
suming the ‘extreme-case’ joint distributions and
is as depicted in Fig. 4(b) and (c), respectively. We observe
that

Thus, in this case, given the singleton marginals, a sched-
uler with complete channel state information can support
a strictly higher rate guaranteeably over all joint distribu-
tions (e.g., the rate (1, 0.6)) than a scheduler with partial
channel state information.

D. The Structure of ‘Good’ SSS Rules

We conclude the section with a theorem which provides a
characterization of maximal global SSS rules. We call a global
SSS rule maximal if no vector in dominates its vector of ser-
vice rates , where a vector dominates a vector

if for all , and holds for at least
one . The result says that a maximal or optimal global SSS

Fig. 4. (a) Rate region with singleton channel state information for 2 channels.
(b) Rate region with full channel state information for joint distribution � .
(c) Rate region with full channel state information for joint distribution � .

rule chooses the subset that gives the highest expected value of
maximum weighted service rate for a subset, and further picks
that user to serve that gives the maximum weighted observed
rate.

Theorem 2: Consider a maximal global SSS rule associated
with SSS rules and a distribution
over subsets. Then, there exists a set of strictly positive constants

such that for any and

and (3)

(4)

According to Theorem 2, at time , in the first scheduling
step, a maximal global SSS rule chooses a subset for which
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is maximized, and further picks

queue in which maximizes , where is the ob-
served substate of subset . We refer the reader to Appendix B
for the proof of Theorem 2.

IV. A THROUGHPUT-OPTIMAL SCHEDULING ALGORITHM

Motivated by the form of the result in Theorem 2, we present
a scheduling algorithm which, for a system having arrival rates
in the described achievable region, takes as input only the state
of the system at each time slot and decides which (maximal)
subset to observe and ultimately, which channel in that subset to
schedule. Knowledge of the arrival rates is not assumed in such
a case. However, it is presumed that the marginal probabilities

of the subset being in the substate are known.

Algorithm 1

At each time slot ,
• Step 1: Select a set , given by

where the symbols and have the same
meaning as in the proof of Lemma 3 and
represents the length of the th queue at the beginning
of time slot .

• Step 2: Let the observed substate of be .
Schedule channel using the Max-Weight rule (also
known as the Modified Largest-Weighted-Work-First
(M-LWWF) rule [2], [6]), i.e.

Note: A suitable rule to break ties in each case is assumed.
The following result provides an important equivalent char-

acterization of the above algorithm in terms of knowing the ex-
treme points of the achievable rate region . This fact is the basis
for the throughput-optimality property of the algorithm, shown
by Theorem 3.

Lemma 4: Let be the (finite) set of extreme points for the
achievable rate region . If subset is chosen in Step 1 of Al-
gorithm 1 at time , then

That is, the algorithm selects any subset whose rate re-
gion contains an extreme point maximizing the inner product

over all and hence a point maximizing
over all . Refer to Appendix C for the proof of

Lemma 4.
The chief result in this section is the following theorem,

which says that the scheduling policy defined above is

throughput-optimal for scheduling with partial channel-state
information.

Theorem 3: Algorithm 1 makes the system stable if the vector
of arrival rates lies in the achievable region.

The proof of stability uses fluid limit machinery. Roughly,
by scaling and “compressing” time and concurrently scaling
down the magnitude of the queue length process, the discrete
and random queue length process “looks like” a deterministic
fluid process which is driven by a (vector) constant rate fluid ar-
rival process (the components corresponding to the mean arrival
rates to each of the users), and whose service rate corresponds to
the “average” service rate under the scheduling algorithm. For
the system we are considering, showing that such a limiting fluid
queue length trajectory has negative drift is sufficient to prove
that the discrete-time stochastic queue length process is stable
(positive recurrent) [26], [2].

