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Abstract. The ability to communicate and compute allows a group of sensors to collabora-
tively process sensed data on-line rather than just sensing and forwarding the information.
However, as an ad hoc wireless network without centralised control, sensors need to optimise
their computing rates autonomously for given task objectives and constraints. Communi-
cation being the bottleneck for distributed computation in a sensor network, in this work,
we formulate optimisation of computing rates as a game in which cost for each sensor is
a measure of its communication time with the neighbours. Our game formulation not only
leads to an explicit characterisation of the Nash equilibrium but also to a simple iterative
scheme by which sensors can adaptively learn the equilibrium attempt probabilities using
only the estimates of transmission and reception times from their local measurements.

1 Introduction

Equipped with a microprocessor, memory, radio and battery, “smart sensors” bring the new dimension
of embedded computing, communication and control into distributed instrumentation based on ad hoc
sensor networks. The on-board processor and radio permit smart sensors to collaboratively process the
sensed data, thus, giving them an ability to execute tasks more complex than just forwarding the sensed
information. Distributed processing within the network will also save energy expended in long haul
transport of data, however, its practicality will be limited by the rate at which sensors can collaboratively
process data. The physical process being monitored will have certain processing requirements and unlike
conventional distributed processing machines which have high speed communication buses between their
processors, a sensor network has low speed wireless links, lacks centralised control, is in many cases ad
hoc in nature and is energy constrained. It is, therefore, imperative that sensors autonomously optimise
their computing rate for given task objectives and constraints.

Consider a scenario in which an observer is interested in tracking the maximum value of a spatio-
temporal process, for example, the temperature or the concentration of a pollutant in a region. To do
so, n sensors are deployed to sample the process. Let us for the moment assume that the sensors are
collocated so that only one transmission can be successful at a time and that the observer is accessible
to all of them. Further, time is slotted and nodes attempt transmission to the observer randomly in
each slot. We will assume that calculations at the observer are almost instantaneous. Sensors sample the
process continuously at a rate akin to a Nyquist rate and store them in a packet queue, to be transmitted
one at a time to the observer. Samples are time-stamped so that the observer can extract the maximum
from samples with the same time-stamp and thus can track the time-varying maximum; we will ignore
interpolation, spatial correlation and accuracy issues. Since the actual calculation is instantaneous and
the sensors are collocated, the rate of computation of the maximum equals the rate at which samples
of the same time-stamp are received by the observer from all sensors. Let us denote by «a; the attempt
probability of sensor ¢. Then by somewhat laborious algebra, it is possible to arrive at a closed form for
the mean computation time, 7(n), as a function of a;, 1 <4 < n. For example,
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In this calculation, we assumed that the sampling rate is such that the packet queue at a sensor always
has a sample, and thus in every slot sensor ¢ attempts transmission with probability «;. 7(2) is minimised
at af = a3 = 0.5; in general 7(n) is minimised at af = %, 1<i<n.

In general, finding a functional form of the computation rate of a given task in a sensor network is
a formidable task since it depends on, among other things, the way the computation is arranged using
a distributed algorithm. In many cases such a form may not even exist. Even if such a form is known
optimising it would be a centralised problem since individual sensors will hardly have any notion of



the global computing rate. Therefore, we can base our objective only on local measurements. One such
approach was proposed in [7] and [8] by us. We argued that the higher the throughput of the sensors
the faster will the overall computation proceed and hence, considered the problem of maximising the
minimum throughput in the network by tuning transmission attempt probabilities at each sensor. We call
attempt probabilities which maximise the minimum throughput, MMTAP. The distributed stochastic
algorithms proposed for MMTAP in [7] and [8] were found to have a high communication overhead
because of coupled objective function. In this paper, we investigate the possibility of optimising the
computation time in a sensor network with the objective of finding simple and scalable algorithms.

