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Abstract

High speed variable length packet switches often employ a cell switching core. For such purposes, an input queuing structure has an advantage since it imposes minimal bandwidth requirements on cell buffering memories; this leads to superior scalability of switches. In this paper we consider input queuing switches in which all arriving cells at an input are queued in a single first-come-first-served queue. It is well known that for such a simple arrangement the maximum switch throughput can be obtained by a saturation analysis; i.e., each queue is assumed to be infinitely backlogged and then the switch throughput is computed. In this paper we establish that this saturation throughput also provides a sufficient condition for stochastic stability of the input queues.  It is assumed that the cell arrival process at each input is Bernoulli. Each input belongs to one of two priority classes; during output contention resolution, the head-of-the-line cell from a high priority input is given preference. The saturation throughputs of the high and low priority inputs can be computed. We prove that if the arrival rate at each input is less than the saturation throughput then the queue lengths are stochastically stable. The major contribution of this paper is that it provides an analytical approach for such a problem; the technique can be adapted for more general problems.
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1. Introduction

The rapidly increasing speeds of wide area communication links are placing ever increasing demands on packet switching technology. The design of the interconnection fabric and packet queuing architecture of a packet switch is limited by the availability of high speed memories for storing the packets in transit. For such purposes, an input queuing structure has an advantage since it imposes minimal bandwidth requirements on cell buffering memories; this leads to superior scalability of switches [1,2,11]. Variable length packet switches can be built around a cell switching core. Each arriving packet is fragmented into fixed length cells (the last cell in a packet being “padded” if necessary), the cells are switched through the cell switch and then reassembled into the original packet before being transmitted on the output port.

In this paper we are concerned with input queuing cell switches in which all packets arriving at an input port are queued in a common (per input port) queue. It is well known that such a simple architecture suffers from head-of-the-line (HOL) blocking, and that the maximum throughput of the switch is obtained by performing a saturation throughput analysis [2,3,4,5,6]. Every input queue is assumed to have an infinite backlog of cells, and with this assumption the cell throughput of the switch is calculated. 

In the existing literature, it is implicitly assumed that the saturation throughput obtained in this way, provided a stochastic stability condition for the input queues. Such a condition is required for delay analysis at the input queues [3,7,8,9,10]. In this paper we establish, in a formal way, the relationship between saturation throughput and the stationarity of the input queue processes. Though the derivation is for an input queuing switch with multiclass traffic, the theoretical framework could be adopted to more general problems. 

In Section 2 we set the necessary preamble for the easy understanding of the analytical stuff that follows in Section 3. In Section 3 we establish the region of stability of the input queue processes, first for the single class traffic case and then for the two class case. Section 4 concludes the paper.

2. Saturation Throughput of Input Queuing Switch 

We consider an NxN non-blocking space-division switch with input queuing and infinite input buffer size. An input queue is said to be saturated if, after a head-of-line (HOL) cell is transmitted from this queue, there is always a cell queued behind it waiting to take the HOL position, i.e., the input buffer is never empty. The saturation throughput of the switch is the rate at which cells are switched onto the output links when all the input queues are saturated. We show that saturation throughput yields a sufficient condition for stability of the input queues. To keep the complexity of the derivation minimal, we assume Bernoulli cell arrival processes at the input queues - each cell independently requesting each output with equal probability. The derivation can be easily extended to Markovian cell arrival process - the number of consecutive cells at an input for the same output has a geometric distribution.

We assume that the input links are slotted (one slot duration being equal to one cell duration) and that the slots on the various links are synchronized. If all the inputs have identical traffic (i.e., single class), then for each output, one of the k (1(k(N) HOL cells contending for that output will be transmitted across the switch in each slot. If different inputs have statistically different traffic (i.e., multiclass), then a priority scheduler resolves the contention among the multiple HOL cells for the same output in a slot. 
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It follows that the problem of computing saturation throughput becomes one of obtaining the server throughputs in the synchronous closed queuing network depicted in Figure 1. There are N customers in the queuing network, one corresponding to the HOL position on each input link. Also, there are N logical queues (called HOL queues), the customers  queued up at logical queue l, 1( l ( N, represent the number of HOL cells (at input links) that are waiting to be switched to the output l. The routing probabilities represent the probability that an HOL cell at an input is followed by a cell destined for the same output (feedback to the same queue) or for a different output (transition to a different queue). With Bernoulli traffic, all the routing  probabilities are equal, 1/N. The throughput of the class i customer through server l in this model is the saturation throughput at the l-th output link, of the traffic arriving on the i-th input link. The total throughput of the class i customer (through all the servers) is the saturation throughput of traffic from link i. 

