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Abstract. Numerous techniques for optimal performance of an IEEE 802.11 WLAN have been investi-
gated. These techniques make use of either power control or PHY (physical layer) rate control or both
to achieve maximum throughput levels for the network at minimum power consumption. However most
of these techniques are non-cooperative by definition. Here, we analyse cooperative and non-cooperative
rate and power control in an 802.11 WLAN that uses the Distributed Coordination Function (DCF). We
formulate a payoff function comprising of the throughput and costs related to power consumption. The
payoff function is optimized and closed form expressions for the optimal PHY rate are obtained. In the
cooperative approach we seek to obtain the optimal rates under two different scenarios – max-min fair

rate and global multirate allocation. In the non-cooperative approach we consider only multirate alloca-
tion. We consider optimization problems for both finite number of nodes n and for the limit n→ ∞ and
obtain explicit expressions for the optimal PHY rate. Single node throughputs corresponding to the op-
timal PHY rates are numerically studied and it is observed that network performance in the cooperative
scenario is superior to that in the non-cooperative scenario.
Keywords: IEEE 802.11, PHY rate, power control, WLAN, bandwidth sharing, GPS queue

1 Introduction

We analyse cooperative and non-cooperative power and rate control in an IEEE 802.11 WLAN environ-
ment, based on an explicit throughput expression [1] validated in [2] using ns2 simulations. We consider
optimizing either the achieved aggregate network throughput (cooperative approach) or an individual
node’s achieved throughput (in a non-cooperative setup) by adaptively selecting one of the available
PHY data rates. In the formulation of the optimization problems we further take into account a cost
for power consumption. We formulate a payoff function Wn for n users which comprises a utility part
representing the throughput and a cost part related to power consumption. In the cooperative case the
global payoff comprising the total network throughput and total transmission power costs of all mobile
nodes is maximized. In the non-cooperative game case, each player seeks to maximize its own payoff.
The corresponding solution concept is then the Nash equilibrium. In the cooperative control analysis, we
seek to maximize the payoff with two different approaches: (i) obtaining an optimal fair assignment of
PHY rates, with a max-min flavor, to all nodes irrespective of their channel conditions (of course, this
means that a channel with bad conditions will have to use larger power); (ii) global multirate approach,
we allow each node to use a different PHY rate and seek to obtain the optimal rate for each node. In this
case, the optimal PHY rate used by each node will depend on its channel conditions. We also present a
queueing model that allows us to study the dynamic behavior aspects and expected transfer time and
steady state probabilities for data transfers. Our main contribution is in obtaining explicit expressions (or
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set of equations that can be solved numerically in the case of n → ∞) for the optimal PHY rate. These
expressions are then used to calculate explicit throughput values. Our discussion takes into account both
ad-hoc and infrastructure networks.
Related Work and Motivation: Application of power control in WLAN systems to minimize the
required power in the transmit mode and adaptive selection of PHY rates has been studied by many
researchers. In [9] and [10], the authors have proposed rate adaptation algorithms–Auto Rate Fallback
(ARF) and Receiver based Auto Rate (RBAR). These are non-cooperative algorithms that use only PHY
rate control to achieve maximum throughput levels without considering any potential benefits that can
be achieved by combining power control. Some other schemes have been proposed in [12] and [13] which
incorporate only power control without considering the idea of an optimal PHY rate selection. The MiSer
algorithm in [11] which is based on the 802.11a/h standards, is probably one of the few algorithms that
combines the idea of PHY rate and power control. MiSer is also a non-cooperative attempt to obtain
optimality by using combined rate and power control. Most control schemes in previous work either
consider only rate control or only power control to maximize the application throughput. Some other
schemes like MiSer use both rate and power control to maximize the energy efficiency. However, all these
schemes are valid only for a non-cooperative environment. That is, they attempt to optimize an individual
node’s performance in terms of throughput or power consumption, as mentioned before. But optimizing
an individual node’s performance may cause the overall network performance to suffer. Interestingly, Tan
et al. in [4] have shown that in a non-cooperative scenario under DCF, a “rational” node may achieve
a higher throughput by using a lower transmission rate than by using a higher transmission rate, but
at the expense of a reduced overall network throughput. We will show later in Section 6 that a part of
this result by Tan et al. can also be derived from our analysis. Our contributions with respect to [4]
are (i) we have explicit formulas for the equilibrium throughputs, where as in [4] the throughputs are
obtained numerically (ii) the formula used in [4] for the throughput (as a function of the parameters
choice) depends on the frame success rate for which there is no analytical expression in [4], whereas we
have an explicit expression for the frame success rate.

