
1

Long Range Dependence in Network Traffic and
the Closed Loop Behaviour of Buffers Under

Adaptive Window Control
Arzad A. Kherani and Anurag Kumar

Dept. of Electrical Communication Engg.
Indian Institute of Science, Bangalore, 560 012, INDIA

email: alam, anurag@ece.iisc.ernet.in

Abstract

We consider an Internet link carrying http-like traffic, i.e., transfers of finite volume files arriving at random time
instants. These file transfers are controlled by an adaptive window protocol (AWP); an example of such a protocol is
TCP.

We provide analysis for the auto-covariance function of the AWP controlled traffic into the link’s buffer; this
traffic, in general, cannot be represented by an on-off process. The analysis establishes that, for TCP controlled
transfer of Pareto distributed file sizes with infinite second moment, the traffic into the link buffer is long range
dependent (LRD).

We also develop an analysis for obtaining the stationary distribution of the link buffer occupancy under an AWP
controlled transfer of files sampled from some distribution. For any AWP, the analysis provides us with the Laplace-
Stieltjes transform (LST) of the distribution of the link buffer occupancy process in terms of the functions defining the
AWP and the file size distribution. The analysis also provides a necessary and a sufficient condition for the finiteness
of the mean link buffer content; these conditions again have explicit dependence on the AWP used and the file size
distribution. One of the consequences of this result is to establish the sensitivity of the buffer occupancy process to
the file size distribution.

Combining the results from the above analyses, we provide various examples in which the closed loop control
of an AWP results in finite mean link buffer occupancy even though the file sizes are Pareto distributed (with infinite
second moment), and even though the traffic into the link buffer is long range dependent (with Hurst parameters which
would suggest an infinite mean queue occupancy under open loop analysis).

We also study certain models of window reductions due to constant rate packet marking and find that window
reductions lead to further lightening of the tail of the buffer occupancy distribution.

The significance of this work is threefold: (i) by looking at the window evolution as a function of the amount of
data served and not as a function of time, this work provides a new framework for analysing various processes related
to the link buffer under AWP controlled transfer of files with a general file size distribution; (ii) it indicates that the
buffer behaviour in the Internet may not be as poor as predicted from an open loop analysis of a queue fed with LRD
traffic; and (iii) it shows that the buffer behaviour is sensitive to the distribution of file sizes .

I. INTRODUCTION

It was observed in [1] that traffic processes in the Internet display long range dependence. In [2] this
phenomenon was traced to the fact that the traffic in the Internet results from the transfer of files that have
a heavy tailed distribution. Models have shown that the transfer of Pareto distributed files (P{V > x} =
min(1, 1

xα), 1 < α < 2) results in a traffic rate process that has an auto-correlation function that decays
as 1

τα−1 . These observations have been taken to indicate that the buffer occupancy distribution in router
buffers will have heavy tails [3]. Such observations are, however, based on an “open loop” analysis of an
LRD traffic source feeding a buffer. It has also been noted recently [4] that an understanding of traffic and
buffer processes in the Internet should take into account the closed loop nature of Internet congestion control,

Extended version of a paper entitled Closed Loop Analysis of the Bottleneck Buffer under Adaptive Window Controlled Transfer of
HTTP-Like Traffic, to be presented in Infocom 2003

2

namely TCP which is an adaptive window protocol (AWP). In this paper we carry out such an analysis for a
particular network scenario.

The Internet carries predominantly elastic traffic; the transfer of such traffic is controlled by TCP [5].
Most of the literature on TCP modeling is concerned with the “throughput” obtained by TCP controlled file
transfers over a single bottleneck link, with or without the assumption of random drops/losses. These works
can be divided into two streams; the (chronologically) first stream of work assumes a single bottleneck
link that is used to transfer a fixed number of files of very large volumes (see [6], [7], [8] and references
therein), whereas the second category deals with the performance of TCP controlled transfer of http-like
(finite volume) files where, the number of ongoing transfers is randomly varying (see [9] and its references).
An important consideration in the case of http-like traffic is the distribution of file transfer volumes.

Some of the works that fall in the first category attempt to model the behaviour of the link buffer (see,
for example [6], [10]) but, to our knowledge, there is no such analytical study available for TCP controlled
transfer of http-like traffic. In this paper we develop a framework for analysing the behaviour of the link
buffer, and related processes, assuming that the file transfers are controlled using a general adaptive window
protocol (AWP), explicitly taking into account the distribution of file transfer volumes.

We consider the scenario shown in Figure 1 where an Internet link connects clients on one side to servers
on the other side. We assume that there is no restriction on the number of simultaneous ongoing transfers.
The clients generate file transfer requests and the servers send the requested files using an AWP. The servers
and clients are connected to the link by very high speed access links. Hence the Internet link is the bottleneck;
also shown in the figure is this link’s buffer containing data packets from the ongoing file transfers. We make
the following system and traffic assumptions:

• The end-to-end propagation delay is negligible (in the sense that the propagation delay between the end
nodes of the link is much less than one packet service time; for example, this could be a 34 Mbps link
interconnecting two locations 15 km apart in a city for a TCP packet size of 1500 Bytes, the bandwidth
delay product being 0.3 Packets).

• The link buffer on the server side is such that there is no packet loss. (It follows that since the file sizes
are finite, the window growth is governed solely by the increase phase of the AWP; the window of each
transfer remains finite since the volume of the transfer is finite. We wish to study the tail behaviour of
the stationary contents of the buffer; such an analysis would provide some insight into the tail drop loss
behaviour with finite buffers.)

• The link buffer on the server side implements a per flow round-robin scheduling discipline with a
service quantum of one packet. Examples of such scheme are Deficit Round Robin (DRR, see [11])
and weighted fair queueing (WFQ).

• Each request is for the transfer of a single file, and the files have independent and identically distributed
sizes.

• The starting instants of file transfers constitute a Poisson process (of rate λ). (The instants at which new
user sessions start is now accepted to be well modelled by a Poisson process (see [4]); our model thus
assumes that each session transfers just one file.)

• We first assume that the link buffer does not drop or mark the packets owing to any active queue
management mechanisms. This assumption is later relaxed and random marking of packets are also
considered.

The first assumption above implies that the link buffer contains all unacknowledged data from the ongoing
file transfers (sessions). This also implies that the link is busy whenever at least one session is active.

A. Relationship with Existing Literature
It has been shown ([12] and [13]) that for Pareto distributed file sizes (with tail 1

xα) the data departure rate
process (d(t) in Figure 1) is long range dependent (LRD) with Hurst parameter 3−α

2
. This result follows from

the observation that, owing to zero propagation delay, the d(t) process corresponds to the busy idle process
of a work conserving queue. Further, d(t) is not affected by the feedback control used. Clearly, however, the

3

Server

Server Client

Client
AWP feedback from client

Bottleneck Link

access links
High speed
access links

High speed

Packets from active transfers

Link buffer

d(t) process (aggregate traffic out of link)

a(t) process (aggregate traffic into buffer)
Fig. 1. TCP controlled file transfers over a single link connecting servers and clients; the link propagation delay is assumed to be negligible,
and the link buffer is infinite. In this work we analyse the a(t) process, and the link buffer occupancy process.

input process to the link buffer depends on the feedback control used and hence it is interesting to study the
correlation structure of the data arrival rate process into the link buffer (denoted by a(t) in Figure 1); this is
one contribution of the work presented here.

Extensive analysis of Internet data has shown that Internet traffic is LRD (see [1]). It has been argued
that the LRD behaviour of Internet traffic is related to heavy tailed file transfer volumes ([2]). Recent
studies (see [12], [14], [15]) show that the stationary distribution of a queue fed with LRD traffic will have
a non-exponential tail; for example, it has been shown that an arrival rate process auto-covariance that is
O(1

τα−1), 1 < α < 2, leads to a stationary distribution of buffer occupancy that has a tail that is O(1
xα−1).

The above observations are usually combined to conclude that the link buffer occupancies in the Internet
will be heavy tailed. Such observations are, however, based on an “open loop” analysis of an LRD traffic
source feeding a buffer. Recent numerical studies ([16], [17], [4]) suggest that an understanding of traffic
and buffer processes in the Internet should take into account the closed loop nature of Internet congestion
control, namely TCP which is an adaptive window protocol (AWP). The second contribution of this paper is
to carry out such an analysis for the network scenario of Figure 1 and for a general AWP.

It is easy to see that the behaviour of a buffer for a given input process can be strikingly different in
a feedback loop as compared to when the same process is applied to the buffer (i.e., “open loop”). In
Figure 2 we provide a simple example. Part (a) of the figure depicts a closed queueing system where a single
customer is fed back to the queue (with a new service requirement distributed as exponential(µ)) as soon
as it gets served; the system is clearly stable as there is always a single customer in the system. Note that
the customer arrival instants to the queue form a Poisson process of rate µ. Part (b) of the figure depicts an
M/M/1 queue with a Poisson arrival process of rate µ, and exponentially distributed service requirements
with mean 1

µ
; this queue is clearly unstable (the queue length process being a null recurrent Markov chain).

It is intuitive that introduction of window reductions due to a packet marking scheme at the link buffer
would result in a better behaved buffer occupancy distribution. We study this phenomenon for two specific
AWPs and find that the results are in accordance with the intuition.

B. Overview and Organisation of the Paper
Assuming an AWP and a general file size distribution, we study the auto-covariance function of the data

arrival rate process into the link buffer (the a(t) process, see Figure 1). We then analyse the link buffer

4

Exp()µ

1 Customer

(a) (b)

Exp()µ
µ

µPoisson ()

Poisson ()µ

Fig. 2. Two simple queueing models illustrating that for the same input process (Poisson with rate µ) the behaviour of a buffer is entirely
different in a closed loop (a) and in an open loop (b). The queue in (b) is unstable (a null recurrent Markov chain).

occupancy process for a general AWP and file size distribution and provide a necessary and a sufficient
condition for the existence of the mean buffer occupancy. Combining the results from above two analysis it
is shown that it is possible to have a finite mean link buffer occupancy even when the file size requirements
are heavy tailed and the a(t) process is LRD. This does not contradict the result of [12], [14] as the model
analysed there does not include any feedback control from the queue. Next we consider specific AWPs to
study the effect of window reductions owing to random packet markings/drops and find that, as expected,
window reductions result in further lightening in the tail of the buffer occupancy distribution while the traffic
into the buffer remains LRD.

