Performance of TCP Congestion Control with
Explicit Rate Feedback

Aditya Karnik and Anurag Kumar

Abstract

We consider a modification of TCP congestion control in
which the congestion window is adapted to explicit bot-
tleneck rate feedback; we call this RATCP (Rate Adaptive
TCP). Our goal in this paper is to study and compare the
performance of RATCP and TCP in various network sce-
narios with a view to understanding the possibilities and
limits of providing better feedback to TCP than just im-
plicit feedback via packet loss. To understand the dynamics
of rate feedback and window control, we develop and anal-
yse a model for a long-lived RATCP (and TCP) session
that gets a time-varying rate on a bottleneck link. We also
conduct experiments on a Linux based test-bed to study is-
sues such as fairness, random losses, and randomly arriving
short file transfers. We find that the analysis matches well
with the results from the test-bed. For large file transfers,
under low background load, ideal fair rate feedback im-
proves the performance of TCP by 15% — 20%. For small
randomly arriving file transfers, though RATCP performs
only slightly better than TCP it reduces losses and variabil-
ity of throughputs across sessions. RATCP distinguishes
between congestion and corruption losses, and ensures fair-
ness for sessions with different round trip times sharing the
bottleneck link. We believe that rate feedback mechanisms
can be implemented using distributed flow control and re-
cently proposed REM in which case, ECN bit itself can be
used to provide the rate feedback.

1 Introduction

TCP window adaptation is based on implicit feedbacks from
the network; acknowledgements cause the congestion win-
dow to increase, and packet losses (indicated by timeouts
or duplicate acknowledgements) cause the window to de-
crease. Owing to this blind rate adaptation mechanism,
TCP has often been found to be inefficient, in terms of
underutilization of link capacity and low session through-
puts, and unfair in its throughput performance. In view
of this, various modifications to basic TCP congestion con-
trol algorithms have been proposed and investigated. This
includes TCP-Vegas ([1]), TCP-SACK (]2]), New-Reno,
limited transmit mechanism, and larger initial windows
([3]). Estimates of the available bandwidth are used to

The authors are with the department of Electrical Communication
Engg., Indian Institute of Science, Bangalore, 560012, INDIA. email:

{karnik, anurag}@ece.iisc.ernet.in

set the slow start threshold in [4]. More recently, in TCP-
Westwood ([5]) a mechanism of faster recovery by setting
the value of slow start threshold and congestion window af-
ter a loss event based on available bandwidth estimates has
been introduced. This approach does not require compre-
hensive changes to the basic TCP implementation. How-
ever, the benefits are limited since TCP still has to in-
fer congestion information on the end-to-end basis. TCP-
Vegas, for example, uses RTT measurements to estimate
the actual and expected throughput to set the congestion
window.

Much more performance improvement can be expected
with explicit participation of the network in the conges-
tion control of TCP. One such mechanism is active queue
management based on RED or ECN. RED, unlike tail drop
buffers, drops packets randomly (based on average queue
length) at a router buffer before it gets full. This forces
TCP sources to back off before the congestion takes place.
RED is aimed at eliminating loss synchronization and con-
trolling the average queueing delay ([6]). However, various
studies show that benefits from RED are not clear ([7]);
[8] shows that RED degrades TCP performance under a
variety of scenarios. In addition, RED requires several pa-
rameters to be configured on each router interface, and if
not properly configured it can induce network instability
([9])- Lack of a clear understanding of what an optimal av-
erage queue size should be and absence of a systematic way
of setting parameters means that the choice of parameter
is often empirical, even arbitrary.

Since dropping packets is rather a suboptimal way of
conveying congestion information to TCP sources, ECN
marks packets with 1 bit of congestion notification ([10]).
Upon receipt of such a congestion indication, TCP reduces
its congestion window. However, ECN relies on the under-
lying queue management mechanism which in most cases is
RED (thereby, inheriting the problems of parameter config-
uration). ECN has been found to reduce packet losses but
does not necessarily improve throughputs ([11]). Though
ECN presents a new way of providing explicit congestion
feedback to sources, it requires modifications to routers as
well as TCP stack. Moreover, clear understanding of ben-
efits of ECN is still a research issue ([12], [13]).

Compared to the “coarse” feedback provided by ECN,
TCP would clearly benefit from a more “sophisticated”
feedback from the network. Our view is particularly moti-
vated from the study of TCP performance over a rate con-
trolled transport like ATM/ABR. TCP is seen to benefit

from the underlying rate control even when the two con-
trol loops, namely TCP window control and ATM/ABR
rate control, do not interact ([14]). It would, therefore,
be interesting to study the performance gains (and limits)
when a more detailed feedback such as the available rate
information is made available to TCP congestion control.

Rate feedback (or rate control) for TCP over ATM or
IP is not new. An innovative approach suggested in [15]
involves maintaining an acknowledgement bucket at the
edge device in an ATM network and releasing the acknowl-
edgements based upon the available rate. An explicit win-
dow feedback based on the buffer occupancy at the edge
device of an internetwork of rate-controlled and non-rate-
controlled segments is considered in [16]. A more direct
approach is taken in [17] (TCP over ATM) and [18] (TCP
over IP). Fair rate is calculated by a rate allocation algo-
rithm and is translated into window information which is
fed back as receiver window advertisement. It has been
shown that the rate feedback reduces packet losses, and
improves fairness and throughputs under various scenar-
ios. Our work differs from previous work in the following
respects.

At the conceptual level, our objective is to understand
the performance limits of providing better feedback directly

to TCP sources than just implicit feedback via packet losses.

Even if rate is fed back to the TCP source, there is still an
issue of utilizing it efficiently. We suggest changes to TCP’s
adaptive window algorithm to utilize rate feedback more
effectively and call this modification Rate Adaptive TCP
(RATCP). We assume that the network is somehow able
to feedback fair session rates to TCP sources. The TCP
sources then adapt their congestion windows based on this
rate feedback and a round-trip-time (RTT) estimate. Thus
our concern in this paper is to study the performance im-
plications of feeding available bottleneck rate information
directly into TCP windows, assuming that such rate in-
formation can be obtained and that mechanisms exist for
feeding it back to the sources.

The existing studies in this area are simulation and ex-
perimentation based. Moreover, our aim is not just to enu-
merate benefits of rate feedback under various scenarios,
but to study the dynamics of rate feedback and window
control, for example, the effect of feedback delay, rate mis-
matches etc. We, therefore, develop an analytical model
for obtaining the throughput of a long-lived (or persis-
tent) session sharing a bottleneck link with short-lived (or
ephemeral) sessions that arrive and depart randomly; the
ephemeral sessions are assumed to be ideally rate controlled
and the persistent session uses RATCP or TCP both with-
out the fast-retransmit feature; thus the persistent ses-
sion has a time varying fair rate. The analysis models the
round trip delay, the bottleneck buffer, slow start, conges-
tion avoidance and rate feedback. We proceed by identify-
ing a certain Markov regenerative process, and calculating
the TCP throughput as the reward rate in this process.
This analysis allows us to characterise the effect of varia-
tion of rate feedback on the performance of TCP.