2 Model and background

Our analysis is based on the results obtained in [1]. Let there be n active nodes in a single cell IEEE
802.11 WLAN contending to transmit data. Each node uses the Distributed Coordination Function (DCF)
protocol with an RTS/CTS frame exchange before any data-ack frame exchange and each node has an
equal probability of the channel being allocated to it. It is assumed that there is no limit on the transmit
power of any node and that every node has infinitely many packets backlogged in its transmission buffer.
In other words, the transmission buffer of each node is saturated: there are always packets to transmit
when a node gets a chance to do so. It is assumed that all nodes use the same back-off parameters. Let β
denote the long run average attempt rate per node per slot (0 < β < 1) in back-off time [1] (conditions for
the existence of a unique such β are given in [1]). We assume the decoupling approximation [3] which says
that from the point of view of a given node, the number of attempts by the other nodes in successive slots
are i.i.d. binomial random variables with parameters (n − 1) and β. It is assumed that the decoupling
approximation and the ensuing fixed point analysis in [1] yield an accurate estimate of the attempt rate.
Let the MAC frame size of node i be Li bits and let the PHY rate used by this node be denoted by Ci
bits per slot. Let To be defined as the transmission overhead in slots related to a frame transmission,
which comprises of the SIFS/DIFS, etc and let Tc be defined as the fixed overhead for an RTS collision
in slots. Then it follows from [1] that the throughput of node i is given by

θ(i, n) =
β(1 − β)n−1Li

1 + nβ(1 − β)n−1
(

To − Tc + 1
n

∑n

i=1
Li

Ci

)

+
(

1 − (1 − β)n
)

Tc
(1)

where β = β(n) for the case when K → ∞ is given by [1]

β =
ηp− LambertW (η(p− 1)eηp)

ηb0

with η = n−1
b0

. Note that β does not depend on Li or Ci, and all nodes achieve the same single node
throughput even if they use different rates. As is the case in IEEE 802.11, for all nodes that use an
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RTS/CTS frame exchange before the data-ack frame transmission, we assume throughout our discussion
that To ≥ Tc. In our analysis in the following sections, we will consider optimization problems for both
finite n and for the limit n→ ∞. For handling the latter case, we identify here the asymptotic aggregate
throughput as n → ∞ (this derivation can be found in [1] for the special symmetric case where all Li’s
and Ci’s are equal). An appealing feature of the asymptotic case is the explicit expression for β.
Asymptotic throughput: In our discussion we use asymptotic throughput in the following two contexts:
(i) In the max-min fair (MMF) case where we assign the same PHY rate to all mobile nodes, we consider
all nodes to be symmetric, i.e., they all use the same PHY rate C (they still may have different channel
conditions). In this case, if first K → ∞ [1] and then n → ∞, the global throughput is given by Sec.
VII.C in [1] as:

τ(C) =
L
(

1 − 1
p

)

1

ln( p

p−1 )
+
(

1 − 1
p

)

(

To − Tc +
(

L
C

))

+ Tc

p ln( p

p−1 )

(2)

where p is the exponential back-off multiplier, i.e., if bk is the mean back-off duration (in slots) at the
kth attempt for a frame then bk = pkb0. According to the IEEE 802.11 specifications p = 2.
(ii) In the case where we consider global multirate PHY rate assignment to all nodes, i.e., each node uses
one of the c distinct available values of the parameters (Ci, Li) with (Ci, Li) ∈ {(C1, L1), ..., (Cc, Lc)}, we
derive here the corresponding asymptotic throughput. Assume that there are mi nodes using parameters
(Ci, Li). Denote by αi(n) = mi/n the fraction of the nodes using (Ci, Li) among all nodes in the cell.
Then the throughput of all nodes using (Ci, Li) is given by