The paper is organised as follows. In Section II we develop a queueing equivalent model of the scenario
of Figure 1, introduce some notation we use in the paper and give some queueing results required later in the
work. In Section III we introduce some characterising functions associated with an AWP. Section IV presents
a study of the auto-covariance function of the a(t) process. In Section V we give the analysis of the link
buffer occupancy process. In Section VI we consider two specific AWPs and study the effect of introducing
random marking of packets on the link buffer occupancy process and the a(t) process. Section VII concludes
the paper.

II. MODELING APPROACH

Our model is motivated by the most popular AWP, namely TCP. The TCP transmitter adapts its trans-
mission window when it receives acknowledgements, or detects missing packets, or receives a congestion
mark. The window adaptation serves two purposes: (i) It limits the amount of outstanding data (and hence
congestion) in the network, and (ii) it promotes fair sharing of the bandwidth. We capture these two aspects
in our model as follows:

(i) By controlling the window, TCP controls the release of data into the network, and hence the amount
of data that stays in the file server. We will model the way the AWP controls the release of data
into the buffer and the amount of the file that is left behind on the server. This is done by modeling
the window increase as a function of the amount of data already acknowledged. When some data is
acknowledged, the window increase will permit some more data to be released from the file server,
while the remaining file stays on the server. This modeling of the split of the file between the server
and the network is an important aspect of our model.

(ii) We also wish to assume that the link’s bandwidth is shared equally among the ongoing transfers.
Recent literature [18], [9] suggests that, for a zero propagation delay link and even in absence of a
per flow fair scheduling at the link buffer, in our network scenario the TCP mechanism effectively
serves the files in a Processor Sharing (PS) fashion. This suggests that, even if the packets are served
in the order of their arrival to the link buffer, the packets from the active files are interlaced in such
a manner that the data from these files in the link buffer is served in a round robin manner. We have
observed, however, that such an equal sharing is not valid for general file size distributions and breaks
down, in particular, for heavy tailed file size distributions unless the link buffer implements a per flow
fair queueing (see [19]). Thus in order to use a processor sharing model to capture the way the link

5

bandwidth is shared among the files being transferred we need to assume per-flow fair scheduling at
the link buffer.

We now describe the stochastic model in detail. File transfer requests arrive in a Poisson process of
rate λ to the servers. The transfer volumes are independently and identically distributed with common
distribution V (·). An AWP is used to carry out the file tranfers. The transfers are viewed as fluid transfers.
Thus infinitesimal amounts can be served at the link, acknowledged to the transmitter, and released by the
transmitter into the buffer. The round trip propagation delay is zero, hence as soon as the link transmits some
data for a file, this data is acknowledged to the AWP trasmitter at the file server which releases more data (if
any) into the buffer. It follows that at each point of time every unfinished transfer has a positive amount of
data in the buffer.

The release of data into the buffer is governed by the way the window of the AWP increases with acknowl-
edgements. The window of an ongoing transfer is a function only of the amount of data that it has transferred.
The zero propagation delay assumption implies that the contents of the link buffer are the window of the
transfer or the residual amount of the file (not yet transferred), whichever is smaller. These windows are
served in a round-robin manner as per the assumption of per flow fair scheduling at the link buffer. The
round-robin discipline is simpler to study via the Processor sharing (PS) model hence we approximate the
service of the windows in the link buffer by a PS discipline. Based on this approximation, Figure 3 depicts
the queueing equivalent of the scenario shown in Figure 1; note that the link buffer has been replaced by a
PS server. As each active flow has positive amount of outstanding data (window) in the link buffer and since
these windows are served in a PS fashion, assuming that the files are composed of infinitely divisible fluid, it
follows that the ongoing file transfers (as a whole) also get service in a PS manner. Along with the Poisson
arrival, and i.i.d. file size assumption, it follows that we have an M/G/1 PS model with each “customer” in
service (i.e., ongoing file transfer) being split between the server and the link buffer, as shown in Figure 3.

departures

arrivals

λ

a(t) process

window control feedback

File Server

Windows in the link buffer

PS Server

d(t) process

Fig. 3. Queueing equivalent of the network scenario of Figure 1. The horizontal bars in the buffer correspond to the windows of the ongoing
file transfers, and the corresponding bars in the server depict the amount of each file that remains on the server.

Note that at any time instant t, an active session would have successfully transferred some data to its client,
some of its data would be in the link buffer (this would be the current window size of AWP controlling the
transfer of the file), and the remaining data would be in the server waiting to be transferred (see Figure 3). At
any time instant we use the term “age” for the amount of data of a file successfully transferred to the client,
and by “residual file” or “residual service” we mean the amount of data of the file yet to be transferred,
i.e., the sum of the data in the link buffer and that remaining in the server. As data from a file is served
(along with other files, in a PS manner) more data is pulled into the link buffer from the file server, so as to
replenish the windows and to account for any window growth. Eventually the amount of data of the file in
the server reduces to zero, and the entire residual file is in the link buffer. Note that as long as the file is not
fully transferred, a positive amount of it is always in the link buffer. Thus in term of the PS queue model, the
server is the link, and each “customer” in service is split between the file server and that in the link buffer.

Note that, as the files are served in PS fashion irrespective of the AWP used, the evolution of “age” (and
hence the residual file) is also independent of the AWP used. At any instant, the AWP used to transfer a
file only determines the splitting of the residual file between the server and the link buffer while the active
sessions are still served in a PS manner. Figure 4 shows the distribution, among the server and the link buffer,
of the data of a file of size v that has transferred u amount of data to the client (i.e., has attained an age u); the

6

AWP used determines only w(u, v), which defines the breakup of the remaining v − u units of data between
the link buffer and the server. To elaborate on this, for a particular fixed sequence of interarrival times and
file sizes, the vector valued process of the ages and residual file of the (time varying) active transfers remains
the same irrespective of the AWP used to transfer these files but the vector valued process corresponding
to the amount of data in link buffer of the individual active transfers will depend on the AWP used. This
point will become more clear in Section V where we characterise AWPs based on the way they split the file
between server and link buffer and thus make clear the distinction between the data of a file in the server and
the link buffer.

�������������������������������������� �������������������������������������� ��

Transferred and

(age, u)

Window in Buffer

w(u,v)

Residual File (v − u)

v − u − w(u,v)

File size, v

acknowledged data
Unsent data in server

Fig. 4. Figure showing the breakup of the data of a file of size v between the server, the link buffer and the client.

The above general model, which was motivated by observations about the performance of TCP controlled
finite volume transfers, is what we work with in this paper. We will show how to apply it to specific cases of
TCP type adaptive window control.

A. Notation and Some Results Related to an M/G/1 PS Queue
We follow the convention that if Z is a random variable then EZ is its expectation, Z(·) denotes its

cumulative distribution function (cdf), Zc(·) its complementary cdf, z(·) its density (if it exists), z̃(s) the
Laplace Stieltjes Transform (LST) of Z(·), and Z̃(s) the Laplace Transform (LT) of Z(·). We also let Ze(·)
denote the excess distribution of Z(·), and Zs(·) denotes the spread distribution associated with Z (see [20]).

In the context of a queueing system, with the above mentioned convention, we introduce the following
notation

V the random variable for the file sizes brought by sessions,
ρ := λEV ,
a(t) the instantaneous data arrival rate into the queue at time t,
N(t) number of sessions active at time t,
Y (t) total of the residual file sizes at time t,
B the busy period random variable of an M/G/1 queue,
x(s) := 1 − b̃(s), (introduced for notational convenience),
By the busy period random variable with initial ‘work’ y in an M/G/1 queue,
Ky(t) the number of starts of idle periods until time t given Y (0) = y,

We know that, (see [20]),
b̃y(s) = e−y(s+λ−λb̃(s)) = e−y(s+λx(s)) (1)

b̃(s) = ṽ(s + λx(s)) (2)

We use the notation f(t) ∼t→t0 g(t) to mean limt→t0
f(t)
g(t)

= 1 and write f(t) �t→t0 g(t) to mean that there
exists a function h(t) such that f(t) ≥ h(t) for all t and h(t) ∼t→t0 g(t).
In this work we frequently use the following known results for a stationary M/G/1 PS queue (see [21]). At
any time instant t,

• P{N(t) = n} = (1 − ρ)ρn

7

• The total file sizes of each of the N(t) ongoing transfers at time t are mutually independent random
variables and are distributed as Vs(·), vs(x) = xv(x)

EV
, (see [20]),

• Conditioned on the total service requirement of a file transfer being v, its age 1 is uniformly distributed
over the interval [0, v].

A recent work ([22]) reports the following result.
• In the M/G/1 PS system modified by having k permanent jobs with infinite service requirements, for

n ≥ k,

lim
t→∞

P{N(t) = n} = (1 − ρ)k+1

(

n − k

k

)

ρn (3)

III. CHARACTERISATION OF A GENERAL AWP
An AWP can be characterised by the amount of data released by the sender (server) in response to a

unit amount of acknowledged data. In general, this quantity will be a function of the size of the file being
transferred and the total amount of data successfully received by the client. We introduce the following
notation in the context of a general AWP.
Notation

Rv(u) amount of data released by the sender per unit of acknowledged data when a file of size v has
attained age u (i.e., u amount of its data has been acknowledged)

U(v) = sup{u : Rv(u) > 0, 0 ≤ u ≤ v} is the age of a file (of size v) after which an acknowledgment
does not result in release of data from file server, i.e., at this time the file server has sent a total
of v amount of data to the link buffer. At this point, the receiver would have acknowledged U(v)
amount of data and v − U(v) amount of data from the file will be in the link buffer

X(u) = inf{v : U(v) > u, 0 ≤ v < ∞} is the minimum file size for which the protocol will still be
sending data to the buffer after it has received acknowledgment of u amount of data

Note that,
∫ U(v)

u=0
Rv(u)du = v (4)

U(X(u)) = u (5)
X(U(v)) = v

Thus, U and X are inverse functions.
Call TCP-CA the TCP algorithm with initial slow start threshold set to unity, i.e., the protocol starts with

the congestion avoidance phase. Also let TCP-SS denote the TCP algorithm with initial slow start threshold
set to infinity, i.e., the protocol starts with and remains in the slow start phase. Note that if no loss occurs,
as is the case with an infinite link buffer, TCP-SS is always in the slow start phase and TCP-CA is always in
the congestion avoidance phase.