A global computation proceeds in steps comprising of certain local computations at each sensor. Thus,
the optimisation of the local computation rate at each sensor will lead to a higher global computation
rate. Equally importantly such an optimisation can be done in a distributed fashion. A computation at
a sensor will span over a number of slots during which the exchange of data will take place as a sequence
of local measurements, receptions from the other sensors and transmissions for conveying local data or
partial results to the other sensors. The actual sequence will be determined by the way the computation
is organised; hence a functional form of even the local computation time cannot be obtained in the
general case. However, communication being the main bottleneck the local computation time will be
dominated by the time taken for receptions as well as transmissions. Thus if the rate of reception and
transmission is optimised at each sensor, the local computations will proceed rapidly so will the overall
global computation. With these insights, we take two approaches to this problem. First, we view local
computation as a set, rather than particular sequence, of transmission and receptions; hence we seek
to minimise the time to complete say m transmissions to the neighbours and n receptions from them.
Secondly, since the rate of local computation depends on the rate at which sensors transmit as well
as receive, we minimise a measure of the average communication time with the neighbours. It is this
approach that we will discuss in this paper.

The paper is organised as follows. In Section 2, we present our problem formulation. Section 3 discusses
an algorithm for collocated sensor networks. The algorithm is generalised to spatially distributed sensors
in Section 4. In Section 5 we discuss the implications of our optimisation to global computing and
conclude in Section 6.

2 A Game Formulation

Consider a general sensor network comprising n nodes, indexed by ¢ € {1,2,---,n}; we denote this set
by Vs. Time is slotted, and each packet occupies one slot. A sensor communicates only with certain other
sensors within its transmission range (denoted by Rg) designated as its neighbours. To keep the notation
simple, we assume that this relation is symmetric. This assumption does not in any way affect the analysis;
we consider an example of directed links in Section 5. We consider a simple random access model for
sensor transmissions: sensor ¢ attempts a transmission in any slot with probability «; independent of
everything else. If a sensor decides to transmit, it addresses its transmission to one of its neighbours
randomly’. Let N; (resp. n;) denote the set (resp. number) of neighbours of sensor i. By our previous
assumption, j € N; < ¢ € N;. Let o denote the vector of attempt probabilities. o denotes the vector
a with entries a; and o; omitted. We say that a transmission can be “decoded” when its signal to
interference ratio (SIR) exceeds a given threshold 3. We consider only the signal path loss with exponent
n. Details of the model can be found in [7]. A transmission is successful when the sensor to which it is
addressed (by actually inserting a physical address in the packet header) is in the receive mode, and is able
to decode the transmission. Let p;(a) (resp. pj;(a))) denote the probability of successful transmission
from ¢ to j (resp. successful reception by i from j). Thus,

Pli(@) = (1= ay)gii(a”)

o ..
pi;(@) = #(1 — a;)gji(a”)
J

The term g;;(.) captures the probability that interference to a transmission from ¢ to j from other
simultaneous transmissions is below the required threshold. For each j € N;, g;;(.) either equals 1 or
there exists a set I;; C V;\{4,j} such that g;;(.) is a decreasing and affine function of oy, k € I;; and
does not depend upon ay, k ¢ I;;. Moreover, g;;(1) = 0 and g;;(0) = 1. The probability of successful

1 This can be attributed to isotropy of the physical process and uniformity of processing



transmission by i, pk(a) is simply >y, p{;(a). Let T}(a) denote the expected time until a successful
transmission by i and 77;(a) denote the expected time until a successful reception by i from j. It is clear
that

1
pi;(a)

1
T (a) = 7 and T[j(g) =

Define, F;(a) = T}(a) + n% > jen: Ti;(@). Fi(.) is a reasonable measure of the the average time for
communication with the neighbours. T}(.) is the cost of having small transmission attempt rates whereas
T,’;() penalises large values of «; since a large value of a; will tend to reduce the probability successful
reception. Each sensor tries to locally minimise F;(q), i.e., each node solves the following optimisation
problem.

min F;(a)
Amin < <QAmaz
where 0 < amin < Qmaz < 1. 0 < @i ensures a minimum transmission attempt rate for each sensor
whereas a4, < 1 accounts for the energy constraint; note that for battery energy E and transmission
power P, a% is an upper bound on the lifetime of sensor i. The Nash equilibrium exists for this game
since the “payoff function” F;(.) is strictly convex in «; and the strategy space for each user is compact
and convex. We will denote by a* the vector of the Nash equilibrium attempt probabilities (EAP).

