Distributed Self-Tuning of Sensor Networks

Aditya Karnik!, Anurag Kumar!' and Vivek Borkar?

! Dept. of Electrical Communication Engineering,
Indian Institute of Science, Bangalore-560012, India
karnik@ece.iisc.ernet.in, anurag@ece.iisc.ernet.in
2 School of Technology and Computer Science,

Tata Institute of Fundamental Research, Mumbai-400005, India
borkar@tifr.res.in

Abstract. This work is motivated by the need for an ad hoc sensor network to au-
tonomously optimise its performance for given task objective and constraints. We consider
the problem of maximising the minimum communication throughput of sensors in an ad
hoc sensor network and investigate adaptive algorithms using which sensors can “tune” to
the optimal channel attempt rates in a distributed fashion; the optimality is in the sen-
sor of maximising the minimum throughput. The adaptive scheme is a stochastic gradient
algorithm derived from the augmented Lagrangian formulation of the optimisation prob-
lem. Our algorithms are promising and can be seen as a step towards developing optimally
self-organising architectures for sensor networks.

1 Introduction

Equipped with a microprocessor, memory, radio and battery, “smart sensors” bring the new dimension
of embedded computing, communication and control into distributed instrumentation based on ad hoc
sensor networks. A smart sensor may have only modest computing power, but the ability to communi-
cate will allow a group of sensors to collaborate to execute tasks more complex than just sensing and
forwarding the information. Thus sensors may process sensed data on-line in a distributed fashion and
yield partial or even complete results to an observer. This would not only facilitate computing but also
save energy by avoiding long haul transport of sensed data to the observer. However, the practicality of
such an approach may be limited by the rate at which sensors can collaboratively process data, since,
unlike conventional distributed processing machines which have high speed communication buses be-
tween their processors, a sensor network has low speed wireless links, lacks a centralised co-ordinator,
is, in many cases, ad hoc in nature and is energy constrained. It is, therefore, imperative that sensors
autonomously optimise their computing rate for given task objectives and constraints. A simple class of
distributed computing algorithms would require each sensor to periodically exchange the results of local
computation with neighbouring sensors. The more frequently such exchanges can occur, the more rapidly
will the overall computation converge. Hence, by optimising their communication throughput sensors can
optimise their computing rates.

Consider a sensor network comprising n nodes, indexed by 7 € {1,2,---, N}; we denote this set by
Vs. Time is slotted, and each packet occupies one slot. The problem of learning a good topology has
been addressed in [8]. We, therefore, assume that the topology is already learnt, and a sensor knows
which other sensors are its neighbours. Sensor 7 attempts a transmission in any slot with probability «;
independent of everything else. If a sensor decides to transmit, it addresses its transmission to one of
its neighbours randomly 3; this can be attributed to isotropy of the physical process and uniformity of
processing. We assume that a transmission is successful if its signal-to-interference ratio at the receiver
is above a given threshold 3; the signal is assumed to undergo only path loss with exponent 7. Details of
the model can be found in [8]. Let N; (resp. n;) denote the set (resp. number) of neighbours of sensor 7.
Let o denote the vector of attempt probabilities and M;(a) the throughput of sensor 7 under the attempt
probabilities a. @ denotes the vector a with entries ; and o omitted. Then assuming that sensing
and computing is such that each sensor always has a packet to transmit, for a given topology, and given
values of and 8 ([8]),

]\41,(2):11i Z Oéi(]._aj)gij(g”), 7’.:]—32a"'3N (1)
? JEN;
3 This is not a restrictive assumption and may be relaxed without any change in the following analysis.

where for each j € Nj, g;;(.) either equals 1 or there exists a set I;; C V;\{4,j} such that g;;(.) is a
decreasing and affine function of ay, k € I;; and does not depend upon ay, k ¢ I;;. Moreover, g;;(1) =0
and g;;(0) = 1. The parameters § and 7 appear implicitly in the function g;;(.).