Our experimental setup comprises an implementation of

RATCP in Linux; the bottleneck link is emulated in the
Linux kernel. This setup and the analysis are cross-checked
with each other. The test-bed also provides quantitative
results for the other cases, including results for RATCP and
TCP with fast-retransmit and recovery. In particular, we
compare the performance of RATCP and TCP on our test-
bed in the following scenarios: (1) A persistent session over
a bottleneck link with random loss. (2) Two persistent ses-
sions with different round-trip times sharing a bottleneck
link; both the sessions use either RATCP or TCP. (3) Two
persistent sessions on a link, one using RATCP and the
other TCP. (4) A link being shared by ephemeral sessions
that randomly arrive and depart. (5) Scenario (4) on a link
with random losses. Scenarios (1) and (5) discussed above
are particularly interesting from the point of view of wire-
less networks. Thus, with the analysis and the experiments
we study the effect of rate variations, the comparison with
the ideal rate adaptive protocol, and the ability of RATCP
to distinguish congestion and random losses.

At the practical level, our results would be useful to the
designers of edge management devices where such tech-
niques could be employed. Rate feedback entails putting
in place mechanisms to generate and carry the available
rate information. An approach, which does not need such
mechanisms, is to estimate the available bandwidth at the
TCP sources as in TCP-Westwood ([5]). However, this
does not impose fairness in the network; a source which
sends at a rate matching the estimated available rate can
easily be starved by a greedy source. A robust network-
based mechanism can be implemented by distributed rate
control ([19], [20]). Whereas in ATM/ABR mechanism to
carry rate feedbacks is in place (e.g., RM cells), in IP net-
works, with some modifications, ECN bit can actually be
used to provide the rate feedback to TCP. Towards the
end of the paper, we briefly discuss the use of rate estima-
tion algorithms and explicit binary (or multi-bit) feedback
schemes as suggestions for implementation of RATCP.

This paper is organized as follows. In Section 2, we de-
scribe the RATCP algorithm. In Section 3, we develop
a stochastic model for RATCP and present its analysis;
the proofs are presented in Section 8. The experimental
setup is explained in Section 4 followed by numerical re-
sults in Section 5. In Section 6, we discuss rate estimation
and feedback schemes which can be used for implementing
RATCP. We conclude in Section 7.

2 RATCP: Window Adaptation with
Rate Feedback

2.1 A Naive Rate to Window Translation

Consider a TCP session through a bottleneck link. If the
round trip propagation delay for the session is A, and the
fair share of the bottleneck rate is R, then the congestion
window for this session should be W = R - A + 3, where
B is a target buffer backlog for this session. Now if the
fair rate for the session is time varying (R(t)), and A(t) is

an estimate (at the source) of A at ¢, then a simple, naive
rate adapted window would be to take W (t) = R(t — A) -
A(t) + 8, where R(t — A) is the available rate as known to
the source at time ¢. Note that, A measured at the TCP
source includes queueing delays. One way to get better
estimates is to track the base RTT, i.e., the minimum RTT
seen by the source. § allows a session to take advantage of
the transient rate increments'. In this paper, we wish to
study how such a naive feedback performs.

2.2 Window Adaptation

The rate adaptive window adaptation strategy is the fol-
lowing (W¢°™9 denotes the congestion window, and is the
window actually used for transmission control):

e Slow start is carried out either at connection startup,
or at the restart after a timeout. We use the rate infor-
mation for setting the slow start parameters: W¢™9
at timeout is set to 1, and the slow start threshold
(ssthresh) is set to the value of W7 at the timeout
epoch. If during slow start W7 < W™ then the
congestion window is dropped to W7 and conges-
tion avoidance is entered. This is appropriate, since it
is as if the ssthresh has been adjusted downward.

e During congestion avoidance, at time ¢, we compute
Weond (t4) = min{Wen9(t), Wrate(t)}. If the conges-
tion window reduces as a result of W7 (t) < Weomd(t),
then it means that more than the desirable number
of packets are in the network. Acks following such
a window reduction do not cause the window to in-
crease until the number of unacknowledged packets
corresponds to the new window. This adds a phase
of inactivity in the modified TCP. Normal congestion
avoidance behavior continues after the number of out-
standing packets matches the new congestion window.
If during congestion avoidance W™ becomes less
than ssthresh (due to a W7 feedback) then slow
start is not re-initiated. This is reasonable, since it
is as if the ssthresh has been adjusted downward, and
we are now just entering congestion avoidance. This
also implies that ssthresh no longer differentiates the
phases of the TCP algorithm; we need to introduce a
separate variable for this purpose.

o If fast-retransmit and fast-recovery are implemented
then upon receiving K (typically K = 3) duplicate
acks we set W™ < min(W ™9 Wree) (instead of

Weong Wc,;"g + K as in TCP-Reno), and the miss-

ing packet is retransmitted. After every additional

acknowledgement received W™ is increased by 1.

Upon receipt of the ack for the resent packet, conges-

tion avoidance resumes, as described above.

We call these modified TCP algorithms, Rate Adaptive
TCP (RATCP). We will compare RATCP and TCP with-
out fast-retransmit and fast-recovery, and will call these
versions RATCP-OldTahoe and TCP-OldTahoe. The ver-

1The importance of this parameter is well demonstrated by our results.
TCP-Vegas also uses a similar parameter ([1])

Bottleneck Link Propagation Delay

TCP Source TCP Receiver
™ 10 -
acks/rate c
feedback
Bmax M(t)+1 A

Figure 1: A queueing model of the persistent TCP session.

sions with fast-retransmit and fast-recovery will be called
RATCP-Reno and TCP-Reno.

3 A Model and its Analysis

Analysis, even if approximate, is essential for providing
insight into factors that affect the performance of a pro-
tocol. In addition, although simulations and experiments
are usually used to validate analysis it is just as important
to cross-check simulations and experimental results with
analyses for at least some cases.

We develop an analytical model for the performance of
RATCP OldTahoe in the following network scenario. There
is a persistent RATCP session, that shares a bottleneck link
with other elastic sessions. The elastic sessions are assumed
to be ideally rate controlled and ephemeral, i.e., they arrive
at random epochs, bring a random amount of data to trans-
fer and depart after completing their transfers. When there
are m ephemeral sessions, we assume that these sessions use
exactly 0 of the link capacity of C packets/sec, and the

persistent session’s share is mLH pkts/sec. Thus the fair
bandwidth available to the persistent session is randomly
time varying. Ephemeral sessions should not be likened to
the ‘background traffic’; they are ideally rate-controlled,
hence their packets do not occupy the link buffers. Their
role is to make the available rate at the bottleneck link time
varying; otherwise, after rate feedback takes effect, there
will be ideal performance. This amounts to an assumption
of per flow queueing and round robin service over the flows
at the router.

Our analysis captures the important effect of time scales
of rate variations at the bottleneck link as compared to
the propagation delay. Thus, the role of our analysis is to
study the dynamics of rate changes at the bottleneck link,
round trip delay and the rate adaptive TCP window control.
Because of these issues, this analysis does not lead to close
form expressions; however, the numerical results provide
insights into the dynamics we intend to study?.

Figure 1 shows a schematic queueing model of the persis-
tent TCP session. The bottleneck link is modeled as a finite
buffer queue with maximum buffer size of B,,,, packets,
and a server with time-varying rate ﬁ pkts/sec. Note
that the ephemeral sessions are only modelled as modulat-

2Previous analytical work which arrived at closed-forms for TCP per-
formance has not dealt with time varying rates.

ing the rate available to the TCP session, and hence the
link buffer only holds packets from the TCP session. A
denotes the fixed round trip delay and is modeled as an
infinite server with fixed service time equal to A. We as-
sume that the link from the source to the bottleneck link
is infinitely fast.