θ(αi(n)) =
miβe

−nβLi

1 + nβe−nβ
(

To − Tc +
∑c

i=1
αi(n)Li

Ci

)

+
(

1 − e−nβ
)

Tc
(3)

where we use the Binomial to Poisson approximated version of the throughput expression for the asymp-
totic case mentioned in Section VII.C of [1]. It is assumed that αi(n) converges to a limit αi which is a
probability measure. Note that the attempt rate β = β(n) and the collision probability γ as defined in [1]
are not functions of Li nor Ci. Now, first taking K → ∞ [1] and then taking the limit n→ ∞, it can be

observed that limn→∞ nβ(n) ↑ ln
(

p
p−1

)

(see Theorem VII.2 in [1]). Combining this result with Equation

(3) we get as n→ ∞ the following expression for the aggregate throughput of all nodes using (Ci, Li):

τ(αi) =
αiLi

(

1 − 1
p

)

1

ln( p

p−1 )
+
(

1 − 1
p

)(

To − Tc +
∑c

i=1

(

αiLi

Ci

))

+ Tc

p ln( p

p−1 )

(4)

Denote Eα[L/C] =
∑c

i=1
αiLi

Ci
and Eα[L] =

∑c

i=1 αiLi. Then it follows from Equation (4) that the
asymptotic global throughput is given by

τ(α) =
Eα[L]

(

1 − 1
p

)

1

ln( p

p−1)
+
(

1 − 1
p

)

(To − Tc +Eα[L/C]) + Tc

p ln( p

p−1 )

(5)

3 Defining the payoff function

In an efficiently working WLAN, the goal of the mobile nodes is to achieve maximum throughput levels
with minimized power consumption costs. In a cooperative scenario, the nodes should cooperate to achieve
maximum overall network throughput at minimum combined power consumption. If each node uses the
highest available PHY rate, which is say common for all nodes, it may not be the best strategy to
achieve the most efficient overall network performance. The reason being that under the given channel
conditions, a node may be unnecessarily consuming more power by transmitting at the highest available
rate if transmitting at a lower PHY rate does not degrade the combined network throughput. Based on
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this thought and the fact that under DCF, each node has an equal probability of gaining access to the
channel we define a long-term payoff function Wn for n active nodes in the WLAN as

Wn :=
n
∑

i=1

(θ(i, n) − ζiQi(Ci)) (6)

where θ(i, n) is the throughput of node i as defined in Equation (1). Qi(Ci) is a cost related to the
power consumption of node i and is a function of the PHY rate Ci and ζi is a weight that gives relative
importance for node i to the cost versus the throughput. Note that, maximizing this payoff function leads
to maximizing the throughput and minimizing the costs related to power consumption. Experiments
conducted by Gruteser et al. in [5] with IEEE 802.11 equipment reveal that under given channel conditions
and a low transmission power range, the power consumed by a mobile node can be approximated as
being linearly proportional to the PHY rate used. Consequently, Qi(Ci) can be considered as a linear
cost function of the form: Qlini (Ci) = aiCi, where ai is a random variable that may depend on the path
attenuation under given channel conditions. Next, motivated by the Shannon’s theorem and assuming
an AWGN channel that uses complex symbols , the transmission rate of a node is of the form C(π) =
W log2

(

1 + π
z

)

, where W is the passband spectrum in Hertz. π is the transmission power of the node
and z = WNo/h, where No is the one-sided power spectral density of the channel noise and h is a random
variable that characterizes the signal attenuation. z is therefore a random variable that may depend on
channel fading and shadowing. The previous equation can be rewritten as: π(C) = z(eψC − 1), where
ψ = ln2

W
. It has also been seen in the results of the experiments in [5] that the power consumed by

mobile nodes is piecewise linearly proportional to the transmission power. Therefore, an exponential cost
Qexpi (Ci) can be assumed, which is of the form: Qexpi (Ci) = zi(e

ψCi − 1). From the definitions of ai and
zi in the foregoing discussion it is evident that their values may vary from one mobile node to another.
We denote the expected values of ai and zi by E[ai] and E[zi].

