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Abstract. We develop polling strategies for carrying multimedia traffic over a polled mul-
tiple access based fading wireless local area network. We consider a slotted system with
two classes of traffic (voice and streaming media), Markov arrivals and Markov fading. The
performance objectives are a loss probability for voice and discounted queueing delay for
the streaming media. An index policy based on the current channel state information is ob-
tained via the Whittle relaxation of a constrained Markov decision problem. The proposed
policy would yield a schedulable region that will guarantee the desired quality of service for
the admitted calls. We provide numerical results for the proposed policy comparing it with
other known policies such as certain stabilizing policies and the weighted round-robin policy.
We propose a scheme for exchanging the control and measurement information between the
controller and the controlled stations while staying within the IEEE 802.11 wireless LAN
standard.

Keywords: QoS in wireless LANs, Scheduling over fading channels, Markov decision prob-
lems, Index policies.

1 Introduction

We consider a home or office environment, where mobile stations (MSs) communicate with the external
world through an access point (AP) using an IEEE 802.11 based wireless LAN. Figure 1 depicts a possible
scenario in an IEEE 802.11 WLAN based home network. Based on the traffic characteristics and quality
of service (QoS) requirements, the MSs can broadly be divided into two categories: MSs handling packet
voice telephony (e.g., 802.11 packet phones), and MSs handling streaming media transfer (e.g, a TV
receiver). We define two sets Ny and Ns with the subscript representing a station handling a voice call
(between an MS and the AP) or a streaming media transfer; Ny [JNs = N. A voice call produces
periodic packets in each direction and due to strict delay requirement the packets that exceed their delay
target are assumed to be lost. The QoS requirement for streaming media is not as stringent as for voice.
In this paper, we will capture the performance requirement for streaming media by associating a cost
with the buffering at the wireless interface in the AP. Since we deal only with real-time interactive and
streaming traffic, we focus on the point coordination function (PCF), as defined in IEEE 802.11 [1],
provided mainly to support time bounded services.

PCF provides a centralized, contention-free channel access, based on a poll-and-response mechanism.
The stations have contention-free access to the wireless medium, coordinated by a Point Coordinator
(PC), which is co-located within the access point (AP). A virtual connection is established before com-
mencing a transfer requiring the parameterized quality of service (QoS). A set of traffic characteristics
are negotiated between the AP and the corresponding station. Accordingly, the AP implements an ad-
mission control algorithm to determine whether to admit a specific connection or not. Once a connection
is set up, the point coordinator (PC) co-located within the AP endeavors to provide the contracted
QoS by allocating the required resources. In order to meet the contracted QoS requirements, the PC
needs to schedule the data and poll frame transmissions properly. Since the wireless medium involves
the time-varying and location-dependent channel conditions, developing a good scheduling algorithm is
a challenging problem. An efficient scheduling algorithm can result in better system performance.

In a typical frame exchange sequence as shown in Figure 2, the PC starts off by polling a station
asking for a pending frame. If the PC itself has pending data for this station, it uses a combined data
and poll frame by piggybacking the poll frame into the data frame. Upon being polled, the polled station
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Figurel. A home or small office wireless local area network being used for telephony and streaming media
playback. The system in the large box handles the physical and MAC layers of 802.11.

acknowledges the successful reception along with data. If the PC receives no response from a polled
station after waiting for a PCF interframe spacing (PIFS) interval, it polls the next station, or ends the
contention free period (CFP). Therefore, no idle period longer than PIFS occurs during CFP. The PC
continues with polling other stations until the CFP expires. A specific control frame, called CF-End, is
transmitted by the PC as the last frame within the CFP to signal the end of the CFP.
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Figure 2. A typical frame exchange sequence in an 802.11 based wireless LAN. The point coordinator is indexed
0, SJ’-c represents the packet size for a transmission from & to j, B denotes the beacon, P stands for PIFS, S for

SIFS, and N represents no data transmission. The devices {1,2,---,C} € N could send the data packet in the
frame owing to the frame boundary constraint. Rest of the devices send NULL data packets.