A. The Rv(u), U(v) and X(u) Functions for TCP-SS
If the transfer of a file is controlled using only the slow start algorithm of TCP then each unit of data

acknowledged results in the arrival of two units of data, thus

Rv(u) = 2I{u≤U(v)}.

Using Equation 4 with Rv(u) = 2I{u≤U(v)}, we get

U(v) =
v

2
.

Using Equation 5 with U(v) = v
2
, we get

X(u) = 2u.

1the data already transferred to the client by the session by time t

8

B. The Rv(u), U(v) and X(u) Functions for TCP-CA
If the transfer of a file is controlled using only the congestion avoidance algorithm of TCP then, when

window size is w, each unit of data acknowledged results in arrival of 1 + 1
w

units of data. Also, when the
window size is some integer n, the amount of data that has been acknowledged (i.e., the age of file) is n(n−1)

2
.

Thus, the window size corresponding to an age of u is −1+
√

1+8u
2

. To avoid complex expressions, since we
are interested in asymptotic behaviour, we use the approximation that when the age of file is u the window
size is

√
2u. This gives

Rv(u) =

(

1 +
1√
2u

)

I{u≤U(v)}.

Using Equation 4 with Rv(u) =
(

1 + 1√
2u

)

I{u≤U(v)}, we get

U(v) = v + 1 −
√

1 + 2v

Using Equation 5 with U(v) = v + 1 −
√

1 + 2v, we get

X(u) = u +
√

2u

IV. ASYMPTOTIC BEHAVIOUR OF THE AUTO-COVARIANCE FUNCTION OF THE a(t) PROCESS

In this section we study the auto-covariance function of the a(t) process (see Figure 3) when the transfer
of files is controlled by a AWP.
When there are n active sessions, owing to the PS model, a unit data served by the link implies each of these
n sessions gets a service of 1

n
data units hence their total data sending rate at instant t will be

a(t) =
N(t)
∑

i=1

Rvi
(ui(t))

N(t)
(6)

where ui(t) and vi are, respectively, the total service received by and the total service requirement of ith

session active at time t.
Lemma IV.1: For the stationary system,

Ea(t) = ρ

Proof: By conditioning on N(t) and the file size requirements (vi) of the N(t) ongoing transfers and their
ages (ui), using Equation 6 and results of Section II-A,

Ea(t) =

=
∑∞

n=1(1 − ρ)ρn
∫∞
v1=0 ...

∫∞
vn=0

∫ v1
u1=0 ...

∫ vn
un=0

[

∑n
i=1

Rvi (ui(t))

n

]

dun

vn
...du1

v1
dVs(vn)...dVs(v1)

Since the integrand in square brackets above is linear and symmetric with respect to the indices i, we get,
Ea(t)

=
∞
∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0
...

∫ ∞

vn=0

∫ v1

u1=0
...

∫ vn

un=0

Rv1(u1(t))
dun

vn

...
du1

v1

dVs(vn)...dVs(v1)

=
∞
∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0

∫ v1

u1=0
Rv1(u1(t))du1

dVs(v1)

v1

9

Using Equation 4,

Ea(t) =
∞
∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0
v1

dVs(v1)

v1

= ρ /

We note that this result is as would be expected; for let A(t) denote the cumulative process for the rate
process a(t) (i.e., A(t) =

∫ t
u=0 a(u)du). Then for the stable system,

lim
t→∞

A(t)

t
=

λEV

c
= ρ

(we have taken c = 1 packets/second.)

The auto-covariance function of the a(t) process for a lag of τ is given by

ra(τ) := Ea(0)a(τ) − Ea(0)Ea(t)

= Ea(0)a(τ) − ρ2

= Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0} + Ea(0)a(τ)I{N(0)>0,KY (0)(τ)>0} − ρ2

=: J1(τ) + J2(τ) − ρ2 (7)

where Ky(·) and Y (t) are as defined in Section II-A. We study the asymptotic behaviour of ra(τ) by
considering J1(τ) and J2(τ) separately.

Theorem IV.1: For AWP controlled transfer of file sizes of distribution V (·), if there exists an r such that
0 < r ≤ inf0≤v<∞ inf0≤u<U(v) Rv(u), then

J1(τ) �τ→∞ (1 − ρ)2λr2
∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
dudV (v)

Proof: See Appendix I. /

Pareto distributed file sizes have the following distribution,

V c(x) = min(1,
1

xα
)

with the property that EV is finite iff α > 1 and EV 2 is finite iff α > 2.

Corollary IV.1: For Pareto distributed file sizes transferred using TCP-SS,

J1(τ) �τ→∞ 4(1 − ρ)2 λ

α − 1

1

2ατα−1

Proof: For TCP-SS, Rv(u) = 2I{u<U(v)} , U(v) = v
2

and X(τ) = 2τ . Use Theorem IV.1 with r = 2. /

Corollary IV.2: For Pareto distributed file sizes transferred using TCP-CA,

J1(τ) �τ→∞ (1 − ρ)2 λ

α − 1

1

τα−1

Proof: For TCP-CA, Rv(u) = (1 + 1√
2u

)I{u<U(v)}, U(v) = v + 1−
√

1 + 2v and X(u) = u +
√

2u . Now,

U(v) = (v + 1 −
√

1 + 2v) =
(
√

1 + 2v − 1)2

2

>
(
√

2v − 1)2

2
=

2v + 1 − 2
√

2v

2
> v −

√
2v

10

Hence, from Theorem IV.1 with r = 1,

J1(τ) �τ→∞ (1 − ρ)2λ
[

∫∞
v=τ+

√
2τ (v −

√
2v)dV (v)

−τV c(τ +
√

2τ)
]

= (1 − ρ)2λ

[

EV

(τ +
√

2τ)α−1
−

α
(α−0.5)

(τ +
√

2τ)α−0.5

− τ

(τ +
√

2τ)α

]

∼τ→∞ (1 − ρ)2 λ

α − 1

1

τα−1

The proof follows by noting that f(t) �t→∞ g(t) and g(t) ∼t→∞ h(t) implies f(t) �τ→∞ h(t). /

As is evident from the examples of slow start and congestion avoidance given in Section III, the Rv(u)
function for an AWP, in general, will be of the form R∞(u)I{0≤u≤U(v)} so that inf0≤v<∞ inf0≤u<U(v) Rv(u) =
infu≥0 R∞(u), where R∞(u) is the data sending rate function of a file of infinite volume. If in addition,
Rv(u)I{u≤U(v)} is bounded, i.e., Rv(u)I{u≤U(v)} ≤ R for some ∞ > R ≥ r, we have the following corollary
of Theorem IV.1.
Corollary IV.3: If an AWP is such that 0 < r ≤ Rv(u)I{u≤U(v)} ≤ R < ∞ for v, u ≥ 0 then,

J1(τ) �τ→∞ (1 − ρ)2λr2
[
∫ ∞

v=Rτ

v

R
dV (v) − τV c(Rτ)

]

Proof: Since Rv(u)I{u≤U(v)} ≤ R, we get from Equation 4,

v =
∫ U(v)

u=0
Rv(u)du ≤ RU(v)

Thus, U(v) ≥ v
R

. From Equations 5,

X(u) =
∫ u

0
RX(u)(x)dx ≤ Ru

Thus, X(u) ≤ Ru. The proof follows by using above bounds for U(v) and X(u) to further bound the lower
bound of J1(τ) in Theorem IV.1. /
Corollary IV.4: If an AWP, such that 0 < r ≤ Rv(u)I{u≤U(v)} ≤ R < ∞, is used for transfer of Pareto

distributed files then,

J1(τ) �τ→∞
(1 − ρ)2λr2

(α − 1)Rατα−1

Proof: Follows from Corollary IV.3. /
Theorem IV.2: For AWP controlled transfer of Pareto distributed file sizes,

ρ2 − J2(τ) ⇀↽
ρ2

s
− J̃2(s) ∼s→0 ρλ

α2Γ(−α)

(1 − ρ)α−1s2−α

Proof: See Appendix II. /

Corollary IV.5: For AWP controlled transfer of Pareto distributed file sizes with α > 1,

ρ2 − J2(τ) ∼τ→∞
α2Γ(−α)

(1 − ρ)α−1

2 − α

Γ(3 − α)

ρλ

τα−1

11

Proof: Follows using Theorem IV.2 and a Tauberian theorem from [13] (reproduced, for convenience, in
Appendix III). /

Note that the result of Theorem IV.2 (and hence of Corollary IV.5) are independent of the AWP used. This
also gives the convergence rate in the Key Renewal Theorem [20].
Theorem IV.3: For transfer of Pareto distributed file sizes using TCP-SS or TCP-CA,

ra(τ) �τ→∞ ∆(λ, α)
1

τα−1

For some function ∆(λ, α) that depends on whether slow start or congestion avoidance is used to transfer
the files.
Further, there exists a λ∗ > 0 such that ∆(λ, α) > 0 for all λ < λ∗

Proof: Using Corollaries IV.1, IV.2 and IV.5,

ra(τ) = J1(τ) + J2(τ) − ρ2

�τ→∞

[

δ(1 − ρ)2

α − 1
− ρ

α2Γ(−α)

(1 − ρ)α−1

2 − α

Γ(3 − α)

]

λ

τα−1

= ∆(λ, α)
1

τα−1

where δ = 1 for congestion avoidance and δ = 22−α for slow start. Note that in both cases δ is independent
of λ. Now, for fixed α > 1 and ρ < 1, the second term in square brackets above is always positive and
decreases to 0 as λ → 0 while the first term increases to δ (a positive number) as λ → 0. Since both these
terms are continuous functions of λ, there exists λ∗ > 0 such that ∆(λ,α)

λ
> 0 for all λ < λ∗. /

It follows from Theorem IV.3 that, for 1 < α < 2 and λ < λ∗, the process a(t) is LRD. Further, if it can be
shown that ra(τ) has a hyperbolic decay then the a(t) process will be LRD with Hurst parameter H ≥ 3−α

2
.