The full technical details are deferred to the Appendix, and
here we give only the key Lyapunov function idea for proving
negative drift. Unlike the proof used for Theorem 3 of [2], here
we face the additional difficulty of assuring that we pick the
correct observation subset , in addition to picking the cor-
rect queue to serve in . We show that maximizing the negative
drift of our Lyapunov function is exactly the problem of maxi-
mizing the inner product over all . If we pick the
“wrong” subset, then maximizing the linear function above be-
comes impossible. To side-step this problem, we rely on Lemma
4, which guarantees that the chosen subset will indeed be one
with an extreme point maximizing the linear function.

We use the quadratic Lyapunov function

(5)

for a vector . Let denote the queue-length
component of a fluid limit of the system, which in turn is an
appropriate collection of almost-sure limits of scaled system
processes under uniform convergence over compact sets (see
Appendix D.A for details). The following property establishes
negative drift of , and (as in [2]) along with a result from
[26] implies Theorem 3.

Lemma 5: Under Algorithm 1, for any , there exists
such that almost surely, at any regular point of the fluid

limit

The proof of this lemma relies on Lemma 4, and can be found
in Appendix D-A.

V. THE MAX-SUM-QUEUE ALGORITHM

The throughput-optimal scheduling algorithm in the previous
section requires knowledge of both the instantaneous queue
lengths and marginal statistics of the channel. In this section,
we present a ‘simpler’ scheduling policy which only uses
queue-length information to pick the subset to observe:
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Algorithm 2 (Max-Sum-Queue)

At each time slot ,
• Step 1: Select a set , given by

where denotes the length of the th queue at the
beginning of time slot .

• Step 2: Let the observed substate of be .
Schedule channel using the Max-Weight rule, i.e.

Note: A suitable rule to break ties in each case is assumed.
In this section, we show that the Max-Sum-Queue algorithm is

throughput-optimal in two cases of interest: (i) when the subsets
in are disjoint; and (ii) when the channel is symmetric in the
users. In the next section, we prove by example that Max-Sum-
Queue is not throughput-optimal in general.

A. Max-Sum-Queue for Disjoint Subsets

The following result shows that when the collection of
observable subsets is mutually disjoint, Max-Sum-Queue is
throughput-optimal.

Theorem 4: Under the assumption that every pair of maximal
observable subsets is disjoint, the Max-Sum-Queue scheduling
algorithm makes the system stable if the vector of arrival rates
lies in the achievable region.

To prove Theorem 4, we follow a similar route as in the pre-
vious section, defining fluid limits and proving that a suitably
defined Lyapunov function has negative drift. The Lyapunov
function we use here is

where

The following key lemma is used to establish the negative drift
of the Lyapunov function, and is the analog of Lemma 5.

Lemma 6: Under Max-Sum-Queue scheduling, for any
, there exists such that almost surely, at any regular

point of a fluid limit

We refer the reader to Appendix D-B for the details of the proof
of the lemma. There is an intuitive geometric explanation for
this result. It is based on two observations: first, due to the dis-
joint subset assumption and the Max-Sum-Queue algorithm, if
any queue is unstable, all queues are unstable; next, given an

extreme point in each set , the convex hull of those ex-
treme points will always lie on an exposed face of . Note that
this is not true in the general case.

B. Max-Sum-Queue for Symmetric Channels

It is instructive to note that the reason that the presented
scheduling policies work in their respective cases is that at any
point , they maximize the linear objective function

over all in the convex polytope which represents
the achievable rate region. The drift of the sum-of-squares
Lyapunov function defined by (5) happens to be precisely
the difference between and . This
geometric interpretation allows us to prove the useful result that
Max-Sum-Queue is actually throughput-optimal for systems of
symmetric channels and subsets. A symmetric system is where
the distribution of the aggregate channel state is such that
every permutation of a given aggregate channel state occurs
with the same probability. For instance, for a system of three
channels , the aggregate channel state distributed as
(1,0,0), (0,1,0), and (0,0,1) equally likely qualifies as a sym-
metric system, whereas the system with the aggregate channel
state distributed as (1,0,0), (0,1,0), (0,0,1), and (0,0,0) equally
likely does not qualify as a symmetric system.