With the above situation in mind we consider a model with periodic frames of equal length. Voice and
streaming packets arrive at each device. These arrivals are modelled as Markov processes. The channel
gain between any transmitter-receiver pair is constant over each frame but varies in Markovian manner
from frame to frame. With this model our aim is to develop dynamic scheduling policies that optimize
certain long run performance objectives. We model the system mathematically and analyse it using the
dynamic programming approach. In accessing the wireless channel, the voice calls would be given priority
over streaming sessions as packets of the latter can be buffered. The cost associated with the voice calls
is the number of packets dropped due to violation of the delay constraint. The cost associated with
a streaming media transfer is the discounted buffering cost. Recently, there has been a lot of interest
in delay optimal scheduling of transmissions over fading wireless networks [3], [5], [11]. The optimal
policies more often than not turn out to be too complicated. The major contribution of this work is the
development of index based polling strategies for carrying multimedia traffic, over IEEE 802.11 based
wireless LANs, in the polled mode.

This paper is organized as follows. In Section 2, we model the system under consideration. We
formulate the problem mathematically in Section 3. We obtain polling strategy for the voice calls in
Section 4. We consider the performance optimization problem for streaming calls in Section 5 followed
by a formulation of a relaxed version of the problem in Section 5.3. This is followed by a detailed analysis
of the relaxed problem using the dynamic programing technique. An index based heuristic polling policy
for streaming calls is obtained in Section 5.6.

2 System Model

A source for a multimedia transfer could be an access point (AP), a mobile station (MS) or even both
(as in a voice call). Further, an access point could be a source for many such transfers. Henceforth, we



refer to the source of each transfer by a device. Let there be a set A/ of such devices. We focus on the
contention free periods; and divide time into fixed length frames of duration 7 seconds each. A voice
source i € Ny generates a packet of size b; in each frame. A voice packet that cannot be sent in the next
frame is considered lost. A streaming source ¢ € N (for example a variable rate coded video source)
places a random number of packets of length b; each, into its transmitter buffer (infinite capacity) at the
start of each frame. We assume that the packet arrival process A4;[n] is a finite state Markov chain with
a single ergodic class and the transition probability matrix is P§“’ for i € Ns.

The channel “Power” gain process on a link between a device and its sink is assumed to remain
constant over the duration of a frame and is modelled as a finite state Markov chain with single ergodic
class, embedded at the frame boundary instants, with transition probability matrix Pgh). The channel
gain process is assumed to be independent from one link to another. The IEEE 802.11 standard imposes
a peak power constraint for all devices. Based on the link gains, we can compute a maximum reliable
transmission rate for each device when transmitting at this peak power level. This is done using the
well known mapping between signal to noise ratio and the transmission rate for reliable transmission.
Let R;[n] be the packet transmission rate from node ¢ in frame n. It follows that the process R;[n] for
transmitter ¢ is also a finite Markov chain with transition matrix Pz(r). For simplicity, we assume that
the available rate is bounded strictly away from zero.

At time instant nT,n = {0,1,2---}, the AP is provided with the information about the available
transmission rates r[n] and the number of packets a[n] that arrive during the previous frame. We will
later comment on how this information can be supplied to the AP by using some spare bits available in
the MAC layer header. Based on this and the information about the queue lengths at each device (can
be tracked by the AP), the AP decides upon a subset of devices who can send and how much they can
send in the current frame, i.e., during the time period [n, (n + 1)7). The objective of the access point,
which acts as a controller, is to obtain an optimal resource (frame time) allocation or polling strategy
that guarantees a desired quality of service for each device subject to the constraints imposed by the
wireless LAN standard (IEEE 802.11). This policy would yield a schedulable region comprising of sets
Ny and Ns which can be handled by the system so that each session obtains its desired QoS. Figure 3
shows a typical schedulable region.

determined by
QoS requirements

no. of streaming calls

no. of voice calls

Figure 3. A schedulable region for streaming and voice calls

Ezchange of control information: We propose to use the DURATION/ID field in the MAC header to
convey the rate measurement information from AP to the device and the arrival information from device
to the AP. Duration/ID field normally contains the time needed to transmit the current packet/frame.
For the frames transmitted during the PCF mode, the duration field is always set to 32768 and is thus
unused. We further assume that each device is polled at least once in each frame even when it is optimal
not to send any data. This helps in getting fresh information. This can be done using a CF-Poll+CF-Ack
(no data) type frame (See [1]).