Theorem IV.4: For transfer of Pareto distributed file sizes using an AWP such that 0 < r ≤ Rv(u)I{u≤U(v)} ≤
R < ∞, for v, u ≥ 0,

ra(τ) �τ→∞ ∆(r, R, λ, α)
1

τα−1

For some function ∆(r, R, λ, α) for which there exists a λ∗ > 0 such that ∆(r, R, λ, α) > 0 for all λ < λ∗

Proof: Follows from Corollaries IV.4 and IV.5 and arguments similar to those in Theorem IV.3. /
Remark: Theorem IV.4 is of particular importance for the cases where the window of the AWP is bounded

so that after some age (at which the maximum allowed window is achieved) an acknowledgement of du data
result in exactly du to be released by sender thus keeping the window size fixed and hence2 R∞(u) = 1. For
example, if the AWP is TCP with initial slow start threshold set to a value larger than the maximum allowed
window then, for an infinitely long file, the sender will send 2du amount of data for each acknowledgement
of du amount of data3, i.e., R∞(u) = 2 till the point at which the window size becomes equal to the
maximum allowed window and from this age onwards, du amount of data acknowledgement will result in
du amount of data released from the transmitter so as to maintain a constant window and hence R∞(u) = 1.

2At this point it is important to see the relation between the R∞(u) function and the window size as a function of age. If w(u) denotes the
window size of an infinitely long file then the following relations hold:

w(u) = w(0) +

∫ u

x=0

R∞(x)dx

R∞(u) = 1 +
dw(u)

du

Thus if the maximum allowed window is attained at age u∗, then dw(u)
du

= 0 for all u ≥ u∗.
3and hence will be increasing the window size by du

12

V. ANALYSIS OF THE STATIONARY LINK BUFFER PROCESS

In this section we present the analysis for obtaining the distribution of the link buffer content process. An
explicit expression for the LST of the distribution of the buffer content process is obtained in terms of the
file size distribution and the quantities associated with an AWP (see Equations 9 and 11). The structure of
the LST thus obtained is used to find a necessary and a sufficient condition for the existence of the mean of
the buffer content process.
Important Observations

• The amount of data in the link buffer at any time t is the sum of the windows from all the file transfers
ongoing at t.

• Owing to the infinite buffer assumption there is no loss hence an AWP follows a known window increase
schedule as a function of the age of the file transfer. This enables us to determine the window (which is
also the session’s contribution to the link buffer occupancy) for a given age.

The age of an ongoing transfer can be obtained in the following way: the stationary distribution of the
number of ongoing transfers N(t) is given by P{N(t) = n} = (1 − ρ)ρn. Conditioned on the number
of ongoing transfers at t, the ages of the various ongoing transfers are independent; further, the age of an
ongoing transfer is uniformly distributed in the interval [0, v] where v is its total file transfer size (which has
distribution Vs(·), see Section II-A).

A. Analysis for the Buffer Content Process
Consider an AWP that starts transmission with an initial window of w(0) packets, i.e., on connection

startup the server sends w(0) packets into the buffer. Let w(1) be the window after these w(0) packets
have been transmitted by the link and acknowledged. For example, in TCP-SS, w(0) = 1 and w(1) = 2.
Generalising, let w(n), n ≥ 1, denote the window size just after

∑n−1
i=0 w(i) amount of data of the file is

acknowledged. For example, in TCP-SS, w(0) = 1, w(1) = 2, w(2) = 4, ... , w(n) = 2n.
Let the period where the nth window of the sequence {w(i), i ≥ 0} is getting served be called the (n+1)th

cycle. Thus w(n − 1) is the window at the start of the nth cycle and is also the amount of data served in
nth cycle. The (n + 1)th cycle starts when w(n − 1) amount of data is served after start of nth cycle. Let
W (n) :=

∑n−1
i=0 w(i) denote the amount of data acknowledged until the start of (n+1)th cycle (see Figure 5).

Note that W (0) = 0, by definition. The values of w(n) and W (n) for TCP-CA and TCP-SS are listed in
Table I.

Phase of TCP w(n) (Pkts) W (n) (Pkts)
TCP-CA n + 1 n(n+1)

2

TCP-SS 2n 2n − 1

TABLE I
THE VALUES OF w(n) AND W (n) FOR TCP’S CONGESTION AVOIDANCE AND SLOW START PHASES.

Note that the w(n), n ≥ 0, are the possible window sizes at the beginnings of cycles; during the cycles the
window sequences could pass through other integer values. For example, in TCP-SS, the TCP window can
take all integer values but w(n) is restricted to integral powers of 2.

Let γm(z) denote the net input rate into the link buffer from an infinitely long session that has received z

amount of service in the (m+1)th window. For TCP-SS, γm(z) = 1 because every dz amount served brings
in 2dz and dz amount leaves the link buffer. Note that the definition of γm(z) does not depend on file size
as it is defined for an infinitely long file. Also note that, γm(z) = R∞(W (m) + z) − 1 in terms of function
Rv(u) defined in Section III.

Recall the function U(v) defined in Section III. If the age u of a file of size v is such that u > U(v) then
the net data input rate into link buffer is −1 because no new data is sent for a unit amount of data served.

13

Note that if v ∈ [W (m), W (m+1)], then U(v) ∈ (W (m−1), W (m)]. For example, if v = 5, and we have
TCP-SS, then in the first cycle one packet is sent. Upon the receipt of an acknowledgement for this packet the
window grows to w(1) = 2 and two packets are sent during the second cycle. When the acknowledgement
of the first of these is received, the window grows to three and two more packets are sent bringing the total
number of sent packets to five; we see that U(5) = 2 since upon receipt of the second acknowledgement the
residual file in the server is fully transferred. On the receipt of the acknowledgement of the third packet, the
window grows to four and the second cycle ends. The third cycle involves no transmission from the server
and just the last two packets of the file are transferred by the link in this cycle.

X

Residual File

 W(4) W(3) W(2) W(1)0 W(5)

 w(0) w(1) w(2) w(3) w(4)

Fig. 5. The figure shows a file of size X packets (W (5) < X < W (6)) split into the possible window sizes (at end of cycles) under a general
AWP.

The idea now is to find the transform of the distribution of the windows which constitute the link buffer
occupancy. Considering the stationary system, at time instant t and for 1 ≤ i ≤ N(t), denote by Gi(t) the
window of the ith ongoing transfer. We recall the facts about the stationary M/G/1 PS queue from Section II-
A. As Gi(t) is a function only of the ith ongoing transfer’s total file size and age, conditioned on N(t), the
Gi(t)’s are independent and identically distributed random variables. The total data in the link buffer is,

Q(t) =
N(t)
∑

i=1

Gi(t) (8)

as the whole of the current window worth of data from each file is in the buffer (owing to zero propagation
delay assumption).

Thus the stationary link buffer occupancy is actually a random sum of i.i.d. random variables with com-
mon distribution, say, G(·). Using Proposition 2.9 of [23], it follows that if G(·) corresponds to a sub-
exponential distribution (see [23]) then so does Q(·). In particular, if the tail of G(·) is regularly varying
with parameter β then so is the tail of Q(·).

Denote the LST of G(·), the window size distribution, by g̃(s). The LST of link buffer occupancy distri-
bution is thus:

q̃(s) =
∞
∑

k=0

ρk(1 − ρ)g̃(s)k =
1 − ρ

1 − ρg̃(s)
(9)

Where we have used the fact that the probability of there being n files active is (1−ρ)ρn and that conditioned
on N(t) = n, the Gi(t)’s are independent and distributed according to G(·).
Thus we can obtain the mean buffer length and the variance of the buffer occupancy once we have obtained
g̃(s). In particular, the mean buffer occupancy is given by:

EQ =

(

ρ

1 − ρ

)(

− d

ds
g̃(s)

)

∣

∣

∣

s=0
(10)

Observe that EQ is finite iff d
ds

g̃(s) |s=0 is finite.
Theorem V.1: For an AWP used to transfer files of distribution V (·), the LST of the distribution of a single

file’s contribution to the link buffer is

g̃(s) =
∞
∑

n=0

∫ W (n+1)

v=W (n)

[

∫ v

U(v)
e−s(v−u) du

v
+
∫ U(v)

W (n−1)
e−s(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz) du

v

14

+
n−2
∑

m=0

∫ W (m+1)

u=W (m)
e−s(w(m)+

∫ u−W (m)

0
γm(z)dz) du

v

]

dVs(v) (11)

Proof: Follows from the results for PS queue given in Section II-A. We use the fact that the window size of
a file of size v, when its age u < U(v) and u ∈ (W (m), W (m + 1)), is w(m) +

∫ u−W (m)
0 γm(z)dz. Also,

the window size of a file of size v is v − u if u > U(v). In Equation 11, n is used to condition on v (the file
size requirement) being in the nth cycle, and m is used to condition on u (the age of the file) being in the
mth cycle. The integrand (with respect to v) above contains three terms to take care of the possibility where
the age of file is in the last window (i.e., u > U(v)) and hence whole of remaining file v − u is in the link
buffer. /

Corollary V.1: For TCP-SS controlled transfer of files of distribution V (·), the LST of the distribution of a
single file’s contribution to the link buffer is

Gc(x) ∼x→∞ V c
e (2x)

Proof: See Appendix IV. /

Corollary V.2: For TCP-SS controlled transfer of Pareto distributed files, Gc(·) is regularly varying with
parameter α − 1 where α is the shape parameter of Pareto distribution.
Proof: Follows directly from Corollary V.1. /

Remark: Using the property that γm(z) ≥ 0 for TCP-SS, result of Corollary V.1 has also been obtained
in [24]. Using a similar observation, it is also shown in [24] that for TCP-CA controlled transfer of Pareto
distributed files, Gc(·) is regularly varying with parameter 2(α − 1). Thus the method presented in this sec-
tion, being applicable irrespective of any structure of γm(z) function, is more general in nature as compared
to that of [24]; Corollary V.1, when compared to results of [24], serves as validation of the general method
introduced in this section.