Theorem 5: Consider a symmetric system, i.e., where the ob-
servable subsets are all the subsets of a fixed cardinality . For
such a system, Max-Sum-Queue is throughput-optimal.

Proof: Let be the vector of arrival rates to the system
of channels represented by , such that

. As before, we consider the drift of the sum-of-squares
Lyapunov function defined by (5)

where is the instantaneous vector of service
rates chosen by Max-Sum-Queue at time in the fluid time scale.
We show that maximizes the inner product
over all or equivalently over all the extreme points of

; this establishes that the drift of is strictly negative
and bounded away from zero and hence Max-Sum-Queue is
throughput-optimal.

The subsets which Max-Sum-Queue picks for scheduling at
are the ones that contain the top queues in the system. Without
loss of generality, let , and let

Every set is picked by Max-Sum-Queue in the fluid
timescale, and thus has the same queue values ordered in de-
scending order. Further, since the channels are symmetric, every
subset rate region for , is identical up to
a permutation of indices. It follows that the extreme points of

maximizing must lie in the rate regions where
, since only the heaviest queues can maximize this

inner product over all permutations of extreme points.
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Fig. 5. Rate region for described 3-channel system.

Since these extreme points are precisely the ones picked by
Max-Sum-Queue in each subset, and that lies in the convex
hull of these extreme points, maximizes the inner product

over all , and we are done.

For an alternative view of why the Max-Sum-Queue policy
works for symmetric channels, refer to Appendix E.

VI. MAX-SUM-QUEUE APPLIED TO ARBITRARY SUBSETS

In this section, we show that the simple Max-Sum-Queue
scheduling algorithm is not throughput-optimal in general. An
intuitive fluid argument is presented first, followed by a formal
proof. Consider a system of three channels and . The
system assumes four possible states and with the
corresponding channel rates, expressed by (rate of , rate of

, rate of ), being (100,100,2), (100,200,2), (200,100,2), and
(200,200,2), respectively. Further, each state occurs with prob-
ability . The maximal observable subsets are

and , i.e., all pairs of channels. The
achievable rate region for the system is shown in Fig. 5.

Set the vector of arrival rates to be
, with and

(shown in Fig. 5). It is easily verifiable that lies
in the interior of the rate region. We show that a regular point

can exist with the fluid-limit queue-length process
satisfying , and with

. In such a case, the queue fluid levels and
increase (linearly) at a constant rate.

Let us hypothesize that is a regular point in satis-
fying . Since all the are equal,
the system must ‘serve’ all three subsets with some timesharing
probabilities and which must be strictly positive. The
regularity hypothesis now implies , and
hence

Together with , we get and
which is the unique timesharing solution between

the subsets and . Hence is indeed a regular point, all the
queue fluid limits are equal, and increase linearly at the same
rate .

Remarks:
1) We observe that the (mutually exclusive) conditions

and lead
to all the becoming equal within finite time. Hence the
state is an ‘unstable attractor’ for
the fluid limits in this sense.

2) For the arrival rate vector (shown in
Fig. 5), we can similarly show that starting from

implies that
at all times .

Next, as a consequence of the linear growth, we show that
the Markov chain describing the state of the system is transient,
which implies that all the queues grow without bound almost
surely. This is accomplished by demonstrating two crucial prop-
erties:

• with high probability the aggregate state of the system of
channels is distributed according to the invariant distribu-
tion of the Markov chain describing its evolution, and

• whenever the channel states are typically distributed thus,
the smallest queue always grows with a rate bounded away
from zero.

Theorem 6: The three-channel system considered is unstable
under the Max-Sum-Queue scheduling policy. Furthermore, the
Markov chain describing the evolution of its state is transient.
The proof is deferred to Appendix F.