3 Problem Formulation

We associate with device i € N a weight w; defining its priority over other devices. Consider a voice
call i € Ny and let S;[n] € {0,1} be the number of packets for call i transmitted in the n‘" frame, i.e.,
during time [n7, (n+1)7), where n = {0,1,2,- - -} at a rate R;[n]. The objective of minimizing the packet



loss probability is captured by maximizing the expected number of packets transmitted. The controller

objective is
Si
max w;S; —<T53. 1
{Sie{o,l},ieNv}{ie;v e ie;v R; — } M)

Let 1y [n] denote the time occupied by voice packets in frame n. Next we consider a streaming device
i € Ng. Let A;[n] be the number of packets that arrive during [(n — 1)7,n7) (see Fig. 4). Arriving
packets are placed into the transmitter buffer at the end of each frame. Let @);[n] be the queue length
at time instant nt for device i. Let S;[n] be the number of packets transmitted in the n'® frame, i.e.,
during [n7, (n + 1)7). obviously, S;[n] € [0,Q;[n]], a natural constraint that one can transmit only
up to whatever is available in the buffer. The transmitter queue evolves according to the equation
Qi[n + 1] = Q;[n] — Si[n] + A;[n] (See Figure 4).
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Figure 4. System Model

Focusing only on the streaming transfers, the quadruplet X = (Q,R, A, 7v) defines the state of the
system. The quality of service measure is Y p , @*Q;[k], where a € (0,1). The parameter « is a discount
factor. If « is small, the recent queue lengths have more value than those in a distant future whereas if
«a is large, queue lengths in a distant future are also important. The controller objective is to obtain a
sequence {S;[k]},7 € Ng that minimizes a weighted sum of the performance measure

3 wiE[iain[k]], subject to, Y SHEL o otk Sk € {0,1, -+, QulH]} 2)

i€ENs k=0 i€ENs Rz [k]

where the measure over which the expectation operator E is taken is conditioned on the state at time
k = 0, and the actions S[k] = {Si[k],i € N} based on the history of the process. This is a Markov
Decision process with state dependent action space. Recall that sequence of actions S;[k] are integer
valued.

4 Analysis: Voice Calls

First, we consider the problem stated in Equation (1). This problem is identical to a knapsack problem
where there are certain quantities of material of different densities, and different sizes having different
associated values per unit quantity. Amount of the materials need to be chosen to fit into a container
while maximizing the aggregate value. During the n*" frame, the knapsack volume is the frame time 7,
the frame time per packet for the it" call is #[n] and the value per packet associated with the it* call is
w;. The following is a well known heuristic for the above said problem obtained from a linear relaxation
of the integer knapsack problem [4].

Order the devices in decreasing order of w;R;[n]; this can be interpreted as the reward per unit
transmission time for device i. Determine my[n] so that the (my[n] + 1)t* queue in this order causes
the total transmission time to exceed 7, the frame duration. Now, for a queue ¢ among the top my[n]
queues in this order s;[n] = 1, and s;[n] = 0 for the rest. We could have sent a fraction of the packet at
(my[n]+1)*" queue but this would violate our modelling assumption that a packet cannot be fragmented.
This policy yields a schedulable region for the voice calls determined by the QoS requirements.

If the number of active voice calls lie strictly inside the schedulable region (See Figure 3), some frame
time will be available for the streaming media transfers. Alternatively to accommodate streaming media
transfers the number of active voice calls will need to be restricted. Define 7g[k] =7 — > [k] #[k], the

frame time available for streaming media in the k" frame.



5 Analysis: Streaming Transfers

In view of the above result, the problem stated in Equation 2 can be restated as follows. For notational
ease, we denote the random process representing the frame time available for streaming transfers 7g[k]
by T'[k]. A realization of T'[k] will be denoted by t. Note that the process T'[k] is a Markov chain with
finite state space since 7y [k] can assume only finitely many values. The state of the system is now a
quadruplet X = (Q, R, A, T). The controller objective is to obtain a sequence {S;[n]},i € N that solves

min ) wiE[iain[k]], subject to, » Silk] < T[k); Si[k] € {0,1,---,Qi[k]}, i € Ns  (3)
iENs k=0 i, Tl

First, we review the well known results on a characterization of the stability region and a class of
stabilizing policies for the above said problem. Then using a heuristic based on the MDP formulation,
we obtain a new index based polling policy.

5.1 Stabilizing Policies (A Review)

At time k, the system state is the rate vector R[k] and the transmission time T'[k] available for streaming
media after serving voice traffic. Since the state space is finite, we index the state by m. Then a state
m corresponds to rate vector {ri", i € Ng} and frame time ¢"™. Let 7™ be the stationary probability
of being in state m. We associate with each state m a fixed vector p™ with p™ = |¢#™r™] representing
the maximum number of packets that can be sent by user ¢ if whole service effort is allocated to 4. Let
A be the mean arrival rate vector. Consider a static service split policy ¢ (Refer [2]) where ¢7* denote
the fraction of service effort allocated to user ¢ in state m. The matrix ¢, with rows corresponding to the
possible state m, is a stochastic matrix. Thus under ¢, the service is applied to ¢ with probability ¢

when the system state is m.

