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Incoherence is Sufficient for Statistical RIP of Unit
Norm Tight Frames: Constructions and Properties
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Abstract—Incoherent matrices, especially, incoherent unit
norm tight frames (IUNTFs), are important in many present day
applications. In addition to incoherence, the statistical restricted
isometry property (StRIP) and statistical incoherence property
(SInCoP) are important criteria for a matrix to provide theo-
retical guarantees for uniquely recovering sparse signals using
computationally efficient algorithms.

In this work, we show that the incoherence alone is sufficient to
establish StRIP and SInCoP for unit norm tight frames (UNTFs).
Further, we derive three simple properties that binary matrices
need to satisfy, in order to produce IUNTFs with low coherence
and high redundancy (ratio of the number of columns to the
number of rows) via an existing embedding operation. We show
that biadjacency matrices corresponding to biregular graphs
satisfy the required properties. Thereby, we provide a connection
between graph theory and the construction of IUNTFs. We also
provide a bouquet of constructions of IUNTFs from finite fields
and combinatorial designs. These can be used to produce IUNTFs
with very general sizes.

Another important aspect of our construction is that the sparse
recovery guarantees for the embedded IUNTFs can in fact be
translated to the constituent binary matrix. We show that if the
constituent m×M binary matrix has constant row and column
weight, it can support sparse recovery through `1−minimization
for all but an ε−fraction of t−sparse signals chosen from a
random signal model, provided m = O(t(log(M

ε
))3), which

is a significant improvement over the existing m = O(t2)
bound, where m denotes the number of measurements. Also, the
StRIP and SInCoP based approach results in matrices whose
column size is exponential in the fourth root of the row size.
To the best of our knowledge, this is the first construction of
deterministic matrices satisfying StRIP and SInCoP with such
high redundancy.

Index Terms— Unit norm tight frame, biregular graph,
sparse signal recovery, statistical restricted isometry property.

I. INTRODUCTION

The coherence of a matrix is defined as the maximum
absolute value of inner products between any two distinct
normalized columns. A matrix with small coherence is termed
as an incoherent matrix. Incoherent matrices, especially, in-
coherent unit norm tight frames (IUNTFs), play a key role
in a variety of applications including, but not limited to,
compressed sensing, communications, and coding theory [1].
The statistical restricted isometry property (StRIP) and the
statistical incoherence property (SInCoP) of a matrix, explored
in [2], [3], are sufficient to provide guarantees for the unique
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recovery of sparse signals using the basis pursuit (BP) al-
gorithm. The StRIP and SInCoP of a matrix are a function
of its coherence, mean square coherence and spectral norm
[2], [3]. As a result, the construction of IUNTFs [4]–[7] and
matrices with StRIP has gained momentum in recent years
[3], [8]–[10]. Our first objective in this paper is to show that,
in case of UNTFs, the conditions on mean square coherence
and spectral norm are redundant, and incoherence alone is
sufficient to establish the StRIP and SInCoP.

IUNTFs with additional properties are of special interest.
For example, matrices with high redundancy (defined as the
ratio of the number of columns to the number of rows) are
useful in sensing sparse vectors using as few measurements
as possible. Similarly, matrices with low density (defined as
the ratio of the number of nonzero elements to the total
number of elements) are desirable as they can lead to low
complexity algorithms for sparse signal recovery.1 The existing
IUNTFs with low redundancy, e.g., equiangular tight frames
[12], mutually unbiased bases [13] and chirp matrices [14]
exhibit StRIP and SInCoP, but are of very restricted sizes.
Our second objective is to provide a simple construction of
IUNTFs with large redundancy, low density and of arbitrary
size using an existing embedding operation.

An embedding operation is proposed in [15] to obtain matri-
ces with larger column size from an incoherent smaller dimen-
sional binary matrix possessing constant column weight. The
embedding is done by replacing each 1−valued entry of each
column of the binary matrix with a distinct row of a Hadamard
or DFT matrix and replacing each zero by a row of zeros of
size equal to the column size of the Hadamard or DFT matrix.
A matrix is said to satisfy the (`1, t)−recovery property if
every t−sparse vector can be uniquely recovered via basis
pursuit (BP). In [16], DFT matrices are embedded in binary
matrices obtained from pairwise balanced designs to obtain
tight frames with (`1, O(

√
m))−recovery property, where m

is the row size. In [12], the authors embed Hadamard or DFT
matrices in binary matrices obtained from (2, k, v)−Steiner
systems to obtain equiangular tight frames (ETFs). In [17],
Hadamard or DFT matrices are embedded in binary matrices
generated from a finite geometry to obtain low coherence
matrices. It is also shown through numerical simulation that
the embedded matrices exhibit superior sparse signal recovery
performance compared to random Gaussian matrices. The
authors in [18] use binary matrices obtained from vector
spaces over finite fields in the embedding operation to obtain
incoherent matrices with large column size.

1For a survey of sparse recovery algorithms for sparse matrices, see [11].
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From the above discussion, we see that embedding is a
versatile approach that can be used to fulfill various ob-
jectives. For example, in [15], [18], it is used to obtain
matrices with large column size, whereas in [12], it is used
to construct ETFs. However, the existing analysis of the
sparse recovery properties of embedded matrices is based on
the (`1, t)−property, which cannot guarantee the recovery of
sparse signals with greater than O(

√
m) non-zero entries.

Also, the ETFs constructed via the embedding operation
suffers from low redundancy [12]. Overall, despite relying
on the same underlying embedding operation, there is no
unified framework that connects these diverse constructions.
Therefore, it is of interest to develop a unified methodology
for constructing highly redundant matrices with good sparse
recovery properties using the embedding operation, which is
our third objective in this paper.

In the context of the above, our contributions in this paper
are as follows:

1) We show that, for UNTFs, incoherence alone suffices to
establish StRIP and SInCoP. We note that previous results
required the matrices to also satisfy certain conditions on
the mean square coherence and spectral norm in order
for the StRIP and SInCoP to hold; these conditions are
redundant for IUNTFs.

2) We determine the underlying property of a binary matrix
that enables one to produce IUNTFs by embedding an
incoherent tight frame such as the Hadamard or DFT
matrix. To elaborate, we show that binary matrices with
the following three properties:
(i) each column contains the same number of ones,
(ii) each row contains the same number of ones,
(iii) the overlap between any two columns is sufficiently
small (to be specified later),
are suitable candidates to produce IUNTFs through the
embedding operation.

3) We show that biadjacency matrices associated with bireg-
ular graphs possess the required properties. This enables
us to leverage the available literature on graph construc-
tion to design IUNTFs. We also present constructions
of binary matrices with the required properties via (i)
combinatorial designs and (ii) polynomials over finite
fields. We present several constructions of binary matrices
with the three required properties for very general sizes
and with large redundancy. As the preview of the results
to follow, we summarize the constructions presented in
this work in Table I.

4) We also show that IUNTFs constructed via the em-
bedding operation support sparse recovery through
`1−minimization for all but ε−fraction of t−sparse
signals chosen from a random signal model provided
m = O(t(log(Mε ))3), which is significantly better than
m = O(t2) bound for recovering of t−sparse signals
obtained via the (`1, t)−property considered in [16], [19].
Here, t,m and M represent the sparsity, row size and
column size, respectively.

5) The column size of most existing constructions (e.g., [12],
[13], [14]) satisfying StRIP and SInCoP are polynomial

(typically, the square) in the row size. In contrast, for
a prime p, our IUNTFs are of size p2 × p

√
p with

coherence 1√
p and density 1

p . Further, they satisfy StRIP
and SInCoP, and thereby support sparse recovery as
mentioned in the previous point. Therefore, the coherence
of the constructed IUNTFs is at most mα and the column
size is mβ , where m = p2 is the row size, α = − 1

4

and β = 1
2m

1
4 . To the best of our knowledge, these are

the first constructions of matrices satisfying StRIP and
SInCoP with the column size being exponential in (the
fourth root of) the row size.

6) We show that the sparse recovery guarantees for the
embedded IUNTFs can be directly translated to the con-
stituent binary matrices. In turn, this allows us to provide
new and improved theoretical bounds for sparse recovery
from such binary measurement matrices.