B. The Mean Link Buffer Occupancy, EQ

The expected link buffer occupancy is, from Equations 10 and 11 and using dVs(v) = vdV (v)
EV

,

EQ =
λ

(1 − ρ)

∞
∑

n=0

∫ W (n+1)

v=W (n)

[

∫ v

U(v)
(v − u)du +

∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

+
n−2
∑

m=0

∫ W (m+1)

u=W (m)
(w(m)+

∫ u−W (m)

0
γm(z)dz)du

]

dV (v) (12)

The case where γm(z) ≥ 0 is of special interest as it includes TCP-SS and TCP-CA. We obtain explicit
results for this case. These results are summarised in the following.
Theorem V.2: Under a general AWP with γm(z) ≥ 0, ∀m, z,

λ

(1 − ρ)

∞
∑

n=0

w2(n − 1)V c(W (n)) ≤ EQ ≤ 2λ

(1 − ρ)

∞
∑

n=0

w2(n)V c(W (n − 1))

Proof: See Appendix V. /

Corollary V.3: For congestion avoidance controlled transfer of Pareto distributed file sizes, EQ is finite iff
α > 1.5.
Proof: Follows from Theorem V.2 with V c(v) = 1

vα , w(n) = n + 1, W (n) = n(n+1)
2

. /

Corollary V.4: For slow start controlled transfer of Pareto distributed file sizes, EQ is finite iff α > 2.
Proof: Follows from Theorem V.2 with V c(v) = 1

vα , w(n) = 2n, W (n) = 2n − 1. /

Note that the Corollaries V.3 and V.4 are in accordance with our results of Corollary V.2 and that of [24]
where we have seen that Gc(·) is regularly varying with parameter α − 1 and 2(α − 1) for TCP-SS and
TCP-CA respectively.

15

Discussion of Results
We make the following remarks on the results obtained till now in this section.
• Note the marked difference in the tail of the buffer occupancy distribution for TCP-SS and TCP-CA.

We have seen in Section IV that for both of these AWPs the a(t) process is LRD with same lower bound
on the Hurst parameter. The results of this section thus clearly indicate that feedback control can lead
to a lightening of the tail of the link buffer occupancy when compared to an uncontrolled (open-loop)
transfer of files. It can also be observed that an aggressive feedback control like the slow-start phase
of TCP may not result in lightening of the buffer occupancy distribution; in this case the mean buffer
occupancy is finite iff the second moment of the (Pareto) file size distribution is finite.

• Corollary V.3 is interesting in view of the result of Section IV where it was shown that, for small
arrival rates λ, the traffic into the link buffer (a(t) process) is LRD for Pareto distributed file sizes with
1 < α < 2. Thus, we now have an example where the traffic into a queue is LRD but the mean queue
length is finite; this is because the traffic into the queue is regulated using a closed loop control.

• Note from Theorem V.2 that if w(n) are bounded then EQ < ∞ independent of the file size distri-
bution. Yet it is still possible to have the a(t) process exhibiting long range dependence as seen in
the discussions in relation to Theorem IV.4 at end of Section IV. For example, if w(n) = 1 for all
n then Theorem IV.4 is applicable with r = R = 1 thus establishing that a(t) process is LRD for
small λ while the distribution of the link buffer occupancy has an exponentially decaying tail, as now
P (Q(t) > q) = P (N(t) > q) = ρq+1.

C. Simulation Experiments
We performed ns simulations to validate the results of the previous sections. We simulated a single link

with capacity 10Mbps to which requests for transfer of Pareto files arrive according to a Poisson process
of rate λ. The mean file size was set to 30KBytes and λ = 16.7 requests/second so that the link load was
ρ = 0.4.

In Figure 6 we plot log Qc(x) vs log(x) obtained from ns simulations for the transfer of Pareto distributed
files using the TCP-CA and TCP-SS protocols; the normalised offered load ρ was set to 0.4 and the link
buffer implements DRR scheduling. The shape parameters α of the file size distribution were 1.6 and 1.4.
Also shown in the figures are the corresponding plots obtained from numerical computation of the buffer
occupancy distribution using, along with Equation 8, the results of Corollary V.1 (for TCP-SS) and [24]
(for TCP-CA). The slopes of the analysis curves are also shown in the figures and are seen to be close to
their respective values predicted by the above analysis; for example, the slope for TCP-SS with α = 1.4
is −0.3955 which is close to (α − 1) as suggested by the analysis. The plot also confirms the results of
Section V that with TCP-CA the tail of link occupancy distribution is lighter than that for TCP-SS. Note that
the tail behavior for TCP-SS controlled transfer of Pareto 1.6 files is worse than that for TCP-CA controlled
transfer of Pareto 1.4 files. The sharp drops observed at the ends of the simulation curves are due to the finite
simulation run lengths and are not considered in the approximation.

Variance-time plots4 for the a(t) process are shown in Figure 7 for TCP-SS and TCP-CA controlled
4Obtain the time series X = {Xi, i ≥ 1} where Xi is the number of packets arriving in the interval (p(i− 1), pi) where p is a packet service

time. Divide the original time series X into blocks of size m and average within each block, that is consider the aggregated series,

X(m)(k) =
1

m

km
∑

i=(k−1)m+1

Xi, k ≥ 1

for successive values of m. The index k labels the block. Then take the sample variance of X (m)(k), k ≥ 1 within each block. This sample
variance is an estimator of V arX(m). For a given m, divide the data, X1, ..., XN , into N/m blocks of size m. Calculate X(m)(k), for
1 ≤ k ≤ N/m, and its sample variance

V̂ arX(m) =
1

N/m

N/m
∑

k=1

(X(m)(k))2 −

(

1

N/m

N/m
∑

k=1

X(m)(k)

)2

16

transfer of Pareto files with shape parameter α = 1.6 and 1.4. The slopes of the plots indicate that the input
process is LRD with Hurst parameter 3−α

2
irrespective of TCP-SS or TCP-CA as proved before.

0 1 2 3 4 5 6 7 8 9
−14

−12

−10

−8

−6

−4

−2

0

ln (n) →

ln
 P

{ Q
 >

 n
} TCP−CA Analysis

Slope = −1.222087

TCP−SS Analysis
Slope = −0.605080

TCP−SS Simulation TCP−CA Simulation

Pareto Files with α = 1.6

0 1 2 3 4 5 6 7 8 9
−14

−12

−10

−8

−6

−4

−2

0

ln (n) →

ln
 P

{ Q
 >

 n
}

TCP−CA, Simulation

TCP−SS, Analysis
Slope = −0.395595

TCP−CA, Analysis
Slope = −0.803743

TCP−SS, Simulation

Pareto Files with α = 1.4

Fig. 6. Plot showing log Qc(x) vs log(x) obtained from ns simulations for Pareto files with α = 1.6 and 1.4 controlled using TCP-CA and
TCP-SS. The link load was set to 0.4. Also shown are the curves obtained from numerical computation of Qc(·) from analysis.

0 1 2 3 4 5 6
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

 log10(m)

lo
g1

0(
V

ar
(X

m
)

TCP−CA 1.6: Slope = −0.534586
Hurst parameter = 0.732707
TCP−SS 1.6: Slope = −0.544852
Hurst parameter = 0.727574

0 1 2 3 4 5 6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

 log10(m)

lo
g1

0(
V

ar
(X

m
)

TCP−CA 1.4: Slope = −0.386119
Hurst parameter = 0.806941
TCP−SS 1.4: Slope = −0.415684
Hurst parameter = 0.792158

Fig. 7. Variance-Time plots for a(t) process obtained from ns simulations for Pareto files with α = 1.6 and 1.4 controlled using TCP-CA and
TCP-SS. The link load was set to 0.4.

VI. EFFECT OF RANDOM PACKET DROPS

In this section we consider the effect of window reductions due to active queue management; for sim-
plicity of analysis we assume random packet marking instead of drops and assume that the sender AWP is
cooperative and responds to the mark signal as if it has detected a packet loss. In Section V we have seen
that the worst possible behaviour of the tail of the buffer occupancy distribution is obtained when the AWP is
aggressive like TCP-SS. In this section we assume such an aggressive AWP and study the effect of random
marking on the buffer occupancy distribution. We consider various schemes of responses to reception of a
marked packet, i.e., we consider a multiplicative decrease of the window and also a gentle decrease. This
section is meant to support the intuition, in the framework of the model, that with window reductions (due

Repeat this procedure for different values of m and plot the logarithm of the sample variance versus log m. The slope β of the curve is obtained
by fitting a line to the points obtained from the plot. The Hurst parameter is then H = β+2

2
.

17

to random packet drops or markings owing to active queue management), the buffer occupancy distribution
will have a lighter tail. Similar results have also been obtained in [25].

Owing to the assumptions made earlier in the paper, the contents of the buffer comprise the windows
of all the ongoing transfers. As before, therefore, we proceed by characterising the window evolution of
an infinitely long transfer. We use the notation w(u) for the window size of an infinitely long file whose
u amount of data has been acknowledged. Note that, owing to random packet marking, w(u) is now a
stochastic process (as opposed to being a deterministic function of u).

We use the following marking model. The marking is at a fixed rate (i.e., we are not modelling adaptive
marking based on queue lengths). As before, we have a fluid arrival and service model. We assume that
during busy periods the link server marks the emitted fluid at Poisson points over the fluid. The rate of this
Poisson process is µ, 0 < µ < ∞ (marks per unit data served). This means that during busy periods the
amount of fluid that is served between marks is exponentially distributed with mean 1

µ
. If the unit of fluid is

packets, then this can be related to packet marking as follows: the probability p that a packet is marked is
given by p = 1 − e−µ. Thus our model also relates to packet marking with a fixed marking probability.

