
Neighbor Oblivious and Finite-State Algorithms for
Circumventing Local Minima in Geographic

ForwardingI

Chandramani Singha,∗, Santosh Ramachandranb, S. V. R. Anandc, Malati
Hegdec, Anurag Kumarc, Rajesh Sundaresanc

aDepartment of ESE, Indian Institute of Science, Bangalore, India
bQualcomm Corp. R&D La Jolla, California, USA

cDepartment of ECE, Indian Institute of Science, Bangalore, India

Abstract

We propose distributed link reversal algorithms to circumvent communication

voids in geographic routing. We also solve the attendant problem of integer

overflow in these algorithms. These are achieved in two steps. First, we derive

partial and full link reversal algorithms that do not require one-hop neighbor in-

formation, and convert a destination-disoriented directed acyclic graph (DAG)

to a destination-oriented DAG. We embed these algorithms in the framework

of Gafni and Bertsekas [1] in order to establish their termination properties.

We also analyze certain key properties exhibited by our neighbor oblivious link

reversal algorithms, e.g., for any two neighbors, their t-states are always con-

secutive integers, and for any node, its t-state size is upper bounded by log(N).

In the second step, we resolve the integer overflow problem by analytically de-

riving one-bit full link reversal and two-bit partial link reversal versions of our

neighbor oblivious link reversal algorithms. We also discuss the work and time

complexities of the proposed algorithms.

Key words: Wireless sensor networks, Routing protocols, Link reversal,

Distributed algorithms, Finite bit width

IThis work was presented in part at the National Conference on Communica-
tions (NCC) 2010, IIT Madras, Chennai, India.

∗Corresponding author
Email addresses: chandra@dese.iisc.ernet.in (Chandramani Singh)

Preprint submitted to Ad Hoc Networks April 20, 2016

1. Introduction

1.1. Motivation

Consider a wireless sensor network (WSN) with a single designated sink node.

We shall focus particularly on an example application where the objective of

the WSN is to raise an alarm upon detecting an event (e.g., an intruder or an5

incipient fire). An alarm packet originating at a node near the location of the

alarm event has to be routed to the sink node. For such purposes, geographic

routing [2] is a popular protocol for packet delivery. It is scalable, stateless,

and reactive, and does not need prior route discovery. In this protocol, a node

forwards a packet to another node within its communication range (hence, called10

a neighbor node) and closer to the destination. Ties can be broken arbitrarily,

for example, by using node indices. Such a protocol requires a node with a

packet to be aware of its own geographical location, and that of the sink and of

its neighbors. To each node, the next hop nodes that are closer to the sink are

defined as greedy neighbors, and wireless “links” are oriented from the nodes15

to their greedy neighbors. The resulting routing graph is a directed acyclic

graph (DAG).

A DAG is said to be destination-oriented when there is a directed path in

the DAG from any node to the sink. A DAG is destination-disoriented if and

only if there exists a node other than the sink that has no outgoing link [1]. The20

disadvantaged node with no outgoing links is said to be stuck (as it is unable

to forward towards the sink a packet that it receives). A destination-oriented

network under geographic routing may be rendered destination-disoriented due

to various reasons such as node failures, node removal or radio jamming.. The

failure of geographic routing in the presence of stuck nodes is commonly referred25

to as the local minimum condition [3]. Numerous solutions have been proposed

in the literature to pull the network out of a local minimum condition (See

Section 1.2 for details). However, all these solutions require knowledge of one-

hop neighbors (i.e., adjacent nodes) and their locations. Maintenance of one-hop

2

neighbor information, in general, requires periodic transmissions of keep alive30

packets.

We associate each node in the network with a unique numerical value, hence-

forth referred to as state. A link between a pair of neighboring nodes is oriented

from the node with the higher state to the node with the lower state. Thus

states (of all the nodes) determine the routing graph. The routing graph is35

clearly acyclic.

Let us consider two natural protocols to determine link directions and if

nodes are stuck, in a design based on nodes’ states. Nodes could occasionally

broadcast hello packets in order to determine whether they are stuck or not.

Let us tag such a querying node. The node’s hello packet contains its state.40

All its alive neighbors with lower states acknowledge the hello packet. If the

tagged node (querying node) does not receive any acknowledgment until a fixed

timeout period, it concludes that its state is the least among its alive neighbors,

i.e., it is stuck. Then, the node updates its state appropriately to reverse some

(or all) of the incident links. It also broadcasts the new state to facilitate45

its neighbors to update the corresponding link directions. Thus all the nodes

always have an updated view of the directions of all their links.1 The nodes

may store the updated states of their neighbors. It enables them to make an

update if they determine that they are stuck. In an alternative scheme that

does not require each node to hold full state information of neighbors, whenever50

a node broadcasts a hello packet, all its neighbors respond with their full state

information. Then the tagged node not only can determine if it is stuck, but

can also use states of its neighbors to make an update and get out of its stuck

state. As before, it broadcasts the new state to its neighbors. While this

scheme saves some memory, it incurs substantial communication overhead for55

each query (hello packet) broadcast. In either scheme, the link reversal processes

1For correct data forwarding to the sink, any two neighbors must have a consistent view

of the direction of the link between them. Thus broadcast of the updated state is an intrinsic

part of all routing algorithms.

3

associated with all the nodes reach an equilibrium when each node has at least

one directed path to the sink (i.e., none of them is stuck).

An update protocol is called neighbor oblivious if the updating node does

not need to know the exact values of states of its neighbors. Neighbor oblivious60

protocols do not incur the overhead of discovery of full state information of

neighbors, and thus save precious communication time and energy. An update

protocol is called finite state if node states always take values in finite set. The

space size can potentially be a function of the network size.

Gafni and Bertsekas [1] proposed a general class of distributed link rever-65

sal algorithms for converting a destination-disoriented DAG into a destination-

oriented DAG. They also described two representative algorithms, full link re-

versal and partial link reversal, of their general class. Henceforth, we refer to

their algorithms as GB algorithms. In the GB algorithms, a stuck node’s update

depends on the exact values of states of its neighbors. Secondly, the correctness70

of the GB algorithms relies on the fact that states are a priori not bounded,

and nodes’ state grow without bound as the algorithm proceeds. Thus the GB

algorithms are neither neighbor oblivious nor finite state.

Our work is motivated by the question: Are there distributed, finite-state,

neighbor oblivious protocols that can pull a network out of its local minimum75

condition and render it destination-oriented?2

1.2. Related Literature

Kranakis et al. [4] introduced geographic routing protocols for planar mo-

bile ad hoc networks, called compass routing or face routing. This technique

guarantees delivery in a connected network, but requires a priori knowledge of80

2One simple neighbor oblivious algorithm is to always make a stuck node increment its

state (taking integer values) by unity. This algorithm renders the network destination-oriented

but requires a huge number of updates. In particular, it is neither full link reversal nor partial

link reversal. Recall that each updating node broadcasts its state to determine if it stuck, and

then waits for a timeout period for acknowledgments. Consequently, this simple algorithm

results in significant energy expenditure and delay, and hence, is not desirable.

4

full neighborhood. Karp and Kung [2] presented greedy perimeter stateless rout-

ing (GPSR) which also ensures successful routing over planar networks. Kalosha

et al. [5] addressed a beaconless recovery problem where the local planar sub-

graph is constructed on the fly. Chang et al. [6] presented route guiding proto-

col (RGP), a shortest path routing protocol to bypass voids, but that also re-85

quires communication of current states among neighbors. Yu et al. [7] discussed

a void bypassing scheme when both source and sink nodes are mobile. Leong et

al. [8] presented a new geographic routing protocol called greedy distributed span-

ning tree routing (GDSTR). GDSTR employs convex hulls which require main-

taining topology information. Casari et al. [9] proposed adaptive load-balanced90

algorithm (ALBA), another greedy forwarding protocol for WSNs. Some other

algorithms developed for mobile adhoc networks include destination sequenced

distance vector (DSDV) routing [10], wireless routing protocol (WRP) [10], dy-

namic source routing (DSR) [11] and node elevation ad hoc routing (NEAR) [12].