The continuous time processes for this model are hard
to analyse. Instead, we follow the analysis procedure de-
veloped in [14]. Define the epochs ¢, = kA, k= 0,1,2,....
Observe that none of the packets that are in the delay
queue at time t; will still be in that queue at time 541,
and any packet that arrives into the delay queue during
(tk, tk+1] will still be there at time tg41. We thus consider
the processes embedded at the epochs {tj, k > 0} (see Fig-
ure 3.3), and define

{Zi,k >0} = {(Bk, Dy, W™, Wi My), k > 0}
where, at epoch t, Wi, W " denote the rate window
and the congestion window for the persistent RATCP ses-
sion. M}, denotes the number of ephemeral sessions on the
link, By the number of packets in the link buffer, and Dy
the number of packets in the propagation queue; this is the
total number of packets and acks in transit.

3.1 Model for the Rate Modulating Pro-
cess { M}

We assume that the ephemeral sessions arrive and depart at
the discrete epochs t;. Thus, during the interval (¢, tg+1)
the rate available to the TCP session is constant at R, =
ﬁ. A new arrival occurs at any t; with probability
A; i.e., the inter-arrival times are geometrically distributed
(taking values that are multiples of A). The amount of
data to be transferred by an ephemeral session is denoted
by L, and is taken to be exponentially distributed with
mean p, in units of A - C. When there are n sessions
sharing the link, each session is served at % Let p,, be the
probability that a session active at t; and being served at
arate € in (tg,tk41) departs by tx11. Then it is clear that

1—exp (—ﬁ)
n

Thus given that there are m ephemeral sessions active at
tr, each one of them independently completes in the in-
terval (tg,tr4+1) with probability ppi1. It follows that
{My, k > 0} is a DTMC. Note that since the TCP ses-
sion is persistent it is always counted as being active in
the per session rate calculation, and hence {My, k > 0}
evolves independently of the other components of the pro-
cess {Z}.

Denote by Py the transition probability matrix of { My, k& >
0}. Then we have,

Pn =

A if j=i+1
a(i, j) for 0<j<i

[PM]’LJ = i—1
1=X=) a(i,j) if j=i
=0

where, a(i,j) = (b (pi+1)¥7 (1 — pix1)?. This also

t—=)
implies that the number of sessions which depart in (tg, tg+1)
conditioned on the number of sessions present at tj, is bi-

nomially distributed.

3.2 Model of Window Adaptation to Rate
Feedback

The rate window is calculated from the instantaneous rate
information known at the TCP source of the tagged ses-
sion. We assume that delay A is known at the TCP source
and that it receives a (delayed) rate feedback every round
trip time. With these assumptions, our analysis gives a
bound on the performance of TCP with rate feedback. In
experiments we will study the effect of estimation errors in
the base round trip delay. Owing to one A delay in rate
feedback, the rate window calculated at ¢, is given by
ngate —

[Re—1.A] + 8 (1)

where, Rr_1 = ﬁ Then, the window adaptation
policy implies that

2)

Note that, the assumption of an infinite rate link be-
tween the TCP source and the bottleneck link implies that,
if We°n™9 is not rate limited (and there are no losses), then
W, = By + Dy, (any window increase immediately re-
sults in as many more packets in the network). We can
then see how, adaptation to the rate window reduces the
packet losses due to buffer overflow, since it controls the
backlog of packets in the buffer to a target value of 3.
This can be seen as follows. Note that D, < Rj_i.A.
Assuming that the bottleneck link was busy throughout
(tk—1,tr) (= Dr = Rg_1.A), we find from Equation 1
that, B, > 8 = By, + Dy > 8+ Dy = Wlsong > Wgate.
Hence, W "¢ = W and then excess packets are drained
from the network.

cong __ . cong rate
W™ = min{W; ", Wi}

3.3 Evolution of {Z;}, and a Process { Xy}

We make some basic assumptions in order to make the
analysis of the {Z}} process tractable.

e The source immediately transmits new packets as soon
as its window allows it to; these arrive instantaneously
at the link buffer.

e Packet transmissions from the link do not straddle the
epochs {tx}.

e During each interval (¢, tg+1], the acknowledgements
(acks) arrive at the TCP source at the rate Ry_1.

Let Zy = (b,d,w*™?,w"**¢, m). Then W™ = min(w®"9,
w™®). Note that there can be at most d acks during
(tk,te+1)- These acks may trigger new packet arrivals into
the link buffer. In congestion avoidance we have the fol-
lowing possibilities.

recovery

Ty

starts
k-1 tk k+1 k+2 k+3 /\/
—_—_—
R | i
. slow start
loss epoch window coarse
ceases to grow time-out

Figure 2: Evolution of {Z, k > 0}, showing the model for timeout based loss recovery.

L If W™ < b+d (this would occur if w™*® < w®™9),
then h = b+ d — W™ packets need to be removed
from the network before congestion avoidance resumes.

the number of successful packets accounted in that interval.
Let V(z) and U(z) respectively, denote the reward and the
length of the cycle beginning with X}, = z. Denote by 7(z),

Since the number of acks that will be received in (¢, t+1) the stationary probability distribution of the Markov chain

is d, we first have the following two cases.

e Case 1: d < h = not enough acks are received,
the source is inactive throughout (ty,txy1) and

cong __ cong, .
Wii1” = W, there is no packet loss.

e Case 2: d > h = congestion avoidance com-
mences during (g, tg+1) after the first h acks are
received. There may be losses in (tg,tr41) after
h acks are received.

2. Case 3: W™ = b+ d = congestion avoidance con-
tinues; as acks are received, W™ is incremented and
new packets are generated. There may be losses in

(tka tk-l—l)-

If a loss does occur during (tx,tx+1), adjustments to
W™ may occur till the ack for the packet just prior to
the one that is lost is received (see Figure 3.3). We assume
that this ack arrives at the source in (tg41,tg+2). At this
point the source starts a coarse timer. We assume that
the coarse timeout occurs during (tg+2,tk+3) and the re-
covery begins at tg+3 (see Figure 3.3). Recalling that we
are not modelling the fast-retransmit procedure, denote by
Ly, the duration of the slow start phase (in number of A
intervals). L, will vary with each loss instance, but devel-
oping an indexing for it would be cumbersome. Then the
recovery is over at ty, k' = k + 3 + L,ss and the congestion
avoidance phase begins.

Define, the embedded epochs {T}} by: Ty = to, and for
k>0

T, + A
Tk + (3 + Lss)-A

nolossin (Ty,T) + A)

Ty = { lossin (T, Ty + A)

where L, denotes the duration of the slow start phase.
Finally, define the embedded process {X; = Zr,, k > 0}
with X() = Zo.

Proposition 3.1 {(Xi,T%), k > 0} is a Markov Renewal
process.

The proof of Proposition 3.1 is presented in Section 8.

3.4 Computation of Throughput

Given the Markov Renewal Process {(X,T%), k > 0}, a
reward Vj, is associated with the k" cycle (T}, Tki1), as

{Xk, k > 0}. Then denoting by « the throughput, and by
E, the expectation with respect to 7(z), from the Markov
Renewal-Reward Theorem we have,

BV
" EU

(3)

If packet loss does not occur in (¢, tr+1), then we count the
reward as the number of acks received by the source, that
is, Dy, denoted by D(z) to show dependence on X = z.
When packet loss does occur, the reward is accounted as
the sum of Dy, acks that return to the source in (tg,tgs1),
the number of packets ahead of the packet that is lost
Dypesore 10ss(), and Doy stare(x), the number of packets
transmitted in the slow start phase. We do not count any of
the packets transmitted successfully after the lost packet.
Thus,

D(z) W.p. 1 = Pioss(z)
V(@) = { D)+
Dbefore loss ($)+
Djow start (IIJ) W.p. ploss(x)
_ A w.p. 1 — Dioss(x)
Ul®) = { (34 Lss)A w.p. Pross(x)

Analysis of TCP without rate control is similar to the anal-
ysis described above. Since at the embedded epochs {T}},
the equation W™ = By, + Dy, holds, we need to consider
only the four dimensional process.