Theorem 1 ([2]). A scheduling rule under which the system is stable exists if and only if there exists
a stochastic matriz ¢ such that \; < ) 7o u. Given a vector of arrival rates X satisfying the
above condition, there exists a positive vector o such that the non random static service split policy with
¢ =1 =i =argmaxa;uj" is stabilizing. O

Remark: Consider a policy that in state m orders the devices in decreasing order of a;;u7* and the user
with highest index transmits until it empties its queue or the slot ends followed by transmissions by the
device next in the order and so on. Note that this policy performs at least as good as the stabilizing
policy defined above. A policy that orders the transmissions in decreasing order of {w;r;¢;} is also known
to be stabilizing [2]. We call it the workload based policy.

5.2 Index Policies and Whittle’s Relaxation

It should be noted here that a stabilizing policy may not perform well in terms of the objectives in Equa-
tion 3. Let us look at the discounted cost value iteration algorithm for solving the problem (Equation 3)
to motivate the approach that we will follow in the rest of the paper. For a given state x = (q,r,a, ),
define the constraint set S(x) = {s:s € [0,q]; > ;cr, 2 < t}. Consider the following value iteration
algorithm,

Vit1(x) = min { Z wigi+aEart[Va(a —s+ AR, A, T)]}
1EN

where E, ,.[-] denotes the conditional expectation with respect to the arrival, rate and the T pro-
cesses. Let f, be the optimal policy for the n!* stage problem. Initialize Vj(x) = 0. This implies
Vi(x) = Yien, wigi- Thus fo(x) is argminges(x) { Ysen, wi(ei(1 + @) — as; + aE, [A])}. This is a
knapsack problem. Using Lagrangian approach, we associate a multiplier 8 and thus f2(z, ) equals
arg Minge(o,q { X iens B — wias; }. The knapsack heuristic solution is f2(z,8)|; = ¢:bi(r;, 8), where
0i(rs,8) = Itw;ar;>p)- The parameter 3 solves for the frame boundary constraint. In other words the
solution is to order the users in decreasing order of w;r; and the user with highest index transmits until
the frame boundary constraint is exceeded or there is no data for transmission. This is an index policy.
The index w;r; is essentially that value of 8 at which the system makes a transition from active action
to passive action; i.e., if 8 > w;ria then 0;(r;, ) = 0 and 0;(r;, ) = 1 otherwise.



The function V3 (x) is too complex to carry out any further iteration. Moreover, we are interested in
index based policies similar to the one obtained for the voice calls because of their ease in implementation.
There has been a lot of work on obtaining index based policies for bandit problems. For multiarmed bandit
problems, it is well known that the policies based on Gittin’s indices are optimal [8]. Gittin showed that
to each project one could associate an index v;(z;), a function of the project ¢ and its state x; alone, and
that the optimal policy is to operate the one with the largest index.

Consider the “restless bandits” problem of designing an optimal sequential resource allocation policy
for a collection of stochastic projects (say M), each of which is modelled as a Markov decision chain
having two actions at each state with associated rewards; an active action, which corresponds to engaging
the project, and a passive action, which corresponds to letting it go. A fixed number of resources needs to
be allocated; i.e., at each time instant a fixed number of projects (say k) are active. The passive projects
can change state, in general through a given transition rule. The performance objective is to maximize
the time-averaged reward rate. Whittle [10] presented a simple heuristic based on a tractable optimal
solution to a relaxed version, where instead of requiring that k projects be active at any time, k& projects
are needed to be active on average. This yielded an upper bound on the optimal reward. Further the
heuristic policy is a priority index rule associated with each project, that engages the top k projects at
any given point of time. Recent work of Nino-Mora [6] is nearly a complete reference for restless bandit
problems.