3 Collocated Sensors

Proposition 1. If the sensors are collocated and each sensor has every other sensor as its neighbour
then the Nash Equilibrium is unique and for each i, o} = min(Qmaz, max(:, amin))-

In the above scenario, pij(a) = 25 (1 — aj) T (1 — ax) and pi(a) = aillyzi(1 — a). Similarly,
pii(@) = 725 (1 — ;) Miyi,5(1 — o). Thus,

n—1

1
Fi(a) = +
@) i lTzi (1 — o) ; (1 — ai) Mg 5 (1 — o)
From the optimality conditions for convex programming, it is clear that a* is EAP if and only if for each
i, (a; — a:)m«;—%) >0, i.e., (o —a})(naj — 1) > 0. The result now follows easily. af =1, 1 <i<nis

an intuitively desirable operating point for each sensor. % equalises sensor throughputs as well maximises
the minimum throughput in the network ([7]).

3.1 A Stochastic Distributed Algorithm

While the solution of the problem is explicit, in practice the value of n would not be known at each
of the sensors. Further, n could be slowly changing as sensors “die” owing to battery failure. We seek
a distributed algorithm for solving this optimisation problem. Question: since we know the solution to
the problem why not just estimate n in a distributed fashion? Answer: an explicit solution will not be
available for more complex sensor network topologies; an algorithm that does not utilise the explicit form
of the solution may lead to insights for solving more complex problems. Consider the following algorithm.
IT denotes projection on [min, @maez) and a(k) the step size in iteration k. For k > 0,

OF;(a(k))

aik+1) = 1T |as(h) - alh) =2

i=1,2,...,n (1)
Note that for all 4, F;(.) are identical; we will denote them by F. F(a) > 0 for all & € [tmin, ®maz] and
F(.) is continuously differentiable. Further, VF'(.) is differentiable, hence locally Lipshitz which, on the

compact set [Qmin, ®maz], implies Lipshitz continuity of VF(.). Let K denote the Lipshitz constant of
VFE(.).

Proposition 2. Let a(k) = a, k > 0 such that 0 < a < %. Then Algorithm 1 converges to the Nash
equilibrium.
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Figure 1. Sensor network of 3 collocated nodes. Stochastic case. a is (0.614,0.19,0.714) and (0.098, 0.143, 0.23).
al =1/3, i=1,2,3.

Note that Algorithm 1 is actually a projected gradient algorithm in this case. Its convergence follows
from [1] (Proposition 3.4). The gradient has a particularly simple form.

OF(a() _ ~Tia(®) . 1 < Tha(k)
da; (k) +n—lzl—oz,-(k)

(2)

i#i

In a distributed implementation, Tf(a) and T;(a), j # i need to be estimated since their functional form
would not be known. These estimates can be obtained only by local measurements. Sensor i estimates
the time its takes for successful transmission; this will be done by noting the time-difference between the
successful transmissions and taking their average. It also keeps track of the times when it receives the
addressed transmissions from each of the other sensors to itself successfully; again the averaged time-
difference between the successful receptions from say j is an estimate of T};(a(k)). These estimates can
be obtained simultaneously for all neighbours or one at a time, i.e., tracking receptions from only one
neighbour at a time. Note that these estimates are unbiased and the measurement noise sequence is i.i.d.

Proposition 3. Let in Algorithm 1, the partial derivatives be replaced by their estimates obtained as
discussed above. Let a(k) satisfy Y po, a(k) = oo and Y -, a(k)® < co. Then the generated sequence
{a(k), k > 0} converges a.s. to the Nash equilibrium.