{Zk;kZO} = {(BkJDkJMkflaMk)akZO}
M1 needs to be considered as it determines the rate at
which acks return from the delay queue to the source. Ad-
ditional details of the analysis are provided in [21].

4 Experimental Setup

The experimental results for the network of Figure 1 re-
ported here are obtained from a Linux based Wide-Area
Link Emulator, WALE ([22]). WALE, as shown in Fig-
ure 3, models a full duplex WAN link on a single Ethernet
interface. The link parameters namely, send/receive buffer

Network Layer
etho * eth(n)
Sb .
Generic
R O s |ee Caver
=
Rb
? <> sd
Physical Layer

Sr - Send Rate (KBytes/sec)
Sd - Send Delay (milliseconds)
Sb - Send Buffer (bytes)

RLM - Random Loss Module

Rr - Receive Rate (KBytes/sec)
Rd - Receive Delay (milliseconds)
Rb - Receive Buffer (bytes)

Figure 3: Implementation of the Wide-Area Link Emulator
(WALE) in the Linux kernel

sizes, send /receive transmission rates, and send/receive prop-

agation delays are emulated at the generic device driver
layer. To emulate lossy links, e.g., satellite links, random
loss module (RLM) creates packet losses with a user spec-
ified probability. All these parameters can be set using a
link configuration utility. File transfers are run using the
actual Linuz TCP code modified according to RATCP.

Modifications include new variables for rate window and
for phase to differentiate slow start and congestion avoid-
ance. The exact rate feedback with appropriate delay is
artificially provided to the TCP sender using a new system
call. The rate window is then calculated using this rate
feedback and TCP base RTT estimate for every incoming
ack (tcp-ack routine); this models the case when rate is fed
back in ack packets. The congestion window is updated
for every incoming ack as per the original algorithms. The
base RTT estimates are obtained in the RTT estimation
routine.

We also modify the socket layer so that the file trans-
fer application is able to select either TCP or RATCP as
the underlying transport protocol. This enables us to com-
pare the performance of competing TCP and RATCP ses-
sions over the bottleneck link. Experiments involving ran-
dom losses are carried out using the RLM in WALE. Files
are transfered from “server” to “client”. WALE is config-
ured on the server. Along with the file transfer request,
the client also requests the transport protocol (RATCP or
TCP) to be used for the transfer. Throughputs are mea-
sured at the client.

5 Numerical Results

5.1 RATCP OldTahoe and TCP OldTa-
hoe: Analysis and Simulation

The rate modulating Markov chain discussed in Section 3.1
is infinite. However, to arrive at the numerical results, we
limit the number of ephemeral sessions to some finite num-

RATCP(analysis) Beta=1 pkt ————
RATCP(analysis) Beta=4 pkts ---><---
TCP(analysis) ---->---

Effciency of the tagged session

o 0.5 1 1.5 2
Arrival rate of ephemeral sessions (sessions/sec)

Figure 4: Efficiency variation of RATCP and TCP with
the ephemeral session arrival rate. Analysis.

ber M. We investigate the performance of RATCP and
TCP with different rates of variation of the available rate to
the tagged session. The arrival rate of ephemeral sessions
along with M,,,, decides the average number of sessions
on the link and variations in the available rate. With very
high arrival rate, the number of sessions is almost always
M 02 +1; hence each session gets a throughput of m
Thus, in the ideal case the tagged session throughput varies
between C' and m The variance of the number of the
ephemeral sessions increases with the arrival rate but de-
creases at higher arrival rates. Hence, the rate of variation
of the rate available to the tagged session is low when the
arrival rate is either very low or very high.

The common parameters selected for these results are:
link rate, C= 0.8 Mbps, link buffer, B,,,, = 10 pack-
ets, TCP packet length = 500 Bytes, mean ephemeral ses-
sion length, L = 200 KBytes, round trip delay, A = 100
ms, maximum number of ephemeral sessions on the link,
M ez = 3. Session arrival rate is given in sessions/sec. For
the results in this section the tagged session is assumed to
know A and (delayed) rate feedback is made available to
it every A.

Figure 4 shows the basic comparison of the efficiency
of RATCP and TCP obtained from the analysis. We de-
fine efficiency as the throughput of the tagged session nor-
malized to the mean fair rate it gets. Let mps denote the
stationary probability distribution of the rate modulating
Markov chain { My, k > 1} discussed in Section 3.1. Then
>om mL—l-lﬂ-M (m) is the mean fair rate of the tagged session.
Hence,

v

Efficiency = ol

w1)
m

Recall that v denotes the throughput. An ‘ideal rate adap-
tive protocol’ (IRAP) would adapt to the rate feedback
instantaneously and without any losses. This way, effi-
ciency can be interpreted as fraction of IRAP throughput

RATCP (analysis) ————

C
TCP(experiment)

Throughput of the tagged sessions (KByteslsec)

20

0.5 1 1.5
Arrival rate of ephemeral sessions (sessions/sec)

Figure 5: Throughput variation of RATCP and TCP with
the ephemeral session arrival rate. Analysis and experi-
ment. 8 = 1 packet.

obtained by a protocol under investigation.

There is an important effect of time scales of rate varia-
tions at the bottleneck link as compared to the round trip
delay. When the rate variations are slow, feedback is ef-
fective and performance is expected to improve. On the
other hand, the performance degrades because of rate mis-
matches; this effect is the worst when the bottleneck rate
varies over propagation delay i.e., when the rate feedback
is always ‘wrong’. Recall that, since M,,,,, = 3 at any time
t, when the arrival rate of the ephemeral sessions is very
low or very high the fair rate variations are slow, whereas
for intermediate arrival rates the rate variations are fast.
We make the following observations from Figure 4.

e When the arrival rate of the ephemeral sessions is very
low, RATCP gives about 17%-20% better throughput
than TCP. Since both RATCP and TCP recover con-
servatively from losses, the improvement with RATCP
occurs since it suffers less losses, because of the adap-
tation to the rate.

e As the arrival rate increases RATCP does not have
a significant advantage over TCP. This is because,
when the rate variations are comparable to the prop-
agation delay, there are frequent mismatches between
the sending rate and the available bottleneck rate, and
hence the rate feedback is not very effective. However,
RATCP is able to contain packet losses to a smaller
value as compared to TCP. Since the buffer backlog
is only 1 packet in RATCP, it is not able to take ad-
vantage of the transient rate increases, and thus has
a sharper decrease in the efficiency, with increasing
ephemeral session arrival rate. The performance of
RATCP can be enhanced in this region by a larger
value of 8. We show the performance with 8 = 4.

e When the arrival rate is higher, the mean number of
sessions on the link increases. This implies that the
rate available per session is small, and TCP needs to
build a smaller window before a loss occurs. Thus the

penalty for a packet loss is not significant and TCP
performance is close to that of RATCP.

e When 8 = 4, RATCP is able to keep more packets
in the network but without losses. Hence, with this
value of f efficiency is improved substantially over the
whole range of rate variation.

Figure 5 shows the comparison of absolute throughputs
(corresponding to efficiency results depicted in Figure 4)
of RATCP and TCP obtained analytically as well as from
experiments. Note from Figure 5, that analytical and ex-
perimental results match well with analysis being slight
overestimate. Overall the analysis procedure captures the
performance quite well. Numerical values are shown in Ta-
ble 1.