Suppose N sensors are collocated, i.e., they are located such that in any slot at most one transmission
can be successful. Assume that sensors sample a temporal process, e.g., temperature and transmit their
values to an observer which then calculates the maximum of them. It is easy to see that the rate at which
an observer can compute the maximum is the minimum of N sensor throughputs. This observation also
holds for spatially distributed sensors. In general for a large class of tasks, the overall progress of the
computation will be limited by the lowest sensor throughput in the network, hence, the problem we are
interested in is

in M, 2
o min i(a) (2)

Henceforth we will refer to the problem in (2) as MAXMIN and denote by a* the optimal MAXMIN
transmission attempt probabilities (MMTAP). M* denotes the optimal objective function value. When

the sensors are collocated, for each i, Mi(a) = a; IT;%(1 — o) and af = + which is an intuitive and
desirable operating point for sensors in this scenario; note that as N — oo, M* — ﬁ while the com-

puting rate cannot exceed % Even when sensors are spatially distributed, a* is throughput equalising,
ie., M;(a*) = Mj(a*), 1 <i,j < N ([8]). This property makes MMTAP particularly important; with
MMTAP, sensors operate at equal processing rates which is desirable in applications where computa-
tions are iterative. It should be clear that a* depends on the sensor placement and topology, hence
cannot be computed offline and preset in sensors because of the very nature of random deployment of
sensor networks. Therefore, it is essential that sensors adaptively learn the optimal attempt probabilities.
Investigation of such a scheme is the subject of this paper.

“Minimax” problems have been one of the motivations for non-differentiable optimisation theory
([13])- A generalised gradient method for MAXMIN was investigated in [8]. The other approaches for
minimax are [6] (sequential quadratic programming), [5] (parametric embedding), [11] (conversion to
smooth function) etc. These methods have good rates of convergence, however, as such they are not
amenable to distributed implementation necessary for sensor networks. We, therefore, obtain a gradient-
based iterative scheme which can be distributed.

This paper is organised as follows. In Section 2 we present an adaptive algorithm for the MAXMIN.
Its distributed version is presented in Section 3. Implementation of the algorithm by considering a special
functional form of the sensor throughputs is discussed in Section 4. In Section 5 we present stochastic
algorithms in which the throughputs are optimised using measurements. In Section 6 we discuss the
implications of our optimisation to global computing and conclude in Section 7.

2 An Adaptive Algorithm for MAXMIN
Note that the MAXMIN is equivalent to the following problem.

max (3)
subj.to M;(a) >z, i=1,2,...,N
z>0
@ €[0,1],i=1,2,....N

Since M;(a) < 1, z < 1. Let & := (x,a). Though the objective function is concave the constraints are
not concave in #. As an illustration, let M (a1, a2) = a1(1 — as). For &1 = (3 — €, 5 +¢€,(5 — €)?) and
Fr=(G+¢63—€(3+¢€?), Mi(a1,a2) —z =0 but for 3 = 2422 M (e, 0) — 7 < 0.

With p denoting the vector of dual variables corresponding to the constraints M;(a) > =, let us
consider the dual objective function.

N
L(p) = sup (m + Z pi(Mi(e) — w))

{1>2>0,0<a;<1,1<i<N}

N N
= sup (33(1 - Zﬂi) + Z /‘iMi(Q))

{1>2>0,0<a;<1,1<i<N}

Note that there is one dual variable y; for each sensor i. Let us first assume that the sensors are collocated.
Therefore Zil M;(a) < 1. Let i = max{u;,1 <i< N}. It follows that Eﬁil wiM;(a) < ji. The bound
is achieved by choosing a; = 1 if u; = fi (if there are multiple such nodes, one is chosen arbitrarily) and
a; =0, j # 4. Thus, we find that

_J 1= Eﬁil Mi + Max; <i< N M Zﬁ; pi <1
L(p) = N
maxi<i<n i Y i > 1
and inf L(u) = &. The optimal dual value () is only a loose bound on the MAXMIN throughput

N
which was shown to be + (1— %)(Nfl). Therefore, there is a duality gap. This observation can be

generalised to spatially distributed sensors. In general, (3) even lacks local concavity structure. An
important implication of this is that a primal-dual algorithm will not work for our problem. Recall that
a primal-dual algorithm for an equality constrained problem maxp(z)=0,zc r»} f(2) consists of sequential
maximisations of the form max e g~ L(z, A(k)) where L(z, A(k)) = f(z)+A(k)T h(z) yielding vectors z(k)
followed by updates of the form A;(k + 1) = A;(k) — a(k)h;(z(k)) where a(k) is the step size parameter.