4 Cooperative approach

In the cooperative approach to PHY rate and power control, we shall consider two different scenarios. In
the first max-min fair scenario, we assign each node the same PHY rate C and MAC frame size L at all
channel states. This will of course require an appropriate power control so that in bad channel conditions
the transmitted power is larger. We seek to obtain the optimal PHY rate that will maximize the overall
payoff of the network. As discussed before, an optimal PHY rate may not be the highest available PHY
rate. In the second global multirate scenario, we allow each node to use a different PHY rate Ci depending
on its channel conditions and we seek to obtain the globally optimal PHY rates for all nodes. In both
the scenarios, it is assumed that all nodes use the same MAC frame size L. We will pursue analysis for
finite n number of nodes and also consider the situation when n → ∞ for both cases. We shall consider
the set of possible values of C or Ci, as the case may be, to lie in an interval of the form C := [Cl, Cu].
In 802.11a, this interval could be [6, 54].

4.1 Obtaining the max-min fair PHY rates

A max-min assignment of resources to users is a fairness concept characterized by the property that no
user i can be assigned more resources unless we decrease the assignment to another user j who already
has the same amount or a lesser amount of resources than user i. This is an efficient assignment in the
Pareto sense. In our case it is the PHY rates that are assigned according to the max-min approach leading
to an identical assignment to all users. Note that the actual throughputs are already the same for all
users even if the PHY rates are different.

Finite number of nodes: We seek to maximize the payoff function defined in Section 3 while assigning
the same PHY rate C to each node irrespective of the channel conditions. Consider the following problem:

Find C∗ that maximizes Wn :=

n
∑

i=1

(θ(i, n) − ζiQi(C)) (7)
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Wn is concave with respect to C (see [6] for proof) and thus has a unique maximizer C∗. In particular,

we have the linear and the exponential costs as: Qlini (C) = E[ai]C, Qexpi (C) = E[zi]
(

eψC − 1
)

. Denote

ulin =
∑n

i=1 ζiai and uexp =
∑n

i=1 ζizi and set

q1 = nβ(1 − β)n−1L, q2 = 1 + nβ(1 − β)n−1(To − Tc) + (1 − (1 − β)n)Tc (8)

Then W lin
n (C) =

q1
q2 + q1/C

−E[ulin]C W exp
n (C) =

q1
q2 + q1/C

−E[uexp]
(

eψC − 1
)

(9)

By differentiating the payoff w.r.t. C and equating the derivative to zero, we get the following results:

(i) In the linear case, the unique positive solution of
dW lin

n (C)
dC

= 0 is given by

C∗ =
q1
q2

(

1
√

E[ulin]
− 1

)

(10)

provided that 0 < E[ulin] < 1. If E[ulin] ≥ 1 then there is no positive solution.

(ii) In the exponential case the unique positive solution of
dW exp

n (C)
dC

= 0 is given by

C∗ =
2

ψ
LambertW

(

1

2

q1
q2

√

ψ

E[uexp]
exp

(

1

2

q1
q2
ψ

)

)

−
q1
q2

(11)

See [6] for the definition of LambertW function. In either the linear or the exponential case, if C∗ lies
within C then it is the unique globally optimal rate assignment solution for problem (7). If not, then
the optimal solution is obtained on one of the two boundary points of C. We defer the discussion on the
numerical computations of C∗ to Section 6.
The asymptotic case: We present here the asymptotic behaviour for large number of nodes. The
optimization is based on the expression for the asymptotic throughput given by Equation (2). Here we
assume that ai, zi and ζi have the same distribution for all mobiles. Consider the following problem:

