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Abstract

Massive machine-type communications (mMTC) is a 5G and beyond use case, where the

network is expected to serve millions of devices per square kilometre. Typical mMTC de-

vices include smart energy meters, pressure sensors, temperature indicators, smart factory

equipment, etc. These devices sporadically transmit short packets, i.e., they transmit a

short burst of data once in a while and then largely remain inactive. In order to serve

mMTC scenarios, we need to use grant-free random access (GFRA) protocols since they

have the advantage of a low control and signalling overhead as well as non-orthogonal

use of the channel. GFRA for mMTC is a relatively new research topic and has received

immense interest in the recent past. In this thesis, we analyze several practical aspects of

irregular repetition slotted aloha (IRSA), which is a GFRA protocol for mMTC.

IRSA is a distributed GFRA protocol where users transmit multiple replicas of their

packets in randomly selected resource blocks within a frame to a base station (BS). The

BS recovers the packets using successive interference cancellation (SIC). Existing studies

have analyzed IRSA with idealized assumptions, i.e., neglecting fading, path-loss, channel

estimation errors, pilot contamination, multi-cell interference, etc. These non-idealities

can greatly reduce the performance of the system and must be accounted for in the design

and analysis of any mMTC system.

In this thesis, we first analyze channel estimation in IRSA, exploiting the sparsity

structure of IRSA transmissions, when non-orthogonal pilots are employed across users

to facilitate channel estimation at the BS. Allowing for the use of non-orthogonal pilots is

important, as the length of orthogonal pilots scales linearly with the total number of de-

vices, leading to prohibitive overhead as the number of devices increases. Next, we present

i
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a novel analysis of the throughput of IRSA under practical channel estimation errors, and

with the use of multiple antennas at the BS. Finally, we theoretically characterize the

asymptotic throughput of IRSA using a density evolution based analysis. Simulation re-

sults underline the importance of accounting for channel estimation errors in analyzing

IRSA, which can even lead to 70% loss in performance in severely interference-limited

regimes. We also provide novel insights on the effect of parameters such as pilot length,

SNR, number of antennas at the BS, etc, on the system throughput.

Next, we develop a novel Bayesian user activity detection (UAD) algorithm for IRSA,

which exploits both the sparsity in user activity as well as the underlying structure of

IRSA transmissions. We then derive the Cramér-Rao bound (CRB) on the mean squared

error in channel estimation. We empirically show that the channel estimates obtained as

a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the

signal to interference plus noise ratio achieved by the users, accounting for UAD, channel

estimation errors, and pilot contamination. Finally, we illustrate the impact of these

non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in

a system with 1500 users and 10% of the users being active per frame, a pilot length

of as low as 20 symbols is sufficient for accurate user activity detection. In contrast,

using classical compressed sensing approaches for UAD would require a pilot length of

about 346 symbols. Our results reveal crucial insights into dependence of UAD errors

and throughput on parameters such as the length of the pilot sequence, the number of

antennas at the BS, the number of users, and the SNR.

Then, we develop an enhanced version of IRSA that can be operated at the peak

performance even at high system loads. IRSA can be used to serve a large number of

users in mMTC while achieving a near-zero packet loss rate (PLR). However, in overloaded

mMTC scenarios, the system is interference-limited, and the PLR is close to one. We

develop a variant of IRSA in the interference limited-regime, namely Censored-IRSA

(C-IRSA), in which users with poor channel states self-censor, i.e., they refrain from

transmitting their packets. This censoring depends on a censor threshold that can be

varied depending on the number of users in the system. Firstly, we empirically and
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theoretically analyze the performance of C-IRSA. Next, we derive the optimal choice

of the censor threshold via a semi-analytic approach and a PLR-optimal algorithmic

approach. This choice of the threshold maximizes the throughput while achieving zero

PLR among uncensored users. Through extensive numerical simulations, we show that

C-IRSA operates at full system throughput at high system loads compared to vanilla

IRSA which has near-zero throughput.

After this, we analyze IRSA in the multi-cell (MC) and cell-free (CF) setups, ac-

counting for pilot contamination, channel estimation errors, and multi-user interference.

Via extensive simulations, we illustrate that, in practical settings, MC IRSA can have

a drastic loss of throughput, up to 70%, compared to SC IRSA. Further, MC IRSA re-

quires a significantly higher training length, in order to support the same user density and

achieve the same throughput: for example, MC IRSA may need about 4− 5× compared

to SC IRSA. We provide insights into the effect of system parameters such as number of

antennas, pilot length, and SNR on the throughput of MC IRSA and CF IRSA. With

the proposed CF architectures, we show that we can achieve more than 14× improve-

ment in the throughput of CF IRSA compared to a massive MIMO SC setup. We also

study the densification trends in MC IRSA, where we observe an inverse behaviour in the

throughput compared to CF IRSA.

Finally, we optimize the repetition distributions in IRSA with the throughput and the

energy efficiency objectives. Via extensive numerical simulations, we study the effect of

various system parameters such as the maximum repetition factor, the average repetition

factor, the number of antennas, and the pilot length, on the repetition distributions, the

inflection load, and the peak energy efficiency. Compared to the best existing distribu-

tions, we show that our optimized distributions can achieve up to 58% increase in the

inflection load and up to 49% increase in the peak energy efficiency.

Overall, this thesis analyzes and designs the IRSA protocol under several practical non-

idealities. The developed algorithms vastly outperform state-of-the-art and can efficiently

serve mMTC applications.
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Chapter 1

Introduction

Massive machine-type communications (mMTC) is an evolving next generation use-case,

expected to serve around 106 devices per square kilometer [1]. The users in mMTC ap-

plications are sporadically active and transmit short packets to a central base station

(BS) [2]. Typical mMTC devices include smart energy meters, pressure sensors, tem-

perature indicators, smart factory equipment, etc. mMTC applications require random

access protocols that serve large numbers of users [3, 4]. Distributed grant-free random

access (GFRA) protocols are appropriate for mMTC, since they incur a low control and

signaling overhead [5], as well as non-orthogonal use of the channel [6]. GFRA for mMTC

is a relatively new research topic and has received immense interest in the recent past.

Irregular repetition slotted aloha (IRSA) is a high performing distributed GFRA pro-

tocol suitable for mMTC applications. In IRSA, users transmit multiple replicas of their

packets to a base station (BS) in randomly selected resource blocks (RBs) [7]. The ac-

cess of the RBs is represented by the access pattern matrix (APM). The BS recovers the

packets using successive interference cancellation (SIC). Existing studies have analyzed

IRSA with idealized assumptions, i.e., neglecting fading, path-loss, channel estimation

errors, pilot contamination, multi-cell interference, etc. These non-idealities can greatly

reduce the performance of the system and must be accounted in the design and analysis

of any mMTC system [8]. In this thesis, we analyze IRSA under several of these practical

aspects.

2
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1.1 Outline of this Thesis

In this section, we briefly describe the problems addressed in this thesis. The organization

of the thesis is represented as a flow diagram in Fig. 1.1. The main problem addressed

in each chapter is highlighted in solid rectangles, whereas the main analytical technique

used in each chapter is represented in dotted rectangles.

Figure 1.1: Organization of the Thesis.

1.1.1 Motivation: Irregular Repetition Slotted Aloha for Mas-

sive Machine-Type Communications

In the second chapter, we motivate the central problem of this thesis. We first present

an overview of challenges and standards for mMTC. We then present the working of the

IRSA protocol, and give an overview of the existing works related to IRSA and mMTC.

We conclude this chapter by presenting density evolution, which is an analysis technique

used to find the theoretical performance of IRSA.

1.1.2 Channel Estimation and Data Decoding in IRSA

In the third chapter, we consider the problem of channel estimation in IRSA. We de-

rive channel estimates in IRSA, exploiting the sparsity structure of IRSA transmissions,
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when non-orthogonal pilots are employed across users to facilitate channel estimation at

the BS. Assigning mutually orthogonal pilots to users avoids pilot contamination, but is

prohibitively expensive in mMTC, since the pilot overhead would be proportional to the

total number of users [9]. Thus, pilot contamination (PC), which reduces the accuracy

of channel estimation and makes the estimates correlated [10], is unavoidable in mMTC,

and significantly degrades the throughput of IRSA. Thus, pilot contamination has to be

accounted for while analyzing the performance of GFRA protocols for mMTC.

The contents of this chapter are published in [11,12]. We list our contributions in this

chapter below:

1. We derive channel estimates for IRSA under three schemes: the first one exploits

the sparsity in the APM to estimate the channels of the users, and the other two

assume knowledge of the APM and output minimum mean square error (MMSE)

estimates.

2. We present a novel analysis of the signal-to-interference-plus-noise-ratio (SINR) in

IRSA accounting for channel estimation errors, where estimates are acquired via

non-orthogonal pilots under the three estimation schemes. We account for multiple

antennas at the BS, fading, path loss, and pilot contamination.

3. We theoretically analyze the throughput of IRSA via density evolution (DE), when

users perform path loss inversion based power control. The analysis reveals the

asymptotic performance of the protocols as the number of users and RBs get large.

Through extensive simulations, we show that channel estimation errors lead to a significant

loss of throughput compared to the ideal scenario with perfect channel state information

(CSI) at the BS, even resulting in up to 70% loss in severely interference-limited regimes.

Our analysis also reveals an inflection load, beyond which the system becomes interference-

limited, resulting in a dramatic reduction of the throughput.
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1.1.3 User Activity Detection in IRSA

In the fourth chapter, we consider the problem of user activity detection in IRSA. Since

only a subset of users are active in any frame in mMTC [2], it is essential for the BS to

detect the set of users that are active, before proceeding to perform channel estimation

and data decoding. This process is termed user activity detection (UAD). Knowing the

subset of active users not only saves computational resources by helping the BS decide

which users it needs to decode, it is also important for channel estimation [13, 14]. We

develop a novel Bayesian UAD algorithm to detect the subset of active users in IRSA,

which exploits both the sparsity in user activity as well as the underlying structure of

IRSA transmissions. Errors arising from the UAD process, namely, false positives and

false negatives, deteriorate the channel estimates computed at the BS, which in turn

affects the data decoding. Hence, it is crucial to account for these errors while analyzing

the performance of GFRA protocols.

The contents of this chapter are published in [15]. Our main contributions are:

1. We develop a novel Bayesian algorithm to detect the set of active users in IRSA.

UAD in IRSA is a joint-sparse signal recovery problem with an important twist:

different and unknown subsets of the row indices of the joint-sparse matrix partic-

ipate in different measurements. Our algorithm is an enhancement to the multiple

sparse Bayesian learning (MSBL) algorithm [16] to cater to this scenario.

2. We derive the channel estimates at the BS for users in all RBs in IRSA, acquired via

non-orthogonal pilots. We also derive the Cramér-Rao bound (CRB) on the mean

squared error (MSE) of the channels estimated by our proposed UAD algorithm. We

show that a genie-aided MMSE estimator (that has knowledge of the second-order

channel statistics and the user activities) achieves the CRB. We also empirically

show that the MSE of the channel estimates output by the proposed UAD algorithm

meets the CRB.

3. We analyze the SINR achieved by all the users in all RBs, accounting for UAD errors,

channel estimation errors, and pilot contamination. The SINR expression allows us
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to determine the throughput of IRSA, accounting for all these non-idealities.

Our numerical experiments show that there is at least a 4-fold reduction in the number

of pilot symbols required to achieve a similar UAD performance as that of existing ap-

proaches. Our results reveal crucial insights into dependence of UAD errors and through-

put on parameters such as the length of the pilot sequence, the number of antennas at

the BS, the number of users, and the signal to noise ratio. The loss in performance due

to UAD errors can be recuperated by judiciously choosing the system parameters such

as pilot length, number of antennas, and SNR. For example, in a system with 1500 users

and 10% of the users being active per frame, a pilot length of as low as 20 symbols is suf-

ficient for accurate user activity detection. In contrast, using classical compressed sensing

approaches for UAD would require a pilot length of about 346 symbols.

1.1.4 Censored-IRSA for Interference-Limited mMTC

In the fifth chapter, we develop an enhanced version of IRSA in the interference limited

regime, namely Censored-IRSA (C-IRSA), wherein users with poor channel self-censor,

i.e., they refrain from transmitting their packets. Typically, IRSA can be used to serve a

large number of users while achieving a packet loss rate (PLR) close to zero [7]. However,

in overloaded mMTC applications, the number of users is too high, then the system is

interference limited and the PLR is close to one [17]. The censoring in C-IRSA depends

on a censor threshold that can be varied depending on the number of users in the system.

C-IRSA maintains the distributed nature of IRSA.

The contents of this chapter are published in part in a conference paper in [18], and a

journal paper is under preparation [19]. The contributions of this chapter are as follows:

1. We propose C-IRSA to tackle the interference-limitation of IRSA at high system

loads. This involves self-censoring of users, wherein users with poor CSI refrain

themselves from transmitting, which decreases the effective system load and ensures

that all the uncensored users are successfully decoded.

2. We empirically analyze the performance of C-IRSA accounting for path loss, channel
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estimation errors, MIMO, fading, and pilot contamination.

3. Using DE, we theoretically analyze the performance of C-IRSA when the users

perform power control based on the path loss between themselves and the BS.

4. We derive the optimal censor threshold in the general case: accounting for path loss,

MIMO, fading, channel estimation, and pilot contamination. We present two ap-

proaches: the first is a semi-analytic approach, whereas the second is an algorithmic

approach that is packet loss rate (PLR) optimal. Using these choices of the censor

threshold, the PLR of uncensored users can be driven close to zero at all system

loads, while maintaining the throughput of the system at its highest value.

Using extensive numerical simulations, we show that, C-IRSA operates at the full through-

put at all loads, in contrast to vanilla IRSA which has near-zero throughput as the load

is increased. In particular, at high loads, C-IRSA offers a 10× throughput improvement

over IRSA without user censoring.

1.1.5 Analysis of IRSA in Multi-Cell and Cell-Free Systems

In the sixth chapter, we analyze the performance of IRSA in the multi-cell (MC) and cell-

free (CF) setups, accounting for pilot contamination and multi-user interference. Existing

studies have analyzed IRSA in the single-cell (SC) setup, which does not extend to the

more practically relevant multi-cell (MC) setup due to the inter-cell interference. Further,

SC processing neglecting inter-cell interference is highly suboptimal when applied to MC

systems. Cell-free (CF) architectures have been proposed for expanding the coverage of

communication systems [20]. In a conventional CF system, instead of a conventional BS

at the center of a cell, several access points (APs) are used to jointly serve the users [21].

The APs are connected to a central processing unit (CPU) which is responsible for data

aggregation and network coordination [22]. mMTC has the goal of increased connectivity

and packet success rates. This is especially challenging to achieve when there are several

cell-edge users who may not be decoded in mMTC due to high path losses. Further, these

devices are expected to consume low power and have long battery lives, because of which
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they cannot transmit at high powers to compensate for the path loss. CF architectures

naturally overcome this issue due to the macro-diversity gain (MDG), which helps decode

these edge users [23]. Thus, mMTC scenarios are a natural application for using CF

architectures, and studying IRSA for mMTC in a CF setup is very relevant.

The contents of this chapter are published in [24] and a journal paper is under prepa-

ration [25]. We list our contributions in this chapter below:

1. We study IRSA in the MC setup. We derive the channel estimates and the SINR

in MC IRSA accounting for path loss, MIMO fading, intra-cell pilot contamination

(PC), and inter-cell PC.

2. We analyze IRSA in the CF setup, with all of the above non-idealities. Specifically,

we study three CF architectures for IRSA: one with local processing at each AP,

termed local-cell-free (LCF); next with fully centralized processing at the CPU,

termed centralized-cell-free (CCF); and finally, with hybrid processing at both the

APs and the CPU, termed hybrid-cell-free (HCF).

3. We provide insights into the effect of system parameters such as number of antennas,

number of APs (or BSs), pilot length, and SNR on the throughput of MC IRSA and

CF IRSA.

4. We study the effect of BS and AP densification in MC and LCF IRSA, respectively,

where we observe an inverse behaviour in the throughput compared to CCF IRSA.

To the best of our knowledge, no existing work has analyzed the effect of MC interference

or CF processing in IRSA. Through numerical simulations, we show that inter-cell PC

and inter-cell interference result in up to 70% loss in the MC throughput compared to the

SC setup. Further, MC IRSA requires a significantly higher training length (about 4−5×

compared to SC IRSA), in order to support the same user density and achieve the same

throughput. Under the CF architecture, we can achieve more than 14× improvement

in the throughput of CCF IRSA compared to a massive MIMO SC setup at high loads.

We also study the densification trends in MC IRSA and CF IRSA: for CCF IRSA and
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HCF IRSA, densification always improves the performance; for LCF IRSA and MC IRSA,

densification does not help at loads near the inflection loads, i.e., it is better not to densify

and to operate with a massive MIMO SC setup.

1.1.6 Optimal Repetition Distributions in IRSA

In the seventh chapter, we optimize the repetition distributions in IRSA using the dif-

ferential evolution algorithm (DEA) [26], under the throughput and energy efficiency

objectives. Energy efficiency is a fundamental aspect of both cellular [27] and machine-

type communications [28]. Energy efficiency becomes even more important in mMTC

since the low-power devices deployed in mMTC scenarios are expected to be IoT devices

which last for several years [29]. These devices are expected to consume as low power as

possible while maintaining high throughput [30]. Thus, energy efficiency is a fundamental

metric of mMTC systems, and in particular, in the IRSA protocol as well. The obtained

optimal distributions can be used to operate mMTC at the peak throughputs as well as

the peak energy efficiencies.

Our contributions in this chapter are as follows:

1. Firstly, we optimize the repetition distributions of IRSA with the throughput and

the energy efficiency objectives.

2. Next, we study the effect of the optimal repetition distributions under three cases:

first case with the K-collision channel; second case with perfect CSI, MIMO, and

MRC; and third case with channel estimation errors, MIMO, pilot contamination,

and MMSE combining.

3. Via extensive numerical simulations, we study the effect of various system param-

eters such as the maximum repetition factor, the average repetition factor, the

number of antennas, the pilot length on the repetition distributions, the inflection

load, and the peak energy efficiency.

We demonstrate that the 2-regular distribution is the most energy efficient distribution

for IRSA at high number of antennas and high pilot lengths. The 2-regular distribution
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is also nearly throughput-optimal at high number of antennas. Compared to the best

existing distributions, we show that our optimized distributions can achieve up to 58%

increase in the inflection load and up to 49% increase in the peak energy efficiency.

1.1.7 Conclusion

In the last chapter, we conclude this thesis. We summarize the designs and analyses

presented in this thesis. Overall, this thesis analyzes the IRSA protocol under several

practical non-idealities. The developed algorithms vastly outperform state-of-the-art and

can efficiently serve mMTC applications. We outline some future research directions for

IRSA and mMTC.
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Chapter 2

Irregular Repetition Slotted Aloha

In this chapter, we first motivate the central problem of this thesis, i.e., massive machine

type-communications (mMTC). Firstly, we explain the challenges faced in mMTC, and the

protocols used in mMTC applications. Secondly, we discuss the working of the irregular

repetition slotted aloha (IRSA) protocol, including the structure of the access pattern

matrix, the successive interference cancellation process, and the decoding process in IRSA.