The approach, therefore, is to converify the problem by adding to the cost function a penalty term that
prescribes a high cost to infeasible points ([1]). For sufficiently large penalty parameter, the convexified
problem has locally convex structure, hence primal-dual algorithms can be applied to it. In the augmented
Lagrangian method the penalty term is the square of the norm of constraint functions. We apply this
technique to the MAXMIN problem. We follow the development in [2] where the problem is stated with
equality constraints. Hence, we introduce slack variables y; ¢ = 1,2,..., N to convert each inequality
constraint (M;(a) —x > 0) into an equality constraint. Thus, the convexified objective function of the
MAXMIN is o

z - 1M (@) - 21—y

where, 1 denotes a vector of 1’s. ¢ is the penalty parameter. If o > &, where ¢ depends on the objective
and constraint functions, then a primal-dual algorithm applied to the convexified problem will yield the
optimal solution of the original problem, namely MMTAP, provided the starting point is sufficiently close
to the optimal point ([2]). Since calculating & is a difficult task in general, it is increased from iteration
to iteration so that ultimately it exceeds &. By increasing o the algorithm can also be made globally
convergent ([2]). Recall that # := (z,a). The Lagrangian of the convexified problem is

L(#,p,y;0) =7 — %IIM(Q) —zl—y|*+ Zui(Mi(Q) —T—y;) (4)

Referring to the previous discussion, a primal-dual algorithm in this case will require maximisation
of L(Z,p,y;0) followed by an update of the multipliers. The augmented Lagrangian (4) can be first
maximised in slack variables y. It can be shown that, this yields y; = max (0, —E+ Mi(a) -). Thus,
the slack variables can now be eliminated from (4) to yield

L, 50) = 7 — 5o > (maax(ps — o (Mi(e) = 2),00° + 50 32 6)

Algorithm 2.1 is the required primal-dual algorithm, called the multiplier algorithm, for the convexified
problem. p;(k + 1) is updated essentially as p;(k) — a(k)(M;(a) — z —y;) with the step size equaling the
penalty parameter ([2]). Note that (M;(a) — z — y;) is the i*" constraint and y; is as given above. o (k) is
usually chosen as v* for some v > 1. Algorithm 2.1 solves a sequence of concave maximisation problems

(8). A gradient ascent method can be used for these maximisations using

OL(Z, u; 0 N
% =1- rzl max(u; — o(M;(a) — z),0) ©)
OL(E,p150) & "

% =2 max(u; — o (Mi(a) - 2),0) 8%‘) (7)

Convergence of Algorithm 2.1 is proved under regularity of #* and second order sufficiency of (Z*, u*)

(3D

Algorithm 2.1 A Multiplier Algorithm for MMTAP

#(k+1) = arg max L(Z, u(k); o(k)), k >0 (8)
p(k +1) = max(p(k) — o(k)(M(a(k + 1)) — z(k +1)1),0) (9)

3 A Distributed Multiplier Algorithm

The constrained problem (3) does not have a structure suitable for distributed implementation in sensor
networks. The idea is to modify (3) by introducing dummy variables, u;’s, at each sensor ¢ as a local
copy of “x” and then equalising them by additional equality constraints, i.e.,

max X (10)
subj.to M;(a) >wu;, i =1,2,...,N
u,=x, 1=1,2,...,.N
z,05u; € 0,1, i=1,2,...,N

(3) and (10) are equivalent in a sense that optimal x and w;, ¢ = 1,2,..., N for this problem equal z*,
and optimal o is MMTAP. Let @ := (z,u1,...,uN,01,-..,an). Following a procedure identical to the
one that yielded (5) from (4) the augmented Lagrangian for (10) is

N | N o N
L(@, p, X 0) =2 — o~ (max(:ui_o'(Mi(Q)_Uz’)uo))z+%ZM?+Z)\1'($_U1')_EZ(x_Ui)2

i=1 i=1 i=1

where,) is the vector of dual variables corresponding to the constraints u; = x. It is now straightforward
to show that for (10) an iteration equivalent to (8) can be obtained by Gauss-Seidel iterations. In Gauss-
Seidel algorithm, the maximisations are carried out successively for each component. Let m index the
subiteration for obtaining the maximum in (8). With the multipliers fixed at A(k) and u(k), and the
penalty parameter fixed at o(k), we now display the Gauss-Seidel update at the (m + 1)** subiteration
for the maximisations in (8) applied to (10).