3. Saturation Throughput and Stability of Input Queues

Consider an NxN switch with single class traffic, all inputs carry traffic with the same priority. Let, for 1( i (N, 1( n (N, ((i)(n) be the rate at which cells are transmitted across the switch fabric from input i, when n input links, including link i, are saturated, and the remaining (N-n) inputs are carrying no traffic. In the closed queuing network model of Figure 1, this corresponds to N stations but with a population of n. With all inputs being statistically identical, ((i)(n) does not depend on i, i.e., ((i)(n) = ((j)(n), 
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Proof: (i) Observe that n ((i)(n) is the total throughput of cells from all the saturated input links. Consider now adding one more customer to the saturation model of Figure 1, except that this customer has lower priority. The total throughput of the original n cells is unaffected by this new customer and the additional customer also has throughput. But clearly, since the customers are indistinguishable in their routing behavior, the total throughput of the (n+1) customers is (n+1) ((i)(n+1). It follows that (n+1) ((i)(n+1) ( n ((i)(n).

(ii) The increase in total throughput upon the addition of the (n+1)-st (low priority) customer is given by (n+1) ((i)(n+1) – n ((i)(n). This quantity is the contribution from the (n+1)-st customer, which has a lower priority and hence has throughput no more than any of the others (since it has exactly the same routing behavior as the others). Thus,

(n+1) ((i)(n+1) - n((i) (n) ( ((i)(n)

It follows that 

((i)(n+1) ( ((i)(n)
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Part (ii) of the above lemma says that the throughput from an input decreases monotonically as more number of idle inputs become saturated. This observation suggests that in the above setting, a cell arrival rate of less than ((i) (N) should be a sufficient condition for stability of the input queue.

Next, consider an NxN switch with two classes of traffic. A fraction ( of the inputs are dedicated to type 1 traffic, and the remaining inputs carry type 2 traffic. Type 1 inputs are given priority over type 2 inputs in HOL contention resolution (selection of one among the multiple HOL cells contending for the same output in a slot). 

Let i be a type 1 input and j a type 2 input. Let (H(i)(nH, nL) (resp. (L(j)(nH, nL)) be the rate at which cells are transmitted across the switch from input i (resp. input  j) when nH  type 1 and nL type 2 input links are saturated, 1( nH   ((N, 1( nL   ((1-()N, and the remaining inputs are carrying no traffic. Clearly, (H(i1)(nH, nL) = (H(i2)(nH, nL) and (L(j1)(nH, nL) = (L(j2)(nH, nL), where  i1, i2 are (saturated) type 1 inputs and j1, j2 are (saturated) type 2 inputs.

Let the vectors n = (nH, nL), eH = (1,0), and eL = (0,1).

Lemma 2 

(i) (H(i)(n) ( (H(i)(n+ eH)

(ii) nL (L(j)(n) ( (nL+1) (L(j)(n+ eL)

(iii) (L(j)(n) ( (L(j)(n+ eL)

Proof: (i) follows from Lemma 1 since the presence of type 2 traffic is transparent to type 1. 

(ii) With the  (nL+1)-st type 2 customer being treated with low priority, the proof is exactly the same as that of Lemma 1 (i). 

(iii) Following an argument similar to the one used in the proof of part (ii) of Lemma 1, we have 

nH  (H(i)(n+ eL) + (nL+1) (L(j)(n+ eL) – (nH (H(i)(n) + nL (L(j)(n)) ( (L(j)(n)

but, since high priority throughput is unaffected by the addition of a low priority customer

(H(i)(n+ eL) = (H(i)(n)

therefore,

(L(j)(n+ eL) ( (L(j)(n)



[]

Part (i) of Lemma 2 says that the throughput from a type 1 input decreases monotonically as more idle type 1 inputs become saturated; similarly part (iii) of Lemma 2 makes it clear that, for fixed high priority traffic, the throughput from a type 2 input decreases monotonically as more idle type 2 inputs become saturated.