Then, we survey existing works on IRSA, and also other papers that are relevant to this

thesis. Finally, we describe the process of density evolution, which is an iterative recipe

that can be used to compute the theoretical performance of IRSA.

2.1 Massive Machine-Type Communications

The internet-of-things (IoT) is a network of physical devices that communicate and ex-

change information with each other over the internet [31]. Each IoT device contains the

embedded systems, processors, software, and hardware that can enable the automatic

working of the related IoT ecosystem, where all the devices are internet-enabled [32]. The

goal could be to have an understanding of the environment using the vast amounts of

data produced by these sensors, perhaps, via a gateway to which all the IoT devices send

data to [33]. Typical IoT applications include smart factories, smart cities, environmental

sensing applications, and healthcare [34]. One major application is in a smart factory

13
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setting, where there are thousands of such static IoT devices (e.g., temperature sensors,

smart energy meters, pressure indicators) which collectively operate over the internet to

ensure the automated smooth running of the smart factory [35]. It is expected that the

scale of such devices will grow in the near future to perhaps millions of devices per square

kilometre. According to the expected requirements [36], in 2025, the total number of

connected devices in the world will be in billions. Communication amongst the IoT de-

vices is a challenge, especially when the number of devices is huge [37]. This application

is known as massive machine-type communications (mMTC), and this application is the

main focus of this thesis.

The three pillars of next-generation communication systems, especially 6G and beyond-

5G communication systems, are expected to be mMTC, ultra-reliable low latency com-

munications (URLLC), and enhanced mobile broadband (eMBB), according to the third

generation partnership project (3GPP) and the international telecommunication union

(ITU) [38]. mMTC is a use case expected to serve millions of IoT-type devices per square

kilometre. mMTC devices transmit short packets sporadically, i.e., they transmit data

once in a while and then largely remain inactive [37]. URLLC applications require pro-

tocols that serve users with very low latencies (up to 1ms) and very high reliability (i.e.,

with a low loss rate up to 10−5) [39]. eMBB aims at serving as many cellular users as pos-

sible with higher data rates compared to existing cellular systems [40]. The above three

applications have widely varied quality of service (QoS), and thus, different protocols and

algorithms are needed to serve each application [41]. The focus of this thesis is on the

design and analysis of access protocols, specifically for mMTC applications.

2.1.1 Challenges in mMTC

One of the main challenges in mMTC is allocation of orthogonal resources to the devices

or the users for communications [37]. Conventionally, orthogonal multiple access pro-

tocols (OMA) have been used for cellular communications, wherein users are allocated

orthogonal resource blocks (RBs) for communicating with the BS. This is made possible

by assigning orthogonal resources to users in specific time resources (as in time division
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multiple access) or in specific frequency resources (as with frequency division multiple

access) [9]. Devices typically contend for resources prior to data transmission, and after

receiving an acknowledgement (ACK) of an allocated resource by the BS, they transmit

data on that resource. This is the process used for random access of the channel in current

standards [37]. However, using such protocols for mMTC is prohibitive since orthogonal

RBs cannot be preassigned for such a massive number of users [38]. Millions of users

contending and requesting for RBs lead to excessive delays in acquiring the RBs, and

consequently, high control and signalling overheads [36]. Thus, non-orthogonal use of the

channel is unavoidable in mMTC. For example, using non-orthogonal pilots results in the

phenomenon termed pilot contamination, where the channel estimates of users become

correlated since the pilots of users contaminate the channel estimates of the users [10]. In

particular, in mMTC applications, since it is not possible to assign orthogonal pilots to

all users, the resulting pilot contamination can significantly degrade the performance of

IRSA [42].

The next main challenge in mMTC is the sporadic activities of the users. Each user

has a packet to transmit only once in a while and they largely remain inactive. Hence,

it is unknown which user would be active a priori and as a consequence, unlike OMA,

orthogonal RBs or pilot sequences cannot be assigned [38]. This challenge has led to

the development of many sparse signal recovery techniques for user activity detection in

random access applications. Compressed sensing (CS) techniques can be used to detect

devices only when a very small percent of them are active [5].

The most famous non-orthogonal access protocol is perhaps the non-orthogonal mul-

tiple access (NOMA) protocol. NOMA is a promising solution for mMTC since without

allocating any extra RBs, multiple users can share and use the same resources [43]. Power-

domain NOMA is a centralized protocol in which the BS pairs two users with disparate

received powers on the same resource block. Centralized implies that there is a cen-

tral entity, namely the BS, that coordinates the access of the channels [44]. The user

with the stronger received signal at the BS is decoded first, with the assumption that
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the other user’s signal is additive noise [45]. Once the first user is decoded, the BS per-

forms successive interference cancellation (SIC) from the received signal using the decoded

data symbols. Then, the BS attempts to decode the user with the lower received power

from the residual received signal [46]. Other variants of NOMA that are also centralized

are code-domain NOMA, delay-domain NOMA, scrambling/spreading based NOMA, and

interleaving-NOMA. These all involve a non-orthogonal collision between users in differ-

ent domains, and are all centralized [47]. Distributed protocols do not have the overhead

seen in centralized protocols, and the devices act on their own will by not requesting the

BS for a grant of resources [44]. Hence, we need to use distributed access protocols for

mMTC.

In existing cellular communications, the traditional goal is to ensure all users or devices

are connected to each other with maximal data rates, with irregular traffic from the

users [48]. Existing works in NOMA are applicable only for cellular communications and

not for mMTC, since they all only analyze NOMA when very few users are connected to

the BS [44]. Typically, these works explore the detection and decoding of users with an

objective to maximize the information theoretic capacity of the system [49]. For mMTC,

the motivation is to ensure connectivity for sporadically transmitting devices [37], whereas

for URLLC, we need to support low latencies and high reliabilities [39], which are both

different from the existing capacity maximization techniques. Further, in mMTC, the

devices transmit only a few packets, infrequently, and unpredictably [42]. Consequently,

we need to develop fresh designs and medium access control (MAC) algorithms specifically

accounting for the challenges in mMTC.

2.1.2 Standards for mMTC

Historically, IoT communications have been handled with a plethora of machine to ma-

chine (M2M) communication protocols [34]. Some famous M2M technologies are wireless

fidelity (Wi-Fi), bluetooth, zigbee, low-power wireless personal area networks (LPWAN),

and long range wide area network (LoRaWAN). IoT protocols have evolved from these
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M2M technologies. These technologies, such as LoRaWAN, can be used for mMTC specif-

ically when there are low throughput long-range applications, but not universally for all

mMTC applications [32]. Further, end-to-end establishment of a dedicated access network

is a disadvantage for such applications [33], because it would incur a large control and

signalling overhead.

3GPP has suggested adapting existing cellular protocols for the mMTC requirements,

especially for applications with high rates and coverage [31]. Long term evolution for

mMTC, which is similar to LPWAN is a standard that can serve low power devices [50].

One other popular protocol is narrow band IoT (NB-IoT), which is a LPWAN standard

applicable for low power devices with high connection density [36]. The development of

these standards for mMTC is towards improving energy efficiency and connectivity [37].

These standards use either traditional multiple access techniques or modern random access

procotols [51]. We now explain these modern random access protocols in detail in the

next section.

2.1.3 Grant-Based vs Grant-Free Protocols for mMTC

There are several protocols that have been proposed and analyzed for mMTC applications.

They are typically divided into grant-based and grant-free protocols [44]. For grant-

based protocols, the users typically request the BS for a grant of resources as depicted

in Fig. 2.1(a). The BS periodically transmits a system information broadcast after which

users select a preamble, perhaps orthogonal, and transmit it in the first phase [36]. The

BS detects the preambles and allocates orthogonal resources to subsets of paired users,

similar to the NOMA protocol. Users who have been allocated the same resource block

transmit at the same time and are received with collisions at the BS [45]. The BS decodes

the data, with perhaps multi-user detection, and then sends back an acknowledgement

(ACK) or a negative-ACK (NACK) based on whether the user was decoded correctly or

not, respectively. This is verified typically using a forward error correction code, or a

cyclic redundancy check code [47]. Conventional OMA is also grant-based.

In grant-free random access (GFRA) protocols, the initial preamble stage is completely
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(a) Grant-Based Random Access.

(b) Grant-Free Random Ac-

cess.

Figure 2.1: Grant-Based vs Grant-Free Random Access.

skipped [52]. Users randomly select a preamble (perhaps pre-assigned) and transmit data

in a random access non-orthogonal fashion. The BS performs both device detection and

data decoding (perhaps jointly or separately) and then sends an ACK or NACK, as re-

quired. Thus, GFRA do not have the overhead of the additional phase at the beginning,

and devices can transmit as and when required, making GFRA protocols inherently dis-

tributed [53]. That is, devices act on their own will and transmit as necessary, and there

is no central entity that coordinates this transmission. These characteristics of GFRA

protocols make them a promising solution to serve mMTC devices. In particular, GFRA

protocols have the advantage of a low control and signalling overhead, which helps in

transmission of short packets [5]. The non-orthogonal use of the channel in GFRA helps

achieve the high scale of the number of users in mMTC.

Random access (RA) for mMTC is a relatively new research topic and has received

immense interest in the recent past. We now list some commonly used RA protocols for

mMTC.
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1. Coded Random Access (CRA): The CRA family of protocols is a popular set of high-

performing protocols in which users’ packets are repeated multiple times across dif-

ferent resource blocks [54]. In contention resolution diversity slotted aloha (CRDSA),

users transmit their packet replicas in two randomly chosen slots. As an extension,

in D-regular repetition slotted aloha (DRRSA), users transmit their replicas in D

slots each. Next, in Irregular Repetition Slotted Aloha (IRSA), each user transmits

a randomly chosen number of packet replicas in randomly chosen slots [7]. In coded

slotted aloha (CSA), each user encodes their packets into multiple packets and then

transmit them in randomly chosen slots. CRA has been shown to perform well at

high system loads with very low packet loss rates.

2. Sparse code multiple access (SCMA): The main design feature of SCMA is its code-

book design [55]. The raw data bits are mapped to coded bits using a channel

encoder. Then, the SCMA encoder maps the coded bits to multi-dimensional code-

words. The codewords are sparse in nature and are designed under different criteria

to mitigate the multi-user interference. Similar to CRA, the decoding can be per-

formed with message passing. SCMA also has been shown to perform well when the

system is overloaded.

3. Unsourced random access (URA): URA is a GFRA protocol where a massive number

of users transmit their messages to the BS, without a mechanism to identify the

transmitting users [56]. In URA applications, the unique identifiers of the active

users are not important and the receiver is only interested in the message content

itself. URA has been massively studied in recent times [57–59].

4. Pattern division multiple access (PDMA): The devices in PDMA map symbols to

resource elements according to a binary codebook [60]. The receiver decodes the

users with message passing and successive interference cancellation. The codebooks

are constructed to maximize the constellation constrained capacity and also the

Hamming distance. PDMA has been shown to work well when there are a lot

of users in the system [61]. A difference of CRA with PDMA is that the access
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matrix in PDMA is designed in a centralized manner to maximize the so-called

constellation-constrained capacity, which is not scalable to a massive number of

users in mMTC.

5. Others : There are several other GFRA protocols such as non-orthogonal coded ac-

cess, group orthogonal coded access, random phase multiple access, resource spread

multiple access and multi-user shared access (MUSA) [45]. The device sequences

in MUSA are low cross-correlation spreading sequences, whereas the first two use

Grassmanian sequences [62]. MUSA is similar to code division multiple access, where

low length code sequences are used [47]. The error-optimal receiver for these proto-

cols is a minimum mean squared error successive interference cancellation (MMSE-

SIC) receiver. Enhanced versions of these include the interleave grid multiple access

and interleave division multiple access protocols, in which bit-level and symbol-level

interleavers are additionally used, respectively [43].

From the above set of protocols, we now focus on the CRA family of protocols.

2.1.4 Coded Random Access Family of Protocols

The coded random access (CRA) family of protocols include contention resolution di-

versity slotted aloha (CRDSA), D-regular repetition slotted aloha (DRRSA), irregular

repetition slotted aloha (IRSA), and coded slotted aloha (CSA) [63]. These protocols

evolved as variants of the original slotted aloha protocol, in which users transmit their

packet in a randomly chosen time slot. In CRDSA, each user transmits exactly two packet

replicas in randomly chosen two slots, whereas in DRRSA, each user transmits exactly

D packet replicas in randomly chosen D slots. In IRSA the ith user samples a repetition

factor di ∈ {2, 3, . . . , dmax} and transmits packet replicas in di randomly chosen slots [7].

Thus, CRDSA and DRRSA are special cases of IRSA in which each user uses the same

deterministic di. CSA is a generalized version of IRSA, where the data payload of any

user is split into multiple encoded packets via linear block codes, which are preassigned.

That is, each user encodes its d packet segments across r slots [54], instead of being simply



Chapter 2. Irregular Repetition Slotted Aloha 21

repeated as in IRSA. The block code rate is d/r, and the decoding of users exploits the

knowledge of the encoding code.

The CRA family of protocols, and in particular, the IRSA protocol, is the main focus

of this thesis. The common idea across the CRA family of protocols is the transmission of

multiple replicas of users’ packets over shared RBs or slots [17]. The goal is to ensure that

the BS retrieves at least one of these packets and then, using physical layer techniques

(such as successive interference cancellation, optimal combining across antennas, etc.),

the interference is cancelled across other RBs [7]. IRSA can be seen as an instance of

CSA, where users employ repetition codes. The decoding performance of CSA is superior

to IRSA, since each user encodes their packets across the multiple transmissions [54].

However, when it comes to the access of RBs, CSA still employs exactly the same strategy

as IRSA, and thus, the same analyses can be applied to CSA, CRDSA, DRRSA, and IRSA.

Thus, the designs and analyses presented in this thesis are applicable to any of the CRA

protocols as well as any other GFRA protocol that accesses the resources in a similar

fashion.

2.2 Working of Irregular Repetition Slotted Aloha

Irregular repetition slotted aloha (IRSA) is a distributed GFRA protocol that was pro-

posed as a variant of the slotted aloha protocol in [7]. Typical setup in an IRSA is an

uplink system with M users contending to transmit packets over a frame consisting of T

RBs of equal sizes. The system load of IRSA is L = M/T . We focus on any single frame

in IRSA and elucidate the working in the single frame. Users in IRSA transmit replicas of

their packets on a randomly selected subset of the available RBs in any frame. The access

pattern matrix (APM) is made up by the indices of the RBs in which users transmit in.

The BS performs decoding across the RBs using successive interference cancellation. In

this section, we first discuss the structure of the APM, then we discuss the interference

cancellation process, and finally, we discuss the decoding process in IRSA.

Note: We use the term “resource block” (RB) and “slot” interchangeably in this thesis;

both refer to a time frequency resource which can accommodate a whole data packet.
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2.2.1 Access Pattern Matrix

In IRSA, the mth user samples its repetition factor dm from a predefined distribution,

independently of other users. Then it chooses dm slots from a total of T slots uniformly

at random, and transmits replicas of its packet in these dm slots. The access of slots

in a given frame by all the users is represented by a binary APM, which is formed as

[G]tm = gtm, t ∈ [T ],m ∈ [M ], where gtm = 1 if the mth user has chosen to transmit in

the tth slot, and gtm = 0 otherwise. Thus, the APMs in IRSA are random matrices, which

are dependent on the distributions used to generate the repetition factors. With such

a distribution-based pattern generation, users can independently sample their repetition

factors, and by extension, the APM. Since all users generate their patterns independently,

this process is scalable to a massive number of users. Further, this process is completely

distributed in nature, and is thus appropriate for mMTC. In practice, the random subset

of slots is generated using a pseudo-random number generator, whose seed completely

determines the sequence [7]. This seed can be pre-programmed at each user, and made

available to the BS.

In this thesis, we consider both the case where the APM is known at the BS, and the

case where the APM is unknown and needs to be estimated prior to decoding the users’

packets (see Chapter 3).

2.2.1.1 Impact of APM on User Activity Detection

The user activity detection (UAD) problem in massive random access usually leverage

techniques from compressed sensing (CS). CS is a set of signal processing techniques that

are used to efficiently acquire and reconstruct a signal, by finding solutions to underde-

termined linear systems [5]. Applications of CS include massive random access, image

processing, group testing, photography, and magnetic resonance imaging [64]. CS can be

efficiently solved with greedy algorithms, optimization methods, and Bayesian learning

techniques [65]. A typical problem in CS is presented in Fig. 2.2(a), where we need to

recover a sparse vector X from a system of underdetermined linear equations Y = PX.

This is known as a single measurement vector (SMV) recovery problem, since a single
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vector needs to be recovered. Once the support of X is recovered, a least-squares (LS)

problem is used to recover the entries of X. Alternately, the support and the entries of

X can be recovered jointly as well.

(a) A typical SMV recovery prob-

lem.

(b) A typical MMV recovery

problem.

(c) Row-chunk sparsity structure in IRSA.

Figure 2.2: Structures in typical compressed sensing vs Structure in IRSA.

For the UAD problem in conventional single-antenna random access, the entries of X

contain the product of the channels of the users and the corresponding activity coeffi-

cients [66]. The entries of X are zero if the corresponding user is inactive and non-zero

if the user is active [67]. Here, we use τ to denote the length of the pilot sequences used

by the users, and M to denote the number of users (with τ < M). Further, P ∈ Cτ×M

contains the pilot sequences of all the users, and Y represents the received pilot signal at

the BS. Majority of the entries of X are zero since the number of active devices in mMTC

applications are less than 5%-10% of the total number of devices [47]. Thus, X is said

to be a sparse vector. For the single-antenna setup, the sparse Bayesian learning (SBL)

algorithm can be used to recover the users’ channels and their corresponding activity



Chapter 2. Irregular Repetition Slotted Aloha 24

coefficients [68,69].

When multiple antennas are used at the BS for decoding for conventional random

access, the structure is a multiple measurement vector (MMV) recovery problem as seen

in Fig. 2.2(b). Here, N represents the number of measurement vectors that need to be

recovered, and it also corresponds to the number of antennas at the BS. If any user is

inactive, the entire row corresponding to that user is all zero, whereas if any user is

active, the entire row corresponding to that user is all non-zero. Thus, X ∈ CM×N is a

matrix with jointly sparse columns, i.e., a common support across all the columns. For the

multiple-antenna setup with jointly sparse columns, the multiple sparse Bayesian learning

(MSBL) algorithm can be used to detect which users are active and estimate the active

users’ channel vectors.

Due to the APM structure in IRSA, the UAD problem is not MMV as seen in

Fig. 2.2(c). This structure accounts for the repetitions across the T slots in a frame.

If a user is inactive, the corresponding row of X ∈ CM×NT is still all zero. However, if a

user is active, the corresponding row of X is not all non-zero. It is in fact non-zero only

in chunks, where the non-zero chunk indices are indicated by the slots in which that user

has transmitted a packet replica. This structure is termed as “Row-chunk sparsity” [70].

Thus, there is a double sparsity structure induced by both the activity sparsity of the

users and the sparsity of the columns of the APM. Application of an existing MMV algo-

rithm to the row-chunk sparsity problem in IRSA will yield suboptimal performance since

majority of the chunks in any row are zero. In Chapter 4, we develop a UAD algorithm

for IRSA, specifically to solving the row-chunk sparsity CS problem induced by the APM.