5.2 RATCP Reno; Random Losses

Efficiency of the tagged sessions

RATCP-Tahoe(Beta=1 pkt) ————
RATCP-Reno(Beta=1 pkt)
RATCP-Tahoe(Beta=4 pkts.
TCP-Reno(Beta=4 pkts)
TCP-Reno -—m——

\ -

0.5 1 1.5
Arrival rate of ephemeral sessions (sessions/sec)

Figure 6: Efficiency variation of RATCP (Reno and Old-
Tahoe) with the ephemeral session arrival rate compared
to TCP Reno.

We have described fast-retransmit and recovery in RATCP
Reno in Section 2. Table 1 gives the throughput com-
parison of RATCP Reno and TCP Reno. Figure 6 shows
the comparison of efficiency. Although TCP-Reno imple-
ments an efficient way of avoiding timeouts, it is, how-
ever, incapable of reducing losses. Hence, RATCP Reno
(even RATCP OldTahoe, 8 = 1) outperforms TCP Reno
when the rate variations are slow. However, fast retrans-
mit works well in TCP Reno when the arrival rate of the
ephemeral sessions is high; it matches the throughput of
RATCP with 8 =1 and is much more efficient (Figure 6).
Recall that in this region TCP needs to build a smaller
window after a loss. This means that TCP Reno can
keep more packets in the network as compared to RATCP
(8 = 1) and still recover from the losses efficiently. How-
ever, when the rate variations are fast, TCP loses multiple
packets due to frequent rate mismatches. This leads to
multiple window cutbacks®. Hence, TCP frequently re-

3New TCP implementations do not cut the window multiple times if
multiple packets are lost in the same round trip time.

Ephemeral session arrival Rate 0.0 0.05 |01 0.2 0.5 1.0 2.0
Protocol

RATCP (B=1):analysis 99.60 | 85.87 | 74.75 | 57.27 | 34.73 | 27.19 | 24.70
RATCP (f=1):experiment 99.52 | 83.05 | 69.24 | 52.50 | 33.43 | 25.83 | 23.97
TCP :analysis 86.34 | 77.23 | 68.75 | 57.27 | 34.44 | 26.93 | 24.37
TCP :experiment 82.44 | 73.02 | 59.52 | 51.00 | 31.79 | 25.93 | 24.24
RATCP (8=4):analysis 99.68 | 87.51 | 76.93 | 59.96 | 37.60 | 29.57 | 27.67
RATCP (B=4):experiment 99.52 | 83.62 | 71.58 | 57.73 | 35.63 | 29.07 | 27.26
RATCP-Reno (f=1):experiment | 99.63 | 88.24 | 71.03 | 55.24 | 34.68 | 25.37 | 23.61
RATCP-Reno (8=4): experiment | 99.54 | 87.13 | 72.97 | 58.96 | 36.58 | 29.67 | 27.90
TCP-Reno :experiment 92.31 | 77.14 | 65.24 | 49.63 | 34.19 | 27.61 | 25.87

Table 1: Throughput (KBytes/sec) of the persistent session for various protocols and parameters. Each column corre-

sponds to an arrival rate of ephemeral sessions on the link.

90 -

80 -

60 -

Throughput of the tagged session (KBytesfsec)

50 RATCP-Reno: Beta=4 pkts ———— N 4
RATCP-Reno: Beta=1 pkts J

RATCP-Tahoe: Beta=4 pkts ----3---

RATCP-Tahoe: Beta=1 pkts =

a0

0.0001 o0.001

Random loss probability

30 L
le-06 le-05 o.o1

Figure 7: Throughput variation of OldTahoe and Reno
versions of RATCP and TCP with random packet drop
probability.

covers by timeout resulting in degradation of throughput.
RATCP Reno, on the other hand, controls losses and im-
plements much more efficient fast retransmit thereby per-
forming overall better than TCP over a broad range of rate
variations. Recall that, in RATCP fast-retransmit and fast-
recovery, upon receiving 3 duplicate acks we set W9
min(W "9, Wrate) instead of W™ + W% 4 K asin
TCP-Reno.

On links where transmission error probability is high,
e.g. satellite links, it is particularly important that TCP re-
transmit the packets lost due to corruption without reduc-
ing its congestion window. Various techniques like FEC,
ECN bits, ICMP messages, etc. have been proposed to
inform TCP of the corruption losses ([3]). However, it
remains a difficult problem and major bottleneck in the
performance of TCP over lossy links ([23]). On the other
hand RATCP-Reno maintains the fair window in fast re-
transmit; hence it is indirectly able to differentiate conges-
tion and corruption losses. This can be seen from Figure 7
where we plot the throughput of a single persistent session
versus the packet loss rate. The parameters are as given

earlier except that there are no ephemeral session arrivals.
Recall that, the bottleneck link rate C' is 100KBytes/sec
and A = 100ms. f equals 1 and 4. Notice that RATCP
Reno succeeds in maintaining the throughput of the ses-
sion above 85KBytes/sec for a wide range of packet loss
probabilities, whereas the session throughput with TCP
Reno drops to less than 50KBytes/sec with a packet loss
probability of 1%. Further, with 8 = 4, RATCP does not
achieve significantly higher throughput than when g = 1
due to only random loss. This is a significant result and
suggests that RATCP could be used in conjunction with
performance enhancing edge devices between the satellite
networks and terrestrial networks.

5.3 Fairness

70

session 1: Rtt 100ms (RATCP-Reno) ———
Rtt 200ms (RATCP-Reno)

session 1: Rtt 100ms (TCP-Reno) -------
session 2: Rtt 200ms (TCP-Reno) =

50 |- % e

Throughput of the tagged sessions (KByteslsec)

10

Figure 8: Throughput comparison of 2 competing sessions
on the link with different round trip times- 100ms and
200ms.Sessions either use RATCP Reno or TCP Reno.
B = 1 packet.

We continue to use the same experimental set-up and
the link parameters. Figure 8 shows the fairness compari-
son of RATCP and TCP, when 2 sessions with round trip
times 100ms and 200ms share the bottleneck link. When

55

session 1: TCP-Reno ———
session 2: RATCP-Reno ---><---

25 | \ -

Throughput of the tagged sessions (KByteslsec)

20 - \, -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10

0.5 1 1.5
Arrival rate of ephemeral sessions (sessions/sec)

Figure 9: Throughput comparison of 2 competing sessions
on the link, one uses TCP Reno and the other RATCP
Reno. Round trip time is equal to 100ms for both the
sessions. 8 = 1 packet.

TCP sessions with larger propagation delays share a link
with sessions with smaller delays they suffer because of the
following effect- smaller delay sessions increase their win-
dows at a higher rate creating frequent losses and recovery
thereafter is slow for sessions with larger propagation de-
lays. Since larger RTT session requires larger window for
a given throughput the above phenomenon results in a low
throughput for large RTT sessions. This leads to unfair-
ness as seen from Figure 8; session with 200ms delay gets
50 — 60% less throughput than the session with 100ms de-
lay. Since the windows are calculated based on the fair
rate feedback, as expected, RATCP sessions in spite of
different propagation delays get equal throughputs. Inter-
estingly however, when an RATCP session competes with
a TCP session, as seen from Figure 9, TCP gains. This is
because, RATCP limits its window, whereas TCP has more
number of packets in the round trip pipe and creates losses
for both. A similar phenomenon is seen when TCP-Vegas
competes with TCP-Reno ([24]).