Motivated by the Whittle’s work on restless bandits, we introduce a relaxed problem. The state of
the system is denoted by x = (q,r,a,t) € X. The set of feasible actions in state x is S(x) = [0, q]. Let
IT be the space of all feasible policies. A deterministic, stationary Markov policy f € II is a measurable
mapping from X to [0,q]. For every 8 > 0, the Lagrange multiplier, defines a cost function cg(x,s) =
Yic Ns (wigi + ﬂsl) The term ﬂs’ can be seen as a relaxed frame boundary constraint. The Lagrange
multiplier 8 has an economic 1nterpretat10n The value 53’ is a penalty for transmitting more data and
thus reducing the frame time possibly available for other users. There is a tradeoff. If a user sends more
he reduces his queue, but he also gets a higher penalty for doing so. Obviously, the penalty increases
with s;. The relaxed problem is to obtain a policy 7 € IT that minimizes the expected discounted cost
ET[> 1, afcg(X[k], S[k])]- Note that the relaxed problem is separable. Thus we solve it for each i. The
amount of data s; that can be transmitted in a frame of length ¢ should satisfy *¢ < ¢, the residual
frame boundary constraint. We drop the subscripts i, a. Without loss of generallty assume that w = 1.
Exploring the separability, the relaxed problem (RP) for each user is

, subject to, S[k] € {0,1,---,Q[k]}, Sl

]
7 < Ik vk

S[k]
V(z) mln E7 lZa (Q[k + ﬂR[k]
Note that we have relaxed the sum constraint but not the individual constraint.

5.3 Analysis of the Relaxed Problem

The state z is the quadruplet (g, r, a,t). Our model satisfies the nominal conditions (See [7], Proposition
2.1) required for the existence of the discount optimal stationary policy, and the value function V (z) is
obtained as a solution to the following dynamic programming optimality equation. Define v = ¢ — s and
U(z) = {u integer : (¢ — tr)* < u < ¢q}. The variable u is the unfinished work after the policy has acted
in an interval. Then

V(g,r,a,t) = m1{1){q (1+ p
eU(z

Z) = B2 + aBuaV(u+ A, R, A,T)}. (4)
Define H(u,r,a,t) = E,,V(u+ A, R,AT).

Theorem 2. V(u,r,a,t) and hence H(u,r,a,t) is convex nondecreasing in u.

Proof. See Appendix. O

The unconstrained minimizer u*(r, a,t) in (4) is the value of u that solves the following inequalities,
H(u,r,a,t) — H(u—1,r,a,t) < s <H(u+1,ra,t)— H(u,r,a,t).
ra

Note that the unconstrained minimizer is not a function of g. The solution for the constrained problem
(u € U(x)) is,



— s(z) =0 for ¢ < u*(r,a,t)

— s(z) = [tr] for ¢ > u*(r,a,t) + |tr]

— s(z) = ¢ — u*(r,a,t) otherwise

The solution is depicted in Figure 5. Observe that u*(r, a,t) = ¢ is the breakoff point that will be used
to define the indices as in [10] as it is the boundary between not sending anything from the queue and
sending something.

u* q——

Figure 5. Characterization of the constrained solution

5.4 An Algorithm for Computing u*(-)

Consider the discounted cost value iteration algorithm corresponding to the above said relaxed problem

(4)-
B

Valg,r,a,t) = i 1+2
n(gq,r,a,t) uesrgl’gait){q( + o

) = B% + B Va1 (u+ A, R, A, T)} (5)
It follow from the proof of Theorem 2 that the functions H,(u,r,a,t) are convex in u for each n. Let
uk(r,a,t) be the value of u that solves the following inequalities,

Hn(uaTJ Cl,t) - Hn(u - 17T7a7t) S ﬁ S Hn(u + 1,r,a,t) - Hn(uaTJ a7t)'
ar

Based on the above said constrained solution, we have,

— If q S U;(T’, a, t)7 Vn-l—l(Q; r,a, t) - Vn+1 (q - 1,T, a, t) =1 + a(Hn(q, r,a, t) - Hn q— ]-5 r,a, t))
- If U:L(Ta a, t) <g< LtTJ + U:L(ra a, t)a Vn+1 (qa r,a, t) - Vn-‘rl(q -1,ra, t) =1+ r

— If ¢ > ul(r,a,t) + [tr],

VTL+1 (q7 na,t) - Vn+1(q - IJTJ a, t) =1+ O[(Hn(q - |_t’I‘J,7", a, t) - Hn(q - LtTJ - 1,T7 a, t))

Define Wy (gq,7,a,t) = Vo(q,r,a,t) = Vo(g—1,7,a,t). Thus H,(q,7,a,t) — Hp(g—1,7,0,t) = Eq rtWn(g+
A, R, A,T). Then the iterative algorithm to compute u*(r,a,t) is as follows. Initialize Wy (q,7,a,t) = 0.
Let u%(r,a,t) be the value of u that solves the following inequalities,

Ea,r,th (u + A, R, A, T) S % S Ea,r,th(u +1+ Aa Ra Aa T)

- If g <ul(r,a,t), Wota(g, 7 a,t) =1+ aFEq , Wi(qg+ A, R,AT).