The rest of the paper is organized as follows. In Sec-
tion II, we establish the StRIP and SInCoP of IUNTFs. In
Section III, we discuss the general principle behind con-
struction of IUNTFs from binary matrices, and identify the
key properties that need to be satisfied to obtain IUNTFs
via the embedding operation. In Sections IV, V and VI, we
discuss the construction of IUNTFs from biregular graphs,
finite field theory and combinatorial designs, respectively.
The sparse recovery properties of constructed IUNTFs and
their connection with existing constructions are discussed in
Section VII. We present numerical results to validate the
theoretical results and compare the sparse recovery properties
of the proposed constructions with random Gaussian matrices
in Sec. VIII. We end the paper with a few concluding remarks
pointing to promising directions for future work.

II. STRIP AND SINCOP OF IUNTFS

In this section, we show that IUNTFs satisfy StRIP and
SInCoP. As a result, the basis pursuit algorithm can recover
sparse signals uniquely whenever the signal arises from a
generic random model [3]. Before presenting the main results
of this section, we discuss the basics of frame theory and their
properties.

A family of vectors {φi}Mi=1 in Cm is called a frame for
Cm, if there exist constants 0 < A ≤ B <∞ such that

A ‖z‖22 ≤
M∑
i=1

|〈z, φi〉|2 ≤ B ‖z‖22 ,∀z ∈ Cm,

where A,B are called the lower and upper frame bounds,
respectively. The redundancy of a frame is defined as the
ratio of number of frame elements to the dimension of frame
elements, i.e., M

m . Frames are divided into the following
classes:
• If A = B, then {φi}Mi=1 is called an A−tight frame or

simply a tight frame.
• If there exists a constant c such that ‖φi‖2 = c for all
i = 1, 2, . . . , n, then {φi}Mi=1 is an equal norm frame. If
c = 1, then it is called a unit norm frame.

• If a frame is both unit norm and tight, it is called a unit
norm tight frame (UNTF).
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TABLE I. CONSTRUCTIONS PRESENTED IN THIS WORK.
HERE, p IS A PRIME POWER, AND n AND k ARE CHOSEN SUCH THAT AN EULER SQUARE OF INDEX (n, k) EXISTS

Biregular graph Dimension (m×M ) Coherence Redundancy Requirement for StRIP: m = O(·) Section
p−regular graph D(2, p) p2 × p3 ≤ 2

p p t IV-A1
(d, mdM )−regular LDPC code m×M ≤ 2

d
M
m t, for d = O(

√
m) IV-A2

(dr, d`)−regular QC LDPC code pdr × pdrd`, p ≥ d` + 1 ≤ 2
dr

d` t, for p = O(dr) IV-A3
(p2, pr+1, p, pr)− biregular graph, r ≥ 1 p2 × pr+2 ≤ 2r

p pr t, for fixed r V-A
(n2, nk, n, k)−biregular graph n2 × n2k ≤ 2

n k t VI-A
(2, p, p2)−Steiner system p2 × p2(p+ 1) ≤ 2

p p+ 1 t VI-B
(2, p+ 1, p2 + p+ 1)−Steiner system (p2 + p+ 1)× (p+ 1)(p2 + p+ 1) ≤ 2

p+1 p+ 1 t VI-B
(3, p+ 1, p2 + 1)− Steiner system (p2 + 1)× p(p+ 1)(p2 + 1) ≤ 4

p+1 p(p+ 1) t VI-B

• If a frame is unit norm and there exists a constant d such
that | 〈φi, φj〉 | = d, for 1 ≤ i < j ≤M, then {φi}Mi=1 is
an equiangular frame.

• If a frame is both UNTF and equiangular, it is called an
equiangular tight frame (ETF).

UNTFs are known to be well conditioned and provide stable
representations [20]. It can be shown that a UNTF exists only
when A = M

m . By considering the frame vectors as columns,
one may obtain a full row rank matrix. In this sequel, we do
not make any distinction between a frame and its associated
matrix and use the two terms interchangeably.

Definition 1: (Coherence) The coherence µΦ of a frame
Φ ∈ Cm×M is defined by

µΦ = max
1≤ i,j≤M,i6=j

| 〈φi, φj〉 |
‖φi‖2‖φj‖2

,

where φi is the ith column of Φ.
Definition 2: (Mean square coherence) The mean square

coherence µ2
Φ of a frame Φ ∈ Cm×M is defined as

µ2
Φ =

1

M − 1
max
j

M∑
i=1,i6=j

| 〈φi, φj〉 |2. (1)

Both µΦ and µ̄2
Φ are important factors in determining StRIP

of a given frame [3]. Our first result is an upper bound on the
mean square coherence of any UNTF.

Theorem 1: For any UNTF Φ ∈ Cm×M ,

µ2
Φ =

M −m
m(M − 1)

<
1

m
.

Proof: See Sec. X-B1.
A trivial upper bound for µ2

Φ is µ2
Φ, where µΦ is the

coherence of Φ. Theorem 1 shows that the mean square
coherence of any UNTF of a given size is fixed. This property
will be crucial in showing that low coherence is enough to
establish StRIP and SInCoP of IUNTFs.

Let Jt(M) denote the set of all t−sized subsets of
{1, . . . ,M} and let PJt denote the uniform probability distri-
bution on Jt(M). We now formally define StRIP and SInCoP.

Definition 3: [3], [21], [22] Let Φm×M be a frame for Rm
or Cm containing M elements as its columns. Then, the frame
Φ is said to satisfy the (t, δ, ε)−StRIP if

PJt

(∥∥ΦTJΦJ − It×t‖2 ≥ δ
)
< ε,

where the random set J ∈ Jt(M) is distributed according

to PJt and ΦJ is the submatrix of Φ formed by taking the
columns indexed by J .

Definition 4: [2], [3] An m×M matrix Φ is said to satisfy
the (t, α, ε)−statistical incoherence property (SInCoP), if

PJt({I ∈ Jt(M) : max
i/∈I
‖ΦTI φi‖22 ≤ α}) ≥ 1− ε.

Definition 5: (Random signal model St [2], [3]): A vector
x ∈ RM is said to be drawn from the random signal model
St if it satisfies the following two properties:

1) Let I ⊂ {1, · · · ,M} be a set containing the t indices
corresponding to the entries of x that have the t largest ab-
solute values. Then, the subset I is uniformly distributed
over Jt(M).

2) Conditional on I, the signs of the coordinates xi, i ∈
I are independent and identically distributed (i.i.d.)
Rademacher random variables taking values in the set
{1,−1} with equal probability.

In [2], [3], it is shown that if a matrix satisfies StRIP and
SInCoP, a sparse signal arising from the random signal model
can be recovered with high probability using the basis pursuit
algorithm, which solves the convex optimization problem

P1(Φ, y) : min
x
‖x‖1 subject to Φx = y.

The next theorem states that IUNTFs satisfy StRIP.
Theorem 2: A UNTF Φm×M with coherence O( 1√

m
) has

the following properties:

1) Φm×M satisfies the (t, δ, 1
t )−StRIP for m = O(t log t).

2) Φm×M satisfies the (t, δ, ε)−StRIP with t < 1
ε for m =

Oε(t).
2

Proof: See Sec. X-B2.
The above theorem shows that matrices with coherence
O(m−

1
2 ) satisfy StRIP. Next, we show that an IUNTF satisfies

the SInCoP.
Theorem 3: A UNTF Φm×M with coherence 1√

m
satis-

fies (t, α, ε)−SInCoP for m = O(t(log(Mε ))3/2) and α =
O((log( 2M

ε ))−1).

Proof: See Sec. X-B3.
The above theorem asserts that along with StRIP, matrices
with coherence O(m−

1
2 ) also satisfy the SInCoP. Based on the

above, the following theorem summarizes the sparse recovery
guarantees for a UNTF Φm×M .

2Here, Oε denotes the order function, whose constants may depend on ε.
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Theorem 4: A UNTF Φm×M with coherence 1√
m

supports
sparse recovery under the basis pursuit algorithm for all but
a proportion ε (< 1

t ) of t−sparse signals chosen from the
random signal model St provided m = O(t(log(Mε ))3/2).

Proof: The result follows directly from the [3, The-
orem 15] (see Theorem 16 in Appendix X-A) as Φm×M
satisfies (t, δ, ε)−StRIP and (t, α, ε)−SInCoP for m =
O(t(log(Mε ))3/2).

Thus, we have shown that incoherence alone is sufficient
for a UNTF to satisfy StRIP and SInCoP, and thereby guaran-
teeing successful recovery of sparse signals arising from the
random signal model. In the next section, we provide various
constructions of IUNTFs by using an existing embedding
operation starting from constant column and row weight binary
matrices.