Find C∗ that maximizes W (C) := τ(C) − ζQ(C) (12)

where Q(C) = E[a]C for the linear cost and Q(C) = E[z]
(

eψC − 1
)

for the exponential one. W (C) turns

out to be concave in C (see [6] for proof) and therefore it has a unique maximizer. Writing W (C) for the
linear and exponential case as

W lin(C) =
q1

q2 + q1/C
−E[a]C and W exp(C) =

q1
q2 + q1/C

−E[z]
(

eψC − 1
)

where q1 = L

(

1 −
1

p

)

, q2 =
1 + Tc/p

ln
(

p
p−1

) +

(

1−
1

p

)

(To − Tc). (13)

Then the optimal C is obtained by differentiating W lin(C) and W exp(C) and equating them to zero,
which gives the following unique positive solution for the linear and exponential cases, respectively:

C∗
lin =

q1
q2

(

1
√

ζE[a]
− 1

)

, C∗
exp =

2

ψ
LambertW

(

1

2

q1
q2

√

ψ

ζE[z]
exp

(

1

2

q1
q2
ψ

)

)

−
q1
q2
.

If C∗ lies within C then it is the unique globally optimal rate assignment solution for problem (12). If not
then the optimal solution is obtained on one of the two boundary points of C. Also note that C∗ here has
the same form as in the finite n case but with different q1 and q2.

4.2 The dynamic case

So far we have considered a fixed number of nodes in the system. In this section we consider a dynamic
setting. Let nodes arrive in a WLAN system according to an independent Poisson process with rate λ.
The nth node is assumed to have a service requirement σn where σn are i.i.d. generally distributed.
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Max-min fair case: We assume that the assignment of physical rates follows the max-min fairness
approach, so that the physical rate of each mobile node is given by C(n), where n is the number of
mobiles in the system; n can be referred to as the system state. Then the throughput of each mobile
when the system is in state n is given by

θ(n) =
β(1 − β)n−1L

1 + nβ(1 − β)n−1
(

To − Tc + L
C

)

+
(

1 − (1 − β)n
)

Tc
(14)

Since all mobiles use an identical MAC frame size L in the max-min fairness approach and hence theo-
retically achieve the same throughput, the whole network can be viewed as an M/G/1/∞ queue where
the service discipline is a generalized processor sharing (GPS) [8]. If we denote ρ := λE[σ0] and define
φ(n) = 1/

∏n
i=1 θ(i) then applying the general theory of [8] for GPS queues, we obtain the following

expressions for the steady state probabilities and sojourn times:

Theorem 1. Assume that
∑∞

i=1 ρ
iφ(i)/i! < ∞. Then the steady state probabilities exist. They, as well

as the expected sojourn time of a mobile are given by

Pr(N = n) =
ρnφ(n)

n!
∑∞
i=0

ρi

i! φ(i)
, E[T ] = E[σ]

∑∞
j=0

ρj

j! φ(j + 1)
∑∞

j=0
ρj

j! φ(j)

Remark 1. Using [8] one can in fact (i) obtain explicit expressions for the QoS of more complex arrival
process, and in particular for on/off sources having general thinking times, (ii) obtain explicit expressions
for the case when there is a limit (enforced by a call admission control) on the number of active mobiles.

Proportional fairness: We next consider the case in which the MAC frame size Li is not identical for
all nodes but is taken to be proportional to the PHY rate Ci, so that Ω := Li/Ci does not depend on i.
Then even if the MAC frame size Li is not the same for all nodes (unlike in all other cases in the paper),
we still get the throughput of each node in terms of packets per second to be identical and is given by:

θ(n) :=
θ(n)

Li
=

β(1 − β)n−1

1 + nβ(1 − β)n−1 (To − Tc +Ω) +
(

1 − (1 − β)n
)

Tc
(15)

Now, (i) Theorem 1 still holds with θ(n) replacing θ(n) in the definition of φ(n), and (ii) the expected
sojourn time of mobile i is given by:

E[Ti] =
E[σ]

Li

∑∞
j=0

ρj

j! φ(j + 1)
∑∞
j=0

ρj

j! φ(j)
.