Note: The UAD algorithm proposed in this thesis is also applicable to CRDSA,

DRRSA, and CSA. With CRDSA, each column of the APM, which corresponds to dif-

ferent users, have only two ones at randomly chosen locations and all other entries are

zero. With DRRSA, each column has D ones at randomly chosen locations. Similarly, in

CSA, each column of the APM has r ones and T − r zeroes, whereas in IRSA, the ith

column has di ones and T − di zeroes. Thus, using any of these protocols only affects

the specific instance of the APM, and not the UAD algorithm. While the performance
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of our algorithm applied to these protocols can be different based on the instantaneous

APM, the algorithm itself can still be directly used. This is because the proposed UAD

algorithm is independent of how the APM is generated. The specific instances of the

APM could change individually, but the UAD algorithm, design and analysis does not

change. Thus, our UAD algorithm can be applied to all the procotols in the CRA family.

2.2.2 Successive Interference Cancellation

The decoding in IRSA is an iterative process involving successive interference cancellation

(SIC) [71], where the users are decoded via a combination of inter-RB and intra-RB

SIC [8]. Inter-RB SIC refers to the removal of packet replicas from a different RB than the

one the packet was decoded in, while intra-RB SIC refers to the removal of a packet from

the same RB in which the packet was decoded, in order to facilitate decoding additional

packets that may have been transmitted in that RB. Early works in IRSA used only inter-

RB SIC to decode users and assumed a collision model, wherein only singleton RBs can

be decoded [7]. Here, singleton RBs are RBs in which only a single user has transmitted,

and since there are no collisions in such RBs, users can be decoded with high probability.

The decoding proceeds in iterations, and stops when there is no singleton RB available.

Since no packets can be decoded in RBs where collisions occur, the maximum possible

throughput is one packet per RB, the same as the throughput with perfectly coordinated

multiple access. This maximum can be achieved asymptotically as the number of users

and RBs go to infinity, when the soliton distribution is used to generate the repetition

factors of the users [72].

When the BS is equipped with multiple antennas, it can potentially decode multiple

packets in a single RB [73], and thus singleton RBs are not necessary for decoding. Mul-

tiple packets can be decoded if the signal to interference plus noise ratios (SINRs) of the

packets are sufficiently high [49]. Thus, using an SINR threshold model has also been

considered for IRSA, where users can be decoded if and only if their SINR is higher than

a predetermined threshold [17]. Any user with a sufficiently high instantaneous signal to

interference plus noise ratio (SINR) can first be decoded, and the contribution of that
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user can be removed from the same RB. After the user with the highest SINR is decoded,

other users could potentially be decoded as well. After decoding users with sufficiently

high SINRs, with a combination of intra-RB and inter-RB SIC, the packet replicas of the

decoded users can be removed from all the RBs in which they have transmitted packets.

Then, all the RBs can be revisited to see if further users can be decoded from the residual

signal. This procedure is continued iteratively until no further packets can be decoded.

This yields a higher throughput compared to the collision model, and can potentially

achieve a throughput greater than one packet per RB.

2.2.3 Decoding Process in IRSA

The decoding in IRSA is an iterative process involving SIC [71], where the users are

decoded via a combination of inter-RB and intra-RB SIC [8]. SIC-based decoding can

be viewed as message passing on a bipartite graph [7], and thus IRSA, which uses SIC

decoding, can be decoded on graphs. A typical IRSA frame can be represented as a

bipartite graph, which is made up of M user nodes (one node for each user), T slot nodes

(one node for each slot), and the edges between them. An edge connects a user node to

an slot node if and only if that user has transmitted a packet in that corresponding slot.

For example, in Fig. 2.3, there will be an edge between user node u1 and slot node s1 if

and only if user u1 has transmitted a packet replica in slot s1.

Figure 2.3: IRSA represented as a bipartite graph.

During decoding, edges that connect to users whose SINR is above a threshold are

removed from each slot. Each decoding iteration consists of several intra-slot SIC and

inter-slot SIC steps. Once an SIC step is performed, the corresponding edge in the

bipartite graph is removed. Thus, the edge between user node u1 and slot node s1 is



Chapter 2. Irregular Repetition Slotted Aloha 27

removed if the user u1 is decoded in any of the slots in which the user has transmitted

a packet. Decoding is successful if, at the end of the SIC process, all edges in the graph

get removed. A decoding failure is declared if not all edges have been removed or no new

edge is removed from the graph in two consecutive iterations.

We now illustrate the process of decoding in IRSA via an example. In Fig. 2.4(a), we

consider an IRSA frame with 3 slots and 4 users. A packet is depicted at the intersection

of a user and a slot if that user has transmitted in that corresponding slot. Note that this

is a toy example and a realistic frame would have hundreds of slots and thousands of users.

User 1 has chosen to transmit in slots 1 and 2, and would transmit packet replicas in the

corresponding slots. Each packet replica contains the pilot symbols, the (coded) data

symbols, and the packet decoding error detection symbols, such as a cyclic redundancy

check (CRC). The equivalent bipartite graph and the ensuing decoding is presented in

Fig. 2.4(b) and Fig. 2.4(c).

During decoding, user 2 is first decoded in slot 3, and the contribution of interference

of user 2 is removed from slot 1. Slot 3 is a singleton slot, which is a slot wherein a single

user’s packet is received without collision. The corresponding edge is removed from the

bipartite graph in two stages: one edge from slot node 3 to user node 2, and then the

other edge(s) connected to user node 2, since user 2 is already decoded. Next, if capture

occurs in slot 2, i.e., if user 1’s signal is strong enough compared to user 3, then user 1

can be decoded assuming user 3’s signal is noise (see Fig. 2.8). The corresponding edge

from slot node 2 to user node 1 is removed. Next, the contribution of interference from

all the other slot(s) in which user 1 has transmitted in is removed. This corresponds to

edge removal of all edges user node 1 is connected to. Finally, users 3 and 4 are singleton

users in slots 2 and 3, respectively. They get decoded and the corresponding edges from

the graph are removed. This results in a graph in which all the edges are removed and

thus, all the users are decoded.

The decoding process as explained above exploits capture effect, and is not depen-

dent on singleton decoding. We now explain the decoding process isolated to the cases

accounting and not accounting for capture effect.
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(a) A typical frame in IRSA.
(b) Typical decoding process in

IRSA.

(c) Graph based decoding in IRSA.

Figure 2.4: SIC-based decoding in IRSA.
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Figure 2.5: Decoding in IRSA – Without capture effect.

Figure 2.6: Decoding in IRSA – With capture effect.
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Without capture effect, the decoding process can result in a residual graph with many

undecoded edges. This is depicted in Fig. 2.5. Here, there are four users transmitting

in four slots. User 1 gets decoded in slot 2 and then user 3 gets decoded in slot 1. The

residual graph contains two edges connected to each slot node. Without capture effect, the

decoding process stops here. The residual graph is known as a stopping set. In Fig. 2.6,

the decoding in IRSA is depicted with the introduction of capture effect (due to multiple

antennas, path loss, multi-packet reception capability at the receiver). The residual graph

could have user 2 having a higher SINR in slot 3 compared to user 4 in slot 3 (if not, the

decoding ends here). Then, the edge between user node 2 and slot node 3 gets removed.

Finally users 2 and 4 are decoded, and all the edges in the graph are removed.

Figure 2.7: Decoding in IRSA – Singleton decoding.

In Fig. 2.7, we depict the decoding of IRSA with singleton decoding. Singleton de-

coding refers to the decoding of a user’s packet in a slot, if that user were the only user

transmitting in that slot. This was typically assumed in the early works on IRSA [7],

in the collision channel. Here, decoding happens only if a slot node has one edge con-

nected to it. Note that this is not the same as in Fig. 2.5, since the decoding could still

be using a multi-user decoder that does not exploit capture effect (e.g., the 2-collision
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Figure 2.8: Capture effect can yield a throughput greater than 1.
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channel without capture effect). This decoding process continues iteratively and it ends

with 3 users decoded in 3 slots, with an inactive user node 2. Since no packets can be

decoded in slots where collisions occur, the maximum possible throughput is one packet

per slot, the same as the throughput with perfectly coordinated multiple access. In fact,

for collision channels, the optimal throughput can be made arbitrarily close to 1 packet

per RB asymptotically as the number of users and slots go to infinity, and the repetition

factors are generated according to the truncated soliton distribution [72]. This maximum

can be achieved asymptotically as the number of users and slots go to infinity.

When the BS is equipped with multiple antennas, it can potentially decode multiple

packets in a single slot, due to capture effect. In Fig. 2.8, user node 1 is first decoded in

slot node 2 and its edges are removed. Next, due to capture effect, user node 3 is decoded

in slot node 1, and its edges are removed. Then, user node 2 is decoded in slot node 1

and finally user node 4 is decoded in slot node 3. This depicts how IRSA can achieve

throughputs greater than 1 due to capture effect as seen in Fig. 2.4.

2.3 Literature Review

Existing literature in IRSA typically assume some idealizations in the physical layer. The

advantage of this is to analyze each imperfection (such as fading, path loss, pilot contam-

ination, modulation and coding scheme, and perfect SIC) and capture their individual

effects on the performance of IRSA. They can also be compared to other existing works

and can function as benchmarks when realistic assumptions are analyzed. Further, they

help us evaluate if analyzing with non-idealities is even required, and if so, how much gain

or loss we get from doing so. Very few works have analyzed IRSA with non-idealizations.

One of the main focuses of this thesis is to analyze IRSA under such non-idealities.

2.3.1 Early Works in IRSA

The IRSA protocol was initially proposed in [7], where it was studied for the collision

channel, wherein packets could only be decoded in singleton RBs. Singleton slots refer
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to RBs in which only a single packet has been received. This work also connected the

decoding in IRSA to the graph-based decoding of LDPC codes, and analyzed IRSA using

graph-based decoding. The maximum throughput of IRSA, with a collision channel, was

shown to be one packet per RB, when the Soliton distribution is used to generate the

repetition factors [72], which is achievable asymptotically when the number of RBs and

users go to infinity. Note that the slotted aloha protocol has a peak throughput of 1/e

packets per RB.

IRSA was extended to CSA in [54], where error correcting codes are used on the replicas

of the packets and the encoded packets are transmitted instead of the packet replicas. The

authors in [17] first studied IRSA with the Rayleigh fading channel (albeit only a single

antenna at the BS), and the authors in [8] studied IRSA with path loss. When the BS

is equipped with multiple antennas, it can potentially decode multiple packets in a single

slot, if the SINRs of the packets are sufficiently high, which can result in throughputs

greater than 1. Thus, using an SINR threshold model has been considered for IRSA,

where users can be decoded if and only if their SINR is higher than a predetermined

threshold [8, 74]. Further, a variety of physical layer abstractions are studied in [74].

The throughput of the IRSA family of multiple access protocols is analyzed using

the density evolution (DE) approach, wherein two probability densities are obtained as

functions of each other [7]. This iterative recipe provides the asymptotic performance of

the system. We explain the working of DE in Section 2.4. The asymptotic throughput

has been obtained for IRSA via DE for the MAC channel [72], accounting for path loss [8],

for the scalar Rayleigh fading channel [17], with multiuser detectors [75], for the polarized

MIMO channel in satellite networks [76], and other variants of IRSA [77,78].

All of the above works in IRSA assume the availability of perfect channel state in-

formation (CSI) at the BS, which is difficult to achieve, especially when non-orthogonal

pilots are employed, which is inevitable in mMTC. Channel estimation errors and pilot

contamination due to non-orthogonal pilots can erase much of the gains promised by IRSA

protocols. Thus, in Chapter 3, we analyze impact of estimated CSI on the performance

of IRSA when non-orthogonal pilots are used.
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2.3.2 Recent Works in IRSA

The age-of-information metric has recently gained interest in IRSA [51, 79]. IRSA has

been examined with energy harvesting [80, 81], and analyzed in an information theoretic

setting [82]. Several variants of aloha have been proposed like polar slotted aloha [83],

and K-repetition [84, 85]. Authors in [86] and [87] separately propose feedback mecha-

nisms for IRSA based on which decoded users cease transmissions. CSA was recently

analyzed with imperfect SIC [88]. The authors in [63, 89] studied CSA with an acknowl-

edgement mechanism between frames. IRSA was analyzed with an SIC limit, i.e., a limit

on the maximum number of packets that can be recovered in each RB, in [86]. IRSA has

been analyzed for LEO satellite channels [90]. NOMA based CSA has been proposed for

mMTC [91]. Finally, a joint PHY and MAC design for CRA has been proposed [92].

2.3.3 UAD in IRSA

To the best of our knowledge, the problem of UAD in IRSA has not yet been considered

in the literature. An initial study into estimating the number of active users in IRSA

was conducted in [93], which does not identify the subset of active users. UAD has been

studied for massive random access outside the context of IRSA [13,14]. The activity ma-

trix to be estimated has jointly-sparse columns, i.e., columns that have the same sparse

support [94]. Typical UAD solutions involve compressed sensing-based solutions [53] or

a maximum aposteriori probability (MAP) detection [95]. The sparse Bayesian learn-

ing (SBL) framework has been employed to perform UAD in mMTC [96]. Faster SBL

algorithms for UAD in mMTC have also been developed [97]. Other low complexity al-

gorithms for UAD include approximate message passing [98] and orthogonal matching

pursuit [99]. These approaches, however, cannot be used in IRSA due to the structure

imposed by the APM. A näıve approach would be to perform UAD on an RB-by-RB basis

and declare users inactive if they are found to be inactive in all the RBs. As we will show

in Chapter 4, this approach is inefficient and results in large error rates, especially when

non-orthogonal pilots are used.
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2.3.4 Interference Limitation in IRSA

The performance of IRSA crucially depends on the load of the system, which is the ratio

of the number of users participating in a frame to the number of slots in the frame [7]. At

low loads, the system is not interference-limited, and the packet loss rate (PLR) is near-

zero [8]. Existing works in IRSA talk about an inflection load, which is the load beyond

which the system becomes overloaded or interference-limited, resulting in a dramatic

reduction of the throughput of IRSA [86]. Beyond the inflection load, the system is

overloaded, IRSA is MUI-limited, and the PLR rapidly goes to one [8].

To the best of our knowledge, no existing work has addressed the interference limitation

in IRSA. Thus, in Chapter 5, we improve the performance of IRSA in the interference-

limited regime, by developing an enhanced version of IRSA termed as censored-IRSA

(C-IRSA).

2.3.5 Multi-Cell and Cell-Free IRSA

In practice, multiple BSs are deployed to cover a large region, and thus, inter-cell interfer-

ence is inevitable [100]. Both intra-cell interference and inter-cell interference significantly

affect the decodability of users [101]. Pilot contamination is caused by both within-cell

and out-of-cell users, termed intra-cell pilot contamination (InPC) and inter-cell pilot con-

tamination (IPC), respectively. Furthermore, MC processing (e.g., MC MMSE combining

of signals) schemes can achieve better performance compared to SC processing, since it

accounts for inter-cell interference [49].

Cell-free (CF) architectures have been proposed for expanding the coverage of com-

munication systems [20]. In a typical CF system, instead of conventional BSs deployed at

the centers of cells and serving only the users within the cell, several small access points

(APs) are used to jointly and cooperatively serve the users [21]. These APs are spread

across the entire region of interest where users have to be served. The APs are connected

to a central processing unit (CPU) which is responsible for data aggregation and network

coordination [22]. mMTC has the goal of increased connectivity and packet success rates.
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This is especially important when there are several cell-edge users who may not be de-

coded in mMTC due to high path losses. Further, these devices are expected to consume

low power and have long battery lives, because of which they cannot transmit at high

powers to compensate for the high path loss. CF architectures naturally overcome this

issue due to the macro-diversity gain (MDG), which helps decode these edge users [23].

Thus, mMTC scenarios are a natural application for using CF architectures, and studying

IRSA for mMTC in a CF setup is important.

To the best of our knowledge, no existing work has analyzed the effect of multi-

cell (MC) interference on IRSA, nor analyzed IRSA in a cell-free (CF) setup. Thus, in

Chapter 6, we account for intra-cell interference and inter-cell interference to analyze

IRSA in both the MC and CF setups. We improve upon the peak performance of IRSA

in these setups.

2.3.6 Repetition Distributions

In IRSA, the mth user samples their repetition factor dm from a predefined probability

distribution. Existing works have used many distributions for generating the repetition

factor. The first paper on IRSA [7] has optimized the repetition distributions for IRSA

under the collision channel and proposed a few distributions which have a peak inflection

load of 0.965. The truncated soliton distribution [72] has been shown to be optimal for

IRSA under a collision channel, wherein users can be decoded only if they are received

collision-free at the BS, and can push the corresponding throughput close to unity. The

truncated soliton distribution is defined by

φd =



1− as
2z

, d = 2,

1

d(d− 1)z
, 3 ≤ d ≤ ks,

0 otherwise,

(2.1)

where φd is the probability that a user has a repetition factor d, ks is the maximum

value that the repetition factor can take, as ∈ (0, 1) is a convergence parameter, and
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z = 1− as/2− 1/ks is a normalization constant. However, under different physical layer

assumptions and with more efficient techniques (both of these are integral aspects of this

thesis), we require better repetition distributions, so that the peak performance of IRSA

can be improved.

Typically, numerically optimized distributions have been obtained for IRSA (e.g., for

IRSA with the collision channel [7], and for IRSA with the pure fading channel [17]).

The differential evolution algorithm can be used to numerically obtain the throughput-

optimal distributions in IRSA [102]. The authors in [17] have optimized the repetition

distributions for IRSA with pure fading channels in the SISO case and have demonstrated

that the achievable peak inflection loads with the optimized distributions exceed unity.

The authors in [8] have shown that the soliton distribution is nearly optimal for IRSA

with path-loss-only-channels, but they also show better performing distributions. The

authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the most energy

efficient distribution for IRSA.

All of the above papers have optimized the repetition distributions of IRSA under

different assumptions. There is no guarantee that those distributions will be optimal

for IRSA in the general case, i.e., with pilot contamination, channel estimation errors,

multiple antennas, etc. Thus, in Chapter 7, we find repetition distributions that perform

better than the soliton distribution or other existing distributions in the general case.

2.4 Density Evolution

Density Evolution (DE) analysis has been applied to characterize the asymptotic perfor-

mance of message passing-based decoding on graphs for low density parity check (LDPC)

codes [103] and IRSA [7]. DE is an iterative recipe to compute the asymptotic through-

put. A typical IRSA frame can be represented as a bipartite graph, which is made up of

M user nodes (one node for each user), T RB nodes (one node for each RB), and the edges

between them. An edge connects a user node to an RB node if and only if that user has

transmitted a packet in that corresponding RB. DE is applicable as M and T →∞ with

L = M/T kept fixed [7]. Detailed discussion of the DE technique is found in Chapter 3.
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We present only a summary of the technique now.

2.4.1 Overview of DE

The user nodes and the RB nodes exchange failure messages along the edges in any

iteration if there is a decoding failure in that iteration. DE involves the characterization

of two decoding failure probabilities, one each from users to RBs and from RBs to users.