All the above algorithms require neighbor information at a stuck node, and some95

even require more extensive topology information (e.g., [8]).

Gafni and Bertsekas [1] introduced a general class of link reversal algo-

rithms to maintain routes to the destination. They also presented two par-

ticular algorithms, the full link reversal algorithm and the partial link reversal

algorithm. The GB algorithms were designed for connected networks. In a100

partitioned network, GB algorithms lead to infinite number of state updates

without ever converging. Corson and Ephremides [13] presented lightweight

mobile routing (LMR), a variant of GB link reversal algorithms. Park and Cor-

son [14] proposed temporally-ordered routing algorithm (TORA) for detecting

and dealing with partitions in the networks. TORA is also an adaptation of105

GB partial link reversal algorithm and employs extended states that include

current time and originator id. GB link reversal algorithms have also moti-

vated several leader election algorithms which are an important building block

for distributed computing, e.g., mutual exclusion algorithms or group commu-

nication protocols. Malpani et al. [15] built a leader election algorithm on the110

top of TORA for mobile networks. Ingram et al. [16] proposed a modification

5

of the algorithm in [15] that works in an asynchronous system with arbitrary

topology changes. All these link reversal algorithms employ state variables that

either require infinitesimal precision (e.g., current time) or grow unbounded,

thus imposing enormous memory requirements. Further, state updates in these115

algorithms require frequent information exchanges among neighboring nodes,

and also network wide clock synchronization, thus imposing signification com-

munication overhead. These drawbacks render the above algorithms unsuitable

for large mobile networks with lightweight mobile nodes. We focus on con-

nected ad hoc networks with single destination and develop neighbor-oblivious120

and memory-savvy link reversal algorithms.

Busch and Tithapura [17] analyzed GB algorithms (full and partial link re-

versal), and provided asymptotic upper and lower bounds on the work (number

of node reversals) and the time needed until these algorithms converge to a

destination oriented DAG.125

Charron-Bost et al. [18] proposed a new framework for link reversal based

on binary link labels as opposed to GB algorithms whose link reversals are

based on node labels (i.e., states). Recall that in GB algorithm dynamic node

states are used to establish link directions, and also to selectively reverse them.

On the other hand, Charron-Bost et al. [18] assumed the existence of some130

mechanism that informed nodes of initial directions of all links incident on

them, and employed link-labeling only to decide which of these links should be

reversed. After each reversal, the nodes are somehow aware of the link directions

of all links incident on them. See next subsection on the advantage of the node-

based operation. Notwithstanding this difference, from an operational point of135

view, the GB full and partial link reversal schemes are special cases of the class

of schemes proposed in [18]. The authors in [18] analyzed work complexities of

any arbitrary node in a routing graph under their class of schemes (including

the GB full and partial reversal algorithms). In subsequent works, Charron-

Bost et al. presented the exact expressions for the time complexities of any140

arbitrary node under the GB full and partial reversal algorithms in [19] and

[20] respectively.

6

1.3. Our Contributions

We focus on connected ad hoc networks (e.g., WSNs) with a single desti-

nation.3 We propose neighbor oblivious full and partial link reversal (NOLR)145

algorithms in which a stuck node does not need full information on states of

one-hop neighbors to execute its state update. However, as discussed earlier, a

node still has to communicate with its neighbors in order to determine if it is

stuck. But this communication only involves a hello packet and its acknowledg-

ments, and thus is “lightweight”. We then embed our NOLR algorithms into150

the framework of the GB algorithms. The embedding provides a method to

assert that our proposed algorithms render the network destination-oriented.

In GB and NOLR algorithms, the state spaces are (countably) infinite. The

reason is that in both the algorithms each node’s state grows without bound

with the number of link reversals. The algorithms therefore cannot be realized155

in a real operating environment with only a finite number of bits to represent

states, when repeated link reversals may be encountered. We show that simple

modifications of our NOLR algorithms result in finite-state link reversal algo-

rithms. At each node, in addition to the initial state, the full link reversal

algorithm requires only a one-bit dynamic state and the partial link reversal160

algorithm requires only a two-bit dynamic state.

We now compare our work with that of Charron-Bost et al. [18]. These

authors assume that nodes can explicitly determine the directions of the incident

links and and can explicitly change these directions (see Assumptions (a) and (b)

in [18, Page 147]). Their schemes are link-centric. On the other hand, our link165

reversal algorithms are based on node states, and the link directions are directly

inferred from these states. The link-centric schemes require one bit per link to

implement link reversal. In a real network, the incident nodes must however

hold these link-labels, and after each reversal, must communicate the new link

3If routing to multiple destinations is required, for each destination, a logically separate

copy of our algorithm should be run. This limitation is inherent to the class of GB link reversal

algorithms (see [1, 13, 14, 15, 16]).

7

labels and link directions to the corresponding adjacent nodes (neighbors). This170

requires O(N) storage and significant communication overheads at each node

in the worst case. As we will see below, our node-centric algorithms require

each node to store only logN bits for the node index and an additional two

bits to execute our proposed link reversal schemes. Moreover, in our schemes,

the nodes do not need to communicate individually to their neighbors after a175

reversal; they just broadcast the new state.

It must however be noted that the evolutions of the routing graph under

our full and partial reversal algorithms are identical to the evolutions under the

corresponding schemes of Charron-Bost et al. [18]. So, our convergence results

may also follow from [18, Corollary 3.8], if one could formally establish an anal-180

ogy between our framework and protocols and those in [18]. This however is not

obvious. We instead embed our algorithms within the GB framework in order

to establish the algorithms’ correctness and convergence. Due to operational

equivalence of the corresponding algorithms, the asymptotic work complexity

bounds of [17] and the exact work and time complexity results of [18, 19, 20]185

apply to our algorithms as well.

1.3.1. Assumptions

We assume that new nodes or links are not added to the existing network.

Our framework does not apply to mobile settings where the connection topology

keeps changing. These assumptions are identical to the assumption in [18] that190

the underlying undirected graph (called support) does not change with time. The

last section contains a discussion of how addition of new nodes or links affects

our algorithms. Our algorithms also rely on the assumptions that the nodes are

equipped with distinct indices belonging to an ordered space and that each node

knows hmax, the maximum of the initial node heights (see Section 3.1). Finally,195

we also assume that broadcasts and acknowledgements are received without

error.

8

1.4. Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we provide an

overview of the GB algorithms. In Section 3 we discuss full link reversal. We be-200

gin with the NOLR proposal, but with a countably infinite state space. Then,

we make an observation that renders the NOLR algorithm into a finite-state

algorithm without loss of correctness. In Section 4, we address partial link re-

versal, and pass through the same trajectory as for full-link reversal – an NOLR

algorithm with infinite states followed by a finite-state version. In Section 5, we205

discuss the work and time complexities of the proposed algorithms. We end the

paper with some concluding remarks in Section 6.

2. Overview of GB Algorithms

Consider a WSN with a designated destination node and nondestination

nodes {1, 2, . . . , N}. The nodes are assumed to have static locations. Two nodes210

are neighbors if they can directly communicate, and then we say that there is a

link between them. Link reversal schemes can be used in geographic forwarding

by assigning unique states, a1, a2, . . . , aN , to the nodes. The states are totally

ordered by a relation < in the sense that for any two nodes i and j, either

ai < aj or aj < ai, but not both. These states are used in assigning routing215

directions to links. The link between a pair of neighbors is always oriented from

the node with the higher state to the node with the lower state.