4.3 Global multirate (channel dependent) optimization

In this section we consider global optimization in which we allow each node to use a different PHY rate
Ci and we seek to obtain the best choice of Ci, i = 1..n. We assume that all values of E[ai], E[zi] and ζi
are known. By allowing Ci to differ from one node to another we expect to achieve higher efficiency.
Finite number of nodes, channel-dependent case: Consider the following problem:

Find C∗ = (C∗
1 , ..., C

∗
n) that maximizes Wn :=

n
∑

i=1

(θ(i, n) − ζiQi(Ci)) (16)

where θ(i, n) is defined by Equation (1). Then we have,

W lin
n =

q1

q2 + q1
n

∑n

i=1(
1
Ci

)
−

n
∑

i=1

ζiE[ai]Ci and W exp
n =

q1

q2 + q1
n

∑n

i=1(
1
Ci

)
−

n
∑

i=1

ζiE[zi](e
ψCi −1)(17)

where q1 and q2 are defined in (8). Define

qi2 = q2 +
q1
n

n
∑

j=1,j 6=i

1

Cj
, Ĉ =

(

n
∑

i=1

1

Ci

)−1

and H(Ĉ) =
q21

(

q2 + q1

nĈ

)2

n
.
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With these definitions and by differentiating W lin
n we get

∂W lin
n

∂Ci
=

nq21
(nqi2Ci + q1)2

− ζiE[ai] =
q21

(

q2 + q1

nĈ

)2

nC2
i

− ζiE[ai] (18)

and similarly by differentiating W exp
n we get

∂W exp
n

∂Ci
=

nq21
(nqi2Ci + q1)2

− ψζiE[zi]e
ψCi =

q21
(

q2 + q1

nĈ

)2

nC2
i

− ψζiE[zi]e
ψCi (19)

Now by equating the derivatives in Equations (18) and (19) to zero, we obtain:
(i) In the linear case, we get from Equation (18)

Ci =

√

H(Ĉ)

ζiE[ai]
and also, Ĉ =

(

n
∑

i=1

√

ζiE[ai]

H(Ĉ)

)−1

=

√

H(Ĉ)

Y
, where Y =

n
∑

i=1

√

ζiE[ai] (20)

which implies that the solution Ĉ∗ is given by Ĉ∗ = 1
n
q1
q2

(√
n

Y
− 1
)

. Substituting the solution of this

equation in (20) gives the C∗
i ’s.

(ii) In the exponential case, we get from Equation (19)

Ci =
2

ψ
LambertW





1

2

√

ψH(Ĉ)

ζiE[zi]



 (21)

Therefore, using the definition of Ĉ, Ĉ∗ is the solution of Ĉ = 2

ψ

n
∑

i=1



LambertW





1

2

√

ψH(Ĉ)

ζiE[zi]









−1

which yields the C∗
i ’s through (21).

The above solutions are globally optimal provided they are within the range C. We defer the discussion
on the numerical computations of C∗

i ’s to Section 6.
Large number of nodes: To model the case of a large number of users we shall use a fluid approximation
in which there are (non-countably) infinite number of users. We introduce R population classes of mobiles.
The parameter z in the exponential cost function will be the same for all mobiles of the same type
r, r = 1, 2, ..., R so that mobiles belonging to a given class r have the same channel conditions. We shall
thus use the notation z(r) to indicate this dependence. We shall use similarly the notation a(r) for the
coefficient appearing in the linear cost. In short, mobiles with the same value of (a(r), ζ(r)) (in the linear
case) or (z(r), ζ(r)) (in the exponential case) are said to belong to the same class of mobiles having

identical channel conditions. We define for each r the vector x(r) = (x
(r)
1 , ..., x