1+3N NGk 1
z(m+1) = %-{-N;ui(m) (11)
ui(m+1) = % <x(m +1)— i:((:))) + %min (a:(m +1) - /:((:)) , Mi(a(m)) — l:é:;) (12)
a(m +1) = arg max L(z(m + 1), a(m), u(m + 1), u(k), A(k); o (k) (13)

Informally (11)-(13) can be explained as following. x represents the “global notion of throughput” and
u;’s the “local target throughputs”. The local targets are “synchronised” via (11); note that for large
values of o(k), is updated as the average of the local target throughputs in the previous iteration;
note that u} = M;(a*) and z* = + Efil M;(a*) due to throughput equality ([8]). For this to happen,
sensors send their respective A;’s and u;’s to the “root” which updates x. Note that, each \; and u; need
not be sent separately to the root; sensors can directly yield the sum and the average (see (11)) by a
simple distributed algorithm ([8]). The root then distributes the updated value of z to all the sensors.
Once z is received, (12) gives the new local target to which sensors tune their «;’s using (13) in parallel;
(13) can be implemented using a gradient ascent method. (11)-(13) are repeated until convergence to a
maximum of the augmented Lagrangian where upon each sensor updates p;’s and A;’s as:

pi(k +1) = max(pi (k) — o (k)(Mi(a(k + 1)) — z(k +1)),0) (14)
Xi(k +1) = Ni(k) — o (k) (ui(k + 1) — z(k + 1)) (15)

Practically, (11)-(13) will be repeated only a finite number of times; convergence is guaranteed even with
inexact maximisation provided the error in maximisation goes to zero with iterations ([2]). A particularly
efficient way is to iterate (11)-(13) just once (see alternating directions method ([4])).

Algorithm 2.1 and its distributed version as discussed above not only need values of M;(.) at specific
values of @ but also their gradients: see (7) and (13). We discuss two mechanisms.

08 ‘ 024 ‘ : , : ‘
alpha_l —— M1
apha 2 - | | M2 e

alpha_3 ------- 02k M_3 oo i

07}

02 [

alpha

throughput

012

03} ' \’\\\7 O E
; 0.1

02 b’
008 |

01 I I I I I 0.06 I I I I I
0 100 200 300 400 500 600 0 100 200 300 400 500 600

subiterations subiterations

Figure 1. Evolution of o and throughputs of 3 node sensor network for initial conditions o, = (0.61,0.19,0.71)
and p1, = (0.3,0.3,0.3). a* = (0.41,0.29,0.41) and M(a*) = 0.1715.

4 Deterministic Approach: M;(.) known

The first approach is to assume that for a successful reception at a sensor in a receive mode only its
neighbours be silent; in other words function g;;(a*) in (1) is of the form ITycn, (1—ayi). Then sensors can
construct functional forms of M;(.) by exchanging neighbour lists and use the iterative scheme discussed
above. As an example, consider a simple sensor network of 3 sensors such that Ny = {2}, N> = {1, 3},
N3 = {2}. 8 and 7 are such that,

Mi(a) =a1(1 —a2)(1 — as)
Mi(a) = oy 1= 0T U209
Ms(a) = a3(1 —a2)(1 — o)

SN p2Mie) — 1 < j < 3 yields

daj

(0%
p(1 = a2)(1—a3) — p2—= — pzas(l—az) =0

2
2—a) —«
—,u1a1(1 - 043) + Mz% - Mgag(l — Oél) =0
a
—poa(l —az2) — M272 +ps(l—ar)(l—a2) =0
By symmetry aij = ai and pj = p3. Then the set of equations yields, puf = ui = 2(1—|1-a*)’ B2 = lii*,
1 1
al = % and af = v/2 — 1. Thus, o* = (V2 -1,1 - LZ,\/Q— 1), p* = (ﬁ,l - %,ﬁ), and

M(a*) = (v/2—1)? = 0.1715. * can be shown to be regular. Further, V2. L(i*, u*) is negative definite
which in view of strict complementarity (u; > 0, i = 1,2,3) shows second order sufficiency. Numerical
results are shown in Figure 1. o(k) = y* with v = 1.2. We use decreasing step sizes, a(m) = ﬁo—_T,
in the gradient ascent method in (8). Since checking whether the gradient of Lagrangian is near zero is
infeasible in a sensor network, we use a fixed number, 50, of subiterations in (8). Abscissa is the number of
subiterations, thus convergence is achieved in only 12 “iterations”. Observe that, the sensor throughputs
equalise.