— T ul(r,a,t) < q < [tr] +us(r,a,t), Waga(g,m,a,t) =14 2.

—Ifg> UZ(T’, a, t) + LtrJa Wn-i—l(q: r,a, t) =1+ aEa,r,th(q - |_tT’J +ARA, T)'

The convergence of the value iteration algorithm (5) ensures that this algorithm converges and u%(r, a, t)
converges to the optimal solution u*(r, a, t).

5.5 Indexability

Definition 1. (Indezability) [10]: The system is said to be indezxable if the set of states where a passive
action is taken increases monotonically from an empty set to the full set as the parameter (3 increases
from 0 to oc.

For our problem the requirement is natural. As the penalty § for using the frame time increases, we
choose to transmit less and less. We show that the relaxed problem is indexable in the sense of the
above definition and obtain indices associated with each state. Given the state (g,r,a,t), based on the
constrained solution, an active action (a packet is transmitted) is taken if ¢ > u*(r, a,t) and the action
is passive (no transmission) otherwise.



Theorem 3. As 3 — 0, the solution u*(r,a,t) = 0 and u*(r,a,t) = co for 3 > Afmex,

Proof. (Sketch) As 8 — 0, Equation 4 implies that the cost of serving decreases to zero except that
the constraint should be satisfied. Thus the solution would be to serve as much as possible, i.e., s(z) —
min(g, [¢r]). Thus the action is active in any state where it is possible to do so To show the other part, it

is enough to show that W,(q,r,a,t) < 7=. Smce Wo(g,r,a,t) =0,if B > 12-Tmax, then ug(r,a,t) = oo
and Wy(q,r,a,t) = 1. Let W,(q,7,q, t) < L. Then u}(r,a,t) = and Wn+1(q,r,a,t) <1+ %
By induction hypothesis it follows that W(g,7,a,t) < L= and u*(r,a,t) = oco. Thus all actions are
passive. O

Given a state z = (q,r a,t) with ¢ > 0, the amount served s(z) decreases to zero as (3 increases
and s(z) = 0 for 8 > $*-Tmax. This is natural to expect since the larger is the 3, higher is penalty for
transmitting.

Theorem 4. If 3 < &=2x then the solution u*(r,a,t) =0 for r = rmax.

Proof. (Sketch) Observe that for n (iteration index)
oo and W, (q,r,a,t) =

27— the optimal policy uk(r,a,t)
. Since 8 < a{’“‘“‘ k = min{n : II_T‘I" > arﬂ } is finite. It follows that

a =

U} ("max, a,t) = 0 and Wk+1(q, r,a,t) > 14 £—. Since W, (-) is increasing in n, it can be shown that for
B < Fmex, Wy(g,r,a,t) > 1+ Tfax for all n > k. This would imply that v (rmax, a,t) = 0 for all n > k.
Hence the results follows by induction. O

Lemma 1. W, (q,r,a,t) is nondecreasing in q for each n.
Proof. The result follows from the convexity of V,(q,r,a,t) in g. O
Theorem 5. The unconstrained minimizer u*(r,a,t) is monotonically nondecreasing with (.

Proof. We introduce the parameter § as a variable in the functions defined earlier. Observe that the
recursive algorithm stated for W,,(g,r, a,t) in the previous section is equivalent to the following recursion
(obtained by dividing throughout by 8 as 8 > 0). Initialize Wy(q,7, a,t,8) = 0. Let u}(r,a,t, 8) be the
value of u that solves the following inequalities,

1
aE, . Wy(u+ A, R,AT,3) < o <aE,,  Wp(u+1+ A R,AT,pS). (6)

Furthermore,

— If ¢ <up(r,a,t,8), Woya(¢,m,0,t,8) = 5 + aBoriWalg + A, R, A, T, ).