Proposition 3 can be proved using standard stochastic approximation arguments ([9]). As an example we
consider the case when n = 3 and sensors estimate the gradient. o, = 0.01 and apq; = 0.99. Therefore,
the unique Nash equilibrium o} = %, 1 =1,2,3 is an interior solution. Figure 1 shows variation of «;’s
with iterations for two initial conditions: a, is (0.098,0.143,0.23) and (0.614, 0.19,0.714). We choose gain

sequence a(k) = (gfffor’_ﬁ. The partial derivatives are estimated over an interval of 1000 slots. a;’s are

updated at the end of each estimation interval. Thus, the time required for an iteration corresponds to
the estimation interval.

4 Spatially Distributed Sensor Networks

The previous results can be generalised to a scenario where sensors are spatially distributed. The algo-
rithm takes the following form.

—Tt(a Tr (a(k
ai(k+1) = IT | oy (k) — a(k) %ﬂ%Z% ,i=1,2,....n (3)
K3 (3 EN K3

T denotes its estimate; gradient estimation is as explained earlier. Convergence of the algorithm can
be proved on the lines of [11]. Assume that the Nash equilibrium is in the interior of [@min, ¥maz]-
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Denote by h(a) the vector [8FI(Q) OFala) 81;’;(719)] and by H(a) the Jacobian matrix of h(a). The

da1 dan
key proposition is that H(a) is uniformly positive definite, i.e., H(a) > €l for some € > 0 and for all a.
We defer the proofs to the longer version of the paper and motivate the result using simple examples.
Consider a network of 3 sensors such that Ny = {2}, No = {1,3}, N3 = {2} and when 1 transmits to
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Figure 2. 3 node network, Ry = 1m, 8 = 2, n = 4.

2, its transmission is successful only if 2 and 3 both do not transmit, similarly for 3. However, when
2 transmits to 1, only 1 needs to be receiving, a simultaneous transmission by 3 does not cause this
transmission to fail. Similarly for transmission from 2 to 3. Therefore,

1 2

ol —a)(1—as) T a(d—ar)

Fi(a) =

2 1 1 1
Bl = s ) 2 <a1(1 ") (1—as) | as(l—an)(1- al))

1 2
Fs(a) = a3(l—az)(1 —ay) + az(1 —az)

From the optimality conditions for convex programming, o* is EAP if and only if for each i, (a; —
ap)254e) > 0. Let qmin = 0.01 and gz = 0.99. Then the interior solution is (0.432,0.396,0.432).

Further: it can be shown that the Jacobian, H(a), in this case is uniformly positive definite. This also
proves the uniqueness of EAP ([11]). Let g(a) = —h(a) and take ||g(a)||* as the Lyapunov function.
The convergence of (3) in this example now follows from [11]. Figure 3 shows the variation of a;’s with
iterations for two initial conditions: o, = (0.098,0.143,0.23) and (0.614,0.19,0.714). a(k) = (IgTO?)BO% and

the estimation interval is 1000 slots.

08 ‘ 06 : : : :
alphal —— alphal ——
alpha2 ------ alpha 2 ———
alpha3 ------- 0.55 alpha3 - 4

07 |

035 ft i

alpha
alpha

03 ffi

025
o3 1 02}
015 F

02 |
0lf

0.1 I I I I I 0.05 I I I I
0 10 20 30 40 50 60 0 20 40 60 80 100

Iterations Iterations

Figure 3. Asymmetric 3 sensor network. Stochastic case. a, = (0.614,0.19, 0.714) and (0.098, 0.143,0.23). o* =
(0.432, 0.396, 0.432).

Figure 4 shows a network of 4 sensors symmetrically placed and operating with two neighbours each.
n=4,8=2,Ry = 1m so that,

1 1 1 1
File) = a;i(1 = ait1)(1 — aiy2) T3 (az’+1(1 —a;)(1 — aiy3) * @iy3(l—a;)(1— az’+1)) )

for ¢ = 1,...,4; addition in the subscript being modulo 4. It can be shown that the unique EAP is

af = %, i = 1,...,4. Figure 5 shows convergence of (3) applied to the 4 sensor network shown in
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Figure 4. 4 node network, Rp = 1m, 8 =2, n=4.
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Figure5. A 4 sensor network. Stochastic case. a, = (0.496,0.129,0.228,0.074) and (0.098,0.149, 0.61, 0.23),
ol =1/3, i=1,2,3,4..