Let us now see how, under the PS service model, the above aggregate marking model translates to marks
over each file transfer. Our marking model implies that when an amount ds of the fluid is served, the
probability that it contains a mark is µds. If there are n files being served at this time then the probability
that this mark “hits” a particular file is 1

n
µds. Now when an amount of data ds is served, and there are n files

active, then (because of PS service) the amount by which the age of any particular file increases is du = 1
n
ds.

It follows that when a file has achieved the age u, the probability that it is hit by a mark is µdu. It is then
clear that over the age of an infinitely long file the sequence of marks forms a time homogeneous Poisson
process of rate µ (marks per unit age).

It is also clear from the above argument that across the ongoing file transfers the marking processes on the
files are independent. Hence we can again analyse each active flow separately along the lines of our analysis
in the previous section. The AWP increases the window as a function of age according to w(u); marks can
occur in a Poisson process of rate µ over the age evolution; at each mark the window decrease and increase is
discussed below. Thus, as before, we can consider each active flow separately and model only its individual
contribution to the link buffer. The modes of evolutions of w(u) we consider in this work are depicted in
Figures 8 and 10, and are analysed in Sections VI-A and VI-B, respectively.

A. The AWP With Linear Window Reduction
In Figure 8, w(u) increases as it does in TCP-SS, i.e., linearly with age u until a mark occurs. We use a

TCP-SS like window buildup as it was observed in [24] that TCP-SS gives the worst possible tail behaviour
of G(·) in absence of window reductions (due to marking or drops). We refer to the period where w(u)
increases linearly as an on-period. We then assume that after a mark occurs, no new data is sent until whole
of the window at which the mark occurred is served; this is what happens in the Tahoe version of TCP
(see [7]), except that we are not considering the time wasted in coarse timeout. This assumption ensures that
an ongoing transfer always has a positive amount of outstanding data in the link buffer and hence enables us
to use the processor sharing results. The phase where w(u) is decreasing and no new data is sent in response
to acknowledgments is called an off-period. Note also that a mark occurring during the off-period does not
affect the trajectory of w(u).

In Figure 8, which depicts the w(u) function for an infinitely long file, the first on-period ends at an age
of x1 where a mark occurs; x1 is an exponentially distributed random variable with mean 1

µ
. After a mark at

age x1, the TCP sender stops sending data and enters the off-period. Note that in the off-period the window
w(u) decreases at the same rate as the age of the file increases, i.e., dw(u)

du
= −1. This continues for an

additional age of w(x1) = x1 (for simplicity we have taken w(x1) = x1 instead of x1 + 1 as is the case for
TCP-SS). At 2x1 another on-period starts and the evolution process repeats itself. Figure 8 also shows the
R(u) process, the rate of data arrival into the link buffer from an infinitely long session which has attained
age u. Note that, owing to the TCP-SS-like window evolution in the on-period, the off-period duration (in

18

x

u
x x x x x x1 1 2 2 3 3

u
x x x x x x1 1 2 2 3 3

w(u
)

R (
u)

2

Fig. 8. The w(u) and R(u) functions for the AWP considered in Section VI-A.

w(u
)

x

age0 z (u)x u

x

w(z (u))x

xu−w(z (u))

Fig. 9. Figure showing the computation of the zx(u) function used in analysis of the AWP of Section VI-A.

terms of age) is same as the corresponding on-period length. Also, R(u) = 2 in an on-period and 0 in an
off-period.

1) Buffer occupancy distribution for the AWP of Figure 8: Let px(u) := P{w(u) > x}. The regenerative
behaviour of the w(u) process as observed in Figure 8 enables us to write a renewal equation for px(u) as
follows,

px(u) = e−µzx(u)I{u>x} +
∫ u

y=0
px(u − y)

µ

2
e−

µ
2
ydy (13)

where zx(u) is the minimum age such that if a mark does not occur in the age interval [0, zx(u)] then
w(u) ≥ x. Note that zx(u) satisfies the condition that w(zx(u)) = (u − zx(u)) + x; this is obtained by
putting the condition that a mark occurs at age zx(u) and results in a window of exactly x at age u (See
Figure 9). In the second term in Equation 13, y is used to condition on the start of the second on-period
which is the regeneration instant for the w(u) process; also used is the fact that the first regeneration epoch
(and also the subsequent regeneration cycle lengths) is exponentially distributed with mean 2

µ
.

Solution to Equation 13 is (see [20]),

px(u) = e−µzx(u)I{u>x} +
∫ u

y=0
e−µzx(u−y)I{u−y>x}

µ

2
dy

= e−µzx(u)I{u>x} +
∫ u−x

y=0
e−µzx(u−y) µ

2
dy

= e−µxI{u>x}

Now, the above expression assumes an infinitely long file. For a file of size v, the window at age u is

19

wv(u) = min(w(u), v − u) ≤ w(u). Hence, recalling the notation G from Section V,

Gc(x) =
∫ ∞

v=0

∫ v

u=0
P{wv(u) > x}du

v
dVs(v)

≤
∫ ∞

v=0

∫ v

u=0
P{w(u) > x}du

v
dVs(v)

= e−µx
∫ ∞

v=x

∫ v

u=x

du

v
dVs(v)

≤ e−µx

i.e., Gc(·) is bounded by an exponentially decaying function.
Remark: Compare this result with Corollary V.2 where it is shown that for TCP-SS controlled transfer of
Pareto distributed files and with no random marking Gc(·) is regularly varying with parameter α − 1.

2) Auto-covariance function of the a(t) process for the AWP of Figure 8: Let p(u) denote the probability
that, for an infinitely long file, the R(u) function is 2, i.e., an on-period at age u. The following renewal
equation can be written for p(u):

p(u) = e−µu +
∫ u

y=0
p(u − y)

µ

2
e−

µ
2
ydy

which has solution

p(u) = e−µu +
∫ u

y=0
e−µ(u−y) µ

2
dy

=
1

2

[

1 + e−µu
]

It is easy to see that Theorem IV.1 can be modified for an AWP which has regenerative behaviour in
response to marking as the above protocol, to read:
Theorem VI.1: If the AWP used to transfer file sizes of distribution V (·), in presence of random drops, has

the properties:
1) The AWP alternates between two states, called on-period and off-period,
2) A mark results in the end of the current on-period and the start of the next off-period,
3) The window size at any age is strictly positive irrespective of the state of the AWP,
4) The instants of start of on-periods are regeneration points for the R∞(u) function,
5) There exists an r such that Rv(u) ≥ r > 0 in an on-period and Rv(u) = 0 in the off-period then,

Then,

J1(τ) �τ→∞ (1 − ρ)2λr2
∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
EI{on at u}I{on at u1(τ)}dudV (v)

Proof: The above relation follows using arguments similar to those in the proof of Theorem IV.1. We have
used u1(τ) to denote the age, at time τ , of the session active at time 0. Here U(·) and X(·) are deterministic
and correspond to the µ = 0 case; this simplification is obtained using the regeneration property of Rv(u)
which ensures that (as Rv(u) = 0 in off-periods), sup{u : Rv(u) > 0, u ≤ v} ≥ U(v). /

Corollary VI.1: For the AWP of Figure 8,

J1(τ) �τ→∞ 2(1 − ρ)2λ

∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
p(u)dudV (v)

∼τ→∞
(1 − ρ)2λ

2α(α − 1)

1

τα−1
For Pareto distributed file sizes.

20

x

w(u
)

x1 x2 x3

u

x1 x2 x3

u

R (u
)

Fig. 10. The w(u) and R(u) functions for the AWP considered in Section VI-B.

Proof: The first relation above follows from Theorem VI.1 by using r = 2 and noting that, due to alternating
behaviour of on and off periods in the AWP of Figure 8, as 0 < µ < ∞, and as the consecutive on-period
and off-period length are same,

EI{on at u}I{on at u+t} →t→∞
1

2
p(u)

along with the observation that u1(τ) →τ→∞ ∞. The second expression of the corollary follows by using
p(u) = 1+e−µu

2
, U(v) = v

2
and X(τ) = 2τ and plugging in the expression for Pareto distribution in the first

expression. /
Since J2(τ) has asymptotic behaviour independent of the AWP used, it follows that Theorem IV.3 (and

hence its conclusion) holds with δ = 2−α for the AWP of Figure 8.

B. The AWP With Multiplicative Window Reduction
The AWP of Figure 8 is very conservative in responding to marking as the window size reduces to 0 and

then the window buildup restarts independent of the past history.
We now consider another, more aggressive, response to marking, i.e., multiplicative decrease of the win-

dow as shown in Figure 10. The window under this AWP evolves as follows: the AWP behaves like TCP-SS
until the first mark occurs at age x1. At age x+

1 a multiplicative decrease of the window takes place and the
window size is reduced to w(x1)

2
. Note that this is possible if the following mechanism is used: a mark at

window size w results in drop of all of the data of the corresponding file in the link buffer and the AWP
controlling the transfer of the file reduces it’s window size to w

2
instantaneously (thus transferring w

2
amount

of data to the link buffer). Note that this mode of window evolution is very similar to the Reno version of
TCP.

The exact analysis of buffer occupancy distribution becomes hard as the evolution of the window depends
on all the previous marking epochs. But it is possible to analyse for the expected window of active sessions.
Let w(u) be the random variable corresponding to the window of an infinitely long file at an age of u and
let Ew(u) be its expectation. Following the analysis of [26] it is possible to write down the following
differential equation for Ew(u) 5. We let M(u) denote the Poisson process corresponding to the instants of
marks, i.e., dM(u) = I{a mark occurred in the interval (u,u+du)}. With this notation, we get the following
differential equation governing the evolution of the Ew(u) function.

dEw(u) = du − Ew(u)

2
µdu (14)

5The only difference in the analysis of [26] and the one to be presented here is that we are interested in window as a function of age while [26]
considers window as a function of time for the case where only one session is active.