The probability that an edge carries a failure message from an RB node to a user node

in the ith iteration is denoted by pi, and the probability that an edge carries a failure

message from a user node to an RB node in the ith iteration is denoted by qi.

We now discuss the degree distributions in the bipartite graph, which we later use to

characterize the failure probabilities. The total number of packets transmitted by a user

in any frame in IRSA is referred to as the repetition factor of that user. Each user can

have different repetition factors in IRSA. The node-perspective user degree distribution is

defined as the set of probabilities {φd}dmax
d=2 , where φd represents the probability that a

user has a repetition factor d, with dmax being the maximum number of RBs in which any

user is allowed to transmit. The total number of packets received in an RB is referred to

as the collision factor of that RB. The node-perspective RB degree distribution is defined

as the set of probabilities {ψc}Mc=0, where ψc represents the probability that an RB has a

collision factor c. The polynomial representations of the node-perspective user and RB

degree distributions are

φ(x) =
∑dmax

d=2
φdx

d, ψ(x) =
∑M

c=0
ψcx

c, (2.2)

respectively. The corresponding edge-perspective user and RB degree distributions are

defined as λ(x) =
∑dmax

d=2 λdx
d−1 = φ′(x)/φ′(1); ξ(x) =

∑M
c=1 ξcx

c−1 = ψ′(x)/ψ′(1), respec-

tively, where λd = dφd/φ
′(1) represents the probability that an edge is connected to a

user with repetition factor d and ξc = cψc/ψ
′(1) represents the probability that an edge

is connected to an RB with collision factor c. The four degree distributions defined above

are all probability generating functions. The input load L of the system is defined as the
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ratio of the number of users to the number of RBs, L , M/T . The average repetition

factor is d̄ = φ′(1) =
∑

d dφd and the average collision factor is c̄ = ψ′(1) =
∑

c cψc,

making the load L = M/T = c̄/d̄. Thus, fixing the load L and the repetition distribution

φ(x) fixes the other three distributions as well.

The failure probability qi is calculated using the edge-perspective user degree distri-

bution as

qi =
∑dmax

d=2
λdq

(d)
i =

∑dmax

d=2
λdp

d−1
i−1 = λ(pi−1). (2.3)

The failure probability pi is calculated using the edge-perspective RB degree distribution

as

pi = 1− e−Ld̄qi
∞∑
r=1

θr
(Ld̄qi)

r−1

(r − 1)!
, f(qi), (2.4)

where θr denotes the probability that the reference packet gets decoded in the current

decoding iteration starting from degree r using only intra-RB SIC [8].

Thus, qi = λ(pi−1) and pi = f(qi) are calculated alternately as functions of each

other as seen in (2.3) and (2.4). The procedure can be initialized with either q0 = 1 or

p0 = f(1). The failure probability at the end of decoding is p∞ = limi→∞ pi and (p∞)d is

the probability that a packet transmitted from a user with repetition factor d does not

get decoded at the receiver. Therefore, the asymptotic packet loss rate (PLR), which is

the fraction of packets that are not decoded at the BS, is calculated as

PLR = φ(p∞) =
∑dmax

d=2
φd(p∞)d. (2.5)

The asymptotic throughput of the system can now be obtained from the asymptotic PLR

as T = L(1− PLR). The iterations pi = f(λ(pi−1)) converge asymptotically to p∞ = 0 if

the system load L < L∗ [7]. Here, L∗ is called the inflection load of the system: for any

L ≥ L∗, the system becomes interference limited and the PLR does not converge to 0 as

L increases. Thus, for L < L∗, p∞ = 0 and therefore the asymptotic PLR = 0, and the
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throughput equals L. For L ≥ L∗, the throughput decreases monotonically with L.

2.4.2 Application of DE

We illustrate the DE process by applying it to earlier variants of IRSA.

1. We first analyze the performance of the conventional slotted aloha protocol. This

is the simplest version of IRSA where users transmit their packet randomly in any

one slot (without any repetitions). For slotted aloha, we have the singleton de-

coding model, where we have that a packet can be decoded in a slot if it was re-

ceived without any collisions. Thus, we have that θr = 1{r = 1} and the degree

distributions become φ(x) = x, λ(x) = 1, and ψ(x) = exp(−L(1 − x)). Then,

the failure probabilities become qi = 1, pi = 1 − exp(−L) = p∞, the PLR be-

comes PLR = φ(p∞) = 1 − exp(−L) and thus, the throughput is T = Le−L.

The throughput can be maximized analytically, and thus, the peak throughput

is T ∗ = 1/e ' 0.37, which occurs at L∗ = 1.

2. We now analyze the performance of the contention resolution diversity slotted

aloha protocol, which is the next simplest version of IRSA where users transmit

replicas of their packets randomly in any two slots. We still assume the singleton

decoding model, and thus, θr = 1{r = 1}. The user degree distributions are φ(x) =

x2, λ(x) = x, and ψ(x) = exp(−2L(1 − x)), and thus, the failure probabilities are

qi = pi−1, pi = 1 − exp(−2Lqi). The maximum throughput can be numerically

found to be T ∗ = 0.55, but not in closed form, using DE. In D-regular repetition

slotted aloha, φ(x) = xD, λ(x) = xD−1, and ψ(x) = exp(−DL(1 − x)), and thus,

the failure probabilities are qi = pi−1, pi = 1 − exp(−DLqi). Again, the maximum

throughput has to be numerically found.

3. We next analyze the performance of IRSA with singleton decoding [7], for

which we have that θr = 1{r = 1}. With the degree distribution φ(x) = 0.5x2 +

0.28x3 + 0.22x8 [7], we have that d = 3.6, λ(x) = 0.28x + 0.23x2 + 0.49x7, and

ψ(x) = exp(−3.6L(1 − x)) = ρ(x). Thus, the failure probabilities are qi = λ(pi−1),
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and pi = 1−exp(−3.6Lqi). Here, the PLR and the throughput can be only calculated

numerically as PLR = φ(p∞) and T = L(1 − PLR), and not in closed form. The

above distribution has shown to achieve a maximum throughput of T ∗ = 0.938.

Further, the soliton distribution [72] has been proven to be an optimal distribution

that pushes T ∗ → 1 for L→ 1.

4. We now analyze the performance of IRSA with multi-packet decoding, for

which we have that θr = 1, 1 ≤ r ≤ K. Under multi-packet decoding, the receiver

can decode K or fewer packets perfectly and this would result in T ∗ > 1 due to

multi-user decoding. This yields

pi =
γinc(K,Ld̄qi)

Γ(K)
.

Once again, the throughput can be only calculated numerically and not in closed

form.

We use the DE process in Chapters 3, 5, and 7 to find the asymptotic performance

of IRSA. The DE process can also be used with the help of the differential evolution

algorithm to optimize the repetition distributions of IRSA, which forms the main focus

of Chapter 7.

2.5 Summary

In this chapter, we first introduced the requirements for mMTC and then surveyed GFRA

protocols proposed for mMTC. We then introduced the CRA family of protocols, and

expanded on the working of the IRSA protocol and its decoding. We surveyed existing

works on IRSA and then summzrized the DE recipe to compute the throughput of IRSA.

The next chapter focuses on the analysis of IRSA with practical channel estimation, i.e.,

with non-orthogonal pilots and pilot contamination.
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Chapter 3

Channel Estimation and Data

Decoding in IRSA

3.1 Introduction

Massive machine-type communications (mMTC) is an evolving 5G use-case, expected to

serve around 106 devices per square kilometer [1]. The users in mMTC applications are

sporadically active and transmit short packets to a central base station (BS) [2]. Grant-

free random access (GFRA) protocols are appropriate in mMTC applications since they

incur a low control and signaling overhead [5, 6]. Typically, in these protocols, users

transmit packets (consisting of a header containing pilot symbols followed by the data

payload) by randomly accessing resource blocks (RBs).1 Since the length of orthogonal

pilots scales linearly with the number of users, the overhead of assigning orthogonal pilots

becomes prohibitively expensive. Thus, pilot contamination is inevitable due to the use

of non-orthogonal pilots, and has to be accounted for while analyzing the performance of

GFRA protocols for mMTC.

One popular GFRA protocol is irregular repetition slotted aloha (IRSA) [7,54]. Users

in IRSA transmit replicas of their packets on a randomly selected subset of the available

1We refer to the time-frequency resource as resource blocks (RBs), since each RB can accommodate
a whole data packet.
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RBs. The indices of the RBs in which they transmit make up the access pattern matrix

(APM). Existing works in IRSA assume availability of perfect channel state information

(CSI) at the BS, which is difficult to achieve, especially when non-orthogonal pilots are

employed. Channel estimation errors and pilot contamination due to non-orthogonal

pilots can erase much of the gains promised by IRSA protocols. Thus, one of the main

goals of this chapter is to understand the impact of estimated CSI on the performance of

IRSA when non-orthogonal pilots are used.

The contents of this chapter is published in a conference paper in IEEE SPAWC

in 2019 [12], for a pilot length τ = 1, and in a full length journal paper in the IEEE

Transactions on Signal Processing in 2023 [11], for the general case.

3.1.1 The IRSA protocol

The decoding in IRSA is an iterative process involving successive interference cancellation

(SIC) [71], where the users are decoded via a combination of inter-RB and intra-RB

SIC [8]. Inter-RB SIC refers to the removal of packet replicas from a different RB than the

one the packet was decoded in, while intra-RB SIC refers to the removal of a packet from

the same RB in which the packet was decoded, in order to facilitate decoding additional

packets that may have been transmitted in that RB. The conventional version of IRSA

used only inter-RB SIC to decode users and assumed a collision model, wherein only

singleton RBs can be decoded [7]. Here, a singleton RB refers to an RB where a single

user’s packet is received without collision. Since no packets can be decoded in RBs where

collisions occur, the maximum possible throughput is one packet per RB, the same as the

throughput with perfectly coordinated multiple access. This maximum can be achieved

asymptotically as the number of users and RBs go to infinity, when the soliton distribution

is used to generate the repetition factors of the users [72].

When the BS is equipped with multiple antennas, it can potentially decode multiple

packets in a single RB, i.e., if the signal to interference plus noise ratios (SINRs) of

the packets are sufficiently high. Thus, using an SINR threshold model has also been

considered for IRSA, where users can be decoded if and only if their SINR is higher than
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a predetermined threshold [17]. After decoding users with sufficiently high SINRs, with a

combination of intra-RB and inter-RB SIC, the packet replicas of the decoded users can be

removed from all the RBs in which they have transmitted packets. Then, all the RBs can

be revisited to see if further users can be decoded from the residual signal. This procedure

is continued iteratively until no further packets can be decoded. This yields a higher

throughput compared to the collision model, and can potentially achieve a throughput

greater than one packet per RB. Thus, a second goal of this chapter is to characterize

the performance of IRSA under estimated CSI as a function of system parameters such

as the number of antennas at the BS, the pilot length, the SINR threshold, etc.

3.1.2 Related Works

The throughput of the IRSA family of multiple access protocols is analyzed using the den-

sity evolution (DE) approach, wherein two probability densities are obtained as functions

of each other [7]. This iterative recipe provides the asymptotic performance of the sys-

tem. The asymptotic throughput has been obtained for IRSA via DE for the MAC [72],

accounting for path loss [8], for the scalar Rayleigh fading channel [17], with multiuser

detectors [75], for the polarized MIMO channel in satellite networks [76], and other en-

hanced variants of IRSA [77, 78]. We have proposed an algorithm to detect the subset

of active users in IRSA [15], wherein we also study the effect of imperfect SIC on IRSA

(See Chapter 4). In contrast, we focus on the effect of channel estimation errors on the

performance of IRSA.

Thus, a theoretical analysis of the throughput of the IRSA protocol under pilot con-

tamination, accounting for the effect of channel estimation errors, path loss, fading, and

multiple antennas at the BS, is not yet available in the literature, to the best of our

knowledge.
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3.1.2.1 Pattern Division Multiple Access

A closely related protocol is pattern division multiple access (PDMA) [60], where users

replicate their packets across a subset of RBs governed by a binary APM. The non-

orthogonal channel access, the repetition of packets across multiple RBs, and the SIC-

based decoding are common to both PDMA and IRSA based systems. Hence, the design

and analysis of IRSA can be adapted to PDMA and vice versa. A difference with PDMA is

that the APM is designed in a centralized manner to maximize the so-called constellation-

constrained capacity [60]. This method quickly becomes computationally prohibitive as

the number of users gets large in mMTC. On the other hand, for IRSA, the truncated

soliton distribution has been used both in the absence [72] and presence [8] of the so-called

capture effect, to obtain near-optimal throughput. Owing to the similarity of PDMA with

IRSA, the truncated soliton distribution [72], which offers near-optimal throughput, can

be used by users in PDMA, independently of one another.

3.1.3 Contributions

Our main contributions in this chapter are as follows:

1. We derive channel estimates for IRSA under three schemes: the first one exploits

the sparsity in the APM to estimate the channels of the users, and the other two

assume knowledge of the APM and output minimum mean square error (MMSE)

estimates. (See Theorem 3.1 in Sec. 3.3.)

2. We present a novel analysis of the SINR in IRSA accounting for channel estima-

tion errors, where estimates are acquired via non-orthogonal pilots under the three

estimation schemes. (See Theorem 3.2 in Sec. 3.4.)

3. We theoretically analyze the throughput of IRSA via DE, when users perform path

loss inversion based power control. The analysis reveals the asymptotic performance

of the protocols as the number of users and RBs get large. (See Theorem 3.3 in

Sec. 3.5.4 and also Sec. 3.5.3.)
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Through extensive simulations, we show that channel estimation errors lead to a sig-

nificant loss of throughput compared to the ideal scenario with perfect CSI at the BS,

even resulting in up to 70% loss in severely interference-limited regimes. In particular, in

mMTC applications, since it is not possible to assign orthogonal pilots to all users, the

resulting pilot contamination can significantly degrade the SINR, leading to poor perfor-

mance. On the positive side, this loss in performance can be recuperated by optimizing

system parameters such as pilot length, number of antennas, frame length, signal to noise

ratio, and SINR threshold. In particular, we show that the pilot length required to obtain

near-optimal performance is orders of magnitude lower than the pilot length needed to

assign orthogonal pilots to all users. For example, a pilot length of τ = 12 is sufficient

to obtain optimal performance with M = 150 users, whereas the use of orthogonal pi-

lot sequences requires τ = 150 pilot symbols. (See Fig. 3.2). This is possible because

only a small fraction of users transmit in a given RB in IRSA; exploiting this sparsity

in user access allows one to obtain accurate channel estimates even when the pilots are

non-orthogonal. (See Algorithm 1.)

Our analysis also allows us to determine the inflection load, beyond which the system

becomes interference-limited, resulting in a dramatic reduction of the throughput. The

asymptotic throughput obtained via DE serves as an upper bound for the achievable

throughput, and facilitates numerical optimization of the throughput with respect to the

system parameters.

Notation

The symbols a, a, A, [A]i,:, [A]:,j, 0N , 1N , and IN denote a scalar, a vector, a matrix, the

ith row of A, the jth column of A, all-zero vector of length N , all ones vector of length

N , and an identity matrix of size N×N , respectively. [a]S and [A]:,S denote the elements

of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix

with diagonal entries given by a. The set of real and complex matrices of size N ×M

are denoted as RN×M and CN×M . N (a,A) and CN (a,A) denote the real and complex

Gaussian distribution, respectively, with mean a and covariance A. [N ] denotes the set
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{1, 2, . . . , N}. | · |, ‖ · ‖, [·]T , [·]∗, [·]H , E[·], and Ea [·] denote the magnitude (or cardinality

of a set), `2 norm, transpose, conjugate, hermitian, expectation, and the expectation

conditioned on a, respectively. The superscript p is used as a descriptive superscript in

association with a symbol that is related to the pilots. All the other superscripts (or

subscripts) that have not been defined as above are indices. A non-exhaustive list of

symbols used in this chapter is presented in Table 3.1.

Table 3.1: Mathematical symbols used in this chapter.

Symbol Quantity Symbol Quantity

L Load γpr Threshold used to declare support

θr Success probability P Data power

τ Pilot length γth Capture threshold

T Number of RBs P p Pilot power

τc Packet length G Access pattern matrix

N Number of antennas N0 Noise variance

T Throughput λ Regularization parameter

M Number of users σ2
h Channel variance

3.2 System Model

An IRSA system is considered with M single-antenna users communicating with a central

BS equipped with N antennas. The users are assumed to be arbitrarily located within

a cell, with the BS located at the cell center. The fading is modeled as block-fading,

quasi-static and Rayleigh distributed. The time-frequency resource is divided into RBs,

and T RBs together constitute a frame. The RBs can be slots, subcarriers or both. In

each frame, the users contend for the channel by randomly selecting a subset of RBs, and

they transmit replicas of their packets in the selected RBs. Each packet replica comprises

of a header containing pilot symbols and payload containing data and error correction

symbols.

The access of RBs in a given frame by all the users can be represented by a binary access
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pattern matrix (APM) G ∈ {0, 1}T×M . The entries of G are denoted by gtm = [G]tm, and

gtm = 1 if the mth user transmits its packet in the tth RB, and gtm = 0 otherwise. The

mth user samples their repetition factor dm from a preset probability distribution. They

then choose dm RBs from a total of T RBs uniformly at random for transmission. We

note that, due to the distributed nature of the protocol, the M columns of G are i.i.d.,

and G is independently generated from one frame to the next.

At the BS, the received signal in the tth RB is a superposition of the packets trans-

mitted by the users that are scheduled to transmit in the same RB. In the pilot phase, if

gtm = 1, the mth user transmits a τ -length pilot pm ∈ Cτ in the tth RB, with each pilot

symbol transmitted at an average power P p, and thus, E[‖pm‖2] = τP p. The pilot signal

Yp
t ∈ CN×τ received at the BS using its N antennas and in the tth RB is given by

Yp
t =

∑M

m=1
gtmhtmpHm + Np

t , (3.1)

where Np
t ∈ CN×τ is the complex additive Gaussian noise at the BS with [Np

t ]nj
i.i.d.∼

CN (0, N0) ∀ n ∈ [N ], j ∈ [τ ] and t ∈ [T ], and N0 is the noise variance. Here htm =

[htm1, . . . , htmN ]T is the uplink channel vector of the mth user in the tth RB, with htmn
i.i.d.∼

CN (0, βmσ
2
h), ∀ t ∈ [T ], m ∈ [M ] and n ∈ [N ], where βm is the path loss coefficient and

σ2
h is the fading variance.

In the data phase, users transmit their data symbols. Considering one of the data

symbols, the mth user transmits a data symbol xm with E[xm] = 0 and E[|xm|2] = P ,

i.e., with transmit power P . The corresponding received data signal yt ∈ CN at the BS

in the tth RB is

yt =
∑M

m=1
gtmhtmxm + nt, (3.2)

where nt ∈ CN is the complex additive white Gaussian noise at the BS with [nt]n
i.i.d.∼

CN (0, N0), ∀ n ∈ [N ] and t ∈ [T ].
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3.2.1 SIC-based Decoding

The received data is processed iteratively at the BS. The BS computes channel estimates

for all users in all RBs using the pilot symbols.2 It uses these channel estimates to combine

the received data signal across the BS antennas and attempts to decode the user’s data

packet, treating interference from other users as noise. If it successfully decodes any user,

which can be verified via a cyclic redundancy check, it performs SIC in all RBs in which

that user has transmitted, with both inter-RB and intra-RB SIC. The BS proceeds with

the next iteration, where the channels are re-estimated for the remaining users, and this

decoding process proceeds iteratively.