Figure 4. The initial conditions are a, = (0.098,0.143,0.23) and (0.614,0.19,0.714). a(k) = % and
the estimation interval is 1000 slots.

5 Discussion

A sensor network derives its utility from collaborative processing by sensors in contrast with traditional
networks where the main utility is point-to-point communication on demand from users. Since individ-
ual sensors cannot assess the global processing speed one way to effectively optimise the network in a
distributed fashion is to optimise the local computing speeds. Though sensors collaborate at the task ex-
ecution level, at the local computing level they compete for successes of their transmissions and reception
by the very nature of wireless channel and access protocols. We, therefore, believe that a game theoretic
approach is appropriate in this context too as in more conventional wireless channels, e.g. Aloha ([10], [5],
[4]). Our game formulation not only leads to an explicit characterisation of the Nash equilibrium but also
to a simple iterative scheme by which sensors can adaptively learn the equilibrium attempt probabilities.
An important question is what is the computing performance of sensors if the attempt probabilities are
tuned to EAP?

Consider first the maximum calculation example discussed in Section 1 for 16 spatially distributed
sensors as shown in Figure 6. Sensor 10 acts as the observer. Sensors follow a simple computing algorithm:
each sensor receives values forwarded by all its children, compares them with its own and only forwards
the maximum to its parent. The observer is guaranteed to receive the correct maximum values. Note
that, the rate at which sensors sample the temperature must be less than the rate at which the maximum
is computed by the network. This can be understood by viewing this computing network as a queueing
system in which the sensor network acts as a complex “server” and the set of samples taken simultaneously
at each sensor as a “customer” with “service time” equal to the time required for the calculation of the
maximum over the set by the server. A “good value of @” for a given temperature sampling rate cannot
be known a priori since the computing rate (rate of maximum calculations by the network per slot) is
a complex function of a. This is illustrated by Figure 7 which shows the variation of the computing
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Figure 7. Computing rate vs sampling rate for the
16 sensor network computing maximum of the sensed
values.

rate with the sampling rate for various values of a. Observe that when «a; = 0.05 for each ¢, sampling
rates less than 0.033 samples per slot can handled whereas when «; = 0.2 for each ¢ this value is around
0.04 samples per slot. Thereafter the system becomes unstable and the computing delays become very
large. Therefore, it is necessary to adapt attempt probabilities to the sampling rates (see [8]). One way
is to tune them to MMTAP (Section 1, [8]). MMTAP is important in this scenario because the global
maximum computation is limited by the lowest sensor throughput in the network. As discussed earlier,
tuning to MMTAP incurs high communication overhead. This makes EAP particularly important.

In our game formulation, we had assumed that every sensor receives as well as transmits. In this
example, sensors 11 to 16 do not receive from any sensor. We, therefore, fix their attempt probabilities to
some value while the other sensors tune to EAP; in the results shown a; = 0.12 for i = 11,...,16. Since
tuning to MMTAP is based on throughput measurements, all sensors (including 11 to 16) optimise their
attempt rates to MMTAP. MMTAP and EAP are obtained by considering the network to be saturated.
These are then used in the actual maximum calculation task with sampling. Thus, in our results EAP
and MMTAP are not actually adapted to the sampling rates. However, the probabilities of successful
transmission and reception are the lowest in a saturated network. Thus, MMTAP and EAP in our results
are conservative. In this sense, our results show the least performance that can be expected with MMTAP
and EAP. Further, the computing performance in a saturated network can be inferred from these results
since at large sampling rates the network is almost saturated. Observe that with MMTAP, the computing
performance is the best among the cases considered. EAP performs better than the case when a; = 0.05
for each ¢ and performs fairly well as compared to a; = 0.2. Thus, EAP can handle sampling rates up
to 0.033 samples per slot as compared to around 0.05 samples per slot with MMTAP. Further, it can be
said that if each sensor has an infinite store of samples, with attempt probabilities tuned to MMTAP,
sensors can compute the maximum at the rate of 0.046 calculations per slot while with EAP the rate
is 0.032 calculations per slot. Note that performance of EAP depends on the attempt rates selected for
sensors 11 to 16. Further, since every sensor has only one other sensor (its parent) to transmit to, sensors
tend to have higher attempt rates. Energy can be used as a powerful constraint to control transmission
attempt rates in such scenarios.