We now turn to the problem of establishing a sufficient condition for the stability of the input queues. Consider the single class traffic case first. We focus on the i-th input queue, obtain a sufficient condition for stability of this queue, and then consider the stability problem of the entire system of input queues. Let the cell arrival rate (per time slot) at this input be  (, and let Qk denote the queue length of the tagged input queue at the end of slot k. We restrict our interest to stability in the sense of the following definition (see Szpankowski [12]):

Definition 1 The queue is said to be stable when the distribution of Qk , as k((, exists and the distribution is proper. In other words, Qk is stable if the following condition holds:
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where Q(m) is the limiting distribution.

We consider a situation where all the other (N-1) input queues are saturated. It follows from Lemma 1 (ii) that the least service rate is given to the tagged input when all the other (N-1) input queues are saturated. Further, suppose that whenever the tagged input becomes empty a dummy cell is put into the head of the line, and an output address is assigned uniformly to this dummy cell; also a newly arriving cell, finding a dummy cell, replaces it and adopts its output address. Thus the HOL positions of all the input queues always have cells, and we obtain the closed queuing  network model of Figure 1, with N stations and a population of N. 
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Consider the end epochs of those slots in which the HOL cell, real or dummy, of the tagged input queue gets transmitted. In Figure 2, {tn, n(1} represent these epochs. Let 
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be the number of real cells in the queue at the epoch tn. Define t0 = 0.

Let, for n(1,
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The evolution of the queuing process of the real cells can be described by the following stochastic equation
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with Q0 = 0, where An+1 is the number of new cells arriving at the input queue during the time interval Sn+1.

A sufficient condition for the stability of the embedded process described by Equation 2, in the sense of Definition 1, is (see Borovkov [13, Sect.3] that the sequence 
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be a strictly stationary process, and EA < 1. Since the stationary requirement of {An} is a stringent condition, we make use of the generalised result due to Borovkov [13, page 12]. It is not necessary to require the strict sense stationarity of {An}; it suffices that the sequence is asymptotically stationary. That is, the distribution of finite dimensional random vectors 
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do not depend on k for arbitrary m and 
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We establish the asymptotic stationarity of {An} in the following way. Consider the closed queuing network model of Figure 1 with N stations (HOL queues) and population of N. Let the  random selection of a cell from each HOL queue be done in this way: at the beginning of a slot, cells in each HOL queue are uniformly shuffled and then the first cell in each HOL queue is transmitted in that slot.

Let, at the beginning of slot k, for 
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denote the number of cells in the l-th HOL queue, and 
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be the input link of the n-th cell in the l-th HOL queue just after the shuffling. Define 
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 if the l-th HOL queue is empty in slot k. Let 
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. Clearly, the process 
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is a multidimensional Markov chain. Let 
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denote the state space of this Markov chain. Since it is an aperiodic, finite and irreducible Markov chain, it is ergodic. Consider a  subset 
[image: image22.wmf]A

of the state space 
[image: image23.wmf]i

l

k

=

Q

Î

º

A

Q

)

1

,

(

:

{

:

x

q

for some l}. Note that 
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, are those slots in which the HOL cell from the tagged input queue i  becomes the first cell in one of the HOL queues and is hence transmitted.

Now consider a process 
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obtained by embedding it in the process 
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 is also an aperiodic, finite, and irreducible Markov chain, and 
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In the above equation, we have used the result that (see Wolff [14, Sect. 4.8]), given 
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is asymptotically stationary. Further, since the cell arrival process at the tagged input is considered to be Bernoulli with parameter (, we have 
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; and the asymptotic stationarity of the sequence 
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Definition 2 Qk is substable if the following  holds [12]:
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The substable system is stable, if the distribution function tends to a limit, e.g., for an aperiodic and irreducible Markov chain, substability is equivalent to stability.

Now we state the main result of this section. Recalling that ((j)(N) is the throughput from input link j when all the N input queues are saturated, and suppressing the superscript j since ((j)(N) does not depend on j, we have the following result.

Proposition 1 The tagged input queue is stable if ( < ((N).
Proof: We apply Borovkov’s result [13, page 12] to the queuing process, evolving according to the stochastic equation (2). Observe that
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Thus ( < ((N) (
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and hence limn((
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 denoting the output link of the HOL cell at the j-th input queue in slot k, 
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is a multidimensional Markov chain which is aperiodic and irreducible, and hence the substability implies the stability of 
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Next we consider the stability of the system of N input queues. The system of N input queues can be described by an N-dimensional process 
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denotes the queue length at input queue i in slot k. Let (i be the cell arrival rate at input i. Proposition 1 gives a sufficient condition for the stability of a single input queue. Thus we have, when (i < ((N), 
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where the equality follows from Equation 4.