In GB algorithms, the state associated with a node i is a pair of numbers

(hi, i) for full reversal and a triplet of numbers (pi, hi, i) for partial reversal,

where hi (called i’s height) and pi (called i’s p-state) are integers.4 The ordering

< on the tuples in each case is the lexicographical ordering.5 For a node i, let Ci

4The heights (his) are initialized to either hop counts or distances from the destina-

tion (evaluated from either actual or virtual locations [21]), with the destination’s height

being zero. All p-states are initialized to 0.
5For tuples a, b of the same dimension, a > b iff ai > bi where i is the smallest index such

that ai 6= bi. Thus even if the heights and p-states of two adjacent nodes are identical (e.g.,

9

denote the set of i’s neighbors. Also, let h = (h1, . . . , hN) and p = (p1, . . . , pN).

Then, the forwarding set of node i can be written as

Fi(h) = {j ∈ Ci| (hj , j) < (hi, i)}

for full reversal, and

Fi(p, h) = {j ∈ Ci| (pj , hj , j) < (pi, hi, i)}

for partial reversal. Clearly, node i is stuck if Fi(h) = ∅ (for full reversal), or

Fi(p, h) = ∅ (for partial reversal). Node i, to determine if it is stuck, broadcasts

its state. All its alive neighbors with lower states acknowledge. (Recall that a220

few of the neighbors might not be awake due to battery outage). If node i does

not receive any acknowledgment until an a priori fixed timeout, it concludes

that its state is the least among its neighbors, i.e., it is stuck.

The GB algorithms distributively update the states of stuck nodes so that a

destination-oriented DAG is obtained. The algorithms are as follows.225

Full link reversal. In this algorithm, a stuck node reverses the direction of all

the incoming links. Node i updates its state as follows.

Algorithm 1 GB Full link reversal

1: if Fi(h) = ∅ then

2: hi ← max{hj | j ∈ Ci}+ 1

3: end if

Remarks 2.1. Evidently, a node i, if stuck, leapfrogs the heights of all its neigh-

bors after an iteration of the above algorithm. All neighbors thereby enter the

forwarding set of node i.230

Partial link reversal. In this algorithm, every node keeps a list of its neighbors

that have already reversed their links to it. If a node is stuck, it reverses the

if both have equal hop counts from the destination), their distinct indices can be used to set

the direction of the connecting link.

10

directions of links to all those neighbors that are not in the list, and empties

the list. If all its neighbors are in the list, then it reverses the directions of all

the incoming links, and empties the list. Node i updates its state as follows.235

Algorithm 2 GB Partial link reversal

1: if Fi(p, h) = ∅ then

2: pi ← min{pj | j ∈ Ci}+ 1

3: if there exists a j ∈ Ci with pi = pj then

4: hi ← min{hj | j ∈ Ci with pi = pj} − 1

5: end if

6: end if

Remarks 2.2. The update rule (Line 2) ensures that for neighboring nodes pis

are always adjacent integers. For a stuck node i, the hi update (Lines 3-4)

ensures that, i does not reverse the links to the neighbors that have updated

states since i’s last update.

Note that all the nodes run Algorithm 1 (or Algorithm 2 in case of partial240

link reversal) asynchronously, i.e., their reversals can follow any arbitrary timing

and order. Gafni and Bertsekas [1] show the following properties.

Proposition 2.1. (a) Starting from any state h (or (p, h) in case of Algo-

rithm 2), Algorithms 1 and 2 terminate in a finite number of iterations

yielding destination oriented DAGs.245

(b) Algorithm 1 results in the same destination-oriented DAG regardless of the

timing and order of reversals. The same holds for Algorithm 2.

(c) Algorithms 1 and 2 are such that only those nodes that do not initially have

a greedy path to the destination update their states at any stage.

Remarks 2.3. The updates at a stuck node, in both Algorithms 1 and 2, depend250

on knowledge of states of neighbors (see Line 2 in Algorithm 1 and Lines 2, 3, 4

in Algorithm 2). After each link reversal, the updating node needs to broadcast

11

its new state, and its neighbors need to gather this information in a reliable

fashion (e.g., using an error detection scheme). In the following sections, we see

how to avoid these exchanges, a desired level of ignorance that we call neighbor255

obliviousness.

3. Full Link Reversal

3.1. Neighbor Oblivious Full Link Reversal

The main idea may be summarized as follows. Suppose that the algorithm is

such that a node, at any stage, knows the entire range of heights of its neighbors.260

Then it may execute a full reversal by raising its height to a value higher than

the maximum in the range. Note that the updating node does not need to know

the exact states of its neighbors, so valuable communication time and energy

are saved.

Notation. The notation used is listed below for ease of reference.265

• [N] = {1, 2, . . . , N} is the set of nodes (or node indices).

• ti ∈ Z+ is the number of height updates made by node i; this is initialized

to 0 for all i.

• hi(ti) ∈ Z++ = Z+\{0} is the height of node i after ti updates; hi(0)

refers to the initial height. The destination’s height is 0.270

• ai = (ti, hi(ti), i) is the state of node i; ti is referred to as its t-state.

• Ci is the set of neighbors of i, i.e., those with which i can directly com-

municate.

• Fi(h) = {j ∈ Ci| (hj(tj), j) < (hi(ti), i)} is the forwarding set of node i,

given the heights h = (h1(t1), h2(t2), . . . , hN (tN)).275

• hmax = max{h1(0), . . . , hN (0)}.

The algorithm is simple. Node i updates its state ai as follows.

12

Algorithm 3 Neighbor oblivious full link reversal

1: if Fi(h) = ∅ then

2: ti ← ti + 1

3: hi(ti)← hi(ti − 1) + hmax

4: end if

Remarks 3.1. Node i, if stuck, updates its state such that the new height sur-

passes the heights of all its neighbors (see Line 2). This reverses all the incoming

links, a fact that we will prove in Proposition 3.2.280

Node i broadcasts a hello packet to determine if it is stuck. The lack of

feedback (silence) following a broadcast suffices to determine if Fi(h) is empty

or not. However, node i does not need to know the states of its neighbors to

perform updates (see Lines 2, 3 in Algorithm 3). Other nodes also independently

and asynchronously execute similar algorithms. All the nodes broadcast their285

new states whenever they update. Timing and order of state updates can be

arbitrary.

We emphasise that the updating node broadcasts its new state

merely to facilitate its neighbors to update the corresponding link

directions. It could instead broadcast any message that serves this290

purpose. For instance a node could broadcast a bit string with as

many bits as the number of its neighbours, with each bit indicat-

ing the link direction to an associated neighbour. The length of this

bit string would not increase with time. Moreover, the neighbour-

ing nodes do not need to store this broadcast message for use at a295

later stage. We now proceed to state and prove some of the properties of

Algorithm 3).

Proposition 3.1. (a) The height of a node i in t-state ti is explicitly given by

hi(ti) = hi(0) + tihmax.

(b) For any node i, and ti ∈ Z+, we have tihmax < hi(ti) ≤ (ti + 1)hmax.

13

(c) For any two neighbors i and j, and ti, tj ∈ Z+ we have the following impli-

cation

ti > tj ⇒ hi(ti) > hj(tj).

(d) For any two neighbors i and j, at any stage of the algorithm, we have

0 ≤| ti − tj |≤ 1.6.300

(e) For any node i, ti ≤ N at any stage of the algorithm.

Proof 1. (a) This follows immediately from the height update rule (Line 3 in

Algorithm 3).