5 Stochastic Approach: Estimation of M;(.)

Our previous assumption regarding g;;(.), though prevalent in ad hoc network literature, does not hold
in general. Moreover, the particular form of M;(.) in (1) is the result of our modelling assumptions (e.g.,

only path loss, every sensor always has a packet to transmit etc.); in many cases only an approximate
analytical form is known for node throughputs ([15]). Therefore, an approach which allows general forms
of ¢;;(.) and more importantly not dependent on an analytical form is to let sensors optimise their
throughputs based on the measurements of their throughputs ([9]).

Being a steady-state average, only noisy measurements of M;(.) are available. An unbiased estima-
tor of M;(.), denoted by M;(.), is %E]T-:l X;(j) where X;(j) = 1 if ¢ transmits successfully in slot 7,
otherwise 0. 7 is the number of estimation slots. Sensors also need to estimate the gradient of M;(.). It
can be shown that infinitesimal perturbation analysis (IPA) and likelihood ratio-score function (LR-SF)
methods of gradient estimation ([10]) are not applicable to our problem ([7]). An appropriate method
for gradient estimation in a distributed algorithm is simultaneous perturbation (SP, [14]) since sensors
can simultaneously estimate the derivatives by choosing the perturbation amount locally.

Currently there exists no general convergence result for the multiplier algorithm in a stochastic setting
([16]). We will, therefore, consider two versions of the quadratic penalty method ([2]). In algorithm 1,
update (8) remains unchanged except values are now replaced by their estimates, however, the multiplier
p(k) =0, k> 1% In Algorithm 2, u(k) = 0, k > 1 and (8) is replaced by the following iteration,

F(k+1) = 2(k) + a(k)VL(Z(k), p(k); o (k))

VL(.) denotes the gradient estimate. Similarly for the distributed version. We do not establish the
convergence of stochastic algorithms in this paper. Instead we will consider a realistic network of 100
sensors to look into the performance of our stochastic algorithms; the optimal throughput and attempt
probabilities are actually unknown for this network. We assume that sensors, each of transmission range
4m, are deployed randomly in a square field of area 400m?2. Figure 2 shows their transmission graph® and
a computationally optimal network topology ([8]); scale in Figure 2 is distance in m. We assume 7 = 4
and 8 = 7dB. Throughput and gradient estimation is done over 1000 slots. We choose gain sequence

20 20 -

18 N 18t

‘?j\\ Z A/":;K‘*“ N —

’
16 \ 16
14 14
12+ 2l

10 w0l

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 2. Transmission graph and computing topology of a random 100 node sensor network.

a(k) = ﬁo—_y and perturbation sequence b(k) = Tol)lo—fs' o(k) = v*; v = 1.8 and 1.003 for Algorithm
1 and 2 respectively. The number of subiterations of (8) in Algorithm 1 is 200. «;(0) = 0.1, 1 < ¢ < 100.
Figure 3 shows how min;<;<nx M;(.) improves with iterations; the actual estimates of sensor throughputs
are used and the resulting graph is smoothed by 5-point adjacent averaging to show the trend. The
algorithms appear to have reached a throughput value of 0.032 — 0.035 packets/slot starting from 0.01
packets/slot.

4 actually any bounded sequence of E(k)’ k > 1 is sufficient for convergence

5 a transmission graph is a graph with V;, the set of sensors, as the vertex set and an edge (%,7) is in the edge set if sensors
1 and j are within each other’s range

0.04 0.04

0.035 - 1 0035 -

0.03 - 0.03 - B

0.025 |- B 0.025 |- B

throughput
throughput

0.02 B 0.02 - B

0.015 - b 0.015 - B

0.01 § B 0.01 B

0.005 I I I I I I I I I 0.005 I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 3500 4000

Iterations Iterations

Figure 3. Evolution of the estimated minimum sensor throughput for stochastic Algorithm 1 (left) and Algorithm
2 (right).