For greater accuracy, each sensor can estimate the process in its spatial neighbourhood from its own
and its neighbours’ measurements and estimate the maximum in this neighbourhood. It then proceeds
to collect the corresponding values from its children and forwards the maximum of them. Thus each
sensor will require to receive as well as transmit. We consider such a scenario in Figure 8 which shows
a network of 200 sensors deployed randomly in a square of 20m x 20m to calculate the maximum in
the region. The topology has been optimised for throughput ([6]). The observer is at the origin. Sensors
use a tree embedded in the network to forward the maximum values to the observer. At each sensor the
raw measurements to be sent to the neighbours are queued up in a packet queue. The actual estimation
algorithm is not of interest in this work, therefore, we assume that if a sensor decides to transmit, it
chooses a neighbour randomly and if the transmission to that neighbour is successful, the packet is



Table 1. Comparison of computing rate for various o assuming each sensor has infinite store of samples.

| a [a; = 0.05, Vila; = 0.1, Vila; = 0.2, Vi[MMTAP[ EAD |

[Computing rate] 0.0027 [ 0.00I5 [ 0.000013 [ 0.0012 [0.0010]

removed from the queue?. If the chosen neighbour is the parent in the tree and a maximum calculation is
locally complete, i.e., the corresponding results have been obtained from the children in the tree then the
result of the local maximum calculation is forwarded to it. We consider a scenario in which each sensor
has infinite store of samples. Figure 9 shows convergence of attempt probabilities of sensors 1, 5, 10 and
34 to EAP. The computing rates are shown in Table 1. EAP adapts fairly well and has performance
comparable to MMTAP and a; = 0.1 for each i. However, the performance with a; = 0.05 for each i
is much higher than that with EAP. Nash equilibria are known to be inefficient ([3]). We believe that
energy constraints can be used as a mechanism to enforce social optimum.

alpha‘_l —

s

0.08 b

alpha

0.06 . § s o
N ™ o N i

0.04 - 4

0.02 - b

0 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

Figure 8. 200 sensors deployed randomly in a square . s
. D . Figure 9. Convergence of attempt probabilities of sen-
of 20m x 20m to calculate the maximum in the region. sors 1, 5. 10 and 34 to EAP.

The observer is at the origin.

These preliminary results are encouraging. Sensors are able to optimise their attempt rates with
a simple algorithm and are able to perform computationally fairly well. A game formulation for self-
organising sensor networks based on a particularly simple cost function is discussed in [2]. It also presents
an asynchronous algorithm for updating attempt probabilities. However, it needs a sensor to keep and
exchange information regarding attempt probabilities and connectivity about sensors up to four hops
away. Our algorithm, on the other hand, uses estimates based only the local measurements, no exchange
of information is necessary. Secondly, the assumption of slotted time leads to particularly simple gradient
estimation scheme, however, the approach based on measurements is not tied to an analytical form; with
simulation based gradient estimation schemes it may be possible to extend our algorithm to a different
access scheme. Moreover, in our results attempt probabilities were tuned to EAP assuming a saturated
network, however, it will be possible for sensors to adapt to EAP while actually sampling and computing.
Finally, we have discussed minimisation of computation time, however, in general sensors will need to
optimise their performance under various constraints, e.g., battery power. In such a case, our formulation
can be easily extended to work in the presence of any energy saving techniques such as random sleep
times.

6 Conclusion

In this paper, we formulated the problem of optimisation of the computing rate in sensor networks
as a game and proposed an iterative scheme for sensors to adaptively learn the equilibrium attempt

2 Sending each measurement to each neighbour will increase accuracy



probabilities with local measurements. Our approach is promising and can be seen as a step towards
developing optimally self-organising architectures for sensor networks.
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