(b) This follows from (a) and 0 < hi(0) ≤ hmax.

(c) The implication holds because hi(ti) > tihmax and hj(tj) ≤ (tj+1)hmax (see (b)).305

(d) Without loss of generality, assume ti ≥ tj. We claim that ti ≤ tj + 1. We

prove the claim via contradiction. Suppose ti > tj+1. Node i must have reached

this state through tj+1 because ti is initialized to zero and is incremented by one

each time node i updates its state. When node i’s t-state was tj + 1, from (c)

hi(tj + 1) > hj(tj), and therefore it had an outgoing link to node j. Thus,310

i would not have updated its t-state to tj + 2 or higher. This contradicts our

supposition, and proves the claim.

(e) Observe that any one hop neighbor of the destination never updates its

heights; it always has an outgoing link to the destination. Consequently, for

any such node, say node i, ti = 0 at any stage of the algorithm. Now, assume315

that for a node j, tj > N at some stage. Then, there is pair of neighbors k and

l such that | tk− tl |> 2. But this contradicts part (d). Thus, we have the bound

ti ≤ N for any node i.

6The analogous property for the link-centric full reversal algorithm of Charron-Bost et

al. [18] is asserted in [19, Propositions 2 and 3]. Our partial link reversal protocol also exhibits

this property (see Proposition d). This is expected because of the fact that every execution

of the partial link reversal on any directed routing graph corresponds to an execution of full

link reversal on a transformed graph (see [20])

14

tihmax hmax

hmax

hmax

i

l

k
hk(ti) hk(ti + 1)

hi(ti + 1)

hl(ti)

hi(ti)

Figure 1: An illustration of Algorithm 3 at a stuck node i. Note that tl = ti while tk = ti + 1.

When node i updates its state, it reverse the links to both l and k.

Remarks 3.2. 1. For any node, the size of the state (i.e., the number of

bits required to represent the state) grows with the number of state up-320

dates. However, Proposition 3.1(e) implies that, for any node, the number

of updates is upper bounded by N , and hence the t−state size is upper

bounded by log(N). Notice that heights are functions of t-states (Proposi-

tion 3.1(a)), and hence need not be stored separately.

2. Proposition 3.1(c) implies that the forwarding set of node i can be alter-

natively defined as

Fi(a) = {j ∈ Ci| aj < ai},

where a = (a1, . . . , aN) are the nodes’ states.325

Proposition 3.2. In Algorithm 3, a stuck node reverses the directions of all

the incoming links.

Proof 2. Consider a stuck node i. For any node j ∈ Ci, hj(tj) ≥ hi(ti). So,

by virtue of Propositions 3.1(c)-(d), we have either tj = ti or tj = ti + 1. See

Figure 1 for an illustration.330

(i) Consider tj = ti. This is the case of node l in Figure 1. In this case, when

node i makes an update, it moves to t-state tj + 1. Hence the link is from i to

j after the update.

(ii) Consider tj = ti + 1. This is the case of node k in Figure 1. In this case,

observe that when node j updated its t-state from ti to tj = ti+1, node i’s t-state335

must have been ti. Further, it must have been the case that either hj(ti) < hi(ti),

15

or hj(ti) = hi(ti) and j < i. Thus we have either hj(tj) < hi(ti) + hmax, or

hj(tj) = hi(ti) + hmax and j < i. Hence when node i makes an update, since

hi(ti + 1) = hi(ti) +hmax, the link is now from i to j. This concludes the proof.

Proposition 3.3. Algorithm 3 can be embedded within the GB algorithms frame-340

work. Thus it inherits the properties in Proposition 2.1.

Proof 3. For all i ∈ [N], let Ai be the set of feasible states of node i. Notice

that ai = (ti, hi(ti), i) in our case. Define v = (a1, a2, . . . , aN). Let V be the

set of all such N -tuples. For each v ∈ V , let S(v) ⊂ [N] denote the set of stuck

nodes.

S(v) = {i ∈ [N]| aj > ai for all j ∈ Ci}.

We consider iterative algorithms of the form

v ← v ∈M(v),

where M(·) is a point-to-set mapping; M(v) ⊂ V for all v ∈ V . In the following

we show that the proposed neighbor oblivious link reversal algorithms satisfy the

assumptions of GB algorithms.

(A.1). Define gi : V → Ai, i = 1, . . . , N as

gi(v) =

 (ti + 1, hi(ti) + hmax, i) if i ∈ S(v),

(ti, hi(ti), i) if i /∈ S(v).

The set M(v) is then given by345

M(v) =


{v} if S(v) = ∅,
{v = (a1, . . . , aN)| v 6= v and either ai = ai

or ai = gi(v) for all i ∈ [N]} if S(v) 6= ∅.
(A.2). From (A.1), it is clear that for each v = (a1, . . . , aN) and i = 1, . . . , N ,

the functions gi(·) satisfy

gi(v) > ai if i ∈ S(v),

and gi(v) = ai if i /∈ S(v).

Furthermore, for each i = 1, . . . , N , gi(v) depends only on ai and {aj | j ∈ Ci};
the latter states determine if i ∈ S(v) or otherwise.

16

(A.3). Consider a node i and a sequence {vk} ⊂ V for which i ∈ S(vk) for

an infinite number of indices k. If r is one of these indices, gi(v
r) − ari ≥

(1, hmax, 0), otherwise gi(v
r)− ari = 0. Hence the sequence{
a0i +

k∑
r=0

[gi(v
r)− ari]

}
is unbounded in Ai.

Gafni and Bertsekas [1] show that if the communication graph is connected

and an algorithm satisfies Assumptions (A.1)-(A.3), then Proposition 2.1 holds350

for the algorithm. This concludes the proof of the proposition.

3.2. Two Bits Full Link Reversal

In practice, states are stored using finite bit-width representations. While

the size of the states can depend on the number of nodes in the network, it should

not grow with the number of iterations of the algorithm. The t-states which are355

the counts of the number of reversals, though bounded (see Proposition 3.1(e)),

grow as the algorithm runs. There could be 1000s of nodes in the network, and in

resource limited nodes in wireless sensor networks, memory is also at a premium.

Therefore, GB and NOLR algorithms need to be modified for implementation

in practical systems.360

We now give a modification of Algorithm 3 that uses only two bits for the

t-state and does not update heights. To do this we exploit the fact that, for

any two neighbors i and j, the link direction is entirely governed by ti, tj , hi(0)

and hj(0). More precisely, the link is directed from i to j if and only if either

ti > tj , or ti = tj and (hi(0), i) > (hj(0), j). Thus t-states along with the initial

heights suffice to determine link orientations. Moreover, since at any stage ti

and tj are either the same or adjacent integers (Proposition 3.1(d)), we need

only two bits to describe their order. Specifically, if we define, for all i,

τi = ti mod 4,

and a cyclic ordering

00 < 01 < 10 < 11 < 00

17

on candidate values of τi, we obtain

ti > tj ⇐⇒ τi > τj .

For node i, τi is referred to as its τ -state. Following the above discussion, we

can redefine the forwarding set of node i as

Fi(τ) = {j ∈ Ci| τj < τi or

(τj = τi and (hj(0), j) < (hi(0), i))},

where τ = (τ1, . . . , τN). In the two bit full link reversal algorithm node i updates

its state as follows.

Algorithm 4 Two bit full link reversal

1: if Fi(τ) = ∅ then

2: τi ← (τi + 1) mod 4

3: end if

In Figure 2, we show the progression of Algorithm 4 in a sample network.

Following are the key properties of this algorithm.

Proposition 3.4. (a) In Algorithm 4, a stuck node reverses the directions of365

all the incoming links.