(r)
c ) to be the amount of

r-type mobiles that use each of the rates C1, ..., Cc. Define x = (x(1), ...,x(R)) to be a multistrategy for all

mobiles. With some abuse of notation, let xi :=
∑R

r=1 x
(r)
i denote the global amount of mobiles that use

the rate Ci under x. Denote ν to be the total amount of users. Then ν =
∑c

i=1 xi. Define αi(x) = xi/ν.
It follows from Equation (5) that

τ(α(x)) =
Eα(x)[1]q1

q2 + q1Eα(x)[1/C]
=

νq1

νq2 + q1
∑c

i=1 xiC
−1
i

where q1 and q2 are given by Equation (13). To simplify, we shall denote τ(x) = τ(α(x)). Define

Q
(r)
i (x

(r)
i ) = a(r)Ci for the linear cost and Q

(r)
i (x

(r)
i ) = z(r)

(

eψCi − 1
)

for the exponential cost. Then our
problem of maximizing the payoff function turns out to be a non-linear optimization problem defined by:

max
x

W (x) where W (x) := τ(x) −

R
∑

r=1

ζ(r)
c
∑

i=1

x
(r)
i Q

(r)
i (x

(r)
i )

=
νq1

νq2 + q1
∑c

i=1

(

∑R
r=1 x

(r)
i

)

C−1
i

−

R
∑

r=1

ζ(r)
c
∑

i=1

x
(r)
i Q

(r)
i (x

(r)
i )

subject to

c
∑

i=1

x
(r)
i = gr, ∀r, x

(r)
i ≥ 0, ∀i, r
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where gr is the predefined constraint on the number of mobiles in class r. Describing the solution for this
problem is outside the scope of this paper. However, W (x) turns out to be concave and the feasible set
is compact. We conclude that there exists a unique solution.

5 Non-cooperative game

In this section we analyse the non-cooperative behaviour of mobile nodes. We shall model this situation
using non-cooperative game theory and obtain the equilibrium. Here we will consider only the case when
there are finite number of nodes n (see [6] for the asymptotic case). In a non-cooperative setting, each
node uses the same MAC frame size L and is allowed to use a different PHY rate as in the global multirate
allocation in the cooperative approach. But here the objective of each node is to maximize its individual
payoff function which can be denoted by Ωi(Ci) and defined as

Ωi(Ci) = θ(i, n) − ζiQi(Ci) (22)

For every i, Ωi is concave w.r.t. Ci and continuous w.r.t. Cj , j 6= i. It then follows from Rosen [7] that
a Nash equilibrium exists. In particular, we shall be interested in the linear Qlini (Ci) = E[ai]Ci and the
exponential Qexpi (Ci) = E[zi]

(

eψCi − 1
)

cases. We have

∂Ωlini
∂Ci

=
H(Ĉ)

nC2
i

− ζiE[ai],
∂Ωexpi

∂Ci
=
H(Ĉ)

nC2
i

− ψζiE[zi]e
ψCi (23)

These are the same equations as we had in Section 4.3 except an extra factor of n in the denominator.
Equating them to zero:
(i) For the linear case: Ĉ∗ = 1

n
q1
q2

(

1
Y
− 1
)

, Y is the same as defined in (20) and C∗
i ’s are obtained from

Ci =

√

H(Ĉ)

nζiE[ai]
. (24)

(ii) Similarly for the exponential case, we obtain Ĉ∗ as a solution of

Ĉ =
2/ψ

n
∑

i=1



LambertW





1

2

√

ψH(Ĉ)

nζiE[zi]









−1 which gives C∗
i =

2

ψ
LambertW





1

2

√

ψH(Ĉ∗)

nζiE[zi]





We defer the discussion on the numerical computations of C∗
i ’s to Section 6.