6 Discussion

Figure 4. An optimal tree of 200 sensors for maximum computation and delivery to the observer at the origin.

Figure 3 shows that for the specified initial condition, the algorithms lead to an improvement of more
than 100% in the minimum sensor throughput. An important question now is how much improvement in
the computing performance does this optimisation lead to? To answer this consider a scenario where each
sensor measures the local value of some environmental variable say temperature. An observer, placed
at the origin, is interested in tracking the time-varying maximum temperature. The task of 200 sensors
deployed randomly in a square 20m x 20m is to deliver the maximum temperature values to the observer.
Assume that sensors sample the temperature at a given rate synchronously. Instead of each sensor sending
its value to the observer, sensors can compute the maximum in a distributed fashion. They do this by first
constructing a tree optimised for throughput (see Figure 4, [8]) and then following a simple computing
algorithm: each sensor receives values forwarded by all its children, compares them with its own and
only forwards the maximum to its parent. The observer is guaranteed to receive the correct maximum
values. This “aggregation” algorithm can be applied to many other functions such as average, sum etc.
Thus it will be clear that the following discussion is not specific to “maximum computation” but holds
for a variety of sensor tasks of practical interest.

oo " =005 —— 40000
a=0.1 --%--
= a=0.2 ---*--
0,035 - MMTAP 5000 & - 25000 - |
e
F B -
003 g 30000 1
0025 - iq 1 25000 1
2 7 E <
£ oot R 1 £ 20000 | 1
£ 7 = 2
8 1 *"*—x 777777 §
0015 | 7 oo T 3 15000 |- 1
001 L 4 10000 [J
0.005 - 1 5000 -]
0 | | | | 0 -
0 0.02 0.04 0.06 0.08 01 0 001 0.02 0.03 0.04 005 0.06
sampling rate sampling rate
Figure 5. Computing rate (maximum calculations per Figure 6. Computing delay (average calculation time)

vs sampling rate. MMTAP is tuned for each value of

slot) vs sampling rate. MMTAP is tuned for each value -
sampling rate.

of sampling rate.

This computing network can be seen as a queueing system with the sensor network as its “complex
server”. The set of samples taken simultaneously at each sensor acts as a “customer” which requires a
“service time” equal to the time required for the calculation of the maximum over this set by the sensor
network. The computing rate is the rate at which the maximum is calculated by the network. Thus, the
system is stable only if the rate at which sensors sample the temperature is less than the computing
rate. The computing rate being a complex function of the attempt probabilities, a “good value of a” for
a given sampling rate cannot be known a priori. Figure 5, which shows the variation of the computing
rate with the sampling rate for various values of a, illustrates this point. Observe that when «; = 0.05
for each i, sampling rates only less than 0.02 samples per slot can be handled. When «; = 0.1 for each 4
this threshold is around 0.025 samples per slot whereas for a; = 0.2 for each 4, it is about 0.033 samples
per slot. Thereafter the system becomes unstable; see Figure 6 which shows that the computing delay,
i.e., the time required for maximum calculation, increases rapidly with the sampling rate beyond this
threshold. Further, at low sampling rates, such as 0.01 samples per slot, the computing delay incurred
by a; = 0.2 is less than that obtained by a; = 0.05 and is thus preferable.

It is, therefore, necessary that sensors adapt their attempt probabilities for a given sampling rate.
MMTAP is important in this scenario because the global maximum computation is limited by the lowest
sensor throughput in the network. The performance of MMTAP shown in Figure 5 was obtained by tuning
attempt probabilities on-line for every value of the sampling rate, i.e. while sensors are computing. This is
possible because throughput measurements do not need special packets. Observe from Figure 5 that with
MMTAP, sensors are able to adapt to sampling rates. Moreover, MMTAP leads to higher sampling rates
as compared to the preset values of a without compromising the delay performance. This is important
also from the point of view of task reprogramming, i.e., sensor network may be reprogrammed in the field
to sample at a different rate than the one decided at the time of deployment. Recall that for the analysis
we had assumed that each sensor always has a packet to transmit. This happens at large sampling
rates when the network is almost saturated. Figure 5 then also shows that under this assumption the
computing performance of the sensors tuned to MMTAP is substantially better than every value of «
considered for comparison.