— Iful(r,a,t,B8) < q < |tr] +ul(r,a,t,0), n+1(q,7’at5)—g+‘

— If q> un(T7 a, t7 /8) + LtTJa Wn+1 (qa r,a, ta ﬁ) E + aEa,T,tW (q - |_t7‘_| + AJ R7 AJ T7 /6)

Using Lemma 1, it follows from (6) that in order to show that u*(r, a,t, 3) is monotonically nondecreasing
in §, it is enough to show that the function W,,(q,r, a,t, 3) is nonincreasing in 3 for all n. We show this
by induction. The function Wy (u,r,a,t,3) = 0. Let W, (g,r,a,t,3) be nonincreasing in 3. This implies
E, . :Wn(g+ AR, AT, ) is nonincreasing in § and v} (r, a,t, 3) is monotone nondecreasing in 8. Now,
given (g,r,a,t), the above recursion seen as a function of g3 1s

— For 8 where u,(r,a,t,8) + [tr] < ¢, Wnii1(g,7,0,t,8) = 5 +aEartW (¢g+A-|tr],R,AT,p).

— For 3 where u}(r,a,t,3) < g < [tr] +u}(r,a, tﬁ) Wht1(g, 7, a,t, ﬂ)—ﬁ+—

— For /3 where un(ra a7taﬁ) 2 q, Wn—l—l(qara a,taﬁ) - E + aEa,T,tW (q+ A R A T /3)

It follows from the definition of the minimizer and (6) that for the domain of 8 where the first item
holds, aE,+Wyp(¢ + A — tr,R,A,T,5) > % and for the domain of 8 where the third item holds
aE, . Wy(q+A, R, A,T,3) < L. Thus combining this with the hypothesis that E, ;W (¢+A4, R, A, T, 3)
is nonincreasing in 3 implies that W,,11(q,r,a,t,3) is nonincreasing in § and the result follows. O

From Theorems 3 and 5 we obtain the following conclusion:
Corollary 1. The system is indexable. O

Given a state (g,r,a,t), define the index v(q,r,a,t) as the largest value of 8 for which v*(r,a,t,8) = q.
It is essentially that value of 8 where a transition is made from an active action to a passive action in
the state (¢, 7,a,t). It follows from Theorems 3 and 4 that for r = rmax, v(q,7,a,t) = ==, Note that
the index is independent of the queue lengths when r = 7.

Lemma 2. The index associated with the state (q,r,a,t) when the weight is w, is v(q,r,a,t,w) =
wv(q,r,a,t). O



5.6 Index Based Heuristic Policy

The transition probability matrices associated with device ¢ are Pi(r) and Pi(a). Let v;(q;,7i,a4,t,w;) be
the index for device i when it is in state (g;,74,as,t) and the weight is w;. Let uf(r;,a;,t,8) be the
solution in that state for the relaxed problem. Given the state of the system (q,r,a,t), the controller
has to decide upon who should send and how much in a frame of duration ¢ seconds. Select a value for
B. The amount of data served from user ¢ is s;(¢;,7i,as, ¢, 3). The time taken to transmit this data is

Zf\il M This could exceed the frame boundary or fall short of it depending on the choice of

. We know from indexability that for 3 arbitrary large, the solution uf(-) is infinite and thus s;(-) is
zero implying that the frame time is zero. While for 8 — 0, s;(-) — min(g;, |tr;]), the frame boundary
could exceed depending on the choice of ¢;. Since as 8 decreases, s;(g;,7i,a:,t,3) increases and thus
the frame time utilized increases. Thus the controller has to tune § such that the available frame time
is maximally utilized or the frame boundary constraint is met. Note that s;(g;, s, ai,t,3) has only one
degree of freedom because fixing f fixes s;(-) for all 4.

Figure 6. Consider two devices with state
(q,r,a,t) with ¢1 and g» as shown in the adja-
cent figure. Let the transmission times be the
same for each packet. Suppose that a maxi-
mum of eight packets can be transmitted in ¢
seconds. The darker staircase function repre-
sents u*(-) for device 1 while the other stair-
case corresponds to that of device 2. Let s;
and sz be the number of packets that are sent
in the frame. At 8 = B4, s2 =2 and s; = 0;
B =0 s20=2and s1 =2;08=702 8 =4
and s1 = 4; 8 = B1, s2 = 4 and 51 = T.
Thus 8 = B2 is the solution. Observe that for
B > B5, the number of packets served, s; and
so are both zero.

o
|
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The tuning of 3 is in general not an easy task. But since u*(r, a,t, 8) is monotone nondecreasing in

B, we have a simpler form for the policy.
Index Policy: Given the state (q,r,a,t), a user with the largest value of v;(q; — 1,74, a;,t,w;) transmits
one packet. Let j = argmax; v;(¢; — 1,7;,a;,t,w;). The state changes to (q — ej,r,a,t), where e; is the
unit vector with one at the j** entry and rest are all zero. This continues till the frame boundary is
exceeded or there is no data in the buffers. The ties are broken probabilistically.