VII. CONCLUSION AND FUTURE WORK

The Max-Weight rule is a striking example of a simple feed-
back based scheduling policy that is throughput-optimal. Like-
wise, with partial channel state information, the algorithm we
presented which uses queue lengths and expected channel states
is throughput-optimal. Under constraints like disjoint set ob-
servations or symmetric channels, just looking at the heaviest
queues suffices for stability. Both the scheduling algorithms we
studied for the partial information case can be viewed as exten-
sions of Max-Weight, which inherit its property of throughput-
optimality.

Possible directions for future work include extensions to net-
work-wide scheduling with partial observability of channels.
Can the presented scheduling policies be extended to network-
wide policies as with Max-Weight and the Back Pressure algo-
rithm [27]?

Another line of research would be to study what happens
when the channel is correlated across time and when the sched-
uler is allowed to use the whole past history to make service de-
cisions. For instance, allowing the channel to be Markovian in
time leads to a Partially Observable Markov Decision Process
(POMDP) problem, and it is interesting to investigate the sta-
bility region and the existence of throughput-optimal scheduling
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policies. Is scheduling based on queue lengths and expected
channel states still optimal?

A different direction to pursue would be to examine the delay
tails of such scheduling policies. One could also examine the
large deviations of the queue lengths arising from these policies.

APPENDIX A
PROOF OF LEMMA 3

Lemma 3: If is achievable, then . In particular,
can be achieved by a global SSS scheduling rule parametrized

by a stochastic matrix of the form

where are stochastic matrices as described above, and is
a probability distribution on the maximal observable subsets, .

Proof: Let be supported under the
scheduling policy . Note that for a maximal
observable subset , the SSS matrix introduced earlier
corresponds to a global SSS matrix where for a row of ,
i.e., a global system state , columns representing channels
in take the same values as the substate of induced by .
Other columns are identically zero. Henceforth, by the matrix

we will mean the (global) SSS matrix obtained by such an
embedding procedure.

Since the discrete-time Markov chain representing the evo-
lution of the system is assumed to be ergodic under the policy ,
let denote the long term fraction of time in which the max-
imal observable subset is chosen in the first scheduling stage,
with . Due to the nature of the map and the fact
that the channel-state process is i.i.d. across time slots, we can
write

where represents the probability with which channel is
picked for scheduling in the global system state . Accordingly,
the service rate seen by channel can be written as

where is written (with respect to the maximal observable
subset ) as the pair with denoting the substate of
and the substate of . We note that if
then , and if then which is
independent of the substate of . Also, when , we

denote by , the rate of channel in . For ,
we let denote the set of all possible substates of . Hence
we have

(6)

The quantity in square brackets is just the probability
of the maximal observable subset being in substate , hence
the expression in curly brackets can be labeled : the service
rate to channel when only subset is being observed. Hence

where ( if ). Notice that
is achievable using the trivial distribution on and the SSS rule

, hence . Therefore .

APPENDIX B
PROOF OF THEOREM 2

Theorem 2: Consider a maximal global SSS rule associated
with SSS rules and a distribution
over subsets. Then, there exists a set of strictly positive constants

such that for any and

and (7)

(8)

For proving Theorem 2, we use the following lemma to first
characterize what is meant by a vector of rates being maximal
in the rate region.

Lemma 7: For a maximal global SSS rule corresponding to
the vector of service rates, there exist positive
constants such that solves .

Remark: The proof of the lemma is an application of the
Arrow-Barankin-Blackwell theorem [28]. For the sake of
clarity, however, we give the full proof here.

Proof: Let be all the extreme points of ,
with and .
Consider the following linear program:

subject to
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(9)

where denotes the th coordinate of . We know that
and solve this linear program with constraints
(9) satisfied as equalities. Then, by the Kuhn-Tucker theorem
[29], there exists a set of nonnegative Lagrange multipliers

such that and also solve the fol-
lowing linear program (with the same value of the maximum):

(10)

subject to

We note that every must be strictly positive owing to the
tightness in (9), and . Rewriting (10), we get that

maximizes

over all distributions , i.e., maximizes
over all .