Thus our results not only show that MMTAP adapts and improves the computing performance in
scenarios such as discussed above but also that with our algorithms sensors are able to tune to MMTAP.
However, these algorithms involve two network-wide estimation phases and one synchronisation phase
(update (11)) at the root node per iteration and in a real scenario may take much longer time to
tune to the optimal values. Stochastic algorithms are constrained by the ‘bias-variance dilemma’. Their
convergence may be improved by appropriate selection of parameters. Secondly, optimality can be traded
for acceptable improvement. Most importantly, such an algorithm can work in the background and can
be seen as a tool by which the network continuously keeps on improving itself. An important advantage of

stochastic algorithms is that throughputs will be measured using the real transmissions, no special packet
transmissions are required. Hence, there is no extra energy consumption. Further, they will work even
in the presence of any energy saving techniques such as random sleep time and can account for energy
constraints directly, for example, by upper bounding the attempt probabilities. However, communication
required for (11) and (7) is substantial, limiting the extent to which this approach can be distributed. This
is the cost of optimising a coupled performance measure. We are currently investigating ways by which a
sensor can obtain an estimate of the global performance locally. In some cases, slot synchronisation could
be achieved since for some sensing tasks, time synchronization is vital ([12]. In such cases, an approach
discussed in Section 4 may be practically useful.

7 Conclusion

In this paper, we proposed an iterative scheme for sensors to adaptively learn the channel attempt proba-
bilities which maximise the minimum throughput in the network in a distributed fashion. We showed that
with such a scheme a sensor network can optimise itself for given task objectives. We designed algorithms
to achieve the optimal performance and found correspondingly higher communication complexity. Our
future work, therefore, is to develop asynchronous algorithms with strictly local information exchange
for scalability. This paper lends support to any such effort since it shows a way to compute the global
optimal performance against which the performance of other algorithms can be compared.

8 Acknowledgements
This research was supported in part by a grant from the Indo-French Centre for the Promotion of

Advanced Research (IFCPAR) (Project No. 2900-IT), and in part by a fellowship from the IBM India
Research Lab.

References

[usy

D. Bertsekas. Convexification Procedures and Decomposition Algorithms for Large-Scale Nonconvex Opti-
mization Problems. Journal of Optimization Theory and Applications, 29:169-197, 1979.

2. D. Bertsekas. Constrained Optimization and Multiplier Methods. Academic Press, 1982.
3. D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.
4. D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation. Prentice Hall, 1989.
5. F. Guerra and G. Lopez. A Parametric Embedding for the Finite Minimax Problem. Mathematical Methods
of Oper. Res., 49:359-371, 1999.
6. S. Han. Variable Metric Methods for Minimizing a Class of Nondifferentiable Functions. Mathematical
Programming, 20:1-13, 1981.
7. A. Karnik. Performance and Optimal Self-organisation of Wireless Sensor Networks. PhD thesis, Indian
Institute of Science, 2004. under preparation.
8. A. Karnik and A. Kumar. Distributed Optimal Self-Organisation in a Class of Wireless Sensor Networks. In
IEEE INFOCOM, 2004.
9. H. Kushner and D. S. Clark. Stochastic Approzimation Methods for Constrained and Unconstrained Systems.
Springer-Verlag, 1978.
10. P. L’Ecuyer. An Overview of Derivative Estimation. In Conf. on Winter Simulation, 1991.
11. G. Di Pillo, L. Grippo, and S. Lucidi. A Smooth Method for the Finite Minimax Problem. Mathematical
Programming, 60:187-214, 1991.
12. K. Romer. Time Synchronization in Ad Hoc Networks. In MobiHoc, 2001.
13. N. Shor. Minimization Methods for Nondifferentiable Functions. Springer, 1985.
14. J. Spall. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation.

IEEE Trans. on Automatic Control, 37(3):332-341, March 1992.

15. F. Tobagi. Modelling and Performance Analysis of Multihop Packet Radio Networks. Proc. of the IEEE,
75(1):135-154, January 1987.

16. I. Wang and J. Spall. A Constrained Simultaneous Perturbation Stochastic Approximation Algorithm Based
on Penalty Functions. In American Control conf., 1999.