Consider a case where the rate available for transmission is fixed but it can be different for different
devices. Let r; be the transmission rate for device ¢. The index policy obtained above will order the
transmissions in decreasing order of w;r; and the one with the highest order transmits till it finishes or
the frame boundary is exceeded. Note that this is identical to the well known cp-rule [8].

5.7 Numerical Results

We assume that there are no voice calls. The discount factor is set to a = 0.99 implying that the long
term evolution of the queue length process contribute significantly towards the performance measure.
The other parameters for the numerical computation of the policy are: the frame time 7" = 10ms, the
transmission rate set {10,3.3,2.5} kbps. We consider two transition probability matrices for the rate
process: P, = {{0,.5,.5};{.99,.01,0};{0,.99,.01}}, P» = {{0,.5,.5},{.01,0,.99},{.01,.99,0}}. For the
rate process governed by P;, with a very large probability the rate increases from one of the lower rates
to the next higher rate and then goes to one of the lower rates with equal probability whereas for the
rate process governed by P», the rate process switches between the two lower rate states with high
probability. Thus P» resembles a device operating far away from the AP and restricted mobility where
as P, resembles a device that is highly mobile. The packet arrival process is assumed to independent and
identically distributed, on-off {0,40} with probability {.5,.5}. Since the arrival process is i.i.d. and the
frame time available is fixed to T' (no voice calls), the policy u*(r,a,t,3) is independent of a and . Also
u*(r,a,t, B) for r = ryay is 2max = 9.9 x 10°. Figure 7 plots u* vs 3 for r = {3.3,2.5} kbps and the rate
transition probability matrices P; and P;.
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Figure 7. Plots are used for computing in-
dices v. For example consider two devices
with the rate transition probability matri-
ces P; and P,. The weights are 1 for both
the devices, 1 = g2 = 600, r1 = 2.5 and
ro = 3.3 kbps. The indices v1 = 14.35 x 10*
and vy = 8 x 10%. This shows that device 1
has priority over 2 even when r2 > ri. If one
of the device has a rate of 10 kbps, then the
service effort is applied to it as much as possi-

ble since the index is the largest independent
of the queue length.

For the scenario discussed above, we compared the performance of the index policy with that of a
round robin policy, a weighted round robin policy that serves three packets of device 2 for each packet of
device 1, an index based stabilizing policy with index w;g;r; [2]. For a fixed initial state z = (q,r) with
¢1 = ¢ =0 and 11 = ro = 2.5 kbps, the costs (1 — a)V,(z) are 107, 398, 327 and 128 respectively.

6 Conclusion

We have developed index based polling strategies for PCF mode of transmission in 802.11 based wireless
LAN. Index policies are always desired for the ease of implementation. The policy is shown to work
significantly better than other known policies. As part of future work we are interested in algorithms for
on-line computation of the indices and some useful structural results for the index based policy.
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Appendix

Proof of Theorem 2. Since H(q,r, a,t) is a convex combination of V' (g+a,r, a,t), it suffices to show that V(q,r, a, t)
is convex in q. Consider the value iteration algorithm (5). For n = 0, Vo(q,r,a,t) = 0 hence convex. Assume
Vin-1(q,7,a,t) is convex in q. Fix q. Let u1 and u2 be the optimal policy for g — 1 and g + 1.

Valg+1,7m,0,t) + Va(q
= 2(](1 — E) - ﬁ(ul -+ ’Mz) =+ OtEa,T,t[Vn_l(ul + A, R, A, T) -+ Vn_l(’u,g =+ A, R, A,T)]

- l,r,a,t)

u1 +uz u1 +’u2

14 A, R, A,T).

> 2q(1— ﬁ) - —(m + u2) + @Fa,r,tVa—1(]
>* 2Vn(q,r, a,t)

|+ AR AT)+ aEqrtVa-1(]

where the inequality (*) follows from the fact that the policies | “13%2| and [“11%2] are feasible for the state
(g,7,a,t). That the functions are nondecreasing can also be proved along similar lines. O