That is, if the SINR of a packet in a given RB in any decoding iteration exceeds a

threshold γth, then the packet can be decoded correctly [8, 17]. Packet capture occurs

when a packet can be decoded correctly as per the SINR threshold model, even though

it collides with another packet, and is thus considered a good abstraction of the decoding

in the physical layer.

We now describe the performance evaluation of IRSA via the SINR threshold model.

We first compute channel estimates and SINR achieved by all users in all RBs. If we find

a user with SINR ≥ γth in some RB, we mark the data packet as having been decoded

successfully and remove the contribution of the user’s packet from all RBs that contain

a replica of that packet. In the next iteration, the channels are re-estimated from the

residual pilot symbols after SIC, the SINRs are recomputed in all RBs, and the decoding

of users’ packets continues. The decoding process proceeds in iterations and stops when

no additional users are decoded in two successive iterations. The system throughput T is

calculated as the number of correctly decoded unique packets divided by the number of

RBs.

2As we will see, when the BS does not know the APM, the BS first detects which users have transmitted
in each RB, and computes the channel estimates for the users detected to be active in each of the RBs.
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3.3 Channel Estimation

In this section, the channel estimates for all users are derived under three schemes. The

first scheme, termed the sparsity-based estimation scheme, estimates both the APM and

the channels of the users. In contrast with this, the other schemes exploit the knowledge of

G and output MMSE estimates. Assuming the knowledge of G is not a strong assumption

and can be made possible by using pseudo-random pattern matrices generated from a seed

that is available at the BS and the users.3

Channel estimation is performed based on the received pilot signal, which contains the

pilots transmitted by all the users who have transmitted in that RB. The estimates are

recomputed in every iteration, and hence the signals and channel estimates are indexed

by the decoding iteration k. Let the set of users who have not yet been decoded in the

first k − 1 iterations be denoted by Sk, and for some m ∈ Sk, let Smk , Sk \ {m}, with

S1 = [M ]. The received pilot signal at the BS, in the tth RB, and during the kth decoding

iteration, is given by

Ypk
t =

∑
i∈Sk

gtihtip
H
i + Np

t . (3.3)

We now discuss three channel estimation schemes for IRSA.

3.3.1 Sparsity-based APM and Channel Estimation

The first scheme is the sparsity-based estimation scheme in which we estimate the APM

and the channels in each decoding iteration. We consider the conjugate transpose of the

received pilot signal in the tth RB from (3.3) as Y
pk

t , YpkH
t , with Nt , NpH

t . Let

P ∈ Cτ×M contain the known pilots of the M users as its columns and Pk = [P]:,Sk . The

3This assumption is substantiated in Sec. 3.9.5.
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signal Y
pk

t can be factorized into the product of two matrices as follows:

Y
pk

t︸︷︷︸
τ×N

=
[
pi1 , . . . ,piMk

]︸ ︷︷ ︸
Pk


gti1h

H
ti1

...

gti
Mk

hHti
Mk


︸ ︷︷ ︸

Zk
t

+ Nt︸︷︷︸
τ×N

, (3.4)

where Sk = {i1, i2, . . . , iMk}, with Mk = |Sk|. Here, Zk
t ∈ CMk×N contains the tth row

of the unknown APM G, and the unknown channels. The rows of Zk
t are either all-zero

or all-nonzero depending on whether the corresponding gti = 0 or 1. This results in an

under-determined system of equations, where the columns of Zk
t share the same support.

This structure is called as a multiple measurement vector (MMV) recovery problem in

compressed sensing. The estimation of Zk
t from (3.4) can be performed using well known

MMV recovery algorithms from compressed sensing literature to recover {gti} in the each

of the T RBs.

Multiple sparse Bayesian learning4 (MSBL) [16] is an empirical Bayesian algorithm

that can recover Zk
t from linear under-determined observations Y

pk

t . In MSBL, a Gaussian

prior is imposed on the columns of Zk
t as

p(Zk
t ;γkt) =

N∏
n=1

p([Zk
t ]:,n;γkt) =

N∏
n=1

CN (0Mt ,Γkt), (3.5)

where Γkt = diag(γkt) and the columns of Zk
t are i.i.d. The elements of γkt ∈ RMk

+ are un-

known hyperparameters for the undecoded users. Recovering the hyperparameters would

yield gtm since [γkt]m models the variance of the mth user’s channel in the tth RB. The hy-

perparameters are estimated by iteratively maximizing the log-likelihood log p(Y
pk

t ;γkt),

with p(Y
pk

t ;γkt) =
∏N

n=1 p([Y
pk

t ]:,n;γkt).

Stated in our notation, the overall estimation procedure is summarized in Algorithm 1.

4Any MMV algorithm can be used to recover joint-sparse columns of Zk
t , but we use MSBL due to its

high performance. MSBL also outputs a “plug-in” MMSE channel estimate which can then be used to
find a meaningful SINR expression since the estimate is uncorrelated with the estimation error [104].
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Algorithm 1: APM and Channel Estimation in tth RB

Input: τ,N,N0,Sk,P,Y
pk

t , γpr, jmax

1 Compute: Mk = |Sk|, Pk = [P]:,Sk

2 Initialize: γ0
kt = 1Mk

3 for j = 0, 1, 2, . . . , jmax do

4 Compute Γj
kt = diag(γjkt)

5 Σj+1
kt =Γj

kt − Γj
ktP

kH(N0Iτ+PkΓj
ktP

kH)−1PkΓj
kt

6 µj+1
ktn = N−1

0 Σj+1
kt PkH [Y

pk

t ]:,n, 1 ≤ n ≤ N

7 [γj+1
kt ]i =

1

N

N∑
n=1

([Σj+1
kt ]i,i + |[µj+1

ktn ]i|2), ∀ i ∈ [Mk]

8 end

9 Output: ĝktm =

1, [γjmax

kt ]m ≥ γpr

0, [γjmax

kt ]m < γpr

, ∀ m ∈ [Mk], Ẑk
t = [µjmax

kt1 µjmax

kt2 . . .µjmax

ktN ]

The MSBL algorithm converges to a saddle point or a local maximizer of the overall log-

likelihood [16]. Further, the MSBL algorithm has been empirically shown to correctly

recover the support of Zk
t , provided τ and N are large enough [16], if the signal to noise

ratio is good enough. The algorithm is run for jmax iterations in each of the T RBs. As the

iterations proceed, the hyperparameters corresponding to users with gti = 0 converge to

zero, resulting in sparse estimates. At the end of the iterations, the estimated coefficient

ĝktm for the mth user in the tth RB in the kth decoding iteration is obtained by thresholding

[γjmax

kt ]m at a value γpr. This can result in errors in estimating gti, and the errors in APM

estimation can be described by

Fkt = {i ∈ [Mk] | ĝkti(1− gti) = 1}, (3.6a)

Mk
t = {i ∈ [Mk] | (1− ĝkti)gti = 1}, (3.6b)

where Fkt is the set of false positive users, andMk
t is the set of false negative users. These

errors affect decoding of other users in two ways: both kinds of users contaminate the

channel estimates of other users, and users in Mk
t interfere with the data decoding of
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other users as well. The effect of errors in detection of users is described in detail in [15]

(See Chapter 4).

The algorithm also outputs the maximum aposteriori probability estimates of the

channels Ẑk
t in each of the T RBs. The estimate Ĥk

t = ẐkH
t ∈ CN×Mk

of the channels of the

Mk users is described in Theorem 1 and can be calculated as Ĥk
t = Ypk

t PkΓ̂kt(P
kHPkΓ̂kt+

N0IMk)−1, where Γ̂kt = diag(γjmax

kt ). This estimate is a “plug-in” MMSE estimate and

it contains estimates for erroneously detected users as well. An added advantage of

MSBL is that the path loss coefficient can be calculated by averaging the estimated

hyperparameters across RBs as β̂ki = (
∑T

t=1 ĝ
k
ti[γ

jmax

kt ]i)/(σ
2
h

∑T
t=1 ĝ

k
ti). Thus, Algorithm 1

does not require any prior information about the APM or {βi}Mi=1 to estimate the channels.

3.3.2 MMSE Channel Estimation with Known APM

We now derive the MMSE channel estimates for all users in each RB, exploiting the

knowledge of the APM G and {βi}Mi=1. By using a common seed at the BS and the users,

the APM can be generated at the BS and thus, we can assume that the BS has knowledge

of G.5 Let Gt = {i ∈ [M ]|gti = 1} be the set of users who have transmitted in the tth RB.

LetMk
t = |Gt∩Sk| be the number of users who have transmitted in the tth RB and have not

been decoded in the first k− 1 iterations, Hk
t ∈ CN×Mk

t denote the channel matrix which

contains the channels of the Mk
t users, Pk

t ∈ Cτ×Mk
t denote a matrix that contains the

pilot sequences of the Mk
t users and Bk

t , σ2
hdiag(βi1 , βi2 , . . . , βiMk

t

) be a diagonal matrix

containing the path loss coefficients of the Mk
t users, with Gt∩Sk = {i1, i2, . . . , iMk

t
}. Thus,

the received signal from (3.3) can be written as Ypk
t = Hk

tP
kH
t +Np

t , where Pk
t = [P]:,Gt∩Sk .

The MMSE estimate Ĥk
t of Hk

t is presented in Theorem 3.1, and can be written as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t , (3.7a)

(a)
= Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, (3.7b)

5This assumption is substantiated in Sec. 3.9.5.
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where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

via an inverse of either a τ × τ matrix or an Mk
t ×Mk

t matrix as required. The MSBL

estimate converges to the MMSE estimate when the hyperparameters are estimated well

enough, as will be seen in Sec. 3.6.

3.3.3 Low Complexity MMSE with Known APM

We now describe a low complexity MMSE (LCMMSE) estimate that does not require

a matrix inversion computation. For this purpose, the received signal in (3.3) is right-

multiplied by the pilot pm to obtain

ypk
tm = Ypk

t pm =
∑

i∈Sk
gtihti(p

H
i pm) + Np

tpm, (3.8)

which is used to find an MMSE estimate of the channel htm of the mth user in the tth

RB. The LCMMSE channel estimate ĥktm is described in Theorem 3.1 and is calculated

as

ĥktm=
gtmβm‖pm‖2σ2

h

N0‖pm‖2 +
∑

i∈Sk |p
H
i pm|2gtiβiσ2

h

ypk
tm , ηktmypk

tm. (3.9)

Similar to the MMSE estimate, the LCMMSE estimate uses the knowledge of the APM

and {βi}Mi=1. While the MMSE estimator uses the signal Ypk
t to compute the estimates,

and thus exploits all the information available at the BS, the LCMMSE estimator uses

only ypk
tm, i.e., the projection of Ypk

t onto pm, to estimate htm.

The channel estimates under the three schemes and their error variances are given by

the following theorem.

Table 3.2: Channel estimates and error variances under three estimation schemes.

Sparsity-based estimation with MSBL MMSE LCMMSE

Ĥk
t Ypk

t PkΓ̂kt(P
kHPkΓ̂kt +N0IMk)−1 Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1 Ypk

t Pk
t diag(ηkti1 , . . . , η

k
ti
Mk

t

)

δkti βiσ
2
h

(
N0‖ckti‖2+

∑
j∈Si

k
|rkjti|2ĝktjgtjβjσ2

h

N0‖ckti‖2+
∑

j∈Sk
|rkjti|2ĝktjgtjβjσ2

h

)
βiσ

2
h

(
N0‖ckti‖2+

∑
j∈Si

k
|rkjti|2gtjβjσ2

h

N0‖ckti‖2+
∑

j∈Sk
|rkjti|2gtjβjσ2

h

)
βiσ

2
h

(
N0‖pi‖2+

∑
j∈Si

k
|pH

j pi|2gtjβjσ2
h

N0‖pi‖2+
∑

j∈Sk
|pH

j pi|2gtjβjσ2
h

)
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Theorem 3.1 I Channel Estimation in IRSA.

The channel estimate Ĥk
t of Hk

t in the tth RB in the kth decoding iteration, under

the three estimation schemes, namely MSBL, MMSE, and LCMMSE, is given in

Table 3.2. Specifically, the estimate of the channel hti of the ith user is calculated

as ĥkti = [Ĥk
t ]:,i. Further, the covariance of the estimation error h̃kti , ĥkti − hti is

δktiIN , where δkti is listed in Table 3.2, with ckti = [Ck
t ]:,i and rkjti , pHj ckti. For MSBL,

we have Ck
t , PkDk

t (P
kHPkDk

t + N0IMk)−1, where Dk
t , diag(dkti1 , d

k
ti2
, . . . , dkti

Mk
)

with dkti = ĝktigtiβiσ
2
h. For MMSE, we have Ck

t , Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1.

Proof. See Sec. 3.8.1.

Remark: The LCMMSE estimate is composed of two components: a scaling coefficient

ηktm and the post-combined received pilot signal ypk
tm. From (3.8), we see that the received

pilot signal ypk
tm contains pilots of other users, if pilot sequences are not orthogonal. With

orthogonal pilots, pHi pm = 0,∀i 6= m, the LCMMSE estimate is

ĥktm =
gtmβmσ

2
h

N0 + ‖pm‖2gtmβmσ2
h

(
gtmhtm‖pm‖2 + Np

tpm
)
, (3.10)

and δktm = gtmβmσ
2
hN0/(N0 + gtmβmσ

2
h‖pm‖2), i.e., there is no pilot contamination, and

the LCMMSE estimate coincides with the MMSE estimate. Further, if we use a codebook

of orthogonal pilots and reuse it across all users, then the MMSE estimate coincides with

the LCMMSE estimate. As we will see in Sec. 3.6 and Sec. 3.9.6, for any choice of the

non-orthogonal pilots, MMSE estimation outperforms LCMMSE estimation.

Complexity: The MMSE scheme has a complexity of O(τ 2Mk
t ) floating point opera-

tions (flops) since it involves inverting a τ×τ matrix. The MSBL scheme, with s iterations,

has a complexity of O(sτ 2Mk) flops [16]. The LCMMSE scheme has the lowest complexity

of O(Mk
t ) flops since it does not need any matrix inversion.
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3.4 SINR Analysis

In this section, the SINR of each user in all the RBs where it transmits data is derived,

accounting for pilot contamination and channel estimation errors. Let ρktm denote the

SINR of the mth user in the tth RB in the kth decoding iteration. Similar to (3.2), the

received data signal in the tth RB and kth decoding iteration can be written as

ykt =
∑

i∈Sk
gtihtixi + nt. (3.11)

A combining vector aktm is used to decode the mth user in the tth RB and kth decoding

iteration, and thus we obtain

ỹktm = akHtm ykt = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm + akHtm
∑

i∈Smk
gtihtixi + akHtmnt, (3.12)

where h̃ktm is as defined in Theorem 3.1. From the above, we see that the signal used to

decode the mth user’s data is composed of four terms. The term T1 , akHtm ĥktmgtmxm is

the useful signal component of the mth user; the term T2 , akHtm h̃ktmgtmxm is contributed

by the channel estimation error h̃ktm of the mth user; the term T3 ,
∑

i∈Smk
akHtmhtigtixi

captures the inter-user interference from the users who have also transmitted in the tth

RB and have not yet been decoded up to the kth decoding iteration; and the last term

T4 , akHtmnt is the additive noise component.

In order to compute the SINR, the power in the received signal is calculated con-

ditioned on the knowledge of the estimates [49]. Since MMSE estimates are employed,

all three estimates are uncorrelated with the channel estimation error, and thus T2 is

uncorrelated with T1. The additive noise is uncorrelated with the signal, and since the

users’ data signals are independent, T3 is uncorrelated with the other terms. Thus, all

four components in the received signal are uncorrelated and the total power is the sum of

the powers of the individual components

Ez[|ỹktm|2] =
∑4

i=1
Ez[|Ti|2], (3.13)
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where z contains the channel estimates of the users. The SINR for all the users is now

presented.

Theorem 3.2 I SINR in Multi-Cell IRSA.

The signal to interference plus noise ratio (SINR) achieved by the mth user in the

tth RB in the kth decoding iteration can be written as

ρktm =
Gainktm

N0/P + MUIktm + Estktm
, ∀m ∈ Sk, (3.14)

where Gainktm represents the useful signal power of the mth user, MUIktm represents

the multi-user interference power of other users, and Estktm represents the inter-

ference power caused due to the channel estimation errors. Under MMSE and

LCMMSE channel estimation, these can be expressed as

Gainktm = gtm
|akHtm ĥktm|2

‖aktm‖2
, MUIktm =

∑
i∈Smk

gti
|akHtm ĥkti|2

‖aktm‖2
, (3.15)

Estktm =
∑
i∈Sk

gtiδ
k
ti. (3.16)

With the sparsity-based scheme, the SINR denominator contains an additional

term, FNUktm, which represents the interference power caused due to false negative

users. The corresponding terms with MSBL can be expressed as

Gainktm= ĝktmgtm
|akHtm ĥktm|2

‖aktm‖2
, MUIktm=

∑
i∈Smk

ĝktigti
|akHtm ĥkti|2

‖aktm‖2
, (3.17)

Estktm=
∑
i∈Sk

ĝktigtiδ
k
ti, FNU

k
tm=

∑
i∈Smk

(1− ĝkti)gtiβiσ2
h. (3.18)

Here, the estimates ĥkti = [Ĥk
t ]:,i and the error variances δkti are obtained from

Theorem 3.1 for all the three schemes.

Proof. See Sec. 3.8.2.

The SINR expression derived in Theorem 3.2 is applicable to any arbitrary receive
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combining scheme given by the matrix Ak
t , with aktm = [Ak

t ]:,m. When regularized zero

forcing (RZF) combining is used, the combining matrix is

Ak
t = Ĥk

t (Ĥ
kH
t Ĥk

t + λIMk
t
)−1, (3.19)

where λ is the regularization parameter. The SINR with RZF can be computed by

substituting the columns of the above matrix into (3.14). We now describe two popular

combining schemes, which are special cases of RZF, in which simpler expressions for the

SINR can be computed.6 The expressions are written for MMSE/LCMMSE, and can be

extended to MSBL as detailed in Theorem 3.2.

3.4.1 Maximal Ratio Combining (MRC)

MRC is obtained from RZF as λ → ∞ and the combining matrix becomes Ak
t = Ĥk

t .