Proof of Theorem 2: Let be the vector of long-term ser-
vice rates for a maximal global SSS rule parametrized by the
distributions and . We have by
Lemma 7 that there exist positive constants such that

solves

(11)

Equivalently, and solves (11),
and (7) and (8) of the theorem follow, since otherwise the max-
imum in (11) would not be attained.

APPENDIX C
PROOF OF LEMMA 4

Lemma 4: Let be the (finite) set of extreme points for the
achievable rate region . If subset is chosen in Step 1 of Al-
gorithm 1 at time , then

Proof: If , then

(12)

Let , with ties broken
according to a fixed precedence rule among . Define a SSS
rule which serves only subset , and for which
if and 0 otherwise, . If
is the vector of long term service rates for , then we have

, and

Since is a convex polytope, it must contain an extreme
point such that .
Thus which proves the
lemma.

APPENDIX D

The following two Appendices (D.A and D.B) are provided
for completeness. The setup in these sections parallels that in
[2], and uses the machinery of fluid limits to establish stability
of Algorithm 1 and Algorithm 2 (Max-Sum-Queue) via drift
properties.

A. Proof of Lemma 5

Lemma 5: Under Algorithm 1, for any , there exists
such that almost surely, at any regular point of the fluid

limit,
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To prove the lemma, we set up fluid limit processes for the
system dynamics following the development in [2]. For this pur-
pose, we first define the “norm” of the system state as

. Consider a sequence of queueing sys-
tems, indexed by with corresponding system
state processes such that .
We define the following discrete time random processes for

:

As in [2], for a canonical discrete time process , define
its corresponding scaled (by in space and time) process in
continuous time by

following which we get the scaled versions of our system pro-
cesses:

For the sake of completeness, we reproduce (with minor mod-
ifications) the following lemma from [2], which establishes con-
vergence of these scaled processes to the corresponding fluid
limit processes. These fluid limit processes have desirable prop-
erties like being absolutely continuous and thus differentiable
almost everywhere, non-decreasing and time-conserving.

[2, (Lemma 1)]. The following statements hold with proba-
bility 1. For any sequence of processes , there exists a sub-
sequence , such that for each
and

where the functions are nonnegative, nondecreasing, and
right-continuous with left limits (RCLL) in , the
functions are nonnegative nondecreasing
Lipschitz-continuous in , functions are continuous in

, “ ” signifies convergence at continuity points of the
limit, and “u.o.c.” means uniform convergence on compact
sets, as . The limiting set of functions

also satisfies the following properties, for all
and :

for any interval

if for , then

Analogous to Lemma 2 in [2], Algorithm 1 can be shown to
induce the following properties on the fluid limit processes via
the corresponding pre-limit processes:

1) If, for some regular point and some and

then

2) If, for some regular point and some

then
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Proof of Lemma 5: Since the system is assumed to be
feasible, its rate vector is a convex combination of feasible rate
vectors of its maximal observable subsets, by Lemma 3. Hence
there must exist a fixed distribution together with
subset SSS rules such that, using Theorem 1 of [2]
and (6), we have

For any regular such that , the derivative
of can be written as follows:

(13)

where we use the notation

and we use the fact, following from properties of the fluid limits,
that

We can always choose such that implies
. Then the first sum in (13) is bounded as follows:

It remains to show that

(14)

Using Properties 1 and 2 of the fluid limit processes under
Algorithm 1, we have

This proves Lemma 5.

B. Proof of Lemma 6

Lemma 6: Under Max-Sum-Queue scheduling, for any
, there exists such that almost surely, at any regular

point of a fluid limit

To prove Lemma 6, we use the same framework of fluid limits as
before (Section D.A), this time working with a new Lyapunov
function where

The following properties of the fluid limits under Max-Sum-
Queue scheduling follow from the properties of the pre-limit
processes, in a manner similar to [2, Lemma 2]:

1) If, for some regular point and some and

then

2) If, for some regular point and some

then

Proof of Lemma 6: Let be
comprised of with each , where is
chosen by a fixed precedence rule among subsets in ; thus

. For a regular point , we
have

(15)
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(16)

where

for , and . More
generally, as a result of the above, we have

(17)

Since is a regular point, we have, using (17),

Define

and let . is well-defined since a
queue belongs to at most one of the (disjoint) . Consider

Note that due to Step 2 of the Max-Sum-Queue policy,
maximizes over all . Hence by the

above we have that maximizes over all
. Since lies in the interior of , there exists such

that

whenever , since is mono-
tone increasing in .