III. FROM BINARY MATRICES TO IUNTFS

In this section, we show that an embedding operator applied
to a specially structured binary matrix can produce a UNTF
with small coherence. The embedding operation proposed
in [15] combines binary matrices with other low-coherence
matrices, and is defined as follows:

Definition 6: [Embedding Operation] Suppose Am×M is a
binary matrix such that each column has k ones, and let Bk×K
be a matrix. Define a new matrix C = A~B of size m×MK
by replacing each 1-valued entry of each column of A with
a distinct row of B and replacing each zero by a row of K
zeros.
The following lemma relates the coherence µC of C = A~B
with the coherence µA of A and the coherence µB of B.

Lemma 1: [15] Suppose C = A ~ B, then µC =
max{µA, µB}, provided all entries of B have same modulus.

From Lemma 1, we need the coherence of A and B to be
small in order to ensure that the coherence of C is small. Our
objective is to determine the properties of the binary matrix
A and the matrix B which results in C being a UNTF with
low coherence. First, we define a class of binary matrices as
follows:

Definition 7: An m × M binary matrix is said to be a
(k, Mk

m )−binary matrix of size m × M if it satisfies the
following two properties:

1) Each column contains k ones.
2) Each row contains Mk

m ones.
Note that the density of (k, Mk

m )−binary matrices of size m×
M is k

m .
The following theorem states that UNTFs can be constructed

from (k, Mk
m )−binary matrices of size m×M via the embed-

ding operation.
Theorem 5: Let Ψ be a (k, Mk

m )−binary matrix of size m×
M and Tk×K be a UNTF. Then (Ψ ~ T )m×MK is a UNTF.

Proof: See Sec. X-B4.
From the above theorem, we see that binary matrices with

constant column and row weights are suitable candidates to
produce UNTFs. However, in addition to being UNTFs, we
seek matrices with low coherence and large redundancy. From
Lemma 1, this implies that, one needs the matrices Ψ and T
to have low coherence and large redundancy. For simplicity,

in literature, T is usually chosen as an orthonormal basis, i.e.,
Hadamard or DFT matrix. In that case, the coherence and
redundancy of (Ψ ~ T ) depend solely on the coherence and
redundancy of Ψ. We have the following definition:

Definition 8: A (k, Mk
m )−binary matrix of size m ×M is

called a (k, Mk
m , r)−binary matrix of size m×M if the overlap

between any two distinct columns is at most r.
The following theorem shows that by embedding an orthonor-
mal basis inside a (k, Mk

m , r)−binary matrix of size m×M ,
one can obtain an IUNTF.

Theorem 6: Let Ψ be a (k, Mk
m , r)−binary matrix of size

m×M and T be a UNTF of size k×K with coherence µT .
Let α = maxi,j |T (i, j)|, where T (i, j) denotes the (i, j)th
entry of T . Then, (Ψ~ T ) is a UNTF of size m×MK with
coherence at most max{ rα

2

k , µT }.
In particular, if T be an orthonormal basis of size k × k,

then the coherence of the UNTF (Ψ ~ T ) is at most rα2

k .
Proof: See Sec. X-B5.

Note that, one may choose Tk×k as the discrete cosine
transform (DCT) matrix (or the discrete Fourier transform
(DFT) matrix) to have (Ψ~T ) as a real matrix (or a complex
matrix). For the DCT matrix (or the DFT matrix) α ≤

√
2
k

(or α ≤ 1√
k

). Then, if Ψ is a (k, Mk
m , r)−binary matrix of size

m×M, the coherence of the UNTF (Ψ~T ) is at most 2r
k (or

r
k ). Instead of the DCT matrix, if we use T as the Hadamard
matrix, a real IUNTF can be constructed with coherence r

k .
Note that, Hadamard matrices do not exist for all orders. The
Hadamard conjecture states that a Hadamard matrix of order
4k exists for every positive integer k. The construction of
Hadamard matrices is known for order 2n for every positive
integer n.

Based on the above theorem, we desire to construct
(k, Mk

m , r)−binary matrices which possess the following prop-
erties:

(p1) Each column has k ones.
(p2) Each row has an equal number of ones.
(p3) The maximum overlap between any two columns is at

most r (< k).
We provide explicit constructions of matrices with the above

properties in Sections IV, V and VI.
In the next section, we show that the biadjacency matrix as-

sociated with a biregular graph satisfies the desired properties.

IV. FROM BIREGULAR GRAPHS TO UNTFS

In this section, we provide a connection between biregular
graphs and the construction of UNTFs via embedding.

A graph is called d−regular if all vertices have degree d.
A bipartite graph is said to be biregular if all vertices on the
same side of the bipartition have the same degree.

Definition 9: A bipartite graph with m left vertices and M
right vertices is said to be an (m,M, dr, dl)−biregular graph
if the m left vertices have degree dl each and the M right
vertices have degree dr each. Note that a biregular graph
satisfies mdl = Mdr.

The girth of a graph is defined as the length of its shortest
cycle. The girth of a bipartite graph is always an even number,
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and in “simple” graphs (not more than one edge between any
pair of vertices), the girth is at least four.

We define a special type of biregular graph for the purpose
of obtaining binary matrices with the desired properties.

Definition 10: An (m,M, dr, dl) biregular graph is called
an (m,M, dr, dl, r)−biregular graph if any two right vertices
have at most r left vertices in common.

Definition 11: The biadjacency matrix associated with a
bipartite graph with m left vertices and M right vertices is
a binary matrix Φ of size m×M whose (i, j)th element φij
is one if there exists an edge between the ith left vertex and
the jth right vertex, and is zero otherwise.

Theorem 7: Let Φ be the biadjacency matrix associated
with an (m,M, dl, dr, r)−biregular graph and T be a UNTF
of size dr ×K with coherence µT and α = maxi,j |T (i, j)|,
where T (i, j) denotes the (i, j)th entry of T . Then, (Φ ~ T )
is a UNTF of size m × MK with coherence at most
max{ rα

2

dr
, µT }.

Proof: See Sec. X-B6.
Thus, if we choose T to be an orthogonal matrix of size dr×dr
with unit-modulus entries (e.g., DFT or Hadamard matrix),
then the UNTF constructed from a (m,M, dl, dr, r)−biregular
graph has coherence at most r

dr
.

A. IUNTFs from Biregular Graphs with Large Girth

By Theorem 7, it is clear that to have an IUNTF from
an (m,M, dr, dl, r)−biregular graph, we need dr to be large
and r to be small. In [23], it is shown that the overlap
between any two columns of the biadjacency matrix of any
bipartite graph with girth greater than 4 is at most 1. Hence,
an (m,M, dr, dl)−biregular graph with girth greater than 4
is an (m,M, dr, dl, 1)−biregular graph. Consequently, from
Theorem 7, one obtains a UNTF of size m × Mdr with
coherence at most 1

dr
from the biadjacency matrix associated

with an (m,M, dr, dl, 1)−biregular graph.
In the following, we discuss different existing biregular

graphs with large girth and the construction of IUNTFs from
their biadjacency matrices.

1) Construction from regular bipartite graphs: Let n ≥ 2
be an integer and p be a power of a prime. In [24], a family of
p−regular bipartite graphs, denoted by D(n, p), is constructed
with pn left vertices and pn right vertices. When n is odd,
the girth of D(n, p) is at least n + 5 [24] and when n is
even, the girth of D(n, p) is at least n + 4 [25]. Hence, for
all n, the girth of D(n, p) is at least 2dn2 e+ 4. In particular,
D(2, p) and D(3, p) have girth 6 and 8, respectively. Now, the
biadjacency matrix Φ of D(n, p) is a pn × pn binary matrix
with the following properties:

1) Each column has p ones.
2) Each row has p ones.
3) As the girth is greater than 4, the overlap between any

two columns (rows) is at most one. Hence, the coherence
is at most 1

p .