TCcP
RATCP (beta = 1) ---><---
RATCP (beta = 4) -------

Average Throughput (KByteslsec)

Load

Figure 10: Variation of average session throughput with
load.

assume that the exact rate is available at the sender (after
one round trip time), and it uses the base RTT estimate
to calculate the rate window.

100000

20000 |- e a
soooo |-
70000 |-
so000 |-

50000 (-

40000 |- TcP
RATCP (beta = 1) ---><-—-
RATCP (beta = 4) ----3---

Average Retransmitted Data (Bytes)

30000

20000

10000

o.1 0.2 0.3 0.4 o.5 o.e 0.7 o.8 0.9 1
Load

Figure 11: Average retransmitted data per sessions vs load.

5.4 Finite-size File Transfers (http-like TCP Figure 10 shows the variation of average throughput of

Transfers)

Web traffic is the predominant traffic in the Internet today.
To model such a realistic situation, we need to consider a
traffic model in which sessions arrive randomly and transfer
small files. We assume that sessions arrive in a Poisson
process and require file transfers with sizes exponentially
distributed with mean 200KBytes. If A denotes the session
arrival rate, then the load on the link, p, is defined as %
Experiments are conducted for different values of p. The
session arrival rate is then calculated from the formula for
p- We now use the following parameters: link rate, C' = 2
Mbps, link buffer, B,,,, = 30 KBytes, TCP packet length

= 1500 Bytes, mean file transfer size, L = 200 KBytes,
round trip propagation delay, A = 100 ms. For RATCP, we

sessions (averaged over 500 sessions) with the load on the
link. Note that, the average throughput performance of
RATCP and TCP is almost the same. However, it can be
seen from Figure 11 that losses incurred by RATCP with
B =1 are significantly fewer than by TCP and by RATCP
with # = 4. This is explained by the following experimental
observations. Figure 12 shows the byte (transmitted on
the link) numbers plotted against time for randomly picked
20 consecutive TCP sessions in the above experiment. The
origin of time axis is the system time of the arrival of the
first session and hence is arbitrary. The corresponding plot
for RATCP sessions is shown in Figure 13. Each curve rep-
resents the evolution of one session; the average throughput
of that session can be calculated as the ratio of total num-
ber of bytes transferred (obtained from y-axis) to the total

4e+06

3.5e+06

rd

3e+06

2.5e+06

2e+06

Bytes

1.5e+06

1e+06

500000

L i p 1 1 L
9.51569e+08 9.51569e+08 9.51569e+08 9.5157e+08 9.5157e+08 9.5157e+08

Time

9.5157e+

Figure 12: Evolution of the congestion window of 20
TCP sessions sharing the link. Mean file transfer size is
200K Bytes.

4e+06

3.5e+06
3e+06

2.5e+06

2e+06

Bytes

1.5e+06

1e+06

500000

L L
9.5157e+08 9.5157e+08 9.5157e+08

Time

0
9.5157e+08 9.5157e+08 9.5157e+

Figure 13: Evolution of the congestion window of 20
RATCP sessions sharing the link. Mean file transfer size is
200K Bytes.

time taken (obtained from x-axis). In addition, the slope of
a curve gives the instantaneous rate that session gets. Note
that, a discontinuity in a curve indicates packet losses. Ob-
serve that, the curves of RATCP sessions have equal slopes
indicating fair allocation of instantaneous rates to all the
sessions; hence RATCP sessions get equal instantaneous
throughputs. As would be expected there are hardly any
packet losses. On the other hand, TCP sessions incur more
losses and some sessions get significantly higher through-
puts than other sessions. We find that this leads to almost
the same average performance of both the protocols.

Random Loss: Figure 14 shows the performance of web-
like transfers on a link with random losses. Load on the link
is 0.5 and mean file transfer size is 200KBytes. Two RTTs
are studied 100 ms and 500ms. Note that, RATCP gives
a 10% improvement in the average throughput over TCP.
With a large RTT, e.g., 500ms typically encountered on

10

as

q
a0

35

30

25

Average Throughput (KByteslsec)

10

Delay 500ms: RATCP(beta=1) ——+———

I

elay 500ms:
Delay 100ms: RATCP(beta=1)
Delay 100ms: TCP

o
le-06 le-05 0.0001 0.001

Random loss probability

Figure 14: Average sessions throughput vs random loss
probability. Mean file transfer size is 200KBytes. Round
trip times are 100ms and 500ms.

satellite links, performance degrades significantly for both
the protocols. However, we have found that with larger
file sizes (mean file size 1 MBytes) and small load values,
RATCP maintains a higher throughout than TCP for a
wide range of packet loss probabilities. This performance
is similar to the one observed in Figure 7.

6 Available Rate Estimation and
Feedback

To improve upon TCP’s basic algorithms which estimate
the available rate in the network, various algorithms have
been proposed ([25]). A sender-side technique uses the rate
of returning acks. However, it assumes that the original
spacing of packets is preserved in acks; this makes this
technique problematic. This problem can be solved by esti-
mating the available rate at the receiver using TCP packets
and informing the source through a TCP options field. Us-
ing this information, the TCP source may set the value of
slow start threshold or adapt the congestion window. How-
ever, this does not guarantee fairness since the estimated
rate may not be the fair rate. In addition, the performance
crucially depends on the accuracy of the estimates. Also,
on lossy links these techniques will perform poorly.

The techniques discussed above use only the end-to-end
information. A network based technique may be imple-
mented using recently proposed Random Early Marking or
REM ([13]). REM is motivated by optimization based flow
control, where sources and links maximize a global measure
of network performance in a distributed fashion ([26]). In
a network of L links and S sources, a source s attains a
utility Us(zs) when it transmits at rate zs. The objective
is to maximise) Uy(z5) subject to the constraint that the
total source rate on any link is less than the link capacity.
To solve the optimization problem in a decentralised way,
each link calculates a ‘price’ per unit bandwidth by mea-

)
g;m&

P: Web proxy
R: Router
C: Client

RATCP

]

Figure 15: A satellite networking situation where RATCP
will be useful.

suring the aggregate source rate. A source s is fed back the
sum of the prices over all the links it uses; this sum called
the path price for source s. It then chooses a transmission
rate that maximizes its own utility based on the path price.
This is implemented as follows. Each link measures the to-
tal source rate using the buffer backlog and ‘feeds back’
its price to the sources by ‘marking’ packets. A packet
is marked with probability that is exponentially increasing
in the price so that the end-to-end marking probability is
exponential in the path price. A source can estimate the
price by the fraction of marked packets and then adjust its
rate. Marking is done using ECN bits in IP packets. We
have used % as the fair share of bandwidth, however, with
REM sources may use different utility functions to adjust
their rates.

On wireless or satellite links, direct feedback from the
edge devices can be obtained. With a split-connection
approach ([27] and references therein), RATCP can be
used on the wireless link. The edge device can explic-
itly calculate rates for sessions going through it and feed
them to RATCP. A possible scenario is shown in Figure 15
where clients download data from the Internet via a proxy
server(shown as an integration of proxy-web server and a
bandwidth controller) using a satellite link which is the
bottleneck link. RATCP is implemented in the proxy for
client side connections.

7 Conclusions

In this paper we set out to understand the performance
implications of feeding the available bottleneck link rate di-
rectly into TCP windows. Assuming that such information
is available and there is a mechanism to feed it back to the
source, we studied an approach for adapting the TCP con-
gestion window to explicit rate feedbacks, and called this
modification RATCP. Using analysis and an experimental
test-bed we studied the performance of TCP and RATCP
under various network scenarios. Our main observations
are as follows.