This establishes the strictly negative drift and concludes the
proof.

APPENDIX E
PROOF OF THEOREM 5

Theorem 5: Consider a symmetric system, where the observ-
able subsets are all subsets of a fixed cardinality . For such a
system, Max-Sum-Queue is throughput-optimal.

Proof: We show that Max-Sum-Queue is equivalent to the
throughput-optimal rule defined in Section 4 for a symmetric
system. The throughput-optimal algorithm picks a subset
such that

(18)

while Max-Sum-Queue picks a subset such that

i.e., contains the top queues at time . We claim that
belongs to the set in the right hand side of (18). For if not, there
exists a subset such that does not contain the top
queues and

Assume without loss of generality that the queues and
are ordered in descending order within subsets and

respectively. Since the system is symmetric, each subset sees
identical substates with identical distributions on them, so we
can assume that and are also identical, along with the
corresponding sets of and . Hence we have

which is a contradiction as each queue in is at least as large as
its corresponding queue in . This proves the theorem.

APPENDIX F
PROOF OF THEOREM 6
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Theorem 6: The three-channel system considered in
Section VI is unstable under the Max-Sum-Queue scheduling
policy. Furthermore, the Markov chain describing the evolution
of its state is transient.

We will need technical preliminaries similar to [30] to prove
Theorem 6. As stated earlier, fix the vector of arrival rates to
be . For each we split the nonnegative real
line into equal contiguous intervals of size each. Let
the th interval be denoted by . We divide

every interval uniformly into equal contiguous
subintervals of size . Define:

• : Number of arrivals from flow in the th subin-
terval of the th interval, i.e., in

, and
• : Number of time slots that the channel is in state

in the th subinterval of the th interval, i.e., in
.

We define the following arrival process and channel process
deviation events:

Note that by hypothesis, the events and
are independent for any and

. For positive integers and and real numbers
and we define the following error event, corresponding
to at least one of the channel service rates or input flows being
‘atypical’ in its empirical distribution in the th time interval:

The following lemma bounds from above the probability of
this error event.

Lemma 8: Fix and . Then, there exists
such that for all , for any fixed

positive integer , and uniformly over , we
have

Proof: Since by hypothesis there are only finitely many
channels and aggregate channel states, it suffices to show that

(19)

(20)

for all and , and large enough.

By [31, Theorem 3.1.2], since is a finite-state irreducible
discrete-time Markov chain for every , the empirical mean

obeys a large deviations principle with a convex,
good rate function. This means that in proba-
bility for every at a uniformly exponential rate. There are only
a polynomial number of subintervals in every interval
of size , hence (19) follows. (20) is obtained in a similar
manner since by Cramér’s Theorem [31], the empirical mean
of i.i.d. random variables obeys a large deviations principle
with a convex, good rate function.

The lemma basically lets us assume that the empirical mea-
sures of the channel service rate and arrival processes look like
their true measures, with very high probability.

Let denote the smallest queue length in the three
queue lengths , at the beginning of the th
subinterval in the th interval of time. The following lemma is
crucial to the proof of instability and describes how the queueing
system behaves in a typical interval.

Lemma 9: Fix . There exists and
such that for any and , conditioned on the

fact that the event has not occurred, the following
happens. If

for some , then

This lemma essentially tells us that in any typical interval,
the lowest of the three queues strictly increases with a uniform
minimum rate, provided that the queues are sufficiently large to
start with.