Now, if Tp×K is a UNTF, if we define α = maxi,j |T (i, j)|,
(Φ ~ T )pn×Kpn is a UNTF with coherence max{α

2

p , µT }. If
Tp×p is a DCT or a DFT matrix, then (Φ ~ 1√

pT )pn×pn+1 is

a UNTF with coherence at most 2
p = 2m−

1
n or 1

p = m−
1
n ,

respectively, where m = pn is the row size. If Φ comes from
D(2, p), then (Φ ~ 1√

pT )p2×p3 is a UNTF with coherence 2
p

(in real case) or 1
p (in complex case). In the complex case,

when m = p2, the coherence is at most 1√
m
, which is close

to the Welch bound [26].
Apart from D(n, p), there are also d−regular bipartite

expander graphs with m left and right vertices [27], [28]. The
m×m binary matrix Φ associated with a regular expander has
d ones in each row and column. Now, if the girth of the graph
is greater than 4, then Φ has at most one overlap between any
two distinct columns. As a result, the coherence of Φ is 1

d . If
Td×K is a UNTF, and letting α , maxi,j |T (i, j)|, we have
that (Φ~T )m×Km is a UNTF with coherence max{α

2

d , µT }.
If Td×d is a DCT or a DFT matrix, then (Φ ~ 1√

d
T )m×md

is a UNTF with coherence at most 2
d . Thus, expander graphs

can also be used to construct UNTFs.
2) Construction from low density parity check (LDPC)

codes: Bipartite graphs with girth greater than 4 have been
used as the parity check matrix of LDPC codes [29]. A
(dr, dl)−regular LDPC code is represented by a parity check
matrix Φ in which each column has dr ones and each row has
dl ones [29]. A general method is presented in [30] to construct
LDPC codes having a large girth via the progressive edge-
growth (PEG) algorithm. A PEG constructed (d, Md

m )−regular
LDPC code has girth greater than 4, if log(Md−M−m+1)

log[(d−1)( Md
m −1)]

≥ 2.

This condition approximately requires d < (m
2

M )
1
3 [23], [29],

which implies (i) if d ≈ m1/2, then M ≤
√
m, (ii) if

d ≈ m1/3, then M ≤ m and (iii) if d ≈ m1/4, then
M ≤ m5/4. This bound on d is somewhat loose, as, in practice
the PEG algorithm can produce LDPC codes with much larger
d. Now, the parity check matrix Φm×M constructed from the
PEG algorithm has the following properties :

1) Each column has d ones, where d < (m
2

M )
1
3 .

2) Each row has Md/m ones.
3) As the girth is greater than 4, the overlap between any

two columns (rows) is at most one. Hence, the coherence
is at most 1

d .

Suppose Td×K is a UNTF and α = maxi,j |T (i, j)|, , then
(Φ ~ T )m×KM becomes a UNTF with coherence at most
max{α

2

d , µT }. In particular, if Td×d is a DCT or a DFT
matrix, then (Φ ~ 1√

d
T )m×Md is a UNTF with coherence

at most 2
d or 1

d , respectively.
3) Construction from quasi-cyclic LDPC Codes: Another

well known class of LDPC codes is the quasi-cyclic LPDC
(QC-LDPC) code [31]. Let Φ be the parity check matrix of a
(dr, d`)−regular QC-LDPC code of length M = pd`, where
p is a positive integer. It is shown in [31] that a necessary
condition for Φ to have girth greater than or equal to 6 in the
Tanner graph representation of a (dr, d`)−regular QC-LDPC
code is p ≥ d` (i.e., M ≥ d2

` ) if d` is odd, and p ≥ d`+1 (i.e.,
M ≥ d`(d`+1)) if d` is even. Therefore, the matrix Φpdr×pd`
whose corresponding graph has girth greater than or equal to
6 has the following properties:

1) Each column contains dr ones.
2) Each row contains d` ones.
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3) The overlap between any two columns is at most one.
Hence, the coherence of Φ is at most 1

dr
.

Suppose Tdr×K is a UNTF and α = maxi,j |T (i, j)|, then
(Φ ~ T )pdr×Kpd` becomes a UNTF with coherence at most
max{α

2

dr
, µT }. In particular, if Tdr×dr is a DCT or DFT

matrix, (Φ ~ 1√
dr
T )pdr×pd`dr is a UNTF with coherence at

most 2
dr

or 1
dr
, respectively.

In this section, we used biregular graphs with large girth
to construct IUNTFs via the embedding operation. In the next
section, we obtain biadjacency matrices based on polynomials
over finite fields such that the intersection between two distinct
columns of the biadjacency matrix can be greater than one.
The matrices we obtain in this manner have much larger
redundancy than the constructions presented above, at the cost
of a slightly higher coherence.

V. IUNTFS FROM BIADJACENCY MATRICES OBTAINED
FROM FINITE FIELDS

In this section, we show that binary matrices with the
required properties can be obtained by evaluating polynomials
over finite fields as in [32]. In order to obtain small coherence,
most of the existing constructions focus on binary matrices
with a large number of ones in each column and as little
overlap between pairs of columns as possible. However, as
row weights have no direct impact on the coherence, these
constructions do not examine the row structure. But, for
constructing IUNTFs using the embedding procedure, we need
binary matrices with the constant row weight. We extend
and refine the approach in [32] to produce structured binary
matrices with flexible row size and large redundancy. Then, by
applying the embedding operation on such structured binary
matrices, we obtain IUNTFs with large redundancy.

A. Construction for Prime and Prime Power Dimension

In this section, we provide a method for constructing binary
matrices with the required properties (p1), (p2) and (p3) for
the case when row size is a prime or a prime power.

Theorem 8: For p being a prime or a prime power and 1 ≤
r < k ≤ p, a (k, pr, r)−binary matrix of size pk× pr+1 with
coherence at most r

k can be constructed using polynomials of
degree at most r over the finite field Fp.

Proof: See Sec. X-B7.
Thus, one can construct incoherent binary matrices with con-
stant row and column weights via Theorem 8 using polyno-
mials over finite fields.

Relationship with the biregular graph based construction:
The constructed binary matrix V p is the biadjacency matrix
of a (pk, pr+1, pr, k, r)−biregular graph.

We note that, for k = p and r > 1, the above construction
produces the binary matrices reported in [32]. The above result
shows that the rows of the binary matrix have constant row
weight and therefore the construction can be used to produce
IUNTFs via the embedding operation.

B. Construction for Composite Dimension

For the composite case, we use the following composition
rule given in [33] for combining binary matrices. The follow-
ing result has been proved there.

Lemma 2: ([33, Lemma 4]) For i = 1, 2, let Ψi be a binary
matrix of size mi ×Mi consisting of ki row blocks of size
ni each (i.e., mi = kini). In each column, every row block
contains a single 1, and the intersection between any two
columns is at most ri. Assume that r = max{r1, r2} <
k ≤ min{k1, k2} ≤ min{n1, n2}. Then, the composition
rule, denoted by ∗, produces a matrix Ψ = Ψ1 ∗ Ψ2 of size
n1n2k ×M1M2 containing k row blocks of size n1n2 each.
In each column of Ψ, every row block contains a single 1, and
the intersection between any two columns is at most r and the
density of Ψ is 1

n1n2
.

Using the above result recursively, we have the following
result for general m.

Theorem 9: Let m = p1 · · · pt, where p1, . . . , pt are distinct
primes or prime powers and r < k ≤ min{p1, . . . , pt}. Then,
there exists a (k,mr, r)−binary matrix of size mk × mr+1

with coherence at most r
k .

Proof: See Sec. X-B8.
The above theorem can be used to construct IUNTFs

by embedding V mr with other low coherence tight frames.
Specifically, embedding the binary matrix V mr with other tight
frames with low coherence yields IUNTFs. Suppose Tk×K
is a UNTF with α = maxi,j |T (i, j)| and let V mr be the
mk×mr+1 binary matrix constructed using Theorem 9. Then,
(V mr ~ T ) is a UNTF of size mk ×Kmr+1 with coherence
µV~T at most max{ rα

2

k , µT }.
So far, we have discussed the construction of IUNTFs

via the embedding operation using structured binary matrices
obtained from biregular graphs and finite field theory. In next
section, we construct IUNTFs using binary matrices obtained
from combinatorial designs.

VI. IUNTFS FROM COMBINATORIAL DESIGNS

In this section, we show that incidence matrices of some
combinatorial designs produce binary matrices with the re-
quired properties.

A. IUNTFs from Euler Square Matrices

It is known that when an Euler square of index (n, k) exists
with k < n,3 a binary Euler square matrix Φ of size nk× n2

can be constructed such that each column of Φ contains k ones
and the overlap between any two columns is at most one [35].
As a result, the coherence of Φ is at most 1

k . A close look
at the construction of Euler square matrix Φ reveals that each
row contains n ones. Therefore, Φ is the biadjacency matrix
associated with an (nk, n2, k, n)−biregular graph. In [36], it
is shown that the girth of this biregular graph is 6, which also
shows that the overlap between any two columns or any two
rows of Φ is at most one. For Tk×K being a UNTF with α =

3The construction of Euler squares for several values of n and k can be
found in [34].
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TABLE II. IUNTFS FROM STEINER SYSTEMS (µ = O(mα), M = O(mβ))

Steiner system m M µ ≤ α β
(2, p, p2) p2 p2(p+ 1) 2

p − 1
2

3
2

(2, p+ 1, p2 + p+ 1) p2 + p+ 1 (p+ 1)(p2 + p+ 1) 2
p+1 − 1

2
3
2

(2, p+ 1, p3 + p2 + p+ 1) p3 + p2 + p+ 1 (p+ 1)(p2 + 1)(p2 + p+ 1) 2
p+1 − 1

3
5
3

(2, p, p3) p3 p3(p2 + p+ 1) 2
p − 1

3
5
3

(2, p+ 1, p3) p3 + 1 (p+ 1)p2(p2 − p+ 1) 2
p − 1

3
5
3

(3, p+ 1, p2 + 1) p2 + 1 p(p+ 1)(p2 + 1) 4
p+1 − 1

2
3
2

maxi,j |T (i, j)|, one can construct a UNTF (Φ ~ T )nk×Kn2

with coherence max{α
2

k , µT }.
One interesting fact is that ΦT is a binary matrix of size

n2 × nk with n ones in each column, k ones in each row,
and the overlap between any two distinct columns is at most
one. Therefore, ΦT is an (n, k, 1)−binary matrix of size
n2 × nk. As a result, the coherence of ΦT is at most 1

n .
Notice that ΦT is an over-determined matrix, that is, its row
size is greater than its column size. Hence, it is ordinarily
not useful as a compressed sensing matrix. For Tn×K being a
UNTF with α = maxi,j |T (i, j)|, one can construct a UNTF
(ΦT ~ T )n2×Knk with coherence max{α

2

n , µT }. This UNTF
is underdetermined because K ≥ n, and hence is useful for
compressed sensing. In particular, if we choose T as a DCT or
DFT matrix of size n×n, then (ΦT ~ 1√

n
T )n2×n2k becomes

a UNTF with coherence at most 2
n = O( 1√

m
), where m = n2

is the row size of the UNTF.
For p being prime or prime power, an Euler square of index

(p, p − 1) exists. For T being a DCT or DFT matrix of size
(p− 1)× (p− 1), we get (Φ ~ 1√

p−1
T )p(p−1)×(p−1)p2 , with

µ(Φ~T ) at most 2
p−1 = O( 1√

m
), where m = p(p − 1) is the

row size of (Φ ~ 1√
p−1

T ).

B. IUNTFs from Steiner Systems

The incidence matrix Φ of a (t, k, n)−Steiner system is

the biadjacency matrix of an
(
n,

(n
t)

(k
t)
,

(n−1
t−1)

(k−1
t−1)

, k

)
−biregular

graph with coherence t−1
k . For Tk×K being a UNTF with

α = maxi,j |T (i, j)|, one can construct a UNTF (Φ ~ T ) of

size n×K (n
t)

(k
t)

with coherence max{ (t−1)α2

k , µT }. A necessary

divisibility condition [37] for the existence of (t, k, n)−Steiner
systems is as follows:(

k − i
t− i

)
divides

(
n− i
t− i

)
∀ 0 ≤ i ≤ t− 1.

If, for a fixed t, there exists a (t, k, n)−Steiner system with
k = O( 1√

n
), then by taking T as a k × k DCT or DFT

matrix, we get the UNTF (Φ ~ 1√
k
T ) of size n × K

(n
t)

(k
t)

with coherence at most 2(t−1)
k = 2(t−1)√

n
= O( 1√

m
), where

m = n is the row size. There are several known constructions
of (t, k, n)−Steiner systems, and the UNTFs obtained from
some of the known constructions is listed in the Table II.

C. IUNTFs from Balanced Incomplete Block Designs (BIBDs)
In combinatorial mathematics, among all block designs, the

most intensely studied are the BIBDs, which were historically
developed to address statistical issues in the design of exper-
iments. Binary matrices with the required properties can be
obtained from the incidence matrices of BIBDs [38].

A BIBD is a set X of m ≥ 2 elements called varieties or
treatments and a collection of M > 0 subsets of X , called
blocks, such that the following conditions are satisfied:

1) Each block consists of exactly k varieties, m > k > 0.
2) Each variety appears in exactly w blocks, w > 0.
3) Each pair of varieties appear simultaneously in exactly

λ blocks, λ > 0.
BIBDs are referred to as (m,M,w, k, λ)−designs, and they

obey the following relations:

Mk = mw and w(k − 1) = λ(m− 1).

Given an (m,M,w, k, λ)−design, one can represent it as an
m×M matrix Φλ called the incidence matrix of the design.
The rows are labeled with the varieties of the design and the
columns are labeled with the blocks. We place a 1 in the
(i, j)th cell of the matrix if variety i is contained in block j,
and we place a 0 otherwise. Then,

1) Each column of Φλ has k ones.
2) Each row of Φλ has w ones.
3) Each pair of distinct columns has λ common ones. In

particular, when λ = 1, the overlap between any two
distinct columns becomes exactly one.

Remark 1: The definition 7 is a relaxation of the concept of
BIBD in the sense that it requires all vertices to be contained
in the same number of blocks, and requires all blocks to
contain the same number of vertices, but discards the BIBD
requirement that any two distinct vertices are contained in the
same number of blocks.

As a consequence of the above, the coherence of Φ1 is
1
k . For Tk×K being a UNTF with α = maxi,j |T (i, j)|,
one can construct a UNTF (Φ1 ~ T )m×MK with coherence
max{α

2

k , µT }. In particular, if we choose T to be a DCT
or DFT matrix of size k × k, then µ(Φ1~ 1√

k
T ) becomes at

most 2
k . The construction of BIBDs for various dimensions

and parameters has been explored in [38].

D. IUNTFs from Disjunct Matrices
One can also find structured binary matrices with the

required properties from the construction of disjunct matrices
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in the non-adaptive group testing literature. For k > d, in [39],
a binary matrix Φ of size

(
n
d

)
×
(
n
k

)
is constructed with the

following properties:

1) Each column contains
(
k
d

)
ones.

2) Each row has
(
n−d
k−d
)

ones.
3) The overlap between any two distinct columns is at most(

k−1
d

)
.

4) The coherence of Φ is at most 1− d
k .

Now, if T is a DFT matrix of size
(
k
d

)
×
(
k
d

)
, then (Φ~ 1√

(k
d)
T )

becomes a UNTF of size
(
n
d

)
×
(
k
d

) (
n
k

)
with coherence at most

1− d
k .

In the next section, we discuss the sparse recovery properties
of IUNTFs constructed from biregular graphs.

VII. SPARSE RECOVERY PROPERTIES AND DISCUSSION

In this section, we begin by showing that IUNTFs obtained
from the embedding operation satisfy StRIP and SInCoP. We
also connect the constructions presented thus far to existing
constructions from the literature in Subsection VII-A.

The next theorem uncovers the sparse recovery properties
of the matrix (Φ ~ T )m×M .

Theorem 10: (Φ ~ T )m×M with coherence O( 1√
m

) sup-
ports sparse recovery under the basis pursuit algorithm for all
but a proportion ε (< 1

t ) of t−sparse signals chosen from the
random signal model St provided m = O(t(log(Mε ))3/2).

Proof: Follows from Theorem 4.
Theorem 11: (Φ ~ T )m×M with coherence O(m−1/3) (or

O(m−1/4)) supports sparse recovery under the basis pursuit
algorithm for all but a proportion ε (< 1

t ) of t−sparse
signals chosen from the random signal model St provided
m = O(t(log(Mε ))9/4) (or m = O(t(log(Mε ))3)).

Proof: From [3, Theorem 2] and [3, Theorem 4], it is
easy to check that (Φ~T ) with coherence at most O(m−1/3)
(or O(m−1/4)) satisfies (t, δ, ε)−StRIP and (t, α, ε)−SInCoP
for m = O(t(log(Mε ))9/4) (or m = O(t(log(Mε ))3),) where
t < 1

ε and α = O((log( 2M
ε ))−1). Consequently, the proof of

the theorem follows directly from [3, Theorem 15].
The next theorem shows that the sparse recovery guarantees

of the IUNTF obtained by applying the embedding operation
on a binary matrix translates to the binary matrix itself.

Theorem 12: Let Φ be a (k, mkm )−binary matrix with size
m × M with coherence at most O(m−1/2) (or O(m−1/3)
or O(m−1/4)). Then, Φ supports sparse recovery under the
basis pursuit algorithm for all but a proportion ε (< 1

t ) of
t−sparse signals chosen from the random signal model St
provided m = O(t(log(Mε ))3/2) (or m = O(t(log(Mε ))9/4)
or m = O(t(log(Mε ))3)).

Proof: See Sec. X-B9.
For a (k, mkm )−binary matrix of size m×M with coherence
at most O(m−1/2) (or O(m−1/3) or O(m−1/4)), the classical
sparse recovery bound based on coherence can guarantee
recovery of t−sparse signals whenever m is in the order of
t2 (or t3 or t4). Theorem 12 provides a significantly better
recovery guarantee as compared to the coherence based bound.

A. Discussion

• Among all the constructions presented here, the con-
structions yielding UNTFs with coherence O( 1√

m
) are

of special interest. For example, IUNTFs constructed
from D(2, p), Euler square of index (p − 1, p) and
(2, p, p2)−Steiner system possess coherence of near op-
timal order, where p is a prime or a prime power.
Among them, IUNTFs with large redundancy are pre-
ferred in many applications. For p being a prime or prime
power, IUNTFs constructed in Section V and IUNTFs
constructed from the (2, p, p2)−Steiner system are of
row size m = p2 and with coherence O( 1√

m
). But the

redundancy of the former (i.e., the IUNTFs constructed
in Section V) is pr for any r > 1 and the redundancy of
the latter is p. Hence, the former has better compression
ratio compared to the latter.

• In [17], the embedding operation on binary matrices
(constructed from Steiner systems) with coherence in
the order of m−

1
2 or m−

1
3 has been used to obtain

column extended matrices, where m is the row size.
Through numerical experiments, it is shown that the
column extended matrices exhibit better sparse recovery
performance compared to random Gaussian matrices.
The theoretical analysis in [17] based on coherence can
guarantee recovery of t−sparse signals whenever m is in
the order of t2 or t3. Using our construction methodology,
we have shown that such column extended matrices
obtained via the embedding operation are indeed UNTFs.
Therefore, by Theorems 4 and 11, we are able to establish
that such UNTFs can recover t−sparse signals whenever
m = O(t(log(Mε ))3/2) or m = O(t(log(Mε ))9/4), which
are significantly better than the theoretical bound given
in [17]. Therefore, we are able to provide a mathematical
justification for the superior recovery performance of
embedded matrices through their StRIP and SInCoP.

• In [16], the authors construct m × M matrices with
(`1, t)−recovery property for t <

√
m
4 , which is tight

to within a multiplicative factor of 4
√

2. Taking p to be a
prime or prime power, IUNTFs of size p2×p3 constructed
from D(2, p), Euler Square and (2, p, p2)−Steiner sys-
tems have coherence at most 1

p . Consequently, they have

(`1, t)−recovery property for t <
√
m
2 , which is tight

to within a multiplicative factor of 2
√

2 and m = p2.
Thus, by considering the coherence itself, we see that the
constructions presented here offer a slight improvement
over those in [16].

• In [16], [19], it is shown that the embedded matrices
obtained from pairwise balanced design can recover all
t−sparse signals obtained via the (`1, t)−property pro-
vided m = O(t2). On the other hand, IUNTFs con-
structed via the embedding operation support sparse re-
covery through `1−minimization for all but an ε−fraction
of t−sparse signals chosen from a generic signal model
provided m = O(t(log(Mε ))

3
2 ), which is significantly

better than the results reported in [16], [19].
• In [3], it is shown that ETFs and chirp matrices have

a redundancy of order m, the row size, and satisfy
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(t, δ, ε)−StRIP provided m = O(t). For a fixed r,
IUNTFs obtained from finite field theory in Section V
have redundancy m

r
2 +1 and also satisfy (t, δ, ε)−StRIP

provided m = O(t). Thus, they possess better redun-
dancy compared to ETFs and chirp matrices for r > 2.

• Delsarte-Goethals codes satisfy a result similar to The-
orem 4 with m = O(k(log(Mε ))3) [3, Proposition 13].
The Delsarte-Goethals codes have µ = O(m−1/4). In
comparison, the IUNTF (Φ~T ) has µ = O(m−1/2), and
thus it possesses better reconstruction properties, with the
same dependence of the row size on the sparsity.

• According to Theorem 9, we can construct a
(p, pr, r)−binary matrix of size p2 × pr+1 with
coherence at most r

p . Now, for r = O(p1/3) (and p1/2),

one can have m × mO(m1/6) (and m × mO(m1/4)+1)
with coherence O(m−1/3) (and O(m−1/4)). Now, we
can construct IUNTFs from these binary matrices with
coherence at most O(m−1/3) (and O(m−1/4)) and
with redundancy mO(m1/6) (and O(mO(m1/4)+1)). For
example, UNTFs of sizes 92 × 95, 162 × 166, 252 × 257

and 492 × 499 can be constructed with coherences at
most 1

3 ,
1
4 ,

1
5 , and 1

7 , respectively. Now, according to
Theorem 11, they satisfy StRIP and SInCoP. Thus, we
can construct highly redundant IUNTFs with StRIP and
SInCoP. To the best of our knowledge, these are the only
known constructions of matrices with redundancy that is
exponential in the fourth root of the number of rows.

• In this work, we have considered x to be sparse in
the canonical basis, and study the linear system y =
Φx, where Φ is a UNTF. In practice, x may not be
sparse in standard basis but sparse in a dictionary A,
where x = Aα and α is sparse. Typically, A is an
orthonormal basis or a UNTF, then, ΦA is also an UNTF,
which implies that µ̄2

ΦA and ‖ΦA‖22 are M−m
m(M−1) and

M
m , respectively. But, one cannot guarantee that ΦA
possesses low coherence even when Φ has low coherence.
Consequently, it is difficult to establish StRIP and SInCoP
of ΦA. It is also known that randomly constructed Φ
matrices that satisfy the restricted isometry property for
ensuring sparse recovery continue to satisfy it as long as
the distribution of Φ is invariant to right multiplication
by a unitary matrix. However, this idea does not extend
to deterministic constructions. Studying this aspect is
beyond the scope of the present work.

In summary, the results presented thus far provide a unified
approach to constructing matrices with low coherence, large
redundancy, and attractive sparse recovery properties. We
illustrate these via numerical results in the next section.

VIII. NUMERICAL RESULTS

In this section, we empirically validate the theoretical
bounds derived above for IUNTFs and binary matrices. Specif-
ically, we first show that using the IUNTFs constructed via the
embedding operation, BP can recover sparse signals for which
the sparsity level that is approximately linear in the row size
(see Theorem 10). Next, we show that a similar linear recovery

TABLE III. BP RECOVERY PERFORMANCE USING IUNTFS OBTAINED
FROM FINITE FIELDS

Size (m×M ) kBP-IUNTF
max kBP-IUNTF

max /m
49× 2401 6 0.1

121× 14641 13 0.1
169× 28561 18 0.1
289× 83521 29 0.1

TABLE IV. BP RECOVERY PERFORMANCE WITH BINARY MATRICES OB-
TAINED FROM FINITE FIELDS

Size (m×M ) kBP-bin
max kBP-bin

max /m
49× 392 9 0.18

121× 1452 22 0.18
169× 2366 31 0.18
289× 5202 50 0.19
361× 7220 61 0.17

property holds for binary matrices constructed from biregular
graphs via the OMP algorithm (see Theorem 12).

At each sparsity level, we generate 1000 sparse signals
according to the model Sk in Definition 5. That is, the
support of the sparse vector is chosen uniformly at random,
but the nonzero values are chosen to be Gaussian distributed
with zero mean and unit variance. We recover the sparse
vector from its lower-dimensional projection obtained from
the measurement matrices presented in this paper. We quantify
the sparse recovery performance using average normalized
mean square error (NMSE): if x is the the original sparse
vector, and x̂ is the recovered vector, the NMSE is defined as
E(‖x̂−x‖22/‖x‖22). The reconstruction is considered successful
if the NMSE is below a threshold of 0.05. Codes for all the
constructions discussed in this paper are available online at
https://github.com/pradipspc/UNTF.git.

A. Binary Matrices and IUNTFs Obtained using Finite Fields

We construct (p, p2, 2)−binary matrices of size p2 × p3

with coherence at most 2
p , density 1

p and redundancy p as
described in Sec V. We consider four distinct values of p, that
is, p = 7, 11, 13, 17. From these binary matrices, we construct
real-valued IUNTFs by embedding DCT matrices. We thus
obtain IUNTFs of size p2 × p4 with coherence at most 4

p ,

density 1
p and redundancy p2. They also satisfy O(p2)-StRIP

according to Theorem 11. Hence, according to Theorems 11
and 12, one can expect BP to successfully recover sparse
signals coming from the random signal model with O(p2)-
sparsity using IUNTFs and binary matrices, respectively. How-
ever, the (p, p2, 2)−binary matrix of size p2 × p3 is rank
deficient, and BP algorithms such as `1 magic [40] cannot
be used directly in this case. Hence, we convert it to a full
rank matrix by concatenating an identity matrix of size p2×p2.

In Table III, we show the recovery performance of BP using
these IUNTFs as sensing matrices. The maximum sparsity
at which recovery is successful, denoted by kBP-IUNTF

max , is
approximately

⌊
0.1p2

⌋
. Therefore, we see that the sparsity

scales linearly with row size, as expected. Also, we show the
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TABLE V. BP RECOVERY PERFORMANCE FOR IUNTFS OBTAINED USING
EULER SQUARES

Size (m×M ) kBP-IUNTF
max kBP-IUNTF

max /m
121× 242 54 0.45
169× 338 76 0.44
289× 578 133 0.46
361× 722 165 0.45

0 20 40 60 80 100 120 140 160 180

Sparsity

0
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Gaussian-121x242
UNTF      -121x242
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UNTF      -169x338
Gaussian-289x578
UNTF      -289x578
Gaussian-361x722
UNTF      -361x722

Figure 1. BP NMSE for UNTFs obtained using Euler Squares and Gaussian
matrices

BP recovery performance using the binary matrices as sensing
matrices in Table IV. The maximum sparsity at which recovery
is successful, denoted by kBP-bin

max , is approximately
⌊
0.18p2

⌋
.

Hence, once again, the maximum sparsity grows linearly with
row size.

B. Binary Matrices and IUNTFs Obtained from Euler Squares

We construct real-valued IUNTFs by embedding DCT ma-
trices into the transpose of binary matrices obtained from Euler
squares of index (p, 2) for p = 11, 13, 17, 19 as discussed in
Sec. VI-A. The resulting IUNTFs are of size p2 × 2p2 with
coherence at most 2

p , density 1
p and redundancy 2. They also

satisfy O(p2)-StRIP as shown in Sec. VI-A. Therefore, one
can expect BP can recover sparse signals with O(p2)-sparsity.

We show the results in Table V and Figure 1. The maximum
sparsity at which recovery is successful, denoted by kBP-IUNTF

max ,
is approximately

⌊
0.45p2

⌋
, thus showing the linear scaling of

sparsity with the number or rows. Further, Figure 1 shows that
the recovery performance of the IUNTFs is virtually identical
to that of random Gaussian matrices (every entry is chosen to
be i.i.d. with zero mean and unit variance). Among the random
matrix based constructions, Gaussian matrices are known to be
optimal in terms of the row size required for successful sparse
recovery [41]. Thus, the deterministic constructions based on
IUNTFs presented in this paper have similar sparse recovery
performance as random Gaussian matrices.

Next, we show the recovery performance of binary matrices
of size p(p−1

2 )×p2 constructed from the Euler square of index
(p, p−1

2 ) for p = 17, 19, 23, 29. These binary matrices are of
size p(p−1

2 ) × p2 with coherence at most 2
p−1 , density 1

p−1

and redundancy 2p
p−1 ≈ 2.

It turns out, similar to the binary matrices constructed in
Sec. VIII-A, the Gramian matrices of such binary matrices

TABLE VI. OMP RECOVERY PERFORMANCE FOR BINARY MATRICES
OBTAINED FROM EULER SQUARES

Size (m×M ) kOMP-bin
max kOMP-bin

max /m
136× 289 57 0.42
171× 361 75 0.44
253× 529 117 0.46
406× 841 195 0.48
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Figure 2. OMP NMSE for binary matrices obtained using Euler squares and
Gaussian matrices

are not positive definite, and, as a result, standard convex
optimization solvers such as `1 magic [40] are not applicable
in this case. Hence, the solutions are computed using the
orthogonal matching pursuit (OMP) algorithm. The results
are summarized in Table VI and Figure 2. The table clearly
shows the linear relationship between the maximum sparsity
of successfully recovered sparse signals, denoted by kOMP-bin

max ,
and the row size of the binary matrices. Also, Figure 2 shows
that the NMSE performance of the binary matrices via OMP
is better than that of the optimal random Gaussian matrices.
Thus, the deterministic constructions presented in this paper
are competitive with respect to their random Gaussian coun-
terparts, especially under recovery via OMP.

IX. CONCLUSIONS

In this work, we identified the properties of a binary matrix
so that one can obtain unit norm tight frames via an embedding
operation. We showed that it is possible to obtain binary
matrices satisfying the required properties from biregular
graphs, combinatorial designs, finite field theory and non-
adaptive group testing. We also showed that our constructed
IUNTFs satisfy StRIP and SInCoP.

In the construction of IUNTFs via the embedding operation,
the main ingredient is to have a binary matrix satisfying (p1),
(p2) and (p3). We hope that our present work will motivate
other new constructions of structured binary matrices. Another
interesting aspect of IUNTFs constructed via the embedding
operation is that they are block orthonormal. Investigating the
use of such block orthogonal sensing matrices for block-sparse
vector recovery is another promising direction for future work.

X. APPENDIX

A. Statistical Restricted Isometry Property

In this subsection, we briefly review some of the sparse sig-
nal recovery guarantees associated with the statistical restricted
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isometry property (StRIP) (see Definition 3).
Theorem 13: [22] Let Φm×M be a frame. Then, if√
µ2

Φt log(t+ 1) +
t

M
‖Φ‖22 ≤ cδ, where c is a constant,

Φ satisfies (t, δ, 1
t )-StRIP.

The following theorem provides sufficient conditions for a
frame to satisfy StRIP.

Theorem 14: [22], [3] Let Φm×M be a frame such that
µΦ = Oε(

1√
m

), µ2
Φ = Oε(

1
m ) and ‖Φ‖22 = Oδ(

M
m ). Then,

1) m = Oε(t log t) is sufficient for Φm×M to satisfy
(t, δ, ε)−StRIP, with ε < 1

t .
2) m = Oε(t) suffices for Φm×M to satisfy (t, δ, ε)−StRIP

with t < 1
ε . Here, Oε and Oδ denote functions whose

constants may depend on ε and δ, respectively.
It is shown in [3] that ETFs and chirp matrices satisfy StRIP.
Random sparse signals can be recovered with high probability
using the basis pursuit algorithm if the matrix satisfies the
SInCoP, defined in Section 4, along with StRIP [2], [3].
The following theorem relates the mutual coherence related
properties of a matrix to the SInCoP.

Theorem 15: [3, Theorem 4] Let Φm×M be a unit norm
frame such that

µ4
Φ ≤

(1− a)2β2

32t(log(2M/ε))3
and µ2

Φ ≤
aβ

t log(2M/ε)
,

where β > 0 and 0 < a < 1 are constants. Then Φ has the
(t, α, ε)−SInCoP with α = β/ log(2M/ε), 0 ≤ t ≤ M and
ε > 0 is a small number.
The following theorem relates the StRIP and SInCoP to the
recovery of t−sparse signals via the basis pursuit algorithm.

Theorem 16: [3] Let x be a t−sparse signal from the model
St in Section 5. Suppose that the matrix Φm×M satisfies the
following:

1) (t, δ, ε)−StRIP.
2) (t, (1−δ)2

8 log(2M/ε) , ε)-SInCoP.
Then, x can be recovered uniquely via basis pursuit with
probability exceeding 1− 3ε.

B. Proofs of Theorems

1) Proof of Theorem 1: Since Φ ∈ Cm×M is a UNTF,
‖Φx‖22 = M

m ‖x‖
2
2 ∀x ∈ CM , and ‖φi‖2 = 1∀i. From (1),

(M − 1)µ2
Φ = max

j

M∑
i=1,i6=j

| 〈φi, φj〉 |2

= max
j

(‖ΦTφi‖22 − ‖φi‖22)

= max
j

(
M

m
‖φi‖22 − ‖φi‖22

)
=
M −m
m

. (2)

Thus,
µ2

Φ =
M −m
m(M − 1)

<
1

m
.

2) Proof of Theorem 2: Note that Φm×M satisfies the
following properties:

(p′1) µΦ = O( 1√
m

),
(p′2) µ2

Φ = M−m
m(M−1) , according to Theorem 1,

(p′3) ‖Φ‖22 = M
m , as it is a UNTF.

Now, from [22, Theorem B] (see Appendix X-A, The-
orem 13) µΦ = O((t log t)−

1
2 ) and ‖Φ‖22 = O(Mt ) are

sufficient for a frame Φ to satisfy (t, δ, 1
t )−StRIP. Since

Φm×M satisfies (p′1) and (p′3), it has (t, δ, 1
t )-StRIP for

m = O(t log t).

For the second part, a simplified version of the main result
in [3, Theorem 2] is sufficient, and it states that µΦ =
Oε((t log t)−

1
4 ), µ2

Φ = Oε(
1
t ) and ‖Φ‖22 = O(Mt ) suffice

for Φ to satisfy (t, δ, ε)−StRIP with t < 1
ε . Now, using the

properties (p′1), (p′2) and (p′3), we see that Φm×M satisfies
(t, δ, ε)−StRIP with t < 1

ε for m = Oε(t).

3) Proof of Theorem 3: We know that, when a unit norm
frame Ψm×M satisfies the conditions in Theorem 15, it has the
the (t, α, ε)−SInCoP with α = β/ log(2M/ε). Using proper-
ties (p′1), (p′2) and (p′3), and taking m = O(t(log(Mε ))3/2) and
α = O((log( 2M

ε ))−1), it is easy to check that Φm×M satisfies
the above relations and hence, satisfies the (t, α, ε)−SInCoP.

4) Proof of Theorem 5: Before going into the proof, note
that a matrix is a UNTF if and only if it satisfies the following
three properties (see Section II):

1) Its rows are orthogonal;
2) All row norms are the same;
3) All columns have unit norm.

We show that (Ψ~T ) possesses the above three properties,
and therefore it is a UNTF. Note that,

1) the rows of (Ψ~T ) are orthogonal because T is a UNTF
2) the norm of each row of (Ψ ~ T ) is the same, as Ψ has

same number of ones in each row and T is a tight frame
3) each column of (Ψ ~ T ) has unit norm as each column

of T has unit norm.

This proves that (Ψ ~ T ) is a UNTF.
5) Proof of Theorem 6: From Theorem 5, we know that

(Ψ~T ) is a UNTF of size m×MK. It remains to show that
coherence of (Ψ ~ T ) is at most rα2

k .

Each column of Ψ produces a submatrix of size m×K of
(Ψ ~ T ). Hence, we have such M blocks of submatrices in
(Ψ~T ). In any given block of (Ψ~T ), the maximum modulus
of inner products between any two distinct columns is µT .
On the other hand, the maximum modulus of inner products
between any two distinct columns coming from two different
blocks is at most rα2

k , as Ψ has constant column weight k
and the overlap between any two columns of Ψ is at most r.
Therefore, the coherence of (Ψ~T ) is at most max{ rα

2

k , µT }.
In particular, if T is an orthonormal basis, µT = 0, and the
coherence of (Ψ ~ T ) is at most rα2

k .

6) Proof of Theorem 7: The binary biadjacency matrix
Φm×M associated with an (m,M, dr, dl, r)− biregular graph
has the following properties:

1) As the degree of right vertices is dr, the number of ones
in each column is dr.

2) As the degree of left vertices is dl, the number of ones
in each row is dl.

3) As any two right vertices are connected to at most
r common left vertices, the overlap between any two
columns of Φ is at most r.
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Therefore, Φ satisfies the conditions (p1), (p2) and (p3) with
k = dr. Consequently, by Theorem 5, (Φ~T )m×MK becomes
a UNTF, and by Theorem 6, the coherence of (Φ ~ T ) is at
most max{ rα

2

dr
, µT }.

7) Proof of Theorem 8: We consider the finite field Fp =
{f1, f2, . . . , fp} where p is a prime or a prime power. Let Spr
be the collection of polynomials of degree at most r, where
r ≤ p − 1. It is easy to check that the cardinality of Spr
is |Sp| = pr+1. We fix any ordered k−tuple z ∈ Fkp with
r < k ≤ p. For simplicity, we consider z = (f1, . . . , fk).
For P ∈ Spr , we form an ordered k−tuple after evaluating P
at each of the points of z, i.e., dP :=

(
P (f1), · · · , P (fk)

)
.

From the k−tuple dP we form a binary vector vP of length
pk using

vP (p(i− 1) + n) =

{
1, if P (fi) = fj

0, otherwise

where 1 ≤ i ≤ k, 1 ≤ j ≤ p. We construct a binary matrix V p

of size pk×pr+1 by taking vP as its columns for all P ∈ Sp.
It can be verified that the matrix V p satisfies the following

properties.
1) V p has k row-blocks of size p each. Each column vP of

V p has exactly k ones.
2) Let V p(q, :) be the qth row of V p. Then, there exist

unique nonnegative integers i and j such that q = ip+ j
and j ≤ p−1. According to the construction, the number
of ones in V p(q, :) is the same as the cardinality of the set
S(q) = {P ∈ Spr : P (fi) = fj}. Now, P ∈ S(q) implies
that P can be written as P = (x− fi)Q+ fj , for some
Q ∈ Spr−1. Therefore, we get |S(q)| = |Spr−1| = pr.
Hence, V p(q, :) contains pr ones. Notice that the number
of ones in qth row is independent of q. As a result, every
row of V p contains pr ones.

3) The density of V p is 1
p .

4) For Pi 6= Pj , there are at most r common points
between any two distinct k−tuples dPi and dPj . This
is true because Pi and Pj have at most r common roots.
Consequently, there is at most r overlap between any two
distinct columns of V p.

Therefore, V p is a (k, pr, r)−binary matrix, and the coherence
of V p is at most r

k .
8) Proof of Theorem 9: Let us first take m = pq, where

p and q are two distinct primes or prime powers. With r <
k ≤ min{p, q}, we apply the composition rule on the matrices
(V pr )pk×pr+1 and (V qr )qk×qr+1 as in Section V-A to obtain a
new binary matrix V p,qr = V pr ∗ V qr of size pqk × (pq)r+1.
From the properties of V pr and V qr in Section V-A, it is easy
to see that V p,qr satisfies the following properties:

1) V p,qr has k row-blocks of size pq each. Each row block
contains a single one. Hence, there are exactly k ones in
each column.

2) From the composition rule given in [33], it can be derived
that V p,qr has (pq)r ones in each row because every row
of V pr and V qr contain pr and qr ones, respectively.

3) The overlap between any two distinct columns of V p,qr is
at most r.

4) The density of V p,qr is 1
pq .

5) Therefore, V p,qr is a (k, (pq)r, r)−binary matrix of size
pqk× (pq)r+1 and consequently, the coherence µV p,q

r
of

V p,qr is at most r
k .

Let m = p1 . . . pt, where p1, . . . , pt are distinct primes or
prime powers and r < k ≤ min{p1, . . . , pt}. Now, using the
composition rule for the product of two primes recursively, we
can obtain V mr as a (k,mr, r)−binary matrix of size mk ×
mr+1 and hence, the coherence of V mr is at most r

k .
9) Proof of Theorem 12: Suppose an orthogonal basis Tk×k

contains an all ones column (e.g., T is a DFT matrix or
Hadamard matrix). Then, the columns of Φ are contained in
(Φ ~ T ). Without loss of generality, assume that the first M
columns of (Φ~T ) are Φ itself. Suppose the nonzero entries of
the k-sparse vector x are contained within its first M indices.
Then, the linear systems y = (Φ ~ T )x and y = Φx̃ are
equivalent, where x̃ is a truncated version of x containing its
first M entries. Therefore, according to Theorems 4 and 11,
we can infer sparse recovery guarantees of Φ from (Φ ~ T ).
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