Thus aktm = ĥktm, and SINR can be computed as

ρktm =
Pgtm‖ĥktm‖2

N0 +
∑

i∈Sk Pgtiδ
k
ti +

∑
i∈Smk

Pgti
|ĥkH

tm ĥk
ti|2

‖ĥk
tm‖2

. (3.20)

3.4.2 Zero Forcing (ZF)

The RZF combiner reduces to the ZF combiner as λ→ 0. The inverse of the gram-matrix

of the channel estimates exists with probability one when N ≥Mk
t and Ĥk

t has full column

rank.7 Hence, we can compute the combining matrix as Ak
t = Ĥk

t (Ĥ
kH
t Ĥk

t )
−1. Using the

above, it is easy to show that the SINR expression simplifies as [49]

ρktm =
Pgtm

(N0 +
∑

i∈Sk Pgtiδ
k
ti)[(Ĥ

kH
t Ĥk

t )
−1]mm

. (3.21)

6In this chapter, we do not consider the MMSE combiner, which is a special case of RZF combining [49].
7We note that the condition N ≥ Mk

t is not hard to satisfy in IRSA. For example, with L = 2, 3, 4,
each RB will be occupied by 6, 9, 12 users on an average, respectively, if the average repetition factor is
d̄ = 3. Thus any N greater than, say, 16 would be sufficient to decode the users in most RBs.
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Note that the third term in the denominator of (3.20) has been suppressed with ZF

combining. However, due to pilot contamination, the term [(ĤkH
t Ĥk

t )
−1]mm may contain

contributions from the channels of all users. As a consequence, the gram matrix could be

ill-conditioned, and the denominator term could be large. Thus, the pilot length, which

determines the pilot contamination incurred, is crucial in comparing the performance ob-

tained by the combining schemes. The system throughput can now be calculated from the

above SINR expressions via the decoding model described in Sec. 3.2.1, and is described

in Algorithm 2 for MMSE/LCMMSE. For MSBL, the initial step in each RB instead

consists of finding Mk = |Sk|, and Pk = [P]:,Sk . We also estimate {gti} and {hti} via

Algorithm 1 before finding the SINR.

Algorithm 2: Performance Evaluation of IRSA

Input: τ,N, T,M,N0,G,P, {Yp
t }Tt=1, {yt}Tt=1, kmax

1 Initialize: S1 = [M ], Gt = {i ∈ [M ]|gti = 1}

2 for k = 1, 2, . . . , kmax do

3 for t = 1, 2, . . . , T do

4 Find Mk
t = |Gt ∩ Sk|, Pk

t = [P]:,Gt∩Sk ,Y
pk
t ,y

k
t

5 Compute ĥkti, ∀i ∈ Sk via Theorem 3.1

6 Evaluate the SINR ρkti via Theorem 3.2

7 If ρkti ≥ γth, remove user i from Sk and perform IC in all RBs where gti = 1

8 end

9 end

10 Output: T = (M − |Skmax|)/T, PLR = |Skmax|/M

3.4.3 SINR in the Massive MIMO Regime

Before proceeding with the analysis of the throughput, we briefly discuss the SINR in the

massive MIMO regime, which helps us in interpreting the SINR expressions. We note

that the results presented in Sec. 3.6 hold true for any N . However, when N is large, a

simpler expression for SINR with MRC can be obtained as follows.
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Lemma 1. As the number of antennas N gets large, the SINR with MRC converges

almost surely to

ρktm =
NSigktm

εktm
(
N0/P + IntNCktm

)
+ IntCktm

, (3.22)

where Sigktm is the desired signal, IntNCktm represents the non-coherent interference,

and IntCktm represents the coherent interference. Each of these can be found in

Table 3.3. Here, δktm and cktm are obtained from Theorems 3.1 and 3.2, respectively,

for the three estimation schemes.

Proof. See Sec. 3.8.3.

Table 3.3: Deterministic equivalent approximation to the SINR.

Sparsity-based estimation with MSBL MMSE LCMMSE

εktm N0‖cktm‖2 +
∑

i∈Sk gtiβiσ
2
h|ckHtmpi|2 N0‖cktm‖2 +

∑
i∈Sk gtiβiσ

2
h|ckHtmpi|2 N0‖pm‖2 +

∑
i∈Sk gtiβiσ

2
h|pHmpi|2

Sigktm ĝktmgtm(εktm)2 gtm(εktm)2 gtmβ
2
mσ

4
h‖pm‖4

IntNCktm ĝktmgtmδ
k
tm +

∑
i∈Smk

gtiβiσ
2
h gtmδ

k
tm +

∑
i∈Smk

gtiβiσ
2
h gtmδ

k
tm +

∑
i∈Smk

gtiβiσ
2
h

IntCktm N
∑

i∈Smk
gtiβ

2
i σ

4
h|ckHtmpi|2 N

∑
i∈Smk

gtiβ
2
i σ

4
h|ckHtmpi|2 N

∑
i∈Smk

gtiβ
2
i σ

4
h|pHmpi|2

Remark: IntNCktm arises due to channel estimation errors and is independent of N , while

IntCktm is due to pilot contamination and increases linearly with N . Further, since ρktm

is independent of the fading states of each user, it assures successful recovery of packets

with high probability if ρktm � γth. Similarly, the packet will not be decodable with

probability close to 1 if ρktm � γth. However, it turns out that in order to characterize the

throughput of IRSA, it is necessary to capture the statistics of the SINR when ρktm ≈ γth.

The small fluctuations in ρktm around ρktm due to fading, and the resulting probability of

packet decoding error, need to be calculated accurately. Hence, the calculation of the

statistics of the SINR using (3.14) is vital to find the throughput of IRSA. We address

this in the next section.
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3.5 Theoretical Analysis of Throughput

Density Evolution (DE) analysis has been applied to characterize the asymptotic per-

formance of message passing-based decoding on graphs for low density parity check

codes [103] and IRSA [7]. In this section, the representation of IRSA decoding as a

bipartite graph is discussed first. Then the graph perspective distributions are defined,

the failure probabilities are derived, and finally, the asymptotic throughput of IRSA is

characterized. It is assumed that users perform path loss inversion-based power control.

We note that a closed form expression for the throughput cannot be derived even for the

most basic variant of IRSA due to the underlying graph structure [7].8 Hence, we need

to resort to DE, which provides an iterative recipe to compute the throughput.

Figure 3.1: IRSA represented as a bipartite graph.

SIC-based decoding can be viewed as message passing on a bipartite graph [7], and

thus IRSA, which uses SIC decoding, can be decoded on graphs. A typical IRSA frame

can be represented as a bipartite graph, which is made up of M user nodes (one node for

each user), T RB nodes (one node for each RB), and the edges between them. An edge

connects a user node to an RB node if and only if that user has transmitted a packet in

that corresponding RB. For example, in Fig. 3.1, there will be an edge between user node

u1 and RB node s1 if and only if user u1 has transmitted a packet replica in RB s1. During

decoding, edges that connect to users whose SINR is above a threshold are removed from

each RB. Each decoding iteration consists of several intra-RB SIC and inter-RB SIC steps.

Once an SIC step is performed, the corresponding edge in the bipartite graph is removed.

Thus, the edge between user node u1 and RB node s1 is removed if the user u1 is decoded

8This is elaborated in Sec. 3.9.3.
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in any of the RBs in which the user has transmitted a packet. Decoding is successful if,

at the end of the SIC process, all edges in the graph get removed. A decoding failure is

declared if not all edges have been removed or no new edge is removed from the graph in

two consecutive iterations.

3.5.1 Graph Perspective Degree Distributions

The total number of packets transmitted by a user in a given frame is referred to as the

repetition factor of that user. It is equal to the degree of the user node at the start of

decoding, and is the same as the number of edges connected to that user node in the

bipartite graph representation of SIC decoding. The node-perspective user degree distri-

bution is defined as the set of probabilities {φd}dmax
d=2 , where φd represents the probability

that a user has a repetition factor d with dmax being the maximum number of RBs in

which any user is allowed to transmit. Here, φd is nonzero for d ≥ 2 since each user

transmits at least 2 packets in IRSA.

The total number of packets received in an RB is referred to as the collision factor of

that RB. It is equal to the degree of the RB node at the start of decoding, which is the

number of edges connected to that RB node. The node-perspective RB degree distribution

is defined as the set of probabilities {ψc}Mc=0, where ψc represents the probability that an

RB has a collision factor c. The polynomial representations of the node-perspective user

and RB degree distributions are

φ(x) =
∑dmax

d=2
φdx

d, ψ(x) =
∑M

c=0
ψcx

c, (3.23)

respectively. The corresponding edge-perspective user and RB degree distributions are

defined as λ(x) =
∑dmax

d=2 λdx
d−1 = φ′(x)/φ′(1); ξ(x) =

∑M
c=1 ξcx

c−1 = ψ′(x)/ψ′(1), respec-

tively, where λd = dφd/φ
′(1) represents the probability that an edge is connected to a

user with repetition factor d and ξc = cψc/ψ
′(1) represents the probability that an edge

is connected to an RB with collision factor c.

The input load L of the system is defined as the ratio of the number of users to the
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number of RBs, L , M/T . The average repetition factor is d̄ = φ′(1) =
∑

d dφd and

the average collision factor is c̄ = ψ′(1) =
∑

c cψc, making the load L = M/T = c̄/d̄.

Since c̄ = Ld̄, fixing the load and the node-perspective user degree distribution fixes

the other three degree distributions as well. The probability that a generic user, from a

total of M users, transmits within an RB is c̄/M . Since the users transmit their packets

independently of each other, ψc follows a binomial distribution. Thus, the coefficients of

the polynomials representing the node and edge-perspective RB degree distributions are

respectively given by

ψc =

(
M

c

)( c̄

M

)c (
1− c̄

M

)M−c
, (3.24a)

and ξc =

(
M − 1

c− 1

)( c̄

M

)c−1 (
1− c̄

M

)M−c
. (3.24b)

For a fixed L = M/T , as M,T → ∞, the node-perspective and edge-perspective RB

degree distributions, which are binomial, become Poisson distributed [105]:

ψc =
(c̄)c exp (−c̄)

c!
and ξc =

(c̄)c−1 exp (−c̄)
(c− 1)!

. (3.25)

We now use the degree distributions defined above to find the failure probabilities in

the next subsection.

3.5.2 Failure Probabilities

In the case of a decoding failure, failure messages are exchanged along the edges between

the user and the RB nodes. The probability that an edge carries a failure message from

an RB node to a user node in the ith iteration is denoted by pi. The probability that

an edge carries a failure message from a user node to an RB node in the ith iteration is

denoted by qi.
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The failure probability qi is calculated using the edge-perspective user degree distri-

bution as

qi =
∑dmax

d=2
λdq

(d)
i =

∑dmax

d=2
λdp

d−1
i−1 = λ(pi−1). (3.26)

Here, q
(d)
i is the probability that an edge carries a failure message in the ith iteration given

that it is connected to a user node with repetition factor d. The edges carry a failure

message from a user if and only if all the other d − 1 incoming edges to that user carry

failure messages in the previous iteration, i.e., q
(d)
i = pd−1

i−1 .

The failure probability pi is calculated using the edge-perspective RB degree distribu-

tion as

pi =
∑M

c=1
ξcp

(c)
i

M→∞−−−−→ pi =
∑∞

c=1
ξcp

(c)
i , (3.27)

where p
(c)
i is the probability that an edge carries a failure message in the ith iteration

given that it is connected to an RB node with collision factor c. DE is applicable as M

and T → ∞ with L = M/T kept fixed [7]. Hence the above probability is computed as

an infinite summation.

In the SINR threshold model, decoding failure happens at an RB node if the SINR of

all users who have transmitted in that RB and have not yet been decoded is below the

SINR threshold. This constitutes a failure message from the RB node [17]. In order to

determine p
(c)
i , any one of the c packets is considered to be a reference packet, which can

get decoded with a combination of intra-RB and inter-RB SIC. Separating the intra-RB

and inter-RB SIC, p
(c)
i can be evaluated as

p
(c)
i = 1−

∑c

r=1
θr

(
c− 1

r − 1

)
qr−1
i (1− qi)c−r. (3.28)

Here, θr denotes the probability that the reference packet gets decoded in the current

decoding iteration starting from degree r using only intra-RB SIC, and
(
c−1
r−1

)
qr−1
i (1−qi)c−r

denotes the probability that the collision factor of the RB node reduces from c to r using
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only inter-RB SIC [8]. The evaluation of θr is discussed in Sec. 3.5.4. Substituting for p
(c)
i

from (3.28), we obtain pi as a function of qi:

pi = 1−
∞∑
c=1

c∑
r=1

ξcθr

(
c− 1

r − 1

)
qr−1
i (1− qi)c−r. (3.29)

Thus, we compute the failure probabilities pi and qi recursively from each other, as ob-

served in (3.26) and (3.29).

3.5.3 Evaluation of Throughput

We now describe the evaluation of the throughput. Substituting for ξc from (3.25), we

can simplify (3.29) to

pi = 1− e−c̄qi
∞∑
r=1

θr
(c̄qi)

r−1

(r − 1)!
, f(qi). (3.30)

Thus, qi = λ(pi−1) and pi = f(qi) are calculated alternately as functions of each other as

seen in (3.26) and (3.30). The procedure can be initialized with either q0 = 1 or p0 = f(1).

The failure probability at the end of decoding is p∞ = limi→∞ pi and (p∞)d is the

probability that a packet transmitted from a user with repetition factor d does not get

decoded at the receiver. Therefore, the asymptotic packet loss rate (PLR), which is the

fraction of packets that are not decoded at the BS, is calculated as

PLR = φ(p∞) =
∑dmax

d=2
φd(p∞)d. (3.31)

The asymptotic throughput of the system can now be obtained from the asymptotic PLR

as9

T = L(1− PLR). (3.32)

9The DE process yields an iterative recipe to obtain the asymptotic throughput. While DE is an
analytical approach, it cannot be used to find a closed-form relationship between the system parameters
and the throughput.
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The iterations pi = f(λ(pi−1)) converge asymptotically to p∞ = 0 if the system load

L < L∗ [7]. Here, L∗ is called the inflection load of the system: for any L ≥ L∗, the

system becomes interference limited and the PLR does not converge to 0 as L increases.

Thus, for L < L∗, p∞ = 0 and therefore the asymptotic PLR = 0, and the throughput

equals L. For L ≥ L∗, the throughput decreases monotonically with L.

The crucial step in the evaluation of the throughput lies in the computation of θr,

which we now describe.

3.5.4 Characterization of θr

We now describe a procedure to evaluate the success probability θr, which is the probabil-

ity of decoding the reference packet in an RB with degree r via intra-RB SIC only. There

are r users whose packets have not yet been decoded in the RB. The reference packet can

get decoded in any of the intra-RB SIC steps. The packets with SINR higher than that of

the reference packet get decoded first. Further, the reference packet can only be decoded

if decoding has been successful for higher SINR packets, i.e., if they satisfied SINR ≥ γth

as well. Thus, θr is the joint probability that the reference packet and the packets with

higher SINRs all get decoded.

Clazzer et al. [17] evaluate θr as the probability “D(r)” under a Rayleigh fading

SISO channel setup with a perfect CSI assumption. The same method cannot be applied

here, since we consider MIMO Rayleigh fading and account for imperfect CSI due to

pilot contamination and channel estimation errors. In particular, in a MIMO setup, it is

possible that multiple users’ SINR simultaneously exceed the decoding threshold. Further,

their work is limited to the case where the decoding threshold γth is such that only one

user can be decoded in any decoding iteration, while we make no such assumptions.

Since θr is evaluated based on the SINR of multiple users in a single RB, we consider

only one RB wherein r users have transmitted their packets. These users are decoded via

only intra-RB iterations since there is only a single RB under consideration. Let the set

of users who have not yet been decoded in the first k− 1 intra-RB decoding iterations be
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denoted by Sk, and Smk , Sk \ {m}, with S1 = [r].10 In each intra-RB decoding iteration,

a single user with the highest SINR is decoded if their SINR ≥ γth.

The SINR of the mth user in the kth intra-RB decoding iteration, ρkm, is calculated as

seen before in Theorem 3.2. Specifically, when users are only decoded via intra-RB SIC

within one RB, we obtain the SINR as

ρkm =
|akHm ĥkm|2

‖akm‖2(N0/P +
∑

i∈Skδ
k
i ) +

∑
i∈Smk
|akHm ĥki |2

. (3.33)

Here, δki is the error variance of the ith user in the kth intra-RB decoding iteration, ĥkm

is the channel estimate of the mth user, both obtained from Theorem 3.1, and akm is the

combining vector for the mth user.11 Let ρkmax denote the SINR of the user with the

highest SINR in the kth intra-RB decoding iteration, calculated as ρkmax = maxm∈Sk ρkm.

Let s be the index of the intra-RB decoding iteration in which the reference packet is

decoded, with 1 ≤ s ≤ r. Thus, θr is calculated as

θr = Pr(ρ1
max ≥ γth, ρ

2
max ≥ γth, . . . , ρ

s
max ≥ γth). (3.34)

Recall that the reference packet is tagged uniformly at random from the users. With path

loss inversion based power control, users have identical channel statistics, and thus, θr is

independent of which packet is tagged as the reference packet.

The computation of the success probability θr is involved because there is no clear

relation between the peak SINRs across decoding iterations. Also, the channel estimates

of different users are correlated, across both the user index and the decoding iteration

index, making it difficult to use order statistics. Further, θr is dependent on a large number

of random channel vectors, the order statistics of the peak SINRs, and the pilot sequences

of all the users. As a consequence, θr cannot be found in closed form, and needs to be

10The set Sk as defined here is a slight abuse of notation. In Sec. 3.3, the set Sk consisted of users being
decoded via both intra-RB and inter-RB iterations, whereas here, Sk consists of users being decoded via
only intra-RB iterations.

11Since the decoding process with intra-RB SIC involves only the RB in consideration, the RB index
and the APM are dropped in this section.
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empirically evaluated. However, we present three approximations to θr, which are valid

when perfect CSI is available at the BS, i.e., there is no pilot contamination or estimation

errors. The assumptions are made for analytical tractability. These lead to interpretable

expressions for the SINR and θr, and provide upper bounds on the throughput with

estimated CSI.

Theorem 3.3 I Calculation of the Success Probability θr.

When perfect CSI is available at the BS, and MRC is used for decoding, θ1 is

given by

θ1 = Γinc(N, ρ
−1
0 γth)/Γ(N), (3.35)

where ρ0 , Pσ2
h/N0, Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the upper incomplete gamma

function, and Γ(s) is the ordinary gamma function. For r ≥ 2, the SINR with

MRC and large N can be computed as ρkm = N(ρ−1
0 +N

∑
i∈Smk

tmi)
−1, where tmi ,

|hHmhi|2/(‖hm‖2‖hi‖2). With t0 , γ−1
th −N−1ρ−1

0 , θ2 can be calculated as

θ2 = 1{t0 ≥ 1}+ (1− (1− t0)N)1{0 ≤ t0 ≤ 1}. (3.36)

Three approximations to θr for r ≥ 3 and large N are described below. Approxi-

mating ρ1
max as ρ1

1, and assuming um as i.i.d. Gamma distributed with shape r − 1

and rate N , we obtain the Gamma approximation:

Gamma: θr = 1− Γinc(r − 1, Nt0)/Γ(r − 1). (3.37)

Approximating ρ1
max = ρ1

1 and um
i.i.d.∼ N ((r − 1)µN , (r − 1)σ2

N), where µN , (N +

1)−1, and σ2
N , N(N + 1)−2(N + 2)−1, we obtain the Normal approximation:

Normal: θr = 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (3.38)
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where Q(·) is the standard Normal Q-function. Finally, in the Deterministic ap-

proximation, the SINR becomes ρkm = N/(ρ−1
0 + r − k), and θr becomes

Deterministic: θr = 1{r ≤ bN/γth − ρ−1
0 + 1c}. (3.39)

Proof. See Sec. 3.8.4.