Proof: Recall that a subinterval consists of time slots.
We can choose to be much smaller than all the . If
we denote by the maximum possible channel service
rate in the system and by the maximum of the three arrival
rates , the change in any queue within an interval is
at most where . We can pick
sufficiently small, and sufficiently large such that this
quantity is negligible compared to a queue length error of
and such that the second step of the Max-Sum-Queue policy is
immune to queue length errors of up to if all queues are at
least of length .

Let denote the subset of queues whose lengths are
within of the smallest queue length , at the begin-
ning of the th subinterval in the th interval. Without loss of
generality we can assume that does not change from
to , since if otherwise we can partition the set of intervals from

to into contiguous subsets with this property and obtain the
result using the uniform bound .

The proof proceeds by considering various cases for the
number of queues in .

Case 1— contains exactly one element: In this case,
the single element is the unique smallest queue in the system,
and remains the unique smallest queue throughout, until subin-
terval . Hence the only subset picked by the first step of the
Max-Sum-Queue policy is that consisting of the other two
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queues. Consequently this queue is never served at all, and
must increase at a rate at least .

Case 2— contains exactly two elements: Here we
need to consider three further subcases:

2(a)— : In such a situation only the subset
or can be picked by the first step of Max-Sum-

Queue. Let us bound from above the maximum rate at which
and together are served. If we assume (in the best case)

that is never picked for service in the second step of Max-
Sum-Queue, then and share the service time, and the
total service rate to them is at most

. The service discipline reduces to serving the longest
of and .

We claim that in this time, the difference cannot
exceed a constant amount, say , since if it did, then there was
a last previous time when the order of the queues was the same
and the difference was under . This implies that the difference
grew under the longest-queue policy, a contradiction.

The total arrival rate to and , however, is at least
, hence increases with a net rate of at

least . Hence their average
increases with a net rate of at least , and
since and remain within of each other throughout
and can be chosen large enough, the lowest queue increases
with rate at least (arbitrarily close to) for small
enough .

2(b)— : Here, the only possible subsets
which can be picked are and . Note that can
never be served when the first subset is picked. If the second
subset is picked, since always, the only state in which

is served is when its rate is 200 and ’s rate is 100. Hence
increases with a rate at least , while increases

with a rate at least
for small enough .

2(c)— : Similar to the previous case by
symmetry.

Case 3— contains exactly three elements: In this
case, all three subsets are capable of being chosen in the first
scheduling step. is never served, hence its length increases
at rate at least . Partition the total time into sec-
tions where: i) is the smallest queue; ii) is between the
other two queues; and iii) is the largest queue. For i) , the
smallest queue clearly increases with rate bounded away
from zero. For ii), only the subset consisting of the top two
queues is picked, hence the smallest queue increases with rate at
least . For iii), we can use the same argument as with
case 2(a) to see that the smallest queue increases with a strictly
positive rate. This completes the proof.

Proof of Theorem 6: Fix any . Lemma 9 gives us
and such that in a typical interval (where the

interval size is subintervals with ), if all queues are
greater than , then the lowest queue always increases with a
rate at least . Let be the maximum possible service rate
in the system (in this case ), and let where

denotes the smallest integer at least . Choose
small enough so that , and furthermore, so that

(21)

Lemma 8 now gives us such that for and any ,

(22)

(23)

uniformly over all . Fix to be any integer
greater than and .

Using introduced earlier to mean the length of the
smallest queue at the beginning of the th time subinterval in the

th time interval, let be the random
process denoting the size of the smallest queue at the beginning
of every interval of time: Let

be an integer such that and let all queues start with
initial state : . Define
the (time-valued) random variable to be the first time after
starting that drops below : .
We show that , implying that the smallest
queue (and hence every queue) grows without bound with a
nonzero probability and establishing transience of the Markov
chain describing the evolution of the system state . We can
write

(24)

Let be the random variable which counts the number of
atypical intervals of time up to interval

We claim that implies , for
otherwise , and by Lemma 9, for ,
we have

a contradiction to .
From (24), we can write
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Here is by applying (22) to

and follows from (21). This completes the proof.
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