(b) Algorithm 4 exhibits the properties in Proposition 2.1.

Proof 4. (a) Consider a stuck node i. Following Proposition 3.1(d) and the

definition of τ -states, for any node j ∈ Ci, we have either τj = τi or τj = (τi+1)

mod 4.370

(i) Consider τj = τi. In this case, when node i makes an update, it moves to

τ -state (τj + 1) mod 4 which is greater than τj. Hence the link is from i to j

after the update.

(ii) Consider τj = (τi + 1) mod 4. In this case it must be that (hj(0), j) <

(hi(0), i); were it not the case, node j at τ -state τi would not have done an375

update. Thus when node i updates its τ -state to (τi + 1) mod 4 = τj, the link

is now from i to j. This concludes the proof of part (a).

18

(00,2,5)

(00,3,2)

(−,0,D)

(00,2,5)

(00,3,2)

(−,0,D)

(i) (ii)

(iv)(iii)

(v)

(00,3,2)

(−,0,D) (−,0,D)

(−,0,D)

(00,2,1) (00,4,3)

(00,5,6)(00,1,4)

(00,2,1) (00,4,3)

(00,5,6)

(00,4,3)

(00,5,6) (00,5,6)

(00,4,3)

(00,5,6)

(01,1,4)

(01,1,4)

(01,2,1)

(01,2,5)

(01,2,1)

(01,2,5)(10,1,4)

(01,3,2)

(10,1,4) (01,2,5)

(01,3,2) (01,4,3)(10,2,1)

Figure 2: A sample execution of the two-bit full link reversal algorithm. We show the tuples

(τi, hi(0), i) for each node i at each stage; the node D with height 0 is the destination. At

each stage, the solid circles depict the stuck nodes. The cut link in (i) results in an initial

destination disoriented network with node 4 starting out from a stuck state.

(b) Let all the nodes in the network run Algorithm 4. Also consider another

copy of the network (with the same initial link orientations) where all the nodes

execute Algorithm 3 as follows. The same node as in the original network does380

the first update. Then we are left with the same set of stuck nodes as in the

original network because updates lead to full link reversals in both. The next

update is also by the same node as in the original network, thus again yielding

the same set of stuck nodes. Likewise, subsequent updates also follow the same

timing and order as in the original network. Since the nodes’ updates in the385

latter network satisfy the properties in Proposition 2.1, so do the updates in the

original network.

19

3.3. One Bit Full Link Reversal

Recall that in full reversal, a stuck node reverses the directions of all its

incoming links. Algorithm 4 executes this using initial heights and a two bit

state. We now describe a simpler way to achieve this using initial heights and

a single flag bit at each node. More precisely, with each node i, we associate a

binary state δi that is initialized to zero. For any two neighbors i and j with

(hi(0), i) > (hj(0), j), the corresponding link is directed from i to j if δi = δj ,

and from j to i if δi 6= δj . In other words, at any stage, the forwarding set of

node i is

Fi(δ) = {j ∈ Ci| ((hj(0), j) < (hi(0), i) and δj = δi) or

((hj(0), j) > (hi(0), i) and δj 6= δi)},

where δ = (δ1, . . . , δN).

We propose the following one bit full link reversal algorithm. Node i updates390

its states as follows.

Algorithm 5 One bit full link reversal

1: if Fi(δ) = ∅ then

2: δi ← (δi + 1) mod 2

3: end if

Remarks 3.3. For stuck node i, the updated δ-state is same as the δ-states

of neighbors with higher heights but complements the δ-states of neighbors with

lower heights. Thus, all its links become outgoing.

Algorithm 5 has similar properties as Algorithm 4.395

Proposition 3.5. (a) In Algorithm 5, a stuck node reverses the directions of

all the incoming links.

(b) Algorithm 5 exhibits the properties in Proposition 2.1.

20

Proof 5. (a) Consider a stuck node i and an arbitrary node j ∈ Ci. Then,

either (hi(0), i) < (hj(0), j) and δi = δj, or (hi(0), i) > (hj(0), j) and δi 6= δj.400

In either case, when node i flips δi, the link between i and j is reversed.

(b) The proof is identical to that of Proposition 3.4(b).

4. Partial Link Reversal

Recall that the link reversals are intended to yield a destination oriented

DAG. However, link reversals are accompanied by state updates and informa-405

tion exchanges, and can potentially lead to more nodes being stuck. Thus, a

stuck node could execute a partial link reversal (i.e., need not reverse all its

incoming links) so that the link graph converges quickly to a destination ori-

ented graph. We focus on the partial link reversal scheme proposed by Gafni

and Bertsekas [1] (see Algorithm 2).410

4.1. Neighbor Oblivious Partial Link Reversal

As in neighbor oblivious full link reversal, the algorithm is such that a node,

at any stage, knows the entire range of all neighbors’ heights but not the exact

values. Then, the node raises its height to an appropriate value to effect only a

partial link reversal. Again, as in Section 3, the updating node does not need415

to know the exact states of its neighbors, so valuable communication time and

energy are saved.

Notation. The new notation is collected below.

• ai = (ti, hi(ti), (−1)tii) is the state of node i; ti is referred to as its t-state.

• Fi(h) = {j ∈ Ci| (hj(tj), (−1)tj j) < (hi(ti), (−1)tii)} is the forwarding420

set of node i for heights h = (h1(t1), . . . , hN (tN)).

• {z(0), z(1), . . . } is a sequence satisfying

z(t) =

 0 if t = 0,

2t−1(2hmax + 1) if t ≥ 1.

21

In the neighbor oblivious partial link reversal algorithm node i updates its

state as follows.

Algorithm 6 Neighbor oblivious partial link reversal

1: if Fi(h) = ∅ then

2: ti ← ti + 1

3: hi(ti)← z(ti)− hi(ti − 1)

4: end if

Remarks 4.1. Assume that node i is stuck. The height update (Line 3) along

with the definition of sequence {z(0), z(1), . . . } ensure that i’s updated height425

surpasses the heights of those neighbors that have not updated states since i’s

last update, but still falls short of the heights of other neighbors. A similar

behavior is ensured by the third components of the states (e.g., (−1)tii in ai)

when two neighbors have identical initial heights.

As discussed before, node i broadcasts a hello packet to determine if it is430

stuck. However, it does not need to know the states of its neighbors to perform

updates (see Lines 2, 3 in Algorithm 6). Also, whenever it updates its state, it

broadcasts its new state to facilitate its neighbors updating the corresponding

link directions. Other nodes also independently and asynchronously execute

similar algorithms. In particular, multiple nodes can update at the same time.435

The following properties of this algorithm are similar to those of Algorithm 3.

Proposition 4.1. (a) The height of a node i is explicitly given by

hi(ti) =



ti/2∑
l=1

z(2l − 1) + hi(0) if ti is even,

z(1) +

(ti−1)/2∑
l=1

z(2l)− hi(0) if ti is odd.

(b) For any node i, and ti ∈ Z++, we have z(ti − 1) < hi(ti) < z(ti).

(c) For any two neighbors i and j, and ti, tj ∈ Z+ we have the following impli-

cation

ti > tj ⇒ hi(ti) > hj(tj).

22

(d) For any two neighbors i and j, at any stage of the algorithm, we have

0 ≤| ti − tj |≤ 1.

(e) For any node i, ti ≤ N at any stage of the algorithm.440

Proof 6. (a) We first obtain a recursion on hi(ti) using the height update

rule (Line 3 in Algorithm 6). For any ti ≥ 2,

hi(ti) = z(ti)− hi(ti − 1)

= 2z(ti − 1)− (z(ti − 1)− hi(ti − 2))

= z(ti − 1) + hi(ti − 2).