Remark: The above approximations provide closed form expressions for θr and are valid

when N is large [106]. The first two approximations have SINRs that are obtained by

applying the theory of deterministic equivalents to only the norms of the channels, and

yields an SINR that is affected only by the randomness in the multi-user interference

components. This is supported by the fact that the interference components converge

to their deterministic equivalents slower than the norms converge to their deterministic

equivalents [106]. The deterministic approximation follows directly from Lemma 1, where

the SINR is a deterministic quantity, and hence θr is a binary function of r. With finite

number of antennas, due to small scale fading, the SINR of the users vary around this

approximate SINR. These variations affect the value of θr, and are not captured by the

deterministic approximation, even though we obtain simple closed form expressions for it.

As a consequence, the throughput computed using the deterministic approximation can

be far from the actual throughput in certain regimes and close to the actual throughput

in other regimes, as will be seen in Sec. 3.6.1.

3.6 Numerical Results

In this section, the previously derived SINR analysis is used to evaluate the throughput

of IRSA with estimated channels via Monte Carlo simulations, and provide insights into

the dependence of the system performance on the various system parameters. In each

simulation, independent realizations of the user locations, the APM, and the fades expe-

rienced by the users are generated. The throughput for each simulation is calculated as

described in Sec. 3.2.1, and the effective system throughput T is calculated by averaging
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over the simulations.

The results in this section are for T = 50 RBs, Ns = 103 Monte Carlo runs, λ = 10−2,

α = 3.76, σ2
h = 1, SINR threshold γth = 10, MSBL threshold γpr = 10−6, cell radius

rmax = 1000m, and reference distance r0 = 100m [49]. The number of users contending

for the T RBs is computed based on the load L as M = bLT e. The soliton distribution [72]

with dmax = 27 maximum repetitions is used to generate the repetition factor dm for the

mth user, whose access pattern is formed by uniformly randomly choosing dm RBs from

T RBs [7]. The APM is formed by stacking the pattern vectors of all the users. The

location of each user is uniformly sampled from within a cell of radius rmax centered at

the BS. The path loss coefficient is calculated as βm = (rm/r0)−α where rm is the radial

distance of the mth user from the BS. The signal to noise ratio (SNR) for the mth user

is calculated as Pσ2
hβm/N0. The received SNR of a user at the edge of the cell at the BS

is termed as the cell edge SNR, and is denoted by SNRedge. The power levels of all users

is chosen such that the signal from a user at a distance rmax from the BS is received at

SNRedge. This ensures that all users’ signals are received at an SINR that at least SNRedge

on average, in singleton RBs. If SNRedge ≥ γth, i.e., it is such that the cell edge user’s

signal is decodable, then all users’ signals are decodable with high probability in singleton

RBs. The power levels of users is set to P = P p = 20 dBm [49] and N0 is chosen such that

the cell edge SNR is 10 dB, unless otherwise stated.12 The pilot sequence for each user

is generated as pm
i.i.d.∼ CN (0τ , P

pIτ ). The effect of different pilot sequences is studied in

Sec. 3.9.6.

Fig. 3.2 shows the effect of pilot length on the system throughput at different L

under the three estimation schemes, with N = 16. MMSE scheme performs the best

and reaches the optimal throughputs of T = L for very low pilot lengths. MSBL scheme

achieves the optimal throughputs for L = 1, 2, 3 at τ = 4, 8, 12 respectively, and beyond

that, the performance is the same as that of MMSE. This shows that with a few additional

pilot symbols, we can do away with the assumption of knowing the APM and path loss

12We consider equal pilot and data power for simplicity. Via simulations, we have observed that pilot
power boosting can yield good improvement in the throughput, especially at cell edge SNRs close to 0
dB. This is elaborated in Sec. 3.9.4.
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Figure 3.2: Comparison between MMSE, MSBL, and LCMMSE schemes: Effect of τ .

Figure 3.3: Comparison between MMSE, MSBL, and LCMMSE schemes: Effect of L.
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coefficients. LCMMSE scheme matches MMSE for L = 1 and for higher L, it needs

a lot more pilot symbols. This is because of both pilot contamination and low quality

channel estimates. In Fig. 3.3, we observe the effect of increase in L on the throughput.

At L = 1, 2, 3, the number of users in the system are 50, 100, 150, respectively. Thus,

the use of orthogonal pilots would require τ ≥ 50, 100, 150 for L = 1, 2, 3, respectively.

Specifically, at L = 2, there are M = 100 users in the system, and employing orthogonal

pilots would require τ ≥ 100. But the optimal throughput of T = L = 2 is achieved

under all the three estimation schemes with a very low pilot length of τ = 10, which is a

10× reduction in the pilot length. This is because only a small subset of users transmit

in any RB in IRSA. Thus, we can achieve the best performance in IRSA with far fewer

pilot symbols than using orthogonal pilots. Finally, under all the three schemes, we can

achieve T ≥ 1, which is the maximum throughput achievable under perfectly coordinated

orthogonal access, i.e., grant-based orthogonal access. This shows the utility of using

IRSA as a GFRA protocol for mMTC, especially due to it’s high performance at medium

to high L. To summarize, the pilot length has a significant impact on the performance of

IRSA and yields near-optimal throughputs at significantly lower pilot lengths than that

required for orthogonal pilot transmission. The drop in T at low pilot lengths under

estimated channels underscores the importance of accounting for the effect of imperfect

CSI in analyzing the performance of IRSA.

We focus on MMSE/LCMMSE hereafter in order to avoid clutter in the plots, since

MSBL matches the performance of MMSE with slightly higher τ . In Fig. 3.4, we investi-

gate the effect of L, τc and γth on the achievable rate R of the system with MMSE, with

N = 16. Here, the rate is obtained as R = (1 − τ/τc)T log2(1 + γth) (bps/Hz), where τc

is the total length of any user’s packet. Firstly, we look at the effect of changing γth by

fixing τc = 100. For L = 2, γth = 20 offers a higher rate than γth = 10, provided τ ≥ 3.

Thus, at low loads, increasing γth (correspondingly, selecting a higher order modulation

and coding scheme) leads to better achievable rates. In contrast, when L = 4, γth = 10

outperforms γth = 20, because the system is highly interference limited. Next, comparing

L = 2, 3, 4 for τc = 100 and γth = 10, we see that the rate improves with L, provided
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Figure 3.4: Impact of pilot length τ on rate with MMSE.

the pilot length is large enough. Finally, decreasing τc reduces the achievable rate, as the

relative overhead due to pilots increases. Thus, at high loads, the throughput T limits

the achievable rate, while at low loads, the SINR threshold γth is the primary factor in

determining the achievable rate.

Figure 3.5: Effect of number of antennas N with MMSE.

In Fig. 3.5, we investigate the effect of the number of antennas at the BS, by plotting

the throughput with MMSE channel estimation for different L and τ . Intuitively, we

expect that, to achieve the optimal throughput of L, we would require slightly more
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Figure 3.6: Effect of cell edge SNR with MMSE.

than Ld̄ antennas at the BS, since Ld̄ users transmit packets per RB on average. The

orthogonal pilots curve is obtained by allocating τ = M = bLT e for each L. Under all

configurations, it is observed that increasing N has a significant impact, and the peak

throughput achieved reaches its maximum of T = L. Further, τ = 10 achieves a very

similar performance as that of orthogonal pilots, and τ = 5 performs poorly at low N

and high L. For L = 2, the throughput reaches the peak T = 2 for N ≥ 8 for all three

values of τ . Similarly, for a high load of L = 3, the throughput reaches the peak, T = 3,

for N ≥ 16. For L = 2, 3, since the average repetition factor d̄ = 3, each RB is occupied

by 6, 9 users, respectively. Thus, a slightly higher number of antennas is sufficient to

recover all the packets, provided accurate channel estimates are available (i.e., τ is large

enough). It is observed that at L = 2, N = 4 and L = 3, N = 8, improving τ greatly

improves the throughput. Increasing the number of antennas increases the array gain

and the decoding capability of the regularized zero forcing decoder at the BS, which in

turn leads to more users getting decoded. This shows the effectiveness of the number of

antennas in improving the throughput. Also, when N = 12, the dramatic drop in the

throughput of T = 3.8 for τ = 200 (orthogonal pilots) to T = 1.2 for τ = 5, which is

around 70% loss in performance, shows that it is crucial to account for estimated CSI

while analyzing the performance of IRSA systems.
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Fig. 3.6 shows the impact of cell edge SNR on the packet loss rate PLR with MMSE,

with N = 16. For SNR < −5 dB, the PLR is high, and in the noise-limited regime (−5 <

SNR < 0 dB), an increase in cell edge SNR sharply decreases the PLR. For L = 4,

τ = 5, the system becomes interference-limited, and thus the performance saturates at

high SNR. This is because, at low τ , both signal and interference powers get scaled equally,

and the SINR remains roughly constant. Increasing τ from 5 to 10 and then to orthogonal

pilots, we observe that the PLR falls from 0.5 to 10−2.5 to 10−5. The higher τ and SNR

result in accurate channel estimates, and thus very low PLR is observed. Similarly, at

L = 2, the drop of PLR from 10−1.7 to 10−2.8 to 10−3.9 for τ = 5, 10 and orthogonal

pilots emphasizes the need to account for estimated CSI when analyzing the performance

of IRSA. In summary, the overall performance can be improved by increasing the pilot

length, number of antennas, or cell edge SNR, but these need to be increased judiciously,

keeping the other parameters in mind.

Figure 3.7: Effect of regularization parameter and τ with MMSE.

Fig. 3.7 shows the effect of the regularization parameter, λ, on the throughput of the

system when MMSE estimation is employed, with L = 4. As λ is varied from 10−6 to 1,

the curves go from ZF on the left to RZF in the middle and finally to MRC on the right.

For N = 4, increasing τ from 5 to 10 to 30 only marginally improves the throughput. This

is because the system is highly interference limited, and hence channel inversion does not
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work well at low N . For τ = 5, increasing N from 4 to 16 to 32 improves the performance

due to the interference suppression capability of RZF. Similar observations can be made

for τ = 10 as well. MRC does not have the interference suppression capability of RZF,

and thus the performance saturates at a low value for all τ . We note that the optimal

throughput of T = 4 is obtained over a wide range of λ, and thus precise optimization of

λ is not necessary to obtain near-optimal throughputs.

Figure 3.8: Impact of load on PLR with LCMMSE.

Fig. 3.8 studies the impact of L and τ on the system packet loss rate, PLR, evaluated

with N = 16, γth = 16, and λ = 1. As the pilot length τ increases, better quality channel

estimates are obtained, and the corresponding SINR increases. In particular, the system

requires higher pilot lengths due to the use of LCMMSE estimates. The loss rates reduce

with increase in τ , and gets closer to the orthogonal loss rate. The PLR of perfectly

coordinated orthogonal access is the lowest. Similar to existing works, there is an error

floor region where the PLR is very low (up to L = 2 for orthogonal pilots) after which the

PLR increases rapidly and is called the waterfall region. Here L = 2 marks the inflection

load, where the system transitions from the error floor to the waterfall region.

In Fig. 3.9, the impact of power control on the throughput with LCMMSE is charac-

terized. For this plot, users transmit at powers that are dependent on their distances from

the BS. Specifically, the mth user, who is located at a distance rm from the BS transmits
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Figure 3.9: Impact of power control on throughput.

at a power P (rm/r0)α−ᾱ, making ᾱ the effective path loss exponent. The cell edge SNR

is fixed to 10 dB, and the throughputs are obtained by varying ᾱ and P . When ᾱ = 0,

the signals of the users undergo pure fading, and the system achieves a peak throughput

of T = 1.52 at L = 1.6. Further, as L is increased, the throughput drops to 0. The

throughput of the system increases as ᾱ increases, until ᾱ = 2/3. The exact ᾱ that yields

the highest throughput is dependent on other system parameters such as SNR, γth, and

N . As ᾱ is increased, the channel coefficients of the users become more disparate, and

thus offer a higher degree of capture effect. Beyond ᾱ = 3, the throughput decreases as

the exponent is so high that the received signal power becomes comparable to the noise.

For higher ᾱ, the throughput saturates as L is increased since a few users are always

decoded due to path loss disparity. The channel fades and the path loss coefficients con-

tribute to the disparity amongst the channel coefficients of the users, and thus such a

system has higher throughputs than a system with only path loss [8] or only fading [17].

Thus, it is useful to consider the combined effects of fading and path loss in optimizing

the performance.

Note: We have presented only a couple of results for the empirical performance of

the LCMMSE scheme above. The detailed empirical results for the LCMMSE scheme is
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presented in Sec. 3.9.2.

3.6.1 Theoretical Validation of Throughput

Figure 3.10: Effect of T on the throughput.

The results in this subsection are presented for τ = 10, cell edge SNR = 10 dB,

N = 16, λ = 10−2, γth = 16, dmax = 8 maximum repetitions and Ns = 103 Monte

Carlo runs. To reduce clutter in the plots, we present the theoretical results for the

lowest complexity (LCMMSE) channel estimation scheme. We note that the trends in

the theoretical performance of MMSE and MSBL are similar to the trends of LCMMSE.

Fig. 3.10 investigates the effect of increasing the number of RBs on the throughput.

The peak throughput increases from T = 1.52 at L = 1.6 for T = 50 to T = 1.85 at

L = 1.85 for T = 500. Since d̄ is fixed, each user has a larger number of RBs to choose

from as T is increased. Thus, the interference reduces, and the throughput increases until

it reaches a peak and then drops off. The success probability θr is evaluated empirically

via 104 Monte Carlo runs, and this in turn yields the asymptotic theoretical throughput,

which is marked as “DE”. This can be achieved as M,T →∞ with a fixed L. It is seen

that this asymptotic throughput increases linearly with the load until it hits a maximum

at the inflection load of the system, which occurs at L∗ = 2 in this case. The throughput

drops sharply beyond this load. The asymptotic throughput provides an upper bound on
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the throughput achievable with finitely many RBs for low to moderate loads. At very low

and high loads, the throughput achieved with finitely many RBs exactly matches with

the DE asymptotic throughput. A convenient operating point would be to set the system

load to, say, 90% of the inflection load, as, in this case, only finitely many RBs would

be sufficient to achieve the asymptotic throughput. Finally, it can be observed that the

throughput of the system can be increased by increasing T , but only when the system is

operated at a load that is lower than the inflection load. Beyond the inflection load, the

system is always interference-limited and increasing T does not help.

Figure 3.11: Rate for different SINR thresholds.

In Fig. 3.11, the asymptotic rate of the system is plotted versus the system load for

different SINR thresholds with τc = 100. For a fixed γth, R increases until the inflection

load and then drops off to zero. It is observed that a high R can be achieved at lower

loads by choosing a high γth, whereas, at high loads, in order to serve more users, γth

must be kept low. The choice of the threshold γth decides the rate of transmission, which

in turn is related to the modulation and coding scheme to be used. In summary, the

SINR threshold γth, which depends on the modulation and coding scheme employed and

determines the data rate, can be chosen based on the system parameters such as the

number of antennas, training duration, number of users/RBs, and the transmit power.
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Figure 3.12: Validation of theoretical approximations.

We now validate the approximations derived in Theorem 3.3 with the simulations ob-

tained with MRC, dmax = 27 maximum repetitions, and γth = 10. Fig. 3.12, reveals an

inflection SNR∗ of 0 dB and −7 dB for L = 1, N = 16 and L = 2, N = 64 respectively,

which behaves similar to the inflection load L∗. Both the normal and the gamma ap-

proximations match well with the asymptotic throughput obtained from the DE process.

This is because the deterministic approximation results in an SINR that is completely

deterministic and θr that is a binary function of r, and consequently does not capture the

statistics of the SINRs very well. Further, the deterministic approximation results in a

throughput that acts as a step function since θr depends binarily on N , γth, and SNR. As

we go from L = 1, N = 16 to L = 2, N = 64, the approximations become closer, and both

the normal and the gamma approximations match perfectly with the asymptotic through-

put. In summary, the theoretical curves with the approximations match the simulations

when N is increased, as expected.

Fig. 3.13 examines the effect of T on the approximations with L = 2 and SNR = 10 dB.

With finitely many RBs, such as T = 50, 100, 300, the throughput achieves the optimal

throughput T = 2 for N = 24, 18, 16. The asymptotic throughput obtained with DE

provide an inflection N∗ = 12, which matches perfectly with the normal approximation.

The gamma approximation does not match as well as the normal approximation. Here,
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Figure 3.13: Comparison of approximations with simulation.

the curves are with MRC and perfect CSI, and the presented curves are valid upper

bounds to the throughputs with estimated CSI. These can be achieved with high enough

τ as observed in Fig. 3.2, and thus the derived results provide very good approximations

to the asymptotic throughput achievable with estimated CSI.

3.7 Summary

This chapter studied the effect of estimated CSI on the throughput of IRSA, which is

a distributed medium access protocol for mMTC involving repetition of packets across

different randomly selected RBs. Decoding the users’ packets at the BS involves successive

interference cancellation. First, the channel estimates were derived under three schemes:

a sparsity-based scheme with MSBL, MMSE, and LCMMSE. The corresponding SINR of

all the users were obtained under all three schemes accounting for pilot contamination,

channel estimation errors, path loss as well as multiple antennas at the BS. It was seen

that these errors significantly reduce the peak achievable throughput, even resulting in up

to 70% loss in certain regimes. Further, a density evolution based analysis was presented

to characterize the asymptotic performance of the protocol when users perform path loss

inversion based power control. Here, several approximations to the success probability
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θr were derived and it was seen that these approximations match well as the number of

antennas at the BS becomes large. Finally, several new insights into the design of IRSA-

based systems was discussed, namely, the improvement of the system throughput, the

evaluation of the operating load beyond which the system becomes interference limited,

and the choice of the decoding threshold γth. The results underscored the importance

of accounting for practical channel estimation in studying the throughput offered by the

IRSA protocol. Future work could involve using differential evolution techniques [26] to

obtain the optimal repetition distribution that maximizes the throughput in the finite

frame length regime. This analysis of the optimal distribution is presented in Chapter 7.