1. There is an important effect of time scales of rate vari-
ations at the bottleneck link compared to the propa-
gation delay. When the rate variations are slow com-
pared to the RTT, feedback is effective and the perfor-
mance is improved. On the other hand, when the prop-
agation delay is large and rate variations are rapid,

11

the performance degrades because of rate mismatches.

These observations are similar to the ones in [14]. The

context in [14] TCP over ATM-ABR; no feedback of

rates to TCP windows.

When the file transfers are large and the load on the

link is low, RATCP performs significantly better (17%—

20%)than TCP.

RATCP is most advantageous in dealing effectively

with random losses on the link. With the rate infor-

mation, RATCP differentiates between congestion and

corruption losses leading to higher throughputs over a

wide range of random loss probabilities. This scenario

is particularly important from the point of view of
wireless and satellite networks.

. RATCP ensures fairness among sessions even if they
have different propagation delays.

. With short file transfers RATCP is only slightly bet-
ter than TCP. TCP sessions incur more losses and
some of the sessions get significantly higher through-
puts than others. On the other hand, RATCP sessions
get equal instantaneous throughput with hardly any
packet losses.

. It is possible to implement rate feedback mechanisms
based on distributed flow control algorithms. With
REM as the feedback mechanism ECN bit itself can
be used.

N

8 Proof of Proposition 3.1

Let Px(z;2') = Pr(Xg41 = 2'| Xk = z), where z
(b, d, wcon97 wrate) m) and 2! = (b/7 dl, (,wl)cong7 (,wl)rate7 m/).
Define wi’™ = min{w®"9, wrete}.

Remark: It requires too much notation to write down the
complete transition probabilities for each pair of states. In
the following exposition we adopt the approach of taking
an event of interest, and obtaining the transition proba-
bility from one state to another if this event occurs. The
sum of these probabilities yields the actual transition prob-
ability in the computer program that is used to obtain the
stationary probability distribution of {Xj}.

We consider each of the 3 cases discussed in Section 3.3.
Transition probabilities for Case 1: During (¢, t541)
the source is idle and there is no packet loss. Let a =

[A'C J; we also have W, 1" = . Then it is clear that

m+1
with probability [Pas] 0<m'<m+1

Tate

Xpq1 = (max{0, (b — a)}, min{b, a},w"**, a + B,m’) (4)
and
Tk+1 = Tk + A (5)

Model for window increase during congestion avoid-
ance: We model the congestion avoidance phase proba-
bilistically (see also [28],[14]). For a non-duplicate ack re-
ceived at t, We™9(t) is incremented by 1 with probability
W¢+g(t). To simplify the analysis, we assume here that the
probability of window increase in (t, tx+1) is constant and
equals W™,

Transition probabilities for Cases 2 and 3: Recall
the definitions of these cases from Section 3.3. In Case 2
we have d > h, and only after h acks have been received
will congestion avoidance resume; new packets will be gen-
erated and the window may increase. We call the acks
that affect the window increase in (¢, tx+1), effective acks,
and denote them by Ej (e is used to denote a particular
value). With this notation (and recalling the notation for
the elements of X},) we have for Case 2, e = d — h, and for
Case 3, e = d. Let Ny denote the total window increase in
(tk,tk+1)- Then for 0 < n <e,

Ey

Pr(Ny = n|X = o) =(

Calculation of loss probability: A packet loss occurs when
a packet finds the link buffer full (tail drop). It can be seen
that loss occurs in (tx,tr+1) when the window increment
is more than a value, called the loss threshold, n¢presn. We
now obtain this threshold.

Let 74, 7s, ..., Tq denote the ack arrival epochs in (4, tx41)%.

With h as above, note that 741 is the arrival epoch of the
first effective ack. For h = 0, define 7, = t;. Then for
J > h, define B] = buffer occupancy at 7;, N] = window
increase in (73,75, Gi = no. of packets inserted into the
link in (73, 75], and Di = no. of packets transmitted by
the link in (73, 7;]. Note that, the number of packets in-
serted into the link till 7; constitutes the packets triggered
by acks received and the new packets generated due to the
window increase up to and including epoch 7;. For exam-
ple in Case 3, 7, = ti, and Gf; = j+ N{ and, owing to the
&2]}

Ry—1

Denote by byiqrt, the buffer occupancy at the first effec-
tive ack arrival, that is, just after the ht* ack arrives. For
example, in Case 3, W™ equals b+ d, h = 0; then bgq.¢
equals b.

Consider the case that bsiar: > 0 and Rg_1 > Ry (note
that, the loss may occur even when Ry > Ry_; and Ry #
2.Ry—1). Then, for j > h, B = min(Bmaa, (bstart +
Gi — Di)) Let n; be a particular value of N ,g such that
(bstart + G, — D}) = Bpaa; hence, for 1 < j <, n; =

max (0, Bmax — (bst(m +j— [%J)) . This means that

if N exceeds n; then loss occurs at 7;. Observe that the

sequence n; is non-increasing with j. Thus in this case, we
define

back-to-back assumption, Di = min {d,

)} o

It is easily seen that loss occurs if and only if Ni > nypresh-

Hence
() ()™

. e
ploss(x) :Zi="thresh+1(7/
Transition probability calculations: new arrivals, no loss:
= Ni < ngpresh- Recall that by, is the buffer occupancy

Nihresh = Max {_1; Bmax — (bstart +e— \‘

4The packets enter the link buffer instantaneously after an ack ar-
rival; we, therefore, refer to a packet arrival epoch at the link by the
corresponding ack arrival epoch at the source.

12

")(W,:li"g)n(lw;i”)lim ©)

at the first effective ack arrival, and thus equals min(0, b —
gﬁ’i), where, h = b +d — w{. Also e = w;J" —b.
From these, n¢presn is obtained by using Equation 7. Let
ey be the number of packets transmitted from the link in

(Tk, Ty+1), and n) the window increment in (¢, tx41). Then,
Qeff :min{a, (b—bstart +min{bsmn +e+n, (A——Rkh_l) Ry, }) } , where

m—+1
and 0 <m' < m + 1, with probability,

(e—mn)
, :)n < 1)
con, 1-— con, [PM]mm’
< n) <w+ v wy v

Xk—',—l = (b',aeff,b' + Qefy,0 + B,m')

a= [A'CJ and it can be seen that, for 0 < 1 < Ngpresn

9)
and

Tk+1 = Tk + A (10)

where, b’ := min (0, bstart + €+ 1 — (A - Rf_l) Rk).
Transition probability calculations: new arrivals, loss oc-
curs: = Ng > Nynresn- Recall that, we do not consider
adaptation to the rate window in slow start.®> Therefore,
given ssthresh and the number of active sessions at the
beginning of the recovery, the slow start duration and the
state of the system at the end of slow-start can be deter-
mined.