6 Numerical studies

In this section, we numerically examine the closed form expressions for the optimal transmission rates,
single node throughputs and overall payoffs. We compute these quantities as a function of number of
nodes n (see[6] for variation with frame size L). The following set of parameters have been used to study
the optimal transmission rates and the corresponding single node throughputs and overall payoffs. In the
linear cost E[ai] is set to vary uniformly from amini = 0.5 ∗ 10−3 to amaxi = 1 ∗ 10−3 watts per bits/slot
for each mobile i. In the exponential cost E[zi] is set to vary uniformly from zmini = WNo/h

min
i to

zmaxi = WNo/h
max
i where value of W (passband spectrum) is taken as 20 MHz for an 802.11a system,

No (one-sided power spectral density) is taken as 5.52 ∗ 10−21 watts/Hz and for the Rayleigh fading
case hmini = 10−11 and hmaxi = 10−8. The back-off multiplier p = 2 and b0 = 16 slots in bk = pkb0. The
data frame transmission overhead To = 52 slots, the RTS collision overhead Tc = 17 slots and the MAC
frame size L = 12000bits(1500bytes). The slot size is taken as 20µs and K = 10 [1]. For simplification
the parameter ζi is taken to be the same for all nodes i = 1..n. The values are displayed below each plot.
The plots obtained from the numerical computations are presented at the end of the paper.
Comparison of cooperative and non-cooperative solutions: In the PHY rate plots (Figure 1- 3 &
7- 9), we observe that the optimal PHY rate of each node decreases with increasing number of nodes. It
can be seen that in cooperative global multirate and non-cooperative multirate allocations, for a given
number of nodes, each node is assigned a different rate depending on the parameters E[ai] and E[zi] for
channel conditions. When we have a linear cost associated with the power consumption, then for n = 2,
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the single node throughput in the cooperative global multirate case (Figure 5) is around 11% higher than
in the non-cooperative multirate case (Figure 6). In fact with increasing n the single node throughput
percentage gain in the cooperative global multirate scenario over the non-cooperative multirate scenario
goes from 11% for n = 2 to up to more than 200% for n = 10. When the cost associated with power
consumption is exponential the single node throughput percentage gain in the cooperative allocation
(Figure 11) over the non-cooperative allocation (Figure 12) varies from around 12% for n = 2 to up to
100% for n = 10. We also observe that the cooperative max-min fair scheme (Figure 4,10) performs almost
equally well as the cooperative global multirate scheme ( Figure 5,11). These observations clearly illustrate
that cooperative rate allocation strategy results in higher single node throughputs and hence higher total
network throughput as against non-cooperative strategy. Our analysis thus confirms the results obtained
by Tan et al. in [4]. Indeed the DCF protocol under non-cooperative setting is not efficient.

7 Conclusion and future work

In this paper, we have analysed cooperative and non-cooperative rate and power control in an IEEE
802.11 WLAN, by optimizing a payoff function that comprises of the throughput and costs related to
power consumption. It is observed through numerical studies that cooperative control is more efficient
than non-cooperative control. With a linear cost approximation, the single node throughput in the coop-
erative approach is observed to be 11% to 200% more than in the non-cooperative game approach. The
improvement varies from 12% to 100% in the exponential cost approximation case. Thus a first glimpse
of cooperative and non-cooperative control in an 802.11 WLAN by our analysis shows that the currently
used mandatory DCF protocol in 802.11 does not perform with the highest efficiency in a non-cooperative
setting. Our future work will include designing an efficient cooperative rate and power control algorithm
based on the analysis illustrated in this paper.
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Variation with n and linear cost
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Fig. 1. Using Eqn. 10, ζi = 6
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Fig. 2. Using Eqn. 20, ζi = 9
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Fig. 3. Using Eqn. 24, ζi = 9
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Fig. 4. Using Eqn. 9, ζi = 6
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Fig. 5. Using Eqn. 17, ζi = 9
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Fig. 6. Using Eqn. 22, ζi = 9

Variation with n and exponential cost
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Fig. 7. Using Eqn. 11, ζi = e5
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Fig. 8. Using Eqn. 21, ζi = e5
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Fig. 9. Using Eqn. 5, ζi = e5
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Fig. 10. Using Eqn. 9, ζi = e5
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Fig. 11. Using Eqn. 17, ζi = e5
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Fig. 12. Using Eqn. 22, ζi = e5
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