21

where the first term is for the increment of the window by an amount du when du amount of data is ac-
knowledged (without marking) and the second part takes care of the multiplicative decrease in window size
as a result of a mark occurring. We have also used the fact that M(u) is a Poisson process of rate µ.

The above differential equation when solved with the boundary condition of Ew(0) = 0 (for simplicity),
yields,

Ew(u) =
2

µ
(1 − e−

µ
2
u) ≤ 2

µ

Note that the above expression is for an infinitely long file and the window at any age of a finite length file
is bounded by w(u), it follows that (recall G and Q defined in Section V) EG ≤ 2

µ
and hence, using Wald’s

lemma, EQ = EN.EG ≤ ρ
1−ρ

2
µ

which is finite for all µ > 0 irrespective of the file size distribution. It
can also be shown in a similar manner that the second moment of w(u) process is bounded above by a fixed
quantity.

As the AWP of Figure 10 has Rv(u) = 2 for the duration the sender is transmitting data to the link buffer,
Theorem IV.4 holds for this AWP with R = r = 2.

VII. CONCLUSION

We have developed a framework for the analysis of processes related to the bottleneck link buffer under
an adaptive window protocol (AWP) controlled transfer of randomly arriving finite volume files. The most
important example of an AWP is TCP. The key idea used in the analysis was to look at the window size of
the AWP controlling the transfer of a file as a function of the amount of data served from the file.

We have analysed the auto-covariance function of the process corresponding to the aggregate traffic into
the bottleneck link buffer. Bounds on the asymptotic behaviour of the auto-covariance function is given
which have explicit dependence on the AWP used and the file transfer volume distribution.

Also analysed is the stationary behaviour of the bottleneck link buffer occupancy under the same scenario.
An explicit expression for the stationary distribution of the link buffer occupancy was obtained, and was
again seen to have a dependence on the AWP and the file size distribution.

It was shown that, for Pareto distributed file transfer volumes with shape parameter α,
1) When TCP’s congestion avoidance or slow start algorithms are used, the traffic into the link buffer is

long range dependent (LRD) for small file transfer request arrival rates and for 1 < α < 2,
2) Under the congestion avoidance phase of TCP, the tail of the distribution of the link buffer occupancy

process is regularly varying with index 2(α−1). This also implies that the mean link buffer occupancy
is finite iff α > 1.5.

3) Under the slow start phase of TCP, the tail of the distribution of the link buffer occupancy process
is regularly varying with index (α − 1). This means that the mean link buffer occupancy is finite iff
α > 2.

Thus we have given an example (Pareto distributed file sizes with 1.5 < α < 2 transferred under the
congestion avoidance phase of TCP) where, in the presence of LRD input to the link buffer, the buffer
occupancy has finite mean. This suggests that the impact of long range dependence of Internet traffic may
not be as severe as is usually predicted by means of an open loop analysis.

We have also considered the effect of window reductions (owing to random packet markings) on the link
buffer occupancy process. It was seen that, for an AWP which increases its window aggressively like the
TCP does in its slow start phase followed be a response to packet marking which is either gentle as in TCP
Tahoe or aggressive as in TCP Reno, the mean link buffer occupancy remains finite irrespective of the file
size distribution while the traffic arrival process into the link buffer could still be long range dependent.

The characterisation of the tail of link buffer occupancy we have developed could lead to an explanation
of the sensitivity with distribution of TCP throughput performance with finite volume transfers (as observed
in [9]).

The work reported in this paper is for a zero propagation delay link; it will be interesting to study how the
results presented in this paper change as the propagation delay increases.

22

APPENDIX I
PROOF OF THEOREM IV.1

Let Vi(t) and Yi(t), 1 ≤ i ≤ N(t), denote, respectively, the total and residual service requirements of the
ith session active at time t. Now,

J1(τ) = Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0}

≥ Ea(0)a(τ)I{N(0)=1,U(V1(0))−(V1(0)−Y1(0))>τ}

which holds because when N(0) = 1, V1(0) − Y1(0) is the age of the file active at time 0, and U(V1(0)) −
(V1(0)−Y1(0)) > τ implies that the source will still be sending data for this file until time τ . Define the last
term to be J3(τ).

Note that {U(V1(0)) − (V1(0) − Y1(0)) > τ} ⊂ {V1(0) > X(τ)}, hence

J3(τ) =

Ea(0)a(τ)I{N(0)=1,V1(0)>X(τ),Y1(0)>V1(0)−U(V1(0))+τ} (15)

Plugging the distributions of N(0), V1(0) and Y1(0) using results given in Section II-A, we get from
Equation 15,

J3(τ) = (1 − ρ)ρ
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ
a(0)

E(a(τ)|N(0)=1,V1(0)=v,Y (0)=y)
dy

v
dVs(v)

At τ there could be other sessions active; these arrive in the interval (0, τ]. Let us continue to use the index
1 at time τ for the session that was active at time 0. Since Y1(τ) > 0, (and noting that V1(τ) = V1(0))

a(τ) ≥ RV1(τ)(V1(τ)−Y1(τ))

N(τ)
=

RV1(0)(V1(τ)−Y1(τ))

N ′(τ) + 1

where N ′(τ) is the number of sessions active at τ other than the tagged session which was active at time 0.
The inequality is obtained since there could be a positive rate from the other sessions at τ .

By hypothesis, we have
0 < r ≤ inf

0≤v<∞
inf

0≤u<U(v)
Rv(u)

Now, since Y1(τ) > V1(τ) − U(V1(τ)), by definition of r we have RV1(0)(V1(τ)−Y1(τ)) ≥ r, hence,

a(τ) ≥ r

N ′(τ) + 1

so, for y > τ ,

E(a(τ)|N(0) = 1, V1(0) = v, Y (0) = y)

≥ rE

[

1

N ′(τ) + 1

∣

∣

∣N(0) = 1, V1(0) = v, Y (0) = y

]

also, since V1(0) − Y1(0) < U(V1(0)),

a(0) = RV1(0)(V1(0) − Y1(0)) ≥ r

23

Hence, using above inequalities and that dVs(v) = vdV (v)
EV

,

J3(τ) ≥ (1 − ρ)λr2
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ

E

[

1

N ′(τ) + 1
|N(0)=1,V1(0)=v,Y (0)=y

]

dydV (v)

Note that the conditions N(0) = 1, V1(0) = v and Y (0) = y > τ together imply that the file that was
present at time 0 is also present at time τ , and hence owing to the PS model N ′(τ) is independent of v and
y. Hence,

J3(τ) ≥ (1 − ρ)λr2E

[

1

N ′(τ) + 1
|N(0)=1,Y (0)>τ

]

∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ
dydV (v)

We know that (see Equation 3 in Section II-A with k = 1),

P{N ′(τ) = n|N(0)=1,Y (0)>τ} ∼τ→∞ (1 − ρ)2(n + 1)ρn

Hence,

E

[

1

N ′(τ) + 1
|N(0)=1,Y (0)>τ

]

∼τ→∞ (1 − ρ)

The proof follows with a change of variable (using y = v − u). /

APPENDIX II
PROOF OF THEOREM IV.2

We condition as follows:
1) Condition on N(0), the number of ongoing transfers at time 0,
2) given N(0), condition on the total file size Vi(0) of ith ongoing transfer at time 0, 1 ≤ i ≤ N(0),
3) given N(0) and Vj(0), 1 ≤ j ≤ N(0), condition on Yi(0), the residual size of the ith, 1 ≤ i ≤ N(0)

file having total size Vi(0),
4) and, given Y (0) =

∑N(0)
i=1 Yi(0), the total residual file volumes at time 0, condition on θ, 0 < θ < τ ,

the start of the first idle period after time 0

This yields, J2(τ) =

=
∞
∑

n=1

(1 − ρ)ρn
∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

∫ τ

θ=0

E(a(τ)|N(θ) = 0, N(θ−) > 0)b∑n

i=1
yi

(θ)dθ

dy(n)

v(n)
dVs(v(n))

where v(n) is a row vector of dimension n with components v1, ..., vn and y(n) is a row vector of dimension
n with components y1, ..., yn. Also, abusing notation, dy(n)

v(n)
:= dyn

vn
...dy1

v1
and dVs(v(n)) := dVs(vn)...dVs(v1),

and by(·) is the density of By.
Due to the Poisson arrival assumption

E(a(τ)|N(θ) = 0, N(θ−) > 0) = E(a(τ)|N(θ) = 0)

24

is a function only of τ − θ.
Let Φ(τ) := E(a(τ)|N(0) = 0) and denote by Φ̃(s) the Laplace Transform of Φ(·). So,

E(a(τ)|N(θ) = 0, N(θ−) > 0) = Φ(τ − θ)

Thus,

J2(τ) =
∞
∑

n=1

(1 − ρ)ρn
∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

∫ τ

θ=0
Φ(τ − θ)b∑n

i=1
yi

(θ)dθ
dy(n)

v(n)
dVs(v(n)) (16)

Taking the Laplace Transform (LT) of Equation 16 and noting that
• dVs(v) = vdV (v)

EV

• a(0) =

∑n

j=1
Rvj

(vj−yj)

n

• the integral with respect to θ is a convolution of two terms which have LT given by Φ̃(s) and b̃∑n

i=1
yi

(s),
and,

• b̃∑n

i=1
yi

(s) =
∏n

i=1 e−yi(s+λx(s)),
we get the following expression for the LT of J2(τ).