Successive applications of this recursion leads to expression for the case when ti

is even. If we also use that hi(1) = z(1) − hi(0), we get the expression for the

case when ti is odd.445

(b) We prove the inequalities by induction on ti. For ti = 1,

0 < hi(1) < z(1).

Now, assume that 0 < hi(ti) < z(ti) for some ti ∈ Z++. From the height update

rule (Line 3 in Algorithm 6),

hi(ti + 1) = z(ti + 1)− hi(ti)

= 2z(ti)− hi(ti)

> z(ti),

where the inequality holds because hi(ti) < z(ti). Also, 0 < hi(ti) implies that

hi(ti+ 1) < z(ti+ 1). This completes the induction, and shows that the inequal-

ities hold for all ti ∈ Z++.450

(c) The implication holds because hj(tj) < z(tj), hi(ti) > z(ti − 1) and z(t) is

increasing in t.

(d) The proof is identical to that of Proposition 3.1(d).

(e) The proof is identical to that of Proposition 3.1(e).

23

z(ti − 1)
z(ti)

z(ti + 1)

hi(ti) hi(ti + 1)

hk(ti)

hk(ti + 1)
k

i

l

hk(ti)

hl(ti)

Figure 3: An illustration of Algorithm 6 at a stuck node i. Note that tl = ti while tk = ti + 1.

Node k has reversed its link to i after i’s last update but node l has not. When node i updates

its state, it reverse the link to l but not the one to k.

Remarks 4.2. 1. As in the case of Algorithm 3, for any node, the number455

of state updates is upper bounded by N , and hence the state size is upper

bounded by log(N).

2. Propositions 4.1(c) implies that the forwarding set of node i can be alter-

natively defined as

Fi(a) = {j ∈ Ci| aj < ai},

where a = (a1, . . . , aN) are the nodes’ states.

Proposition 4.2. In Algorithm 6, a stuck node i reverses the directions of only

those of its links that have not been reversed since i’s last update. If every link to460

node i has been reversed after i’s last update, it performs two successive updates

to reverse the directions of all its links.

Proof 7. Since node i is stuck, for any node j ∈ Ci,

(hj(tj), (−1)tj j) > (hi(ti), (−1)tii).

By virtue of Propositions 4.1(c)-(d), we also have either tj = ti or tj = ti + 1.

See Figure 3 for an illustration.

(i) Consider tj = ti. This is the case of node l in Figure 3. We claim that465

node j has not reversed its link to i since i’s last update. If ti = 0, this claim

is trivially valid. If ti ≥ 1, we will show that the progression of updates when

24

both nodes’ t-states were ti − 1 was: node j updated, then node i updated. As a

consequence, again, our claim will be valid. To see the progression of updates,

observe that if hj(tj) = hi(ti), then (−1)tj j > (−1)tii. Thus, by sign flipping,470

at t-states ti − 1 = tj − 1, (−1)tj−1j < (−1)ti−1i. Also, by the form of the

updates at ti − 1, hj(tj − 1) = hi(ti − 1). So the link was from node i to node j

and it must be j that updated first. On the other hand, if hj(tj) > hi(ti), then

hj(tj − 1) = z(tj)− hj(tj)

< z(ti)− hi(ti)

= hi(ti − 1).

Again we conclude that the link was from i to j, and it must be j that updated

first. This establishes the claimed progression of states.475

Continuing with the case, when node i now makes an update, it moves to

t-state tj + 1. Hence the link is from i to j after the update.

(ii) Consider tj = ti + 1. This is the case of node k in Figure 3. We claim that

node j has reversed its link to i after i’s last update. Were it not the case, node

i’s t-state immediately prior to its last update would have been ti − 1 = tj − 2480

which contradicts Proposition 4.1(d).

Moreover, when node j’s t-state was tj − 1 = ti, it must have been the case

that

(hj(tj − 1), (−1)tj−1j) < (hi(ti), (−1)tii).

If hj(tj − 1) = hi(ti), then (−1)tj−1j < (−1)tii. Thus, by sign flipping, at

t-states ti + 1 = tj, (−1)tj j > (−1)ti+1i. Also, hj(tj) = hi(ti + 1). So, even

after node i makes an updates and moves to t-state ti + 1, the link continues to

be from j to i. If hj(tj − 1) < hi(ti), then485

hj(tj) = z(tj)− hj(tj − 1)

> z(ti + 1)− hi(ti)

= hi(ti + 1).

Again, even after node i makes an updates and moves to t-state ti + 1, the link

continues to be from j to i. This proves the first part of the proposition.

25

Finally, suppose that every neighbor of node i has reversed its link to i after

i’s last update. Then, as shown above, tj = ti+1 for all j ∈ Ci. Again as argued

above, if node i updates its state, it does not reverse any of its links. Thus it490

performs one more update. After this update its t-state is ti + 2 which exceeds

tj for all j ∈ Ci. So all its links are reversed.

Remarks 4.3. For a stuck node, if all its neighbors have reversed the cor-

responding links after its last update, it takes two iteration to reverse all the

incoming links. This is unlike Algorithm 2 which needs only one iteration.495

Proposition 4.3. Algorithm 6 can be embedded within the GB algorithms frame-

work. Thus it inherits the properties in Proposition 2.1.

Proof 8. We use the same proof technique as used for Proposition 3.3. Notice

that ai = (ti, hi(ti), (−1)tii) in this case. We define gi : V → Ai as

gi(v) =


(ti + 1, z(ti + 1)− hi(ti), (−1)ti+1i)

if i ∈ S(v),

(ti, hi(ti), (−1)tii) if i /∈ S(v).

Again, it is easy to check that Assumptions (A.1)-(A.3) as in the proof of Propo-

sition 3.3 hold. Thus, following the same argument as in the proof of Proposi-

tion 3.3, this proposition also holds.500

4.2. Two-Bit Partial Link Reversal

In Algorithm 6, nodes’ t-states grow as they update. We now give a modi-

fication of Algorithm 6 that uses only two bits for t-state and does not update

heights. To do this we exploit the fact that for any two neighbors i and j,

the link direction is entirely governed by ti, tj , hi(0) and hj(0). More precisely,

the link is directed from i to j if and only if either ti > tj , or ti = tj and

(−1)ti(hi(0), i) > (−1)tj (hj(0), j). Thus t-states along with the initial heights

suffice to determine link orientations. Moreover, since at any stage ti and tj

are either same or adjacent integers (Proposition 4.1(d)), we need only two bits

26

to describe their order. Specifically, if we define τ -states for all the nodes as in

Section 3.2, we obtain

ti > tj ⇐⇒ τi > τj .

As before, for node i, τi is referred to as its τ -state. Following the above

discussion, we can redefine the forwarding set of node i as

Fi(τ) = {j ∈Ci|τj < τi or (τj = τi

and (−1)τi(hi(0), i) > (−1)τj (hj(0), j))},

where τ = (τ1, . . . , τN). We are thus led to the following two bit version of the

partial link reversal algorithm. Node i updates its states as follows.

Algorithm 7 Two bit partial link reversal

1: if Fi(τ) = ∅ then

2: τi ← (τi + 1) mod 4

3: end if

In Figure 4, we illustrate the progression of Algorithm 7 in the same sample

network as in Figure 2.505

Following are the key properties of this algorithm.

Proposition 4.4. (a) In Algorithm 7, a stuck node i reverses the directions of

only those of its links that have not been reversed since i’s last update. If

every link to node i has been reversed after i’s last update, it performs two

successive updates to reverse the directions of all its links.510

(b) Algorithm 7 exhibits the properties in Proposition 2.1.