3.8 Proofs

3.8.1 Proof of Theorem 3.1: Channel Estimation

3.8.1.1 MMSE

We first vectorize the signal as

ykt , vec(Ypk
t ) = (Pk∗

t ⊗ IN)hkt + nt, (3.40)

where hkt , vec(Hk
t ), nt , vec(Np

t ), and ⊗ is the Kronecker product. The MMSE

estimator is ĥkt , Ez

[
hkt
]
, where z = ykt . The error h̃kt , ĥkt − hkt is uncorrelated with z

and the estimate. The conditional statistics of a Gaussian random vector x are

Ez [x] = E [x] + KxzK
−1
zz (z− E [z]) , (3.41)

Kxx|z = Kxx −KxzK
−1
zz Kzx. (3.42)

Here, Kxx, Kxx|z, and Kxz are the unconditional covariance of x, the conditional covari-

ance of x conditioned on z, and the cross-covariance of x & z respectively. From (3.41),
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the MMSE channel estimate ĥkt can be calculated as

ĥkt = E [hkt ] + E [hkty
kH
t ]E[ykty

kH
t ]−1(ykt − E [ykt ]). (3.43)

The terms in the above expression can be evaluated as

E [hkty
kH
t ] = Bk

tP
kT
t ⊗ IN , (3.44)

E[ykty
kH
t ] = (Pk∗

t Bk
tP

kT
t +N0Iτ )⊗ IN , (3.45)

ĥkt = (Bk
tP

kT
t (Pk∗

t Bk
tP

kT
t +N0Iτ )

−1 ⊗ IN)ykt , (3.46)

and thus, the MMSE estimate Ĥk
t of Hk

t is

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t , (3.47)

(a)
= Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, (3.48)

where (a) follows from (AB + I)−1A = A(BA + I)−1.

3.8.1.2 LCMMSE

The LCMMSE estimator is ĥktm , Ez [htm], where z = ypk
tm is the received pilot signal.

The error h̃ktm , ĥktm − htm is uncorrelated with the signal ypk
tm and the channel estimate

ĥktm. From (3.41), the LCMMSE channel estimate ĥktm can be calculated

ĥktm = E [htmypkH
tm ]E[ypk

tmypkH
tm ]−1ypk

tm (3.49)

=
gtmβm‖pm‖2σ2

h

N0‖pm‖2 +
∑

i∈Sk |p
H
i pm|2gtiβiσ2

h

ypk
tm , ηktmypk

tm. (3.50)

3.8.1.3 MSBL

In each iteration of MSBL, two steps are performed. The first step, termed the E-step,

updates the covariance Σj+1
kt and mean µj+1

ktn of the posterior p([Zk
t ]:,n|[Yt]:,n,γ

j
kt)

Σj+1
kt =Γj

kt − Γj
ktP

kH(N0Iτ+PkΓj
ktP

kH)−1PkΓj
kt, (3.51)
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µj+1
ktn = N−1

0 Σj+1
kt PkH [Y

pk

t ]:,n, n ∈ [N ]. (3.52)

The second step, termed the M-step, updates the hyperparameter for the ith user in the

tth RB as

[γj+1
kt ]i =

1

N

N∑
n=1

([Σj+1
kt ]i,i + |[µj+1

ktn ]i|2), i ∈ [Mk]. (3.53)

This step estimates the variance of the channel of the ith user in the tth RB. Based on

the estimate ĝkti and the true gti, the set of users [Mk] can be divided into four disjoint

subsets

Akt = {i ∈ [Mk] | ĝktigti = 1}, (3.54)

Fkt = {i ∈ [Mk] | ĝkti(1− gti) = 1}, (3.55)

Mk
t = {i ∈ [Mk] | (1− ĝkti)gti = 1}, (3.56)

Ikt = {i ∈ [Mk] | (1− ĝkti)(1− gti) = 1}. (3.57)

Akt is the set of true positive users, Fkt is the set of false positive users, Mk
t is the set

of false negative users, and Ikt is the set of true negative users. False positive and false

negative users form the errors in APM estimation. As the decoding iterations proceed,

more users get decoded, and the errors in APM estimation decrease. The MSBL channel

estimate Ĥk
t = Ypk

t PkΓ̂kt(P
kHPkΓ̂kt +N0IMk)−1 is output in the E-step from Algorithm

1, where Γ̂kt = diag(γjmax

kt ). The false negative users’ channels do not get estimated even

though they contribute towards Ypk
t . The false positive users’ channels get estimated even

though they have not transmitted, and thus, an erroneous channel estimate is output for

those users. Since [γkt]i models the variance of the ith users signal in the tth RB, it models

gtiβiσ
2
h. Thus, the estimated hyperparameter [γjmax

kt ]i would recover both ĝkti and β̂ki . Since

the path loss is same across RBs, a higher quality estimate for the path loss can be esti-

mated by averaging across RBs, and thus we obtain β̂ki = (
∑T

t=1 ĝ
k
ti[γ

jmax

kt ]i)/(σ
2
h

∑T
t=1 ĝ

k
ti).
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3.8.1.4 Error variances

The conditional covariance of hti is calculated conditioned on z = ĥkti. In MMSE, with

ckti = [Ck
t ]:,i and Ck

t , Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, we have

Khtihti
= E[htih

H
ti ] = βiσ

2
hIN , (3.58)

Khtiz = E[htiĥ
kH
ti ] = pHi cktigtiβiσ

2
hIN , (3.59)

Kzz = (N0‖cti‖2 +
∑

j∈Sk |p
H
j ckti|2gtjβjσ2

h)IN . (3.60)

Thus, the conditional covariance is

Khtihti|z = Khtihti
−KhtizK

−1
zz Kzhti

= βiσ
2
h

(
N0‖ckti‖2 +

∑
j∈Sik
|rkjti|2gtjβjσ2

h

N0‖ckti‖2 +
∑

j∈Sk |r
k
jti|2gtjβjσ2

h

)
IN , δktiIN , (3.61)

where rkjti , pHj ckti and δkti accounts for pilot contamination. The conditional autocorrela-

tion follows as

Ez[htmhHtm] = Khtmhtm|z + Ez[htm]Ez[htm]H = δktmIN + ĥktmĥkHtm . (3.62)

The unconditional and conditional means of the estimation error are E[h̃ktm] = E[ĥktm −

htm] = 0 and Ez[h̃
k
tm] = Ez[ĥ

k
tm − htm] = ĥktm − ĥktm = 0. The conditional autocovariance

of the error therefore simplifies as

Kh̃k
tmh̃k

tm|z
= Ez[h̃

k
tmh̃kHtm ] = Ez[htmhHtm]− ĥktmĥkHtm = δktmIN , (3.63)

and thus, δktm is also the variance of the estimation error. Substituting Ck
t =

Pk
t diag(ηkti1 , . . . , η

k
ti
Mk

t

), we get the error variance for LCMMSE.

The MSBL estimate error is also uncorrelated with the estimate and the error variance

can be derived similar to the MMSE scheme since the MSBL estimate is a “plug-in” MMSE

estimate. Since only true positive users’ channels are estimated, the error variance is
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calculated only for the subset of true positive users (users with ĝktigti = 1), and thus,

each gti is accompanied by ĝkti similar to [15] (See Chapter 4). Further, since the error

variance models the true interference from other true positive users, the true path loss

coefficient accompanies ĝktigti. Hence we define Ck
t , PkDk

t (P
kHPkDk

t + N0IMk)−1 and

Dk
t , diag(dkti1 , d

k
ti2
, . . . , dkti

Mk
), with dkti = ĝktigtiβiσ

2
h. Substituting for Ck

t , we get the error

variance for MSBL.

3.8.2 Proof of Theorem 3.2: SINR Evaluation

In order to evaluate the SINR, we first calculate the power of the received signal,

which is calculated conditioned on the knowledge of the estimates z , vec(Ĥk
t )

as Ez[|ỹktm|2] = Ez[|
∑4

i=1 Ti|2]. Since noise is uncorrelated with data, Ez[T1T
H
4 ] =

Ez[T2T
H
4 ] = Ez[T3T

H
4 ] = 0. Since MMSE channel estimates are uncorrelated with their

errors [49], Ez[T1T
H
2 ] = 0. Computing the remaining power components requires the eval-

uation of Ez[xixj] for i 6= j which can be calculated as Ez[xixj] = Ez[xi]Ez[xj] = 0. Thus,

all the four terms are uncorrelated and the power in the received signal is just a sum of

the powers of the individual components Ez[|ỹktm|2] =
∑4

i=1 Ez[|Ti|2]. We now compute

the powers of each of the components. The useful signal power is

Ez[|T1|2] = Ez[|akHtm ĥktmgtmxm|2] = Pg2
tm|akHtm ĥktm|2. (3.64)

The desired gain is written as

Gainktm ,
Ez[|T1|2]

P‖aktm‖2
= gtm

|akHtm ĥktm|2

‖aktm‖2
. (3.65)

The power of the estimation error is expressed as

Ez[|T2|2] = Ez[|akHtm h̃ktmgtmxm|2] = Pg2
tmδ

k
tm‖aktm‖2. (3.66)
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Next, the power of the inter-user interference term T3 is

Ez[|T3|2] = Ez

[∣∣∣akHtm∑i∈Smk
gtihtixi

∣∣∣2]
= P

∑
i∈Smk

g2
tia

kH
tmEz[htih

H
ti ]a

k
tm

= P
∑

i∈Smk
g2
tia

kH
tm (δktiIN + ĥktiĥ

kH
ti )aktm

= P
∑

i∈Smk
g2
ti(‖aktm‖2δkti + |akHtm ĥkti|2). (3.67)

Here, Ez[|T2|2] + Ez[|T3|2] represents the contribution of estimation errors and multi-user

interference components of the other users. Since gti is binary, its powers are dropped.

We now split the normalized version of the above into the sum of the error component

Estktm and the multi-user interference MUIktm as follows

Estktm ,
∑

i∈Sk
gtiδ

k
ti, MUI

k
tm ,

∑
i∈Smk

gti
|akHtm ĥkti|2

‖aktm‖2
. (3.68)

The noise power is calculated as

Ez[|T4|2] = Ez[|akHtmnt|2] = N0‖aktm‖2. (3.69)

A meaningful SINR expression can be written out by dividing the useful signal power

from (3.65) by the sum of the interference and the noise powers (from (3.68), and (3.69))

[49]. Note that the interference component is comprised of the estimation error term

and the signal powers of other users who have also transmitted in the same RB. For

MMSE/LCMMSE, the corresponding SINR can be calculated by plugging in the channel

estimates.

In MSBL, each of T1, T2, and T3 is calculated among the subset of true positive users in

the tth RB, i.e., users in Akt = {i ∈ [Mk]|ĝktigti = 1}. Hence, each of the powers previously

derived for MMSE is accompanied by ĝktigti. We need to account for false negative users,

i.e., users in Mk
t = {i ∈ [Mk]|(1 − ĝkti)gti = 1}. These users interfere with the decoding

of other users and the SINR for such users is 0 since they will never get decoded. Such
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users’ signals are uncorrelated with the other terms, and thus, their power is

Ez[|T5|2] = Ez[|
∑

i∈Smk ∩M
k
t
akHtmhtigtixi|2]

(b)
= P

∑
i∈Smk ∩M

k
t
g2
tia

kH
tmE[htih

H
ti ]a

k
tm

= P
∑

i∈Smk ∩M
k
t
g2
tia

kH
tm (βiσ

2
hIN)aktm

= P
∑

i∈Smk ∩M
k
t
g2
tiβiσ

2
h‖aktm‖2, (3.70)

where the conditional expectation is dropped in (b) since the BS does not have the knowl-

edge of the channel estimates of false negative users. The normalised power of the false

positive users is FNUktm ,
∑

i∈Smk
(1− ĝkti)gtiβiσ2

h.

3.8.3 Proof of Lemma 1: Deterministic Equivalent Analysis in

the Context of Massive MIMO

It is known that, as the number of antennas gets large, both ‖ĥktm‖2 and |ĥkHtm ĥkti|2 converge

almost surely (a.s.) to their deterministic equivalents [106]. Evaluating the deterministic

equivalents as in [106] and plugging into the SINR expression instead of the original terms,

we can find an approximation to the SINR in the high antenna regime. As N gets large,

the SINR with MRC converges almost surely (ρktm
a.s.−→ ρktm) to

ρktm =
NSigktm

εktm
(
N0/P + IntNCktm

)
+ IntCktm

, (3.71)

where Sigktm is the desired gain, IntNCktm is the non-coherent interference, and IntCktm

is the coherent interference. For LCMMSE, IntNCktm , gtmδ
k
tm +

∑
i∈Smk

gtiβiσ
2
h,

Sigktm , gtmβ
2
mσ

4
h‖pm‖4, IntCktm , N

∑
i∈Smk

gtiβ
2
i σ

4
h|pHmpi|2, and εktm , N0‖pm‖2 +∑

i∈Sk gtiβiσ
2
h|pHmpi|2. For MMSE, εktm , N0‖cktm‖2 +

∑
i∈Sk gtiβiσ

2
h|ckHtmpi|2, Sigktm ,

gtm(εktm)2, IntCktm , N
∑

i∈Smk
gtiβ

2
i σ

4
h|ckHtmpi|2, IntNCktm , gtmδ

k
tm +

∑
i∈Smk

gtiβiσ
2
h. For

MSBL, εktm , N0‖cktm‖2 +
∑

i∈Sk gtiβiσ
2
h|ckHtmpi|2, IntNCktm , ĝktmgtmδ

k
tm +

∑
i∈Smk

gtiβiσ
2
h,

Sigktm , ĝktmgtm(εktm)2, and IntCktm , N
∑

i∈Smk
gtiβ

2
i σ

4
h|ckHtmpi|2. Here, δktm and cktm are ob-

tained from the previous theorems. The above expressions are obtained by replacing each
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of the terms involving ĥktm in the SINR with their respective deterministic equivalents.

3.8.4 Proof of Theorem 3.3: Success Probability

Let k denote the intra-RB decoding iteration. When perfect CSI is available at the BS

and the users perform path loss inversion, the SINR of the mth user in an RB is computed

as

ρkm =
P‖hm‖4

N0‖hm‖2 + P
∑

i∈Smk
|hHmhi|2

. (3.72)

For r = 1, ρ1
1 = P‖hm‖2/N0, and θ1 reduces to

θ1 = Pr(ρ1
1 ≥ γth) = Γinc(N, ρ

−1
0 γth)/Γ(N), (3.73)

where ρ0 , Pσ2
h/N0, Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the upper incomplete gamma func-

tion and Γ(s) is the ordinary gamma function. The interference is written as tmi =

|hHmhi|2/(‖hm‖2‖hi‖2), where tmi ∼ Beta(α = 1, β = N). We use
a.s.−→ to denote con-

vergence in the almost surely sense. Since ‖hi‖2/N
a.s.−→ σ2

h and ‖hi‖4/N2 a.s.−→ σ4
h as

N →∞ [106], we can approximate the SINR as

ρkm ≈ N(ρ−1
0 +N

∑
i∈Smk

tmi)
−1. (3.74)

Here, we have applied the theory of deterministic equivalents to only the channel norms

and not to the interference. This is supported by the fact that the interference compo-

nents converge to their deterministic equivalents slower than the norms converge to their

deterministic equivalents [106].

For r = 2, since t12 = t21, ρ1
1 = ρ1

2 = N/(ρ−1
0 + Nt12). Thus, ρ1

max = N/(ρ−1
0 + Nt12)

and ρ2
max = Nρ0 with ρ1

max ≤ ρ2
max. Thus, the success probability reduces to θr =

Pr(ρ1
max ≥ γth). Let t0 , γ−1

th −N−1ρ−1
0 . Hence, θ2 is calculated as

θ2 ≈ Pr(ρ1
max ≥ γth) = Pr(t12 ≤ t0)
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= 1{t0 ≥ 1}+ (1− (1− t0)N)1{0 ≤ t0 ≤ 1}. (3.75)

For r ≥ 3, ρkm need not be a monotonically increasing function of k as seen in (3.74), and

thus we cannot order the SINRs meaningfully to compute a closed form expression for θr.

With um =
∑

i∈[r]\m tmi, the maximum SINR in the first intra-RB iteration is calculated

as ρ1
max = maxm∈[r] N(ρ−1

0 +Num)−1. Here, um is not independent across m and it is not

clear which um is the minimum. Thus, we approximate ρ1
max as ρ1

1, and upon dropping

the other SINR terms from (3.34), θr becomes

θr ≈ Pr(ρ1
1 ≥ γth) = Pr(u1 ≤ t0). (3.76)

We now discuss two approximations to um to evaluate θr, with the assumption that um

is independent across m.

Since limN→∞ Beta(α = 1, β = N) = exp(λ = N), we approximate tmi ∼ exp(N),

which is a good approximation at high N [105]. Even with this approximation, um is

identically Gamma distributed across users but not independent. Thus, with the inde-

pendence assumption, um is i.i.d. Gamma distributed with shape parameter r−1 and rate

parameter N , i.e., um
i.i.d.∼ Gamma(r−1, N). Thus, we obtain the Gamma approximation:

θr ≈ 1− Γinc(r − 1, Nt0)/Γ(r − 1). (3.77)

Similarly, when we assume tmi is Normal distributed, um is identically Normal distributed

across users but not independent. Let µN = (N + 1)−1 and σ2
N = N(N + 1)−2(N + 2)−1.

If we approximate tmi ∼ N (µN , σ
2
N) and um is independent across m, then um

i.i.d.∼ N ((r−

1)µN , (r − 1)σ2
N). Thus, we obtain the Normal approximation:

θr ≈ 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (3.78)

where Q(·) is the standard Normal Q-function.
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A simpler expression can be obtained for θr by applying the theory of determin-

istic equivalents to not just the channel norms but also to the interference. Thus,

|hHi hm|2/N
a.s.−→ σ4

h, as N →∞ [106]. Thus, the SINR becomes

ρkm = N/(ρ−1
0 + r − k), (3.79)

which is not random and is a deterministic function of N and ρ0. This expression for

SINR follows from Lemma 1. Thus, we obtain the deterministic approximation:

θr = Pr(ρ1
1 ≥ γth) = 1{r ≤ bN/γth − ρ−1

0 + 1c}. (3.80)

3.9 Appendix

3.9.1 Preliminary Results

This section presents the preliminary results that were published in the conference ver-

sion [12] of this chapter. The results in this section are presented for T = 50 RBs, N = 4

antennas, Ns = 100 simulations, capture threshold γth = 4, path loss exponent α = 3,

channel variance σ2
h = 1, rmax = 1000 m, and r0 = 100 m. The soliton distribution in [72]

with parameters “N” = ks = 27 and “a” = as = 0.02 is used to generate the repetition

factor dm for the mth user, whose pattern is formed by uniformly randomly choosing dm

RBs from T RBs. The signal power is taken to be P = 1, relative to the noise variance

set as N0 = 10−4. Since the design principles and goals of other NOMA schemes such

as PD-NOMA are completely different, comparison with other non RA based NOMA

schemes has not been performed.

Fig. 3.14(a) shows the throughput, T (packets per RB), calculated under different

cases. All the cases have a throughput that exceeds unity (which is the throughput

of perfectly coordinated orthogonal access). As the load L = M/T increases, the peak

throughput of the system increases till it reaches a maximum. After that, it decreases since

there are too many users sharing the same resources, thereby increasing the interference
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(a) Effect of imperfect CSI on throughput. (b) Throughput for different number of RBs.

Figure 3.14: Performance of IRSA.

power and hence decreasing SINR. It is seen that the peak occurs at T = 1.1 with L = 1.2

for single-length pilots, T = 2.13 with L = 2.2 for fully orthogonal pilots, and T = 2.13

with L = 2.2 for perfect CSI. Thus, using single-length pilots results in a 48% drop in peak

throughput. The significant drop in throughput under estimated channels underscores the

importance of accounting for the effect of imperfect CSI in analyzing the performance.

In Fig. 3.14(b), the throughput of IRSA with single-length pