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Soft Symbol Decoding in Sweep-Spread-Carrier
Underwater Acoustic Communications: A Novel
Variational Bayesian Algorithm and its Analysis

Arunkumar K.P. and Chandra R. Murthy

Abstract—Sweep spread carrier (S2C) based underwater
acoustic (UWA) communications is a practically attractive but
less explored modulation scheme in the published literature.
In this paper, we present a rigorous treatment of the S2C
communication receiver design and propose a data detection
scheme that can handle challenging UWA channels. State-of-the-
art S2C receivers based on the gradient heterodyne processing
are only effective when the path delay and Doppler spread are
moderate. We develop a new variational soft symbol decoding
(VSSD) algorithm based on the principle of variational Bayes’
inference for a general linear channel model. In channels with
moderate delay and Doppler spreads, we show that the VSSD
algorithm is equivalent to the existing gradient heterodyne
receivers for S2C communications. We apply the VSSD algorithm
to the i.i.d. Gaussian multiple-input multiple-output channel and
show, through numerical simulations, that it far outperforms
the minimum mean squared error (MMSE) data detection. We
illustrate the dramatic improvement in the performance of the
VSSD based S2C receiver in two different models of simulated
UWA channels and two contrasting measured UWA environments
publicly available in the WATERMARK channel dataset. The
proposed VSSD algorithm recovers data symbols at a signal-
to-noise ratio (SNR) which is at least 10 dB (8 dB) lower
than the MMSE decoder for uncoded (rate 2/3 LDPC coded)
communications over UWA channels where the existing receivers
either fail completely or must compromise on the data rate to
maintain the bit error rate (BER) performance.

Index Terms—Underwater acoustic communications, sweep
spread carrier communication, variational Bayes’.

I. INTRODUCTION

Undersea exploration and monitoring presents vast op-
portunities and challenges alike – but a major hurdle to
such missions arises from the difficulties in communicating
underwater over long distances. Severe attenuation in the
marine medium limits the range of electromagnetic, optical
and magnetic induction based communications to just a few
meters, leaving acoustic communications as the de facto means
for wireless data transfer across tens of kilometers [2]–[4].
All the same, underwater acoustic (UWA) channels are by
far the most difficult media for communication. They present
a serious bottleneck in marine data networks due to limited
data rate and large power demand. In particular, the data
rates are limited by large delay spreads and path-dependent
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Doppler shifts. Multipath propagation of sound results in a
delay spread in the order of tens of milliseconds [5] and time
variations cause path-dependent Doppler shifts that are non-
uniform over the bandwidth of the acoustic signal. Also, the
communication nodes in an underwater sensor network are
usually battery operated, and are therefore highly constrained
on the amount of transmission power. High performance
receivers, that recover data symbols at a low signal-to-noise
ratio, are highly desirable in these applications.

Sweep spread carrier (S2C) communications [6] is inspired
by the chirp, whistle and song type signaling used by dolphins
and whales to communicate over long distances [7]. It uses
linear frequency modulated (LFM) waveforms as carriers of
digital data. The S2C transmission waveform, modulated by
unimodular signal constellations such as quadrature phase
shift keying (QPSK), has an ideal peak-to-average power ratio
(PAPR). The technique is therefore battery friendly and im-
plemented in a wide range of full-duplex commercial acoustic
modems that are used in underwater sensor networks com-
prising autonomous underwater vehicles (AUVs), autonomous
surface vehicles (ASVs), and moored underwater sensor nodes
[8]–[11]. Secure, reliable and covert communications, with a
low probability of intercept, is rendered possible due to use
of high bandwidth coded chirp carriers whose exact pattern
is known only to the transmitter and designated receiver. The
details of the S2C transmitter and receiver side processing,
performance analysis, and experimental results can be found in
[12]–[16]. Despite its practical merits, success with real world
deployment, and commercialization, relatively few published
works such as [17] have explored and developed S2C commu-
nication further. In this paper, we present a rigorous treatment
of the S2C design principles, and propose an improved S2C
receiver that can handle challenging UWA channels.

The S2C receiver in [6] extracts only the copy of a symbol
arriving along the direct path. As a consequence, the part of the
transmitted symbol energy arriving along paths other than the
direct path is ignored. In [17], the authors use a maximum ratio
combiner (MRC), which improves the performance of an S2C
receiver by leveraging multipath diversity. The receiver in [17]
performs well only when: (a) the ratio of the maximum delay
spread to minimum differential delay among path arrivals is
below a certain value, and (b) the Doppler spread is small. If
either condition is violated, the intersymbol interference (ISI)
cancellation becomes imperfect and MRC becomes suboptimal
and ineffective.

The authors in [6] and [17] did not consider the effect
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of Doppler. Doppler due to relative motion between the
source and receiver manifests as dilation/compression of the
transmitted waveform. The effect of Doppler in underwater
acoustic communications cannot be modeled as a frequency
shift unless the waveform has a small time-bandwidth product.
For large time-bandwidth product waveforms, typical of S2C
communications, even for small relative speeds (comparable
to c/2γ, where c is the speed of sound in water and γ is
the time-bandwidth product of the transmitted signal), the
underwater channel is best modeled as a wideband delay-
scale channel [18]–[20]. In this paper, we consider an S2C
communication system similar to [6] and [17] but for the
more general underwater channel model that includes the time-
scaling effect of Doppler on the transmitted waveform.

Previous studies on UWA communications have considered
the MMSE equalizer for (hard) data symbol detection or joint
channel estimation and data detection in orthogonal frequency
division multiplex (OFDM) and code division multiple access
(CDMA) based communications [21]–[25]. However, in coded
communications, it is more important to estimate the soft
symbols rather than perform hard symbol decision [26]. The
variational Bayes’ (VB) inference is a promising approach to
obtain soft symbol estimates because, by design, it directly
infers the posterior distributions of the transmitted data sym-
bols. However, to the best of our knowledge, other than our
initial work in the area [1], [27], [28], VB based soft symbol
estimation has not been explored in the literature.

In this paper, we present a new mathematical framework
for S2C communications. Based on this, we develop a new
decoder that uses the principle of variational Bayes’ inference
to determine the soft symbol estimates in harsh UWA channel
environments. Our specific contributions are:

1) We present a mathematical framework for S2C data
detection in doubly-spread UWA channels.

2) We show that the S2C receivers in [6] and [17] closely
approximate the minimum mean squared error (MMSE)
decoder for the AWGN channel and moderately delay
spread UWA channels with well resolved path delays.

3) Previous works considered benign channels, but in prac-
tice the channel is rarely benign. We theoretically analyze
the limitations of the existing S2C receivers in highly
spread UWA channels and elicit the need to consider
better receivers such as the MMSE receiver designed for
the system model in this paper.

4) In coded communications, it is required to obtain good
soft-symbol estimates, which the previous S2C receivers
do not consider. Using the VB inference approach, we
derive a new iterative log-likelihood ratio (LLR) based
soft symbol decoding receiver.

5) We show that the fixed point iterations for LLR based
soft symbol decoding converge to a local optimum in
the general case, and to a global optimum for orthogonal
channel matrices whose important special cases are the
AWGN and Rayleigh channels. Specifically, in AWGN
and Rayleigh channels, we show that the proposed vari-
ational soft symbol decoder (VSSD) is a maximum-
likelihood (ML) decoder and converges in a single it-
eration.

6) Through extensive numerical studies, we demonstrate
the strong performance of the VSSD in harsh simulated
channels where existing S2C receivers fail completely.
For the WATERMARK channel dataset, we develop a
suitable baseband measurement model for the S2C system
and present the superior performance of the proposed
decoder in two contrasting real world channels.

We develop the system model in Section II. In Section III,
we derive the existing S2C receivers as specialized MMSE
symbol decoders and elicit the limitations of these receivers in
Section IV. In Section V, we present improved S2C receivers –
the MMSE decoder and the new VSSD – that can handle harsh
channel conditions. We present the results of our numerical
studies in Section VI and conclude in Section VII.

II. SYSTEM MODEL

Consider an S2C system as in [6] and [17]. At the trans-
mitter side, the carrier waveform is a succession of linear
frequency modulated chirp pulses, each swept from a lower
frequency limit fL to an upper frequency limit fH over a
sweep duration Tsw, given by:

c(t) = ejφ(t), 0 ≤ t ≤ Tc, (1)

where
φ(t) , 2π

(
fLtr(t) +mct

2
r(t)

)
(2)

is the time varying phase of the carrier waveform, with tr(t) =

t−
⌊
t
Tsw

⌋
Tsw being the periodic ramp function having period

Tsw, 2mc = fH−fL
Tsw

is the chirp rate, Tc = NcTsw is the
total carrier duration, and Nc is the number of chirp pulses
comprising the carrier waveform.

The message signal containing pilot and data symbols is:

s(t) =

N−1∑
k=0

skg(t− kT ), (3)

where sk, k = 0, . . . , N−1, are a sequence of symbols drawn
from a constant-modulus constellation such as quadrature
phase shift keying (QPSK), T is the symbol duration, N = Tc

T
is the number of symbols in the data packet and g(t) is a
pulse shaping function, for example, a root-raised-cosine pulse
with roll-off factor α. We denote the symbol bandwidth by B,
which is given by B ≈ 1+α

T . For a symbol interval T (< Tsw),
we can mount up to M = bTsw/T c symbols within a chirp
pulse. Note that there are N = MNc symbols in a data packet.
For simplicity, we assume that Tsw/T is an integer.

The modulated transmit signal is given by

x(t) = Re [s(t)c(t)] , (4)

which is prefixed with a preamble pulse and appended with a
post-amble pulse to form a transmission frame. The preamble
and post-amble are used for timing and synchronization, and
for estimating the channel. A guard interval of Tg is used after
(before) the preamble (post-amble) pulse to facilitate channel
estimation. Using Nc > 1 helps in amortizing the overhead
due to the guard interval over the total carrier duration of Tc.
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The time-varying impulse response of the UWA channel is
modeled as [29]:

h(t, τ) =

NP−1∑
p=0

hp(t)δ (τ − τp(t)) , (5)

where hp(t) and τp(t) are the time-varying amplitude and
delay, respectively, of the pth path, and NP is the number
of significant paths in the channel. The delay-scale model in
(5) capture the effects of multipath propagation (i.e., reflec-
tion, scattering, and refraction) and the time variation of the
propagation delays due to source-receiver motion, scattering
by fluctuating ocean surfaces, and internal gravity waves such
as interfacial waves and solitons within the fluid medium. As
in [21]–[24], we assume that the path amplitudes are constant
within a data packet, that is, hp(t) = hp, and that the time
variation of the path delays due to Doppler rate ap can be
approximated as

τp(t) = τp − apt. (6)

After coarse Doppler scale compensation and synchroniza-
tion, the received signal is given by

y(t) =

NP−1∑
p=0

yp(t) + w(t), (7)

where w(t) is the additive white Gaussian noise (AWGN),
yp(t) = hpRe{s(t̃ − τp(t̃))c(t̃ − τp(t̃))} is the Doppler
compensated and timing adjusted version of the S2C signal
reaching via the pth path, t̃ = t+τ̂

1+â is the rescaled and shifted
time-axis, â is the coarse Doppler scale estimated using the
preamble and post-amble as in [29], and τ̂ is the starting
time instance of the first (data) chirp pulse estimated from
the preamble/post-amble as in [6] but after resampling. Using
(6), we can write,

yp(t) = hp

N−1∑
k=0

(sk,Re cosφp(t)− sk,Im sinφp(t)) gp,k(t),

(8)
where gp,k(t) , g

(
1 + bpt− τ̃p − kT

)
, with bp =

ap−â
1+â and

τ̃p = τp−(1+bp)τ̂ being the residual Doppler scale and delay
of the pth path after compensation, respectively, sk,Re (sk,Im)
is the real (imaginary) part of the symbol sk, and φp(t) =
φ(1 + bpt− τ̃p) is the time-scaled and delayed version of the
carrier phase in (2).

Upon sampling at a rate Fs (= 1/Ts, where Ts is the
sampling period), we may re-express the received signal in
(7) in a vector form relevant to data detection, as:

y = Hs + w, (9)

where

H = [C0h,−S0h, . . . , CN−1h,−SN−1h] ∈ RNL×2N ,
h = [h0, h1, . . . , hNP−1]T ∈ RNP×1,

s = [s0,Re, s0,Im, . . . , sN−1,Re, sN−1,Im]T ∈ R2N×1,

w ∼ N
(
0, σ2I2N

)
,

L = bFsT c is the number of samples in the symbol duration,
Ck ∈ RNL×NP and Sk ∈ RNL×NP are matrices whose entries

are given by Ck(l, p) = cosφp(lTs) gp,k (lTs) and Sk(l, p) =
sinφp(lTs) gp,k (lTs), for 0 ≤ k ≤ N − 1, 0 ≤ l ≤ NL −
1 and 0 ≤ p ≤ NP − 1, and I2N denotes the 2N × 2N
identity matrix. Since g(t) = 0, t /∈ [0, T ], entries of Ck(:
, p) ∈ RNL×1 and Sk(:, p) ∈ RNL×1 are zeros except for
l ∈
{⌈

τ̃p+kT

1+bpTs

⌉
, . . . ,

⌊
τ̃p+k+1T

1+bpTs

⌋}
.

We now address the problem of data detection for the S2C
communication model. First, we examine the two existing
S2C receivers in the literature – the gradient heterodyne
(GradH) receiver, pioneered in [6], and the path-based gradient
heterodyne (pGradH) receiver proposed in [17].

III. EXISTING S2C RECEIVERS: GRADH AND PGRADH
We show that the GradH and pGradH based S2C receivers

are minimum mean square error (MMSE) symbol detectors
for the AWGN channel and a delay spread channel with
well resolved path delays, respectively. We then introduce the
reduced data measurement model, at the output of the GradH
and pGradH preprocessors, that will be used in this work.

A. Optimality of GradH Receiver

Consider the received signal for the AWGN channel (NP =
1, τ̃0 = 0, b0 = 0, h0 = 1), given by

y(t)=

N−1∑
k=0

(sk,Re cosφ(t)−sk,Im sinφ(t))g (t− kT )+w(t).

Upon sampling, the received signal is as in (7) with the
channel matrix taking the block-diagonal form H = Q =
diag{Q0, Q1, . . . , QN−1} ∈ RNL×2N , where,

Qk = diag (g)


cosφ(k)[0] sinφ(k)[0]
cosφ(k)[1] sinφ(k)[1]

...
...

cosφ(k)[L− 1] sinφ(k)[L− 1]

 ∈ RL×2,

g =
[
g(0), g(Ts), . . . , g

(
L− 1Ts

)]T ∈ RL, and φ(k)[l] =

φ
(

(k̃ − 1)T + lTs

)
, k̃ = k − b kM cM , l = 0, . . . , L − 1,

k = 0, 1, . . . , N − 1. In this case, there is no inter-symbol
interference (ISI), and the measurement corresponding to the
kth symbol is given by

yk = Qksk + wk, (10)

where, for k = 0, . . . , N − 1,

yk = [ y[(k − 1)L], y[(k − 1)L+ 1], . . . , y[kL− 1] ]
T
,

sk =
[
sk,Re, sk,Im

]T ∈ {[±1/
√

2,±1/
√

2
]T}

,

wk =
[
wk[0], . . . , wk[L− 1]

]T ∼ N (0, σ2IL
)
.

For equiprobable symbols sk, the MAP solution to (10) is
the same as the ML estimator, and is given by

ŝ
(ML)
k = arg min

sk∈
{
[±1/

√
2,±1/

√
2]
T
}‖yk −Qksk‖2, (11)

and the MMSE solution to (10) is given by

ŝ
(MMSE)
k = S

[(
QTkQk + σ2I2

)−1
QTk yk

]
, (12)
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where S [·] is the slicing operation that quantizes each entry
of its argument vector to the nearest symbol in the QPSK
constellation.

Suppose the symbol time T (and hence L) is sufficiently
large and the pulse shaping function, g(t), is smooth, so that
the following holds for all 0 ≤ k ≤ N − 1:

L−1∑
l=0

g2(lTs) cos2
(
φ(k)[l]

)
≈
L−1∑
l=0

g2(lTs) sin2
(
φ(k)[l]

)
≈ β,

and

1

β

L−1∑
l=0

g2(lTs) cos
(
φ(k)[l]

)
sin
(
φ(k)[l]

)
≈ 0,

where β , 1
2

∑L−1
l=0 g2(lTs). Then, we have QTkQk ≈ βI2.

To observe the goodness of this approximation, consider the
S2C system in Table I, L = 50 raw samples per symbol, and
a root-raised cosine pulse shaping function g(t) with a roll-
off α = 0.25 and truncated to the symbol span. The diagonal
entries of QTkQk differ by at most 0.09 dB, since

max
k

1

β

∣∣∣∣∣
L−1∑
l=0

g2(lTs) cos
(

2φ(k)[l]
)∣∣∣∣∣ < 0.02,

and the off-diagonal entries are at least −20 dB down com-
pared to diagonal entires, since

max
k

1

β

∣∣∣∣∣
L−1∑
l=0

g2(lTs) cos
(
φ(k)[l]

)
sin
(
φ(k)[l]

)∣∣∣∣∣ < 0.01.

Under these conditions, the MMSE receiver in (12) simplifies
to the symbol-by-symbol decoder:

ŝ
(GradH)
k = S [zk] , (13)

where zk = QTk yk. Note that Qk can be viewed as a lowpass
filter, and there is a decimation by a factor of L in going from
yk to zk. From (10), we see that zk ≈ βsk +vk, where vk =
QTkwk ∼ N (0, βσ2I2), is affected only by the kth symbol.
Also, zk is a sub-vector of z = QTy ∈ R2N×1, whose entries
are precisely the sampled versions of the lowpass filtered in-
phase and quadrature outputs of gradient heterodyne operation,
as in [6], on the received signal. Therefore, the GradH receiver
in [6] realizes a near MMSE decoder for S2C communication
over an AWGN channel.

While the GradH receiver in (13) is an MMSE symbol
detector for the AWGN channel, the receiver works reasonably
well even for ISI channels with moderate delay spreads, as
elaborated in [6]. It is shown in [17] that the GradH receiver
recovers the symbol arriving along the direct path when

M
M− 1

δτmax ≤ Tsw ≤Mδτmin, (14)

where δτmin = min0≤i<j≤NP−1 |τi − τj | and δτmax =
max0≤i,j≤NP−1 |τi−τj | are the smallest and largest separation
between any two path arrival times τi and τj , andM , fH−fL

B
is called the spreading factor.

B. Optimality of pGradH Receiver

The pGradH receiver in [17] combines the symbol arriving
along paths other than the direct path to leverage multipath
diversity in addition to the gradient heterodyne and lowpass
filtering operation. Here, we show that pGradH is a near
MMSE decoder when the path delays are well resolved and
condition (14) holds.

For a given channel H , the MMSE receiver is given by

ŝ(MMSE) = S
[(
HTH + σ2I2N

)−1
HTy

]
. (15)

When condition (14) holds, CTi Cj ≈ κCINPδi,j , where κC =
Ci(:, p)

TCi(:, p) is nearly the same for all 0 ≤ i ≤ N − 1
and 0 ≤ p ≤ NP− 1, and δi,j is the Kronecker delta function.
Similarly, STi Sj ≈ κSINPδi,j , where κS = Si(:, p)

TSi(:, p),
and CTi Sj ≈ 0. Under these approximations, the MMSE
receiver in (15) simplifies to the pGradH receiver in [17],

ŝ
(pGradH)
k = S

[
NP−1∑
p=0

hp
|hp|2

z
(p)
k

]
, (16)

where
z
(p)
k = Q

(p)T
k yk, (17)

Q
(p)
k = diag

(
g(p)

)


cosφ
(k)
p [0] sinφ

(k)
p [0]

cosφ
(k)
p [1] sinφ

(k)
p [1]

...
...

cosφ
(k)
p [L− 1] sinφ

(k)
p [L− 1]

 ,
g(p) ∈ RL has entries that are samples of the com-
pressed/dilated and delayed pulse shaping function, g(p)l =

g
(
1 + bplTs − τ̃p

)
, φ(k)p [l] = φp

(
(k̃ − 1)T + lTs

)
, k̃ =

k − b kM cM , l = 0, . . . , L − 1, p = 0, . . . , NP − 1, and
k = 0, 1, . . . , N − 1. Stacking up z

(p)
k , k = 0, 1, . . . , N − 1,

into a vector, we get

z(p) = Q(p)Ty ∈ R2N×1, (18)

where Q(p) = diag{Q(p)
0 , Q

(p)
1 , . . . , Q

(p)
N−1} ∈ RNL×2N . The

entries of z(p) are sampled versions of the lowpass filtered
in-phase and quadrature outputs of path-matched gradient
heterodyne operation, as in [17], on the received signal.

C. Reduced Data Measurement Model

We now present the data model for measurements, at symbol
rate, at the output of the GradH and pGradH preprocessors.
Henceforth, we use this reduced data measurement model in-
stead of the raw signal samples at receiver front-end sampling
rate, Fs, in (9).

The measurements at the output of GradH preprocessing,
i.e., gradient heterodyne operation and lowpass filtering, can
be written in the form

z = Gs + v, (19)

where G = QTH ∈ R2N×2N is the channel matrix at the
output of the GradH preprocessor and lowpass filter, and
v = QTw ∼ N (0, σ2QTQ). In the special case of an
AWGN channel (i.e., H = Q), with a large enough symbol



5

duration T and smoothly varying pulse shaping function g(t),
the channel matrix G = QTQ ≈ βI2N is nearly diagonal and
v ∼ N (0, βσ2I2N ), as shown in Sec. III-A.

The measurement model at the output of pGradH pre-
processing assumes the same form as in (19), where z ∈
R2N is the output of the MRC processor given by z =∑NP−1
p=0

hp
|hp|2 z

(p), G =
∑NP−1
p=0

hp
|hp|2G

(p) ∈ R2N×2N is the
effective channel matrix at the output of the MRC proces-
sor, G(p) = Q(p)TH ∈ R2N×2N is the channel matrix at
the output of the pth branch of the pGradH preprocessor,
v =

∑NP−1
p=0

hp
|hp|2v

(p) ∈ R2N and v(p) = Q(p)Tw ∼
N (0, σ2Q(p)TQ(p)). For a moderately delay spread channel
with well resolved path delays and large symbol duration,
Q(p)TQ(q) ≈ βδp,qI2N , 0 ≤ p, q ≤ NP−1 due to (14). In this
case, G(p) ≈ βhpI2N , v(p) ∼ N (0, βσ2I2N ), and therefore
G, the channel matrix at the output of the GradH and pGradH
preprocessors, is nearly diagonal.

In the next section, we bring out the need to consider alter-
nate S2C receiver processing in large delay spread channels.

IV. LIMITATIONS OF GRADH AND PGRADH RECEIVERS

For both GradH and pGradH receivers, the condition in (14)
is needed to ensure that the ISI is negligible after gradient
heterodyne operation and lowpass filtering. The condition (14)
places a lower limit on the minimum differential path delay,
δτmin, of the multipath arrivals to avoid ISI ensuing from the
mixing of adjacent symbols at the GradH and pGradH prepro-
cessor outputs [17]. The condition (14) also places an upper
limit on the channel delay spread, δτmax, to avoid interference
between the symbols on the corresponding frequency sweep
slots of different chirp pulses. Together, these limits require
the symbol rate, R = 1/T , of the existing S2C receivers to
satisfy

R ≤
(
fH − fL

1 + α

)
min{δτmin, Tsw − δτmax}

Tsw
. (20)

The upper limit on the achievable rate, in (20), is maximized
when Tsw = δτmax +δτmin, and the maximum rate achievable
by the existing S2C receivers is given by

Rmax =

(
fH − fL

1 + α

)
δτmin

δτmax + δτmin
. (21)

Note that the rate limiting condition R ≤ Rmax to avoid ISI
at the preprocessor output of the existing S2C receivers, is
equivalent to imposing a lower bound on the spreading factor:
M ≥ δτmax

δτmin
+ 1. When the system is operated at a symbol

rate R = Rmax, the spreading factor M = δτmax

δτmin
+ 1.

Existing S2C receivers entail ISI when operating at a
symbol rate greater than Rmax. Consider, for example, the
S2C system in Table I operating in a UWA channel simulated
in Sec. VI-B1. There are 20 QPSK symbols (i.e., 40 bits)
in one chirp pulse (S2C block) of duration Tsw = 10 ms.
Figure 1 shows a transmitted S2C frame, where the symbols
si,j and si,j+1 can potentially interfere with the detection
of si,j+2, j = 1, 2, 3. Figures 2 and 3 display the images
of the raw channel matrix H , in (9), and the corresponding
effective channel G, in (19), respectively. Yellow pixels show

Fig. 1. An S2C frame consisting of preamble, Nc chirp pulses (data blocks),
and post-amble. Although T ≥ 1√

2mc
avoids ISI among adjacent symbols,

inter-block interference (IBI) among the symbols mounted on the same
frequency sweep slots (green slots) can happen if Tsw is smaller than the
channel delay spread.

the large magnitude entries in the visual images of |H| and |G|.
Large magnitude off-diagonal entries lead to ISI. Compared
to the raw channel matrix H , the effective channel G after
gradient heterodyne and lowpass filtering exhibit reduced ISI.
This is shown by the relatively weaker (blue) off-diagonal
entries of |G|. The gradient heterodyne and lowpass filtering
operation has reduced the strength of the off-diagonal entries
in G that contribute to ISI among symbols within a chirp
pulse (intra-block interference). But, strong residual inter-
block interference remains at the GradH/pGradH preprocessor
output as shown by the large magnitude (yellow) pixels around
Gi,i−40, 40 < i ≤ 2N, in Figure 3. In turn, this adversely
affects the performance of the existing S2C receivers in a
severely delay spread UWA channel. In such channels, existing
S2C receivers must compromise on the data rate in order to
restore the symbol recovery performance.

In the following section, we consider alternate receivers for
S2C communications that can handle channel delay spreads
greater than the chirp pulse duration and work well for symbol
rates higher than the upper limit on the data rate, Rmax.

V. VARIATIONAL SOFT SYMBOL DECODER (VSSD)

We now develop a symbol detector based on the variational
Bayes’ inference that approximates the optimum MAP decoder
and offers significantly improved performance over the MMSE
receiver. The development of the VSSD is the main contribu-
tion of this work.

The optimum (MAP) decoder outputs the symbol vector
s ∈ P = {− 1√

2
,+ 1√

2
}2N that maximizes the posterior

p(s|G, z) = p(z|G, s)p(s)/p(z|G). Direct maximization of the
posterior requires a computationally intensive search over 22N

lattice points in P . Computing the posterior symbol probabil-
ities, which in turn yield the soft symbols to be input to the
channel decoder, is also hard since the marginalization over
s in p(z|G) =

∑
s∈P p(s, z|G) is involved. We instead seek

a good approximation to the posterior, qφ(s|G, z), called the
variational decoder. Here, φ represents the model parameters
whose values are estimated based on the variational inference
principle, as explained below.

To make the problem tractable, we assume that the approx-
imate posterior is fully factorizable:

qφ(s|G, z) =

N−1∏
k=0

qφ(sk,Re|G, z)qφ(sk,Im|G, z). (22)
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Fig. 2. Channel matrix image, |H| ∈ RNL×2N , before GradH processing.
Pixel intensities are in linear units and only the portion corresponding to first
128 bits is shown. For the purpose of visualization, |H| is scaled such that
the median of the entires of its scaled version assumes a value of 1

6
on the

color bar shown.

Fig. 3. Channel matrix image, |G| ∈ R2N×2N , after GradH processing.
Pixel intensities are in linear units and only the portion corresponding to first
128 bits is shown. For the purpose of visualization, |G| is scaled such that
the median of the entires of its scaled version assumes a value of 1

6
on the

color bar shown.

Following Kingma et al. [30], the evidence lower bound
(ELBO) on the log likelihood of the observation is given by

L(θ, φ, z) = Eqφ(s|G,z) log pθ(z|G, s)

− Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
, (23)

where log pθ(z|G, s) is the likelihood function and pθ(s) is a
prior on the symbol vector.

To bring qφ(s|G, z) close to p(s|G, z), we maximize the
ELBO, L(θ, φ, z). The ELBO consists of the likelihood term

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)

− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
, (24)

and the regularizing term,

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (25)

We assume a simple uniform prior pθ(s) = 1
22N

. Therefore,
when maximizing ELBO, the regularizing term acts to penalize
the departure of the variational approximation qφ from the
uniform prior. On maximizing the ELBO, we get the following
fixed point equations (see appendix for details):

q = ϕ(α), (26)

where

αj =

√
2

σ2

(
zTG:,j −

2N−1∑
l=0

Gl,j

(∑
i

vl,i − vl,j

))
,

vl,j =
1√
2
Gl,j (2qj − 1) , (27)

ϕ(αj) =
1

1 + e−αj
,

for j = 1, . . . , 2N − 1.
Note that the fixed point iterations lead to soft symbol

estimates in the form of the probability vector q. We perform
symbol detection by slicing the probability vector in uncoded
communications. In coded communications, the soft symbols
are converted to LLRs and fed to the channel decoder.

The fixed point updates do not involve any matrix inversions
and their computational complexity, O(N2), is an order of
magnitude smaller than the computational complexity, O(N3),
of the MMSE receiver.

Special Channels: It is insightful to specialize the fixed point
iterations for some simple channel models. Consider the case
when the channel matrix is orthogonal, i.e.,

GT:,iG:,j =‖ G:,i ‖22 δi,j .

Note that the AWGN channel and Rayleigh fading channel are
examples of orthogonal channels. In this case, the fixed point
iterations in (26) reduce to the following one point update:

q =
1

1 + e
−
(√

2

σ2
GT z

) . (28)

Therefore, deciding the hard symbols from the probability
vector q is tantamount to slicing the matched filtered obser-
vation: z̃ = GT z. Deciding sk = ± 1√

2
based on qk ≷ 0.5 is

equivalent to that based on z̃k ≷ 0. In other words, VSSD is
an ML decoder for orthogonal channels.

Convergence: We show that every update of the fixed point
iteration in (26) is along the gradient of the ELBO (ascent
direction), and therefore cannot decrease the ELBO. To see
this, consider the inner product of ϕ(α)− q and ∇L:

(ϕ(α)− q)
T ∇L =

2N−1∑
j=0

(ϕ(αj)− qj)∇Lj . (29)

We show in the appendix (see equation (66)) that ∇Lj =
αj−log qj+log(1−qj). Each term in (29) is nonnegative since
ϕ(αj)−qj ≷ 0⇔ αj−log qj+log(1−qj) ≷ 0. Thus, the inner
product is nonnegative and hence the update q → ϕ(α(q))
cannot decrease ELBO. Further, for any channel matrix, the
ELBO is upper bounded by the marginal log likelihood,
log pθ(z). Therefore, the fixed point iterations always converge
to a stationary point of the ELBO.
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Next, we characterize the stationary points of the ELBO
and elicit sufficient conditions that make these points a global
maximum, local maximum or a saddle point.

Global Maximum: The entries of the Hessian matrix of L
with respect to q, i.e., ∇2

qL ∈ R2N×2N , are given by

∂2L
∂q2j

= − 1

qj(1− qj)
< 0, (30)

∂2L
∂qi∂qj

=
∂2L
∂qj∂qi

= − 2

σ2

∑
l

Gl,iGl,j , i 6= j, (31)

where i, j ∈ {0, 1, . . . , 2N − 1}. For orthogonal channel
matrices, the matrix G satisfies

∑
lGl,iGl,j = 0, which makes

the Hessian negative definite and therefore the stationary point
q? a global maximizer of the ELBO.

A larger class of channel matrices for which global conver-
gence is guaranteed can be found by requiring −∇2

qL to be
diagonally dominant, i.e.,

ηj ,
2

σ2

∑
i6=j

∣∣∣∣∣∑
l

Gl,iGl,j

∣∣∣∣∣ < 1

qj(1− qj)
,∀j, (32)

which implies:

q2j − qj + 1/ηj > 0,∀j. (33)

Now, the condition in (33) holds for every 0 ≤ qj ≤ 1 if
and only if 0 ≤ ηj < 4. Note that −∇2

qL is symmetric and
all its diagonal entries are positive. Since diagonal dominance
of −∇2

qL implies its positive definiteness (p.d.), −∇2
qL is

p.d. for the class of channel matrices G = {G ∈ R2N×2N :∑
i6=j |

∑
lGl,iGl,j | < 2σ2,∀j} and therefore global conver-

gence is guaranteed whenever G ∈ G.
Local Maximum: If G ∈ G, the limit point q? is a global

maximizer. Or else, if G /∈ G and qj,? /∈ (κ
(1)
j , κ

(2)
j ) ⊂

[0, 1],∀j, where κ(1,2)j are the roots of the equation q2j − qj +
1/ηj = 0 (ηj > 4) given by

κ
(1,2)
j =

1±
√

1− 4/ηj
2

,∀j, (34)

then the limit point q? is a local maximum.
Either Local Maximum or Saddle Point: If G /∈ G and qj,? ∈

(κ
(1)
j , κ

(2)
j ), for some j, then the limit point q? is either a local

maximum or a saddle point.
Consider, for example, a channel matrix with i.i.d. N (0, 1)

entries. The length of the interval (κ
(1)
j , κ

(2)
j ) is given by

lN,j = κ
(2)
j − κ

(1)
j =

√
1− 4/ηj . (35)

From the definition of ηj in (32), triangle inequality, and the
i.i.d. property of the entries of G, we have:

E[ηj ] ≤
2

σ2

∑
i 6=j

∑
l

E [|Gl,i|]E [|Gl,j |] =
8N(2N − 1)

πσ2
,

(36)
and therefore,

E[l2N,j ] = 1− 4E[1/ηj ] ≤ 1− 4/E[ηj ] = 1− πσ2

2N(2N − 1)
,

(37)

TABLE I
S2C PARAMETERS USED IN THE SIMULATION.

Carrier frequency (fc) 15 kHz
Bandwidth (W ) 10 kHz

Chirp rate (2mc) 1 MHz/s
Symbol duration (T ) 0.5 ms
Sweep duration (Tsw) 10 ms
Guard interval (Tg) 25 ms

where we used the fact that E[1/ηj ] ≤ 1/E[ηj ] which follows
from Jensen’s inequality and the convexity of f(η) = 1/η, η >
0. Since P{ηj > 4} → 1, as N → ∞, for i.i.d. Gaussian
channel matrices, the fixed point is in (κ

(1)
j , κ

(2)
j ) with high

probability. Furthermore, since for every δ > 0, P{l2N,j >
1− δ} → 1 as N →∞, we have lN,j

p→ 1.
Since, in this case, q? could be a saddle point, we perturb

q? so as to move out of the saddle region in an attempt to
further increase the ELBO. If the ELBO is found to increase
for a few attempts of random perturbation, we continue the
iterations from the point yielding the highest ELBO.

Acceleration: Finally, we propose to accelerate the fixed
point updates to achieve faster convergence. Specifically, we
choose γn at the nth iterate so that the update,

qn = qn−1 + γn [ϕ(αn−1)− qn−1] , (38)

results in maximal increase of ELBO. The optimum value of
γn can be found through a 1-D search over a bounded interval
in R. Specifically, the optimum value of γn in (38), that best
increases ELBO, lies within [γmin, γmax] ∈ R, with

γmin = max{ max
ϕ(αj)>qj

−qj
ϕ(αj)−qj , max

ϕ(αj)<qj

1−qj
ϕ(αj)−qj},

γmax = min{ min
ϕ(αj)<qj

−qj
ϕ(αj)−qj , min

ϕ(αj)>qj

1−qj
ϕ(αj)−qj}.

VI. NUMERICAL SIMULATIONS

We demonstrate the performance of VSSD in three dif-
ferent settings: the benchmark i.i.d. Gaussian multiple-input
multiple-output (MIMO) channel, UWA channels simulated
according to two different models in the literature, and real-
world measured UWA channels. We define the signal to noise
ratio (SNR) at the receiver as

SNR =
E{‖Gs‖22}
E{‖v‖22}

. (39)

A. IID Gaussian MIMO Channel

We generate the channel matrix G, with entries Gi,j
i.i.d.∼

N (0, 1). First, we evaluate the BER of the VSSD receivers
for N = 10, 100 symbols, for the uncoded QPSK signaling,
and with perfect channel knowledge. We terminate the VSSD
iterations at the nth iteration if ‖qn − qn−1‖2 < 10−3.
Figure 4 shows the BER plots for different SNR values. For
N = 10 symbols, we show the BER of the ML decoder
obtained by using the soft sphere decoder (SSD) in [31], [32]
and whose implementation is available in [33]. The VSSD
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Fig. 4. BER of VSSD, SSD and MMSE receivers for i.i.d. Gaussian channel
matrix (N = 10, 100) and AWGN channel.

receiver, initialized with the soft symbol estimate of SSD,
retains the SSD’s optimum (ML) performance, as expected.
When initialized with the MMSE estimate of the symbol
vector, VSSD outperforms the MMSE receiver by a margin
of about 8-9 dB at a BER of 10−3 for N = 10. Note that,
while SSD outperforms VSSD for N = 10, sphere decoding is
not practical at large values of N due to its high computational
complexity.1 Moreover, for N = 100, the performance of the
VSSD receiver on the i.i.d. Gaussian MIMO channel is close
to that on an AWGN channel. On the AWGN channel, all
receivers perform equally well, as expected.

In Figure 5, we compare the BER of the receivers for
N = 288 symbols, for uncoded and coded QPSK commu-
nications, assuming perfect channel knowledge. For coded
communication, we use a rate 1/2 and rate 2/3 LDPC code
from [34]. In uncoded communication, the VSSD receiver
achieves a BER of 10−3 at about 10 dB lower SNR than the
MMSE receiver. In the rate 2/3 (1/2) coded communication,
for a BER of 10−3, VSSD outperforms MMSE receiver by
an SNR margin of 8 dB (2 dB). For the same BER (10−3),
the VSSD receiver with a rate 2/3 code works at about 1 dB
lower SNR than the MMSE receiver with a rate 1/2 code.
Therefore, VSSD receiver offers 33% higher data rate than
the MMSE receiver, while achieving the same BER.

Next, we consider the effect of imperfect channel knowledge
due to channel estimation error on the BER. To do so,
we perturb the entries of the i.i.d. Gaussian channel matrix
with i.i.d. Gaussian noise, i.e. Gi,j = Gi,j + εi,j , where
εi,j ∼ N (0,∆), 1 ≤ i, j,≤ 2N . Figure 6 shows the BER
of VSSD and MMSE decoders for ∆ = 1/4, 1/5 and coded
communications using a rate 2/3 LDPC code. VSSD receiver
retains its performance advantage over MMSE even with
channel estimation errors.

1On a 2.4 GHz Intel Xeon(R) processor, SSD takes 4.5 s on average to
decode N = 20 symbols at SNR = 10 dB. For N = 30 symbols and at the
same SNR, decoding does not finish within 5 minutes.
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Fig. 5. BER of VSSD and MMSE receivers for i.i.d. Gaussian channel matrix.
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Fig. 6. BER of VSSD and MMSE receivers, under channel estimation errors,
for i.i.d. Gaussian channel matrix.

B. Simulated UWA Channels

We now consider the performance of VSSD based receiver
for the S2C communication system in Table I over a simulated
UWA channel. Note that the symbol rate that is two times
the upper limit, R∗ =

√
2mc = 1 kHz, on the existing

S2C receivers.2 A total of N = 288 QPSK symbols are
mounted on a train of Nc = 15 chirp pulses. We investigate
the performance for two models of UWA channels.

1) Model I: The first UWA channel model we consider
is as in [21], [22] and used by numerous researchers in the
field. The channel is generated with NP = 16 discrete paths
whose inter-arrival times are exponentially distributed with a
mean of 1 ms. The Doppler rates are uniformly distributed in
[−bmax, bmax], where bmax = 5× 10−4. The path amplitudes
are Rayleigh distributed with the average power decreasing
exponentially with delay, where the difference between the
beginning and the end of the guard time is 20 dB. Notice
that neither of the narrowband approximation conditions [20]
B/fc � 1 or bmax � 1/BT are met in this case. Therefore,

2Adjacent symbol interference, within a chirp pulse, is avoided in existing
S2C receivers only if 2mcT ≥ B ≈ 1+α

T
⇒ R ≤

√
2mc
1+α

≤
√
2mc , R∗.
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Fig. 8. Number of VSSD iterations averaged over 1000 trials for each SNR.

it is pertinent to evaluate the symbol recovery schemes based
on the system model (9) for S2C communications over such
a wideband delay-scale channel.

Figure 7 shows the BER of the MRC [17], VSSD and
MMSE based data detection assuming perfect channel knowl-
edge. The MRC receiver has completely failed due to severe
ISI at pGradH preprocessor output (see Figure 3). Again, from
these plots, we notice a strong performance of the VSSD
based symbol detection in an S2C receiver. The VSSD receiver
attains a BER = 10−3 at about 18 dB lower SNR than MMSE
in uncoded communication. In coded communication, the SNR
margin of VSSD over the MMSE receiver is 8 dB (3 dB) for
rate 2/3 (1/2) LDPC code.

Figure 8 shows the number of VSSD iterations (averaged
over at least 1000 trials) for different SNR. On an average, the
number of iterations stay below 10 and the maximum number
of iterations never crossed 15.

2) Model II: We consider the UWA channel model pro-
posed in [35]. The acoustic channel simulator code, available
at [36], is used for generating the time-varying channel. Ta-
ble II lists the parameters of the channel. A sample realization
of the time-varying channel impulse response is shown in

TABLE II
UNDERWATER CHANNEL SIMULATION PARAMETERS.

Ocean depth (m) 100
Transmitter depth (m) 90
Receiver depth (m) 50
Channel distance (m) 1000
Spreading factor 1.7
Sound speed in water, cw (m/s) 1500
Sound speed in bottom, cb (m/s) 1200
Surface variance, σ2

s (m2) 1.125
Bottom variance, σ2

b (m2) 0.5
3 dB width of the PSD of intra-path delays, Bδ,p (Hz) 0.05
Number of intra-paths, Sp 20
Mean of intra-path amplitudes, µp 0.3
Variance of intra-path amplitudes, νp 10−4

Transmitter drifting speed, vtd (m/s) 0.3
Transmitter drifting angle, θtd (rad) U(0, 2π)
Receiver drifting speed, vrd (m/s) 0.1
Receiver drifting angle, θrd (rad) U(0, 2π)
Transmitter vehicular speed, vtv (m/s) N (0, 1)
Transmitter vehicular angle, θtv (rad) U(0, 2π)
Receiver vehicular speed, vrv (m/s) -3
Receiver vehicular angle, θrv (rad) U(0, 2π)
Surface variation amplitude, Aw (m) 0.9
Surface variation frequency, fw (mHz) 0.6
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Fig. 9. Acoustic channel impulse response based on model in [35]. The
first, second and third arrivals from the left correspond to the direct, bottom-
reflected, and surface-reflected paths, respectively. The last arrival corresponds
to a multiply reflected surface-bottom arrival.

Figure 9. Figure 10 shows an instance of the channel matrix
(G) at the output of S2C preprocessing during the UWA
channel simulation run. The inter symbol interference for this
UWA channel is milder than the channel simulated according
to the model in [21] (see Figure 3). Figure 11 shows the
BER plots of the VSSD and MMSE receivers with and
without channel errors. VSSD maintains a significantly better
performance than MMSE decoder, as before.

C. WATERMARK Channels

The underWater AcousTic channEl Replay benchMARK
(WATERMARK) is a publicly available realistic simulation tool
that comes packaged with five measured UWA channels [37],
[38]. We use two of channel datasets, NOF1 and NCS1,
that present two contrasting environments in the Norwegian
seas [39]. The NOF1 channel is a Fjord in a shallow stretch of
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Fig. 10. Channel matrix after GradH processing at an instance during the
simulation run of the UWA channel model in [35].
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Fig. 11. BER of VSSD and MMSE receivers for S2C communications over
UWA channel simulated according to [35].

Oslofjorden, and the NCS1 channel is a continental shelf in the
Norwegian sea. The measured time-varying channel impulse
responses include the effects of system hardware impairments
such as clock frequency offset, sampling jitter etc, apart from
the acoustic propagation effects.

Channel Matrix Computation: We first relate the complex
baseband form of the measured channel impulse response
data in WATERMARK, denoted by hB(t, τ), and the channel
matrix, G, at the output of the gradient heterodyne and
lowpass filtering operation. Towards that end, we start with
the baseband transmitted signal, given by

xB(t) = s(t)c(t)e−j2πfct. (40)

The received baseband signal is given by

yB(t) =

τmax(t)∫
τmin(t)

hB(t, t− τ)xB(τ)dτ + wB(t), (41)

where τmin(t) = max{0, t− Td}, τmax(t) = min{t, Tc}, Td
denotes the maximum delay spread of the propagation channel
and wB(t) is the complex valued noise in the baseband. Here,
we made use of the fact that hB(t, τ) = 0 for τ < 0 (due to

causality) and τ > Td, and xB(τ) = 0 for τ > Tc, to arrive at
the upper and lower limits of the integral in (41). Using (3),
(40) and (41), the in-phase and quadrature components of the
received signal can be expressed in the form:

yB,Re(t) =

N−1∑
k=0

HRe
k,Re(t)sk,Re +H Im

k,Re(t)sk,Im + wB,Re(t),

(42)

yB,Im(t) =

N−1∑
k=0

HRe
k,Im(t)sk,Re +H Im

k,Im(t)sk,Im + wB,Im(t),

(43)
where,

HRe
k,Re(t) =

τ(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) cosφB(τ)dτ

−
τ(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) sinφB(τ)dτ, (44)

H Im
k,Re(t) = −

τ(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) sinφB(τ)dτ

−
τ(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) cosφB(τ)dτ, (45)

HRe
k,Im(t) =

τ(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) sinφB(τ)dτ

+
τ(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) cosφB(τ)dτ, (46)

H Im
k,Im(t) =

τ(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) cosφB(τ)dτ

−
τ(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) sinφB(τ)dτ, (47)

φB(t) = 2π
(
fLtr(t) +mct

2
r(t)− fct

)
, τ

(k)
min(t) =

max{0, t− Td, kT}, τ
(k)
max(t) = min{t, Tc, (k + 1)T},

wB,Re(t) and wB,Im(t) are the real valued additive noises in
the in-phase and quadrature channels. After sampling along
t and τ axes, the received signal samples from (42)-(43) can
be stacked and expressed in the form of (9). Entries of the
channel matrix, H ∈ RNL×2N , are found from discretized
versions of (44)-(47). At time t = nTs, the in-phase and
quadrature measurement samples are given by

yB [n] =

N−1∑
k=0

Hn,ksk + wB [n], (48)

where yB [n] = [yB,Re(nTs), yB,Im(nTs)]
T , Hn,k ∈ R2×2 is the

block matrix,

Hn,k =

[
HRe
k,Re(nTs) H Im

k,Re(nTs)

HRe
k,Im(nTs) HRe

k,Im(nTs)

]
∈ R2×2, (49)
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TABLE III
S2C PARAMETERS USED IN SEC. VI-C

Frequency band (fL − fH ) 10 - 18 kHz
Chirp rate (2mc) 800 kHz/s

Symbol duration (T ) 0.5 ms
Sweep duration (Tsw) 10 ms
Guard interval (Tg) 25 ms

The channel matrix, GB, after gradient heterodyne and lowpass
filtering is given by

GB = QTBH ∈ R2N×2N , (50)

where QB = diag{QB,0, QB,1, . . . , QB,N−1} ∈ R2NL×2N ,

QB,k = diag (g̃)


R
φ
(k)
B [0]

+R
φ
(k)
B [0]−π2

R
φ
(k)
B [1]

+R
φ
(k)
B [1]−π2

...
R
φ
(k)
B [L−1] +R

φ
(k)
B [L−1]−π2

 ∈ R2L×2,

Rθ is the rotation matrix,

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
∈ R2×2,

g̃ = [g[0], g[0], g[1], g[1], . . . , g[L− 1], g[L− 1]]
T ∈ R2L×1

and φ
(k)
B [l] = φB

(
(k̃ − 1)T + lTs

)
, k̃ = k − b kM cM , l =

0, . . . , L− 1.
Performance Evaluation: We now consider the performance

of the proposed VSSD receiver over the WATERMARK chan-
nels for the S2C system in Table III. The channel datasets
NOF1 and NCS1 in WATERMARK have a delay (τ ) coverage
of Td = 128 ms and Td = 32 ms respectively. Therefore,
the measured impulse response of NOF1 (NCS1) channel is
available only at an interval of ∆t = 128 ms (∆t = 32 ms)
along the t-axis. To compute the entries of the channel matrix,
H and hence G, we require the channel impulse response
at finer intervals corresponding to the baseband sampling
frequency Fs = 16 kHz used in WATERMARK. We linearly
interpolate the samples of measured baseband channel impulse
response to obtain the response at finer intervals.

For timing and synchronization, a chirp pulse of duration
Tp = 20 ms in the frequency band 10-18 kHz, called preamble,
is prefixed to the transmission waveform. A guard interval of
Tg = 25 ms is inserted between the preamble and the start of
modulated waveform to avoid interference. Note that, although
the delay coverage of NOF1 channel is Td = 128 ms, the
channel power delay profile falls by more than 20 dB beyond
Tg = 25 ms. Matched filtering with the preamble waveform
is used for detecting the start of the received waveform.

Figure 12 shows the computed channel matrix, GB, for the
first few bits in a received packet at one of the instances
in the WATERMARK channel record NOF1. Significant ISI
remains even after gradient hetrodyne and lowpass filtering,
as indicated by the strong off-diagonal entries in matrix GB.

Figure 13 shows the performance of VSSD and MMSE
receivers on the WATERMARK channel NOF1. NOF1 is a
stable channel with coherence time spanning over several
seconds. VSSD outperforms MMSE receiver by a margin
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Fig. 12. Channel matrix after GradH processing at an instance in the
WATERMARK channel record NOF1.
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Fig. 13. BER of VSSD and MMSE receivers for S2C communications over
the NOF1 channel in WATERMARK.

comparable to that in simulated UWA channels for both coded
and uncoded communications in this real world channel also.

Figure 14 shows the BER of the proposed receiver on the
NCS1 channel. NCS1 is characterized by a larger Doppler
spread and therefore its impulse response varies significantly
faster than NOF1. Both receivers require a higher SNR to
achieve the same BER in NOF1 than NCS1. However, the
strong relative performance of the VSSD receiver is main-
tained for both coded and uncoded communications even in
this harsher UWA channel. While both NOF1 and NCS1 chan-
nels exhibit a comparable power delay profile, the coherence
time of NCS1 is only about a tenth of a second that makes the
channel prone to estimation errors. We see that, even in such
challenging channel conditions as NCS1, VSSD is relatively
resilient to channel estimation errors.

VII. CONCLUSIONS

In this work, we considered data symbol detection in an
S2C receiver for doubly spread UWA channels. We formulated
the problem of data detection for S2C communications over a
wideband delay-scale channel and showed that the two existing
S2C receivers are near MMSE decoders in only certain benign
UWA channels. In more severe channels, where the existing
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Fig. 14. BER of VSSD and MMSE receivers for S2C communications over
the NCS1 channel in WATERMARK.

receivers either completely fail or must compromise on the
data rate, we developed a new soft symbol decoder based on
variational Bayes’ inference. The input to the new decoder is
the reduced data measurements at the output of the gradient
heterodyne preprocessor of the existing S2C receivers.

Our proposed VSSD decoder estimates a probability vector
(soft symbols) whose KL-distance to the true posterior of the
symbol vector is minimized by iterating through a fixed point
equation. In benign UWA channels, the VSSD decoder reduces
to the existing S2C receivers. We showed that the fixed point
iterations converge to a stationary point of the evidence lower
bound in variational inference. We presented a few sufficient
conditions that help to characterize the stationary point as a
global maximum, local maximum or saddle point. Simula-
tion results showed that VSSD significantly outperforms the
MMSE decoder and maintains a robust performance, even
under channel estimation errors, in challenging UWA chan-
nels. We applied the VSSD decoder on two contrasting real
world UWA channels in the publicly available WATERMARK
datasets. The new decoder outperforms the MMSE decoder
in these channels as well, by a margin comparable to that in
simulated UWA channels.

The ideal PAPR and low probability of intercept properties
of S2C communications make it a promising candidate for
terrestrial radio-frequency (RF) communications as well. Also,
the VSSD algorithm developed in this paper is potentially
applicable to other prevalent and emerging wireless commu-
nication systems.

APPENDIX

Evidence Lower Bound (ELBO): We derive the ELBO for
soft symbol estimation. The first term in (23) is given by

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)

− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
. (51)

Expanding the last term in (51), we get

Eqφ(s|G,z)
[
‖z−Gs‖2

]
= ‖z‖2 − 2zTGEqφ(s|G,z) [s]

+ Eqφ(s|G,z)
[
‖Gs‖2

]
. (52)

We define:

qk,Re , qφ

(
sk,Re =

1√
2

∣∣∣∣G, z) ∈ [0, 1], (53)

qk,Im , qφ

(
sk,Im =

1√
2

∣∣∣∣G, z) ∈ [0, 1]. (54)

Note that the approximate posterior is completely specified
by the soft symbol vector q ∈ R2N formed by stacking up
qk = [qk∗,Re, qk∗,Im]T ∈ R2, k = 0, 1, . . . , N − 1. For our
problem, we let the parameter φ , q.

The expectations in (52) can be evaluated as follows:

Eqφ(s|G,z) [sk,Re] =
1√
2

(2qk,Re − 1) , (55)

Eqφ(s|G,z) [sk,Im] =
1√
2

(2qk,Im − 1) , (56)

Eqφ(s|G,y)

[
‖Gs‖2

]
=

2N−1∑
l=0

Eqφ(s|G,z) [Gs]
2
l , (57)

Eqφ(s|G,z) [Gs]
2
l =

N−1∑
k=0

ηl,k + νl,k
∑
m 6=k

νl,m

 , (58)

where

ηl,k =
1

2
G2
l,k,Re +

1

2
G2
l,k,Im

+Gl,k,ReGl,k,Im (2qk,Re − 1) (2qk,Im − 1) , (59)

νl,m =
1√
2
Gl,m,Re (2qm,Re − 1)

+
1√
2
Gl,m,Im (2qm,Im − 1) . (60)

The ELBO regularizing term in (23) is

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (61)

We assume a uniform prior pθ(s) = 1
22N

. We have:

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= log 22N−

N−1∑
k=0

[H(qk,Re) +H(qk,Im)] , (62)

where H is the binary entropy function given by

H(q) = −q log q − (1− q) log(1− q). (63)

On combining the likelihood and regularization terms, we
find the overall ELBO to be

L(θ,q, z) = −N log(2πσ2)− ‖z‖
2

2σ2
+

1√
2σ2

zTG(2q− 1)

− 1

2σ2

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

− log 22N

+

N−1∑
k=0

−qk,Re log qk,Re − (1− qk,Re) log(1− qk,Re)

+

N−1∑
k=0

−qk,Im log qk,Im − (1− qk,Im) log(1− qk,Im). (64)
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Known Noise Variance: In this case, we take θ to be the
empty set. The derivative of the overall cost function with
respect to qk∗,Re is given by

∂L
∂qk∗,Re

=

√
2

σ2
zTG:,k∗,Re

− 1

2σ2

2N−1∑
l=0

 ∂ηl,k∗

∂qk∗,Re
+ 2

∂νl,k∗

∂qk∗,Re

∑
m 6=k∗

νl,m


− log qk,Re + log(1− qk,Re). (65)

We have ∂ηl,k
∂qk,Re

= 2Gl,k,ReGl,k,Im(2qk,Im − 1) and ∂νl,k
∂qk,Re

=√
2Gl,k,Re. The above can be simplified to

∂L
∂qk∗,Re

= αk∗,Re − log qk,Re + log(1− qk,Re), (66)

where

αk∗,Re =

√
2

σ2
zTG:,k∗,Re

− 1

σ2

2N−1∑
l=0

Gl,k∗,ReGl,k∗,Im(2qk∗,Im − 1)

−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Re

∑
m 6=k∗

νl,m. (67)

Setting ∂L
∂qk∗,Re

= 0, we get qk∗,Re = ϕ(αk∗,Re), where
ϕ(x) = 1

1+e−x . Similarly, setting ∂L
∂qk∗,Im

= 0, we get
qk∗,Im = ϕ(αk∗,Im) where

αk∗,Im =

√
2

σ2
zTG:,k∗,Im

− 1

σ2

2N−1∑
l=0

Gl,k∗,ImGl,k∗,Re(2qk∗,Re − 1)

−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Im
∑
m 6=k∗

νl,m. (68)

Stacking up qk = [qk∗,Re, qk∗,Im]T ∈ R2 into a vector, we
get the following fixed point equations:

q = ϕ(α), (69)

where the vector α ∈ R2N is formed by stacking αk =
[αk∗,Re, αk∗,Im]T ∈ R2, k = 0, 1, . . . , N − 1.

Unknown Noise Variance: In this case, we take θ = {σ2}.
Differentiating the ELBO in (64) with respect to σ2, we get

∂L
∂σ2

= −N
σ2

+
‖z‖2

2σ4
− 1√

2σ4
zTG(2q− 1)

+
1

2σ4

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

 . (70)

Setting ∂L
∂σ2 = 0 and solving for σ2, we find

σ̂2 =
‖z‖2

2N
− 1√

2N
zTG(2q− 1)

+
1

2N

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

 . (71)

Unknown Channel and Noise Variance: In this case, we take
θ = {σ2, G}. To differentiate the ELBO with respect to G, we
notice that the terms in (64) that depend on G come from the
left hand side of (52), i.e.,

LG = Eqφ(s|G,z)
[
(z−Gs)T (z−Gs)

]
. (72)

On differentiating LG with respect to Gi,j and setting to
zero we get the following system of equations:

Gs = z, (73)

where s , Eqφ(s|G,z) [s]. The jth entry of s is given by
sj = 1√

2
(2qj − 1), if a data symbol is mounted at jth symbol

location. At locations where the pilot symbols are mounted
(to facilitate channel estimation), we have sj = pj , where
pj is a known pilot symbol mounted at jth location. The
channel matrix estimate can be refined using (73) once an
initial estimate of the soft symbol vector is obtained through
the fixed point update in (69). Note that G has 4N2 entries
that need to be estimated from 2N equations in (73). One way
to accomplish this is to exploit channel sparsity as in [21]. To
see that, we make use of the relation G = QTH and rewrite
(73) in the form:

Ah = z, (74)

where A =
∑N−1
i=0

(
s2iQ

TCi − s2i+1Q
TSi
)
∈ R2N×NP .

Now, following the approach in [21], equation (74) can be
readily turned into a form suitable for estimating the channel
parameters {hp, τ̃p, bp : p = 0, 1, . . . , NP−1}. The expression
for the noise variance is the same as in (71), and is evaluated
during the iterations once the soft symbol vector and the
channel estimates are obtained using the fixed point update
and (73), respectively.
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