Proof 9. (a) Following Proposition 4.1(d) and the definition of τ -states, for

any node j ∈ Ci, we have either τj = τi or τj = (τi + 1) mod 4.

(i) Consider τj = τi. We claim that node j has not reversed its link to i since

i’s last update. If neither i nor j has ever made an update, this claim is trivially

valid. If both of them have made updates, by Proposition 4.1(d), it cannot be that

one of them made two updates without the other updating. So both must have

27

(00,2,5)

(00,3,2)

(−,0,D)

(00,2,5)

(00,3,2)

(−,0,D)

(i) (ii)

(iv)(iii)

(v)

(00,3,2)

(−,0,D) (−,0,D)

(−,0,D)

(00,2,1) (00,4,3)

(00,5,6)(00,1,4)

(00,2,1) (00,4,3)

(00,5,6)

(00,4,3)

(00,5,6) (00,5,6)

(00,4,3)

(00,5,6)

(01,1,4)

(01,1,4)

(01,2,1)

(01,2,5) (01,2,5)

(01,3,2)

(01,2,5)

(01,3,2) (01,4,3)

(01,1,4)

(01,2,1)

(01,1,4)

(01,2,1)

Figure 4: A sample execution of the two-bit partial link reversal algorithm. We show the

tuples (τi, hi(0), i) for each node i at each stage; the node D with height 0 is the destination.

At each stage, the solid circles depict the stuck nodes. The cut link in (i) results in an initial

destination disoriented network with node 4 starting out from a stuck state.

been at (τi−1) mod 4 at some point of time. We will show that the progression

of updates when both nodes’ τ -states were τi − 1 mod 4 was: node j updated,

then node i updated. As a consequence, again, our claim is valid. To see the

progression of updates, observe that

(−1)τj (hj(0), j) > (−1)τi(hi(0), i).

Thus, by sign flipping, at the nodes’ immediately prior τ -states, the inequality

was in reverse direction. So the link was from node i to node j and it must be515

j that updated first.

Continuing with the case, when node i makes an update, it moves to τ -state

28

(τj + 1) mod 4. Hence the link is from i to j after the update.

(ii) Consider τj = (τi + 1) mod 4. We claim that node j has reversed its link

to i after i’s last update. Were it not the case, node i’s τ -state immediately520

prior to its last update would have been (τi−1) mod 4 = (τj −2) mod 4 which

contradicts the fact that at any stage τi and τj assume either same or adjacent

values.

Moreover, when node j’s τ -state was (τj−1) mod 4 = τi, it must have been

the case that

(−1)τi(hj(0), j) < (−1)τi(hi(0), i).

Thus, by sign flipping, at τ -states (τi + 1) mod 4 = τj,

(−1)τj (hj(0), j) > (−1)τj (hi(0), i).

So, even after node i makes an update and moves to τ -state (τi+1) mod 4, the

link continues to be from j to i.525

Finally, suppose that every neighbor of node i has reversed its link to i after

i’s last update. Then, by the arguments above, τj = (τi + 1) mod 4 for all

j ∈ Ci. Also, if node i updates its state once, it does not reverse any of its links,

i.e., it is still stuck. Thus it performs one more update. After this update its

τ -state is (τi + 2) mod 4 which exceeds τj for all j ∈ Ci. So all its links are530

reversed.

(b) The proof is identical to that of Proposition 3.4(b).

5. Complexity of the Proposed Algorithms

As indicated earlier, the evolutions of the routing graph under our full

and partial reversal algorithms are identical to the evolutions under GB al-535

gorithms [1] (or those under the schemes of Charron-Bost et al. [18]). Thus

the complexity results of [17, 18, 19, 20] apply to our algorithms as well. In

this section, we review a few of these results. These results also enable us to

estimate the savings in computations, communication, and storage overheads

due to neighbor obliviousness and finite-state properties of our algorithms. We540

start by defining the notions of work and time complexities.

29

Work Complexity. Recall that a link reversal is the action of a stuck node revers-

ing some or all of its adjacent links. Given a routing graph, the work complexity

of an algorithm is defined to be the total number of reversals performed by all

the nodes until a destination oriented DAG is obtained [17]. This is referred545

to as the global work complexity in [18]) This is a measure of the communica-

tion and computation resources consumed by the algorithm before reaching an

equilibrium.

Time Complexity. Let us consider a slotted network in which link reversals

take place only at slot boundaries, and all the nodes that are stuck perform link550

reversals at the next boundary. Given a routing graph, the time complexity of an

algorithm is defined to be the number of slots needed until a destination oriented

DAG is obtained [17, 19]. This is a measure of the speed of the algorithm.

For instance, in the sample execution of two bits full link reversal

algorithm in Figure 2, seven link reversals are needed until a desti-555

nation oriented DAG is obtained. If we assume that time is slotted

and link reversals take place only at the slot boundaries, one would

require five slots until the equilibrium is reached.

Busch and Tirthapura [17] and Charron-Bost et al. [18, 19, 20] proved

that work and time complexities of full and partial link reversal algorithms560

are O(N2), and demonstrated networks in which both these algorithms exhibit

Θ(N2) work and time complexities.7

Since the evolutions of the routing graph under our full and par-

tial reversal algorithms are identical to the evolutions under the GB

7To be precise, Busch and Tirthapura [17] established that the work and time complexities

of GB partial link reversal algorithm are O(PN + N2) where P is the difference between

the maximum and minimum p-states of the nodes in the initial routing graph. They also

demonstrated networks in which GB partial link reversal algorithm exhibits Θ(PN + N2)

work and time complexities. They further illustrated that P can be arbitrarily larger than

N in mobile ad hoc networks where the underlying connection topology keeps changing (in

particular, Proposition 4.1(d) no longer holds; see also the discussion in Section 6). However,

neither Charron-Bost et al. [18] nor we have considered mobile networks.

30

algorithms, the time complexities of our algorithms are identical to565

those of the GB algorithms. In fact, the O(N2) bound can be directly

inferred from our Propositions 3.1(e) and 4.1(e) which assert that all

N nodes need at most N link reversals.

For work complexities, we recall the two potential implementations of the

GB protocols (see Section 1.1). In the first scheme, nodes hold their neighbors’570

full state information which are of size O(logN) bits. Thus, in the worst case,

each node requires O(N logN) bits of storage. In the second scheme, nodes do

not maintain the states of their neighbors. But when a hello packet is broad-

cast by a node, all its neighbors respond with their full states. This scheme

requires at least Ω(N2) transmissions (of full states) until an equilibrium is575

reached (at least one “state information” transmission per link reversal). In our

neighbor oblivious and finite state algorithms, since a stuck node’s update is

not a function of the full states of its neighbors, we economize on these storage

or communication overheads.

Also, in GB algorithms, each stuck node uses its neighbors’ state information580

to come up with its new state. The simpler update rules in our finite-state

algorithms ensure that we can further save Ω(N2) computations. The overall

complexity may still be Ω(N2), but with a smaller constant.

The link-centric schemes of Charron-Bost et al. [18] are also lightweight in

the sense that the link reversal rules are simple. But in those schemes, the nodes585

must hold the labels of all incident links, and after each reversal, must commu-

nicate the new link labels and link directions to the corresponding adjacent

nodes (neighbors). This requires O(N) bits of storage and significant communi-

cation overhead at each node in the worst case. On the other hand, we require

each node to store only logN bits for the node index and an additional two590

bits to execute our proposed finite-state link reversals. See Algorithms 4 and 7.