Initial conditions at slow start: Note that, {(W] ¢, M), k >
1} is a DTMC. Let, Q(w,m;w,m) denote the one-step
probability. Then observe that,

AC

Q(w,m;u‘),m) = [PM]mml{ﬂ):Lm.HJ'f‘B}

Recovery begins at tj,3, ssthresh is set to W,:f;, and
during slow start the number of sessions constraining the
persistent session’s rate is assumed to be My, 3; hence,

Pr(ssthresh = w, My, 3 = m| Xy =) = Q*(w"*®, m;w, m)

Modeling slow start: Note that, at the beginning of slow
start, b = 0,d = 0,w = 1,w"™¢ = @, m = m. Since we
assume that ssthresh = w, and the rate for the persistent
session is constant (given by miﬂ) during slow-start, the
slow start evolution is determined as follows. Define v =
2L and F = A+ ™. As in [29], we consider mini-
cycles of duration F, where i** mini-cycle refers to the
time interval [iF, (i + 1)F). Figure 16 shows the evolution
of the buffer and the TCP window in the slow start phase.
Let J denote the mini-cycle when the pipe becomes full.
Then J = [log,(v+1)] and, B((J +1)T) =2/ —v+1 and
Weerd ((J 4+ 1)T) = 27 + 1. Note that, if Bpe, < 2771 +1
then the packet loss takes place in or before the Jt* mini-
cycle (see [29]). If Bae > 2771 + 1 then in every next
mini-cycle, W™ (t) and B(t) increase linearly by v + 1

5This basically means that, though the rate modulation process evolves
independently during the period of recovery, we assume that the rate
available to the tagged session remains constant during this period. This
assumption is not made in the experiments.

v=4
W 1 2 34 5 9 14
t 0 T 2T 3T AT 5T 6T

= -] e e S T D B
b 1 210 23210234545678910
d 01 012 1123433334444 T

B

' |
first pkt loss

w : TCP window
b buffer occupancy
d: pkts in transit

pipe becomes full

bandwincrease -
linearly

Figure 16: Slow start phase when the bandwidth-delay
product is 4.

leading to packet loss if ssthresh — (27 +1)+27 —v+1 >
Bz = ssthresh — v > Bpae. This causes a second
period of timeout and recovery. ssthresh set for the second
slow start does not exceed half the current value. Hence,
the recovery is completed with the successful slow start
phase. Results for the recovery phase can be arrived at
with little algebra. The details are provided in [21]. These
calculations provide the slow-start duration Lgs(w, m), and
also the values of the number of packets in the buffer and
in the delay queue at the end of slow start, i.e., bys (@,)
and dys(w,m). We will denote these simply by Lgs, bss, dgs.
Putting the above calculation together, we have, with prob-
ability (recall that we have X = (b, d, w®™,w"*¢ m)),

Dioss (m)Q3(wrate, m; /u_Ja m) [PM]flﬁi;n/

A.C

m+1

Xk+1 (b357 dss; bss + dss; \‘ J + B7ml> (11)

and

Thy1 =Tr + 3+ Lss)A (12)

with probability
Dioss (x)Q3 (,wTate , M W, ’ﬁl)

It, therefore, follows from Equations 4, 5,9, 10, 11, and
12, that {Xj, k > 0} is a Markov chain, since the distri-
bution of X1 can be found without any knowledge of
the past, given Xj. Also given Xy, the distribution of
Ti+1 — Ty can be found without knowledge of the past.
{(Xk,Tk),k > 0} is thus a Markov Renewal Process. O

References

[1] L. Brakmo and L. Peterson, “T'CP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE
Journal on Selected Areas on Commn., vol. 13, no. 8,
October 1995.

[2] M. Mathis et. al, “TCP Selective Acknowledgement
Options,” RFC 2018, April 1996.

13

[3] S. Floyd, “A Report on Some Recent Developments in
TCP Congestion control,” In submission, June 2000,
available from http://www.aciri.org/.

[4] J. Hoe, “Improving the Start-up Behavior of a Conges-
tion Control Scheme for TCP,” in Sigcomm, August
1996.

[5] S. Mascolo et al, “TCP Westwood: Congestion Con-
trol with Faster Recovery,” UCLA Technical Report
CSD TR, #200017, 2000.

[6] S. Floyd and V. Jacobson, “Random Early Detection

gateways for Congestion Avoidance,” IEEE/ACM
Trans. on Networking, vol. 1, no. 4, pp. 397-413, Au-
gust 1993.

[7] T. Bonald et al., “Analytic Evaluation of RED Per-
formance,” in Infocom, March 2000.

[8] M. Christiansen et al., “Tuning RED for Web Traffic,”
in Sigecom, August 2000.

[9] V. Firoiu and M. Borden, “A Study of Active Queue

Management for Congestion Control,” in Infocom,
March 2000.
[10] S. Floyd, “TCP and Explicit Congestion Notifica-

tion,” Comp. Commn. Review, vol. 24, no. 5, pp.

10-23, October 1994.

K. Pentikousis and H. Badr, “An Evaluation of TCP

with Explicit Congestion Notification,” To appear in

Annals of Telecommunications, Mid-2003.

T. Ott, “ECN Protocols and TCP Paradigm,” May

1999, manuscript.

S. Athuraliya et al., “Random Early Marking,”

QoflS, September 2000.

S. Shakkottai et al., “TCP Performance over End-to-

End Rate Control and Stochastic Available Capacity,”

IEEE/ACM Trans. on Networking, vol. 9, no. 4, pp.

377-391, August 2001.

P. Narvaez and K-Y. Siu, “An Acknowledgement

Bucket Scheme for Regulating TCP Flow over ATM,”

in Globecom, November 1998.

[16] L. Kalampoukas et al., “Explicit Window Adaptation:
A Method to Enhance TCP Performance,” in Infocom,
March 1998.

[17] R.Satyavoluet al., “Explicit Rate Control of TCP Ap-
plications,” ATM Forum Document Number: ATM-
Forum/98-0152R1, February 1998.

[18] S. Karandikar et al., “TCP Rate Control,”
Commn. Review, vol. 30, no. 1, January 2000.

[19] S. Low and D. Lapsley, “Optimization Flow Control-
I: Basic Algorithm and Convergence,” IEEE/ACM
Trans. on Networking, vol. 7, no. 6, December 1999.

[20] S. Abraham and A. Kumar, “A New Approach for

Asynchronous Distributed Rate Control of Elastic Ses-

sions in Integrated Packet Networks,” IEEE/ACM

Trans. on Networking, vol. 9, no. 1, January 2001.

A. Karnik, “Performance of TCP Congestion Control

with Rate Feedback: TCP/ABR and Rate Adaptive

TCP/IP,” Master of Engg. thesis, IISc, January 1999.

A. Anvekar, “WALE: A Wide Area Link Em-

ulator on a Linux PC,” ERNET Project, IISc

Technical Report, May 2000, available from

in

Comp.

[23]
[24]

[25]

[26]

[27]

[28]

[29]

http://ece.iisc.ernet.in/netlab/.

M. Allman et. al, “Ongoing TCP Research Related to
Satellites,” RFC 2760, February 2000.

J. Mo et al., “Analysis and Comparison of TCP Reno
and Vegas,” in Infocom, March 1999.

M. Allman and V. Paxson, “On Estimating End-to-
End Network Path Properties,” in Sigcomm, August
1999.

S. Low and D. Lapsley, “Optimization Flow Control-
I: Basic Algorithm and Convergence,” IEEE/ACM
Trans. on Networking, vol. 7, no. 6, pp. 861-874, De-
cember 1999.

A. Ewerlid, “Reliable Communication over Wireless
Links,” in NRS, April 2001.

A. Kumar, “Comparative Performance Analysis of
Versions of TCP in Local Network with a Lossy Link,”
IEEE/ACM Trans. on Networking, vol. 6, no. 4, Au-
gust 1998.

T.V. Lakshman and U. Madhow, “The Performance
of TCP/IP for Networks with High Bandwidth Delay
Products and Random Loss,” IEEE/ACM Trans. on
Networking, vol. 5, no. 3, pp- 336—350, June 1997.

14