i.e., 
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Note that the distribution of 
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 need not necessarily tend to a limit though it is true for 
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is an aperiodic and irreducible Markov chain; it is understood that 
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Now we consider the two class traffic case. Let 
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 high priority input queues are saturated. Following an argument similar to the one used for single class traffic case, we can show that a sufficient condition for stability of a high priority input queue is that 
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Following similar arguments, we also obtain a sufficient condition for the stability of a low priority input queue, for a fixed high priority throughput. Let 
[image: image71.wmf]N

a

n

H

a

=

:

, where 
[image: image72.wmf]1

0

£

£

a

, high priority input queues are saturated and the remaining high priority inputs carry no traffic. We focus on a low priority input queue j with cell arrival rate 
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 using similar arguments as in the earlier case. The selection of a cell from an HOL queue for transmission is done in this way: in every slot, the position of the high priority cells in the HOL queue are uniformly shuffled and the first cell is transmitted in that slot; also, the position of all the low priority cells in this HOL queue are shuffled and the first cell is transmitted if there are no high priority cells in this HOL queue. In this context we consider the following Markov chain:
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As before, we apply Borovkov’s result and the subsequent arguments to assert that 
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is the throughput from a low priority input queue when 
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 low priority input queues are saturated. Thus we have the following result:

Proposition 2 For a fixed high priority throughput, the tagged low priority input queue is stable if 
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Consider the system of input queues. Each high priority input queue is stable if  
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. Thus, the saturation  throughput from a high priority input queue and the saturation throughput from a low priority input queue for a fixed high priority throughput together yield a sufficient condition for the stability of the system of input queues.

4. Discussion 

In this paper we have provided a proof for the assertion that the saturation throughput of a (single queue per port) input queuing (IQ) switch provides a sufficient stability condition for the input queues. In the proof we have assumed Bernoulli arrivals, and uniform routing. In [6] we have derived the saturation throughput of an IQ switch when the cell arrival process at each input comprises geometrically distributed bursts of consecutive cells for the various outputs. The bursts are characterised by a burstiness parameter p, which is the probability that if a cell arriving at an input port is destined for a particular output port, then the next cell is also destined for the same output port. When all inputs have the same p  then it can be shown that the total saturation throughput per output link, as the number of ports 
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 corresponds to the saturation throughput with Bernoulli traffic, and the above expression reduces to the well known formula
[image: image99.wmf]2

2

-

, or approximately 0.586. The stability condition that we prove in this paper says that if the arrival rate on every input is less than this number then the queue lengths do not “blow up”.  We have also proved in this paper a corresponding result for the case when there are two types of inputs, each with a different value of burstiness parameter, and during output contention priority is given to cells from one class of inputs. Such a result is obviously necessary before we can proceed to perform a steady state delay analysis. Our result thus formally proves an assumption that is made in many papers, e.g., [3], [7], [8], [9], [10], and many more. 

Two remarks are in order concerning the significance of the analysis in this paper.

Firstly, the IQ switch we have considered is a limited throughput switch (i.e., one which suffers HOL blocking due to the single FIFO buffer at each input). Recent research has shown that IQ switches can achieve a throughput of up to 100% by partitioning the buffer at each input into N “virtual output queues” (VOQs), and by using suitable packet scheduling algorithms [11,15]. In a VOQ switch there is no notion of saturation throughput – if all the VOQs are nonempty the throughput is 1. Hence one has to work with a given arrival process and specific packet scheduling algorithms to obtain the stability condition [11,15]. 

Secondly, we have assumed that the input traffic is Bernoulli.  As mentioned earlier, with additional notation our proof can be extended for the bursty Markovian arrival processes that we mentioned above in this section, provided that the assumption of uniform routing to outputs is retained. It has been reported in recent literature that observed traffic in the Internet displays long-range dependence. Finite state Markovian models cannot capture such long range dependence. However, there have been recent attempts to approximate long range dependent traffic models with the superposition of a finite number of finite state Markov models. See, for example, [16,17]. Also, algorithms have been developed for approximating a long-tailed distribution by a finite mixture of exponentials [18]. In view of this,  an important extension of our work would be to obtain stability results with general Markov models and arbitrary (non-uniform) routing  to output queues.
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Figure 1: Closed queuing network model for Bernoulli traffic case
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Figure 2: Illustration of         ,        and   
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