Observe that links’ directions should be set to ensure acyclicity of the routing

graph in the beginning and after every execution of link reversal. Associating

nodes with distinct and ordered indices (of logN size) provides a convenient

method to accomplish this. Charron-Bost et al. [18], on the other hand, bypass595

31

this issue by explicitly assuming that the initial routing graph is acyclic (see [18,

Corollary 3.8]). Moreover, the authors in [18] rely on an oracle for initial link

direction identification and actual link reversal.

6. Conclusion

We proposed neighbor oblivious link reversal (NOLR) schemes to get a des-600

tination oriented network out of the local minimum condition in geographic

routing. Our algorithms fall within the general class of GB algorithms [1]. We

then argued that both the algorithms, GB and NOLR, may suffer the problem

of state storage overflow. This led us to modify the NOLR algorithms to obtain

one bit full link reversal and two bit partial link reversal algorithms. The finite605

state algorithms inherit all the properties of NOLR algorithms which in turn

inherit the properties of GB algorithms, and are pragmatic link reversal solu-

tions to convert a destination-disoriented DAG to a destination-oriented DAG.

The communication is lightweight since only broadcasts (hello packets and new

state advertisements) contain state information (acknowledgements need not),610

and further, acknowledgements are sent only by the neighbors that have lower

states than the querying node. We have given order estimates of the resulting

savings in computations, communication and storage overheads.

The property |ti− tj | ≤ 1 at every stage for all pairs of neighboring nodes is

crucial for getting the finite state version of our NOLR algorithms. If addition615

of new nodes or links to the existing graph is allowed, this property could be

violated. If full t-states (instead of only τ -states) are maintained, then since

Algorithms 3 and 6 belong to the class of GB algorithms, they continue to

exhibit the properties in Proposition 2.1. However, Algorithm 3 does not execute

a full link reversal, and similarly, Algorithm 6 does not execute a partial link620

reversal. Furthermore, the finite state algorithms are not robust to addition of

new nodes or links because the newly added nodes may not be able to take up

a state consistent with the above property, or the DAG may be burdened by

cycles.

32

Acknowledgments625

This work was supported in part by a research grant on Wireless Sensor

Networks for Intrusion Detection from DRDO, Government of India, and in

part by the Indo-French Centre for Promotion of Advanced Research (IFCPAR),

Project No. 4000-IT-A.

References630

[1] E. M. Gafni, D. P. Bertsekas, Distributed algorithms for generating loop-

free routes in networks with frequently changing topology, IEEE Transac-

tions on Communications 29 (1) (1981) 11–18.

[2] B. Karp, H. T. Kung, GPSR: Greedy perimeter stateless routing for wireless

networks, in: Proceedings of the 6th annual international conference on635

Mobile Computing and Networking (MobiCom), Boston, MA, USA, 2000,

pp. 243–254.

[3] Q. Fang, J. Gao, L. J. Guibas, Locating and bypassing holes in sensor

networks, Mobile Networks and Applications 11 (2) (2006) 187–200.

[4] E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks,640

in: Proceedings of the 11th Canadian Conference on Computational Ge-

ometry (CCCG), Charlottetown, Canada, 1999, pp. 51–54.

[5] H. Kalosha, A. Nayak, S. Ruhrup, I. Stojmenovic, Select-and-protest-based

beaconless georouting with guaranteed delivery in wireless sensor networks,

in: Proceedings of the 27th IEEE Conference on Computer Communica-645

tions (INFOCOM), Phoenix, AZ, 2008, pp. 346–350.

[6] C.-Y. Chang, K.-P. Shih, S.-C. Lee, S.-W. Chang, RGP: Active route guid-

ing protocol for wireless sensor networks with obstacles, in: Proceedings

of the IEEE International Conference on mobile adhoc and sensor Sys-

tems (MASS), Vancouver, BC, 2006, pp. 367–376.650

33

[7] F. Yu, S. Park, Y. Tian, M. Jin, S.-H. Kim, Efficient hole detour scheme for

geographic routing in wireless sensor networks, in: Proceedings of the IEEE

Vehicular Technology Conference (VTC Spring), Marina Bay, Singapore,

2008, pp. 153–157.

[8] B. Leong, B. Liskov, R. Morris, Geographic routing without planarization,655

in: Proceedings of the 3rd conference on Networked Systems Design &

Implementation (NSDI), San Jose, CA, 2006, pp. 25–25.

[9] P. Casari, M. Nati, C. Petrioli, M. Zorzi, ALBA: An adaptive load - bal-

anced algorithm for geographic forwarding in wireless sensor networks, in:

Proceedings of the IEEE Military Communications Conference (MILCOM),660

Washington, DC, USA, 2006, pp. 1–9.

[10] C. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-

vector routing (DSDV) for mobile computers, ACM SIGCOMM Computer

Communication Review 24 (4) (1994) 234–244.

[11] D. Johnson, D. Maltz, J. Broch, et al., DSR: The dynamic source rout-665

ing protocol for multi-hop wireless ad hoc networks, Ad hoc networking 5

(2001) 139–172.

[12] N. Arad, Y. Shavitt, Minimizing recovery state in geographic ad hoc rout-

ing, IEEE Transactions on Mobile Computing, 8 (2) (2009) 203–217.

[13] M. Corson, A. Ephremides, A distributed routing algorithm for mobile670

wireless networks, Wireless Networks 1 (1) (1995) 61–81.

[14] V. Park, M. Corson, A highly adaptive distributed routing algorithm for

mobile wireless networks, in: Proceedings of IEEE Conference on Computer

Communications (INFOCOM), Kobe, Japan, 1997, pp. 1405–1413.

[15] N. Malpani, J. Welch, N. Vaidya, Leader election algorithms for mobile675

ad hoc networks, in: Proceedings of the 4th international workshop on

Discrete algorithms and methods for mobile computing and communica-

tions (DIALM), Boston, MA, USA, 2000, pp. 96–103.

34

[16] R. Ingram, P. Shields, J. Walter, J. Welch, An asynchronous leader election

algorithm for dynamic networks, in: Proceedings of the IEEE International680

Symposium on Parallel & Distributed Processing (IPDPS), Rome, Italy,

2009, pp. 1–12.

[17] C. Busch, S. Tirthapura, Analysis of link reversal routing algorithms, SIAM

Journal on Computing 35 (2) (2005) 305–326.

[18] B. Charron-Bost, A. Gaillard, J. L. Welch, J. Widder, Routing without or-685

dering, in: Proceedings of the 21st ACM symposium on Parallel algorithms

and architectures (SPAA), Calgary, Canada, 2009, pp. 145–153.

[19] B. Charron-Bost, M. Fugger, J. L. Welch, J. Widder, Full reversal rout-

ing as a linear dynamical system, in: Proceedings of the 18th Interna-

tional Colloquium on Structural Information and Communication Com-690

plexity (SIROCCO), Gdansk, Poland, 2011, pp. 101–112.

[20] B. Charron-Bost, M. Fugger, J. L. Welch, J. Widder, Partial is full, in:

Proceedings of the 18th International Colloquium on Structural Informa-

tion and Communication Complexity (SIROCCO), Gdansk, Poland, 2011,

pp. 113–124.695

[21] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, I. Stoica, Geographic

routing without location information, in: Proceedings of the 9th annual

international conference on Mobile computing and networking (MobiCom),

San Diego, CA, USA, 2003, pp. 96–108.

35

	Introduction
	Motivation
	Related Literature
	Our Contributions
	Assumptions

	Organization of the Paper

	Overview of GB Algorithms
	Full Link Reversal
	Neighbor Oblivious Full Link Reversal
	Two Bits Full Link Reversal
	One Bit Full Link Reversal

	Partial Link Reversal
	Neighbor Oblivious Partial Link Reversal
	Two-Bit Partial Link Reversal

	Complexity of the Proposed Algorithms
	Conclusion