J̃2(s) = sΦ̃(s)
s

∑∞
n=1(1 − ρ)λn

∫∞
v(n)=0

∫ v(n)
y(n)=0

∑n

j=1
Rvj

(vj−yj)

n

∏n
i=1 e−yi(s+λx(s))dy(n)dV (v(n))

It can be seen after some calculations that,

J̃2(s) = (1 − ρ)
sΦ̃(s)

s
λ

[
∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v)

]

s + λx(s)

s

We know that lims→0 sΦ̃(s) = ρ. Let sΦ̃(s) = ρ+κ(s) where κ(s) → 0 as s → 0. Also, lims→0

∫ v
u=0 eu(s+λx(s))Rv(u)du =

v so,
∫ v
u=0 eu(s+λx(s))Rv(u)du = v + ∇(s) where lims→0 ∇(s) = 0. Thus,

∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v)

∼s→0

∫ ∞

v=0
e−v(s+λx(s))vdV (v) = − d

dz
ṽ(z)|z=s+λx(s)

For Pareto distribution, V c(v) = min(1, vα) hence,

ṽ(z) = α zα Γ(−α, z)

where, Γ(·, ·) is the incomplete Gamma function6. Further, by using the series expansion of the incomplete
Gamma function (see [27]), we get

ṽ(z) = α zα

{

Γ(−α) −
∞
∑

n=0

(−1)nz−α+n

n!(−α + n)

}

= α zα Γ(−α) − α
∞
∑

n=0

(−1)nzn

n!(−α + n)

6Γ(a, y) =
∫

∞

y
exp−u ua−1du

25

It follows that,
∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v) ∼s→0

α

α − 1
− α2Γ(−α)(s + λx(s))α−1

Hence,

J̃2(s) ∼s→0 (1 − ρ)sΦ̃(s)λ
s + λx(s)

s

[

α
α−1

− α2Γ(−α)(s + λx(s))α−1
]

s

The proof follows by noting that
1) For s → 0, x(s) = sEB + o(s) = sEV

1−ρ
+ o(s),

2) sΦ̃(s) ∼s→0 ρ,
3) EV = α

α−1
. /

APPENDIX III
A TAUBERIAN THEOREM

We reproduce an extension of a Tauberian Theorem of Widder [28] from [13] used in the proof of Theo-
rem IV.5.
Theorem III.1: If

1) f̃(s) =
∫∞
0 e−stf(t)dt, 0 < s < ∞

2) f(t) ≥ 0 for t ≥ t0,
3) f̃(s) ∼s→0+

A
sβ , for some β > 0

then
∫ t

0
f(u)du ∼t→∞

Atβ

Γ(β + 1)

APPENDIX IV
PROOF OF COROLLARY V.1

For TCP-SS, w(n) = 2n, W (n) = 2n − 1, U(v) = v
2

and γm(z) ≡ 1 hence w(m) +
∫ u−W (m)
0 γm(z)dz =

u + 1. It follows from Equation 11 that,

g̃(s) =
∞
∑

n=0

∫ W (n+1)

v=W (n)

[

∫ v

v
2

e−s(v−u) du

v
+
∫ v

2

0
e−s(u+1) du

v

]

dVs(v)

=
∫ ∞

v=0

[

∫ v

v
2

e−s(v−u)du +
∫ v

2

0
e−s(u+1)du

]dV (v)

EV

=
1 + e−s

sEV

∫ ∞

v=0

[

1 − e−
s
2
v
]

dV (v) =
1 + e−s

sEV

[

1 − ṽ(
s

2
)
]

=
1 + e−s

2
ṽe(

s

2
)

⇒ g(x) =
1

2

[

ve(2x) + ve(2x − 1)
]

where ṽe(s) is the LST of the distribution of the excess random variable associated with V (see [20]). The
proof follows for large x. /

26

APPENDIX V
PROOF OF THEOREM V.2

If γm(z) ≥ 0 ∀m, z then the sequence {w(n), n ≥ 0} is nondecreasing and so, (w(m)+
∫ u−W (m)
0 γm(z)dz) ≤

w(m + 1) for u ≤ W (m + 1). Thus we can upper bound the third term in the integrand (with respect to v)
in the right hand side of Equation 12,

n−2
∑

m=0

∫ W (m+1)

u=W (m)
(w(m) +

∫ u−W (m)

0
γm(z)dz)du

≤
n−2
∑

m=0

∫ W (m+1)

u=W (m)
w(m + 1)du =

n−2
∑

m=0

w(m)w(m + 1)

≤
n−2
∑

m=0

w2(m + 1)

Using the same argument, the second term in Equation 12 is
∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

≤
∫ W (n)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du ≤ w2(n)

Thus, using the above inequalities,
∫ W (n+1)

v=W (n)

[

∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

+
n−2
∑

m=0

∫ W (m+1)

u=W (m)
(w(m)+

∫ u−W (m)

0
γm(z)dz)du

]

dV (v)

≤
∫ W (n+1)

v=W (n)

n−1
∑

m=0

w2(m + 1)dV (v) = w2(n)V c(W (n))

where the last expression is obtained using some algebra.
The first term in right hand side of Equation 12 can be bounded from above as v − u ≤ w(n) for v ∈
(W (n), W (n + 1)) and U(v) < u < v. Hence the first term is,

∫ W (n+1)

v=W (n)

∫ v

U(v)
(v − u) dudV (v) ≤

∫ ∞

v=W (n−1)
w2(n)dV (v) = w2(n)V c(W (n − 1))

Combining the upper bounds for the three terms of Equation 12 and noting that V c(W (n)) ≤ V c(W (n−1)),
we get

EQ ≤ 2λ

(1 − ρ)

∞
∑

n=0

w2(n)V c(W (n − 1)) (17)

Now we can lower bound the three terms in right hand side of Equation 12. The first and second terms are
clearly ≥ 0. Also, if γm(z) ≥ 0, then (w(m) +

∫ u−W (m)
0 γm(z)dz) ≥ w(m). These observations along with

some algebra gives the following lower bound

EQ ≥ λ

(1 − ρ)

∞
∑

n=0

w2(n − 1)V c(W (n)) (18)

The result now follows from Equations 17 and 18. /

27

REFERENCES
[1] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, “On the Self-Similar Nature of Ethernet Traffic (Extended Version),”

IEEE/ACM Transactions on Networking, February 1994.
[2] Mark E. Crovella and Azer Bestavros, “Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes,” IEEE/ACM Transac-

tions on Networking, vol. 5, no. 6, pp. 835–846, December 1997.
[3] A. Erramilli and O. Narayan and W. Willinger, “Experimental queueing analysis with long-range dependent packet traffic,” IEEE/ACM

Transactions on Networking, vol. 4, no. 2, pp. 209–223, 1996.
[4] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,” IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 392–403,

2001.
[5] Van Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM, 1988, pp. 314–329.
[6] T.V. Lakshman and Upamanyu Madhow, “The performance of TCP/IP for networks with high bandwidth delay products and random loss,”

IEEE/ACM Transactions on Networking, vol. 5, no. 3, pp. 336–350, June 1997.
[7] Anurag Kumar, “Comparative Performance Analysis of Versions of TCP in Local Network with a Lossy Link,” IEEE/ACM Transactions

on Networking, vol. 6, no. 4, August 1998.
[8] Jitendra Padhye, Victor Firoiu, Don Towsley and Jim Kurose, “Modeling TCP Throughput: A Simple Model and its Empirical Validation,”

in SIGCOMM’98, 1998.
[9] Arzad A. Kherani and Anurag Kumar, “Stochastic Models for Throughput Analysis of Randomly Arriving Elastic Flows in the Internet,”

in IEEE Infocom 2002, New York, June 2002.
[10] H. Chaskar, T. V. Lakshman, U. Madhow, “TCP over wireless with link level error control: Analysis and design methodology,” IEEE/ACM

Transactions on Networking, vol. 5, no. 3, pp. 336–350, June 1999.
[11] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using Deficit Round Robin,” IEEE/ACM Transactions on Networking, 1996.
[12] D. Heath, S. Resnick and G. Samorodnitsky, “Heavy tails and long range dependence in on/off processes and associated fluid models,”

Mathematics of Operations Research, vol. 23, pp. 145–165, 1998.
[13] Anurag Kumar, K.V.S. Hari, R. Shobhanjali and S. Sharma, “Long-range dependence in the aggregate flow of TCP-controlled elastic

sessions: An investigation via the processor-sharing model,” in National Conference on Communications, New Delhi, 2000, Available at
http://ece.iisc.ernet.in/ anurag/pubm.html.

[14] B. Tsybakov and N. D. Georganas, “Self-Similar Traffic and Upper Bounds to Buffer-Overflow Probability in an ATM Queue,” Perfor-
mance Evaluation, 1998.

[15] I. Norros, “A Storage Model with Self-Similar Input,” Queueing Systems, vol. 16, pp. 387–396, 1994.
[16] Y. Joo, V. Ribeiro, A. Feldmann, A. C. Gilbert and W. Willinger, “On the impact of variability on the buffer dynamics in ip networks,” in

39th Annual Allerton Conf. on Communication, Control and Computing, 2001.
[17] A. Arvidsson, M. Roughan and T. Ryden, “On the Origins of Long-Range Dependence in TCP Traffic,” in ITC-17, 2001.
[18] J.W. Roberts and L. Massoulie, “Bandwidth Sharing: Objectives and Algorithms,” in INFOCOM’99, 1999.
[19] Arzad A. Kherani and Anurag Kumar, “On processor sharing as a model for tcp controlled http-like transfers,” in International Conference

on Communication, ICC, 2004.
[20] Ronald W.Wolff, Stochastic Modelling and the Theory of Queues, Prentice Hall, Englewood Cliffs, 1989.
[21] F. P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons, 1979.
[22] Ward Whitt, “The M/G/1 Processor-Sharing Queue with Long and Short Jobs,” Unpublished Report, available at:

http://www.research.att.com/ wow/A12.html.
[23] K. Sigman, “A Primer on Heavy-Tailed Distributions,” Queueing Systems, Theory and Applications, vol. 33, 1999.
[24] Arzad A. Kherani and Anurag Kumar, “The Lightening Effect of Adaptive Window Control,” To Appear in IEEE Communication Letters,

Manuscript, available at http://ece.iisc.ernet.in/˜ anurag/pubm.html, November 2002.
[25] Milan Borkovec, Amites DasGupta, Sidney Resnick, and Gennady Samorodnitsky, “A single channel on/off model with tcp-like control,”

Available at http://www.orie.cornell.edu/sid/NewForLinking/technical reports.html.
[26] W. Gong and D. Towsley V Misra, “Stochastic Differential Equation Modeling and Analysis of TCP Windowsize Behavior,” in Perfor-

mance’99.
[27] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.
[28] D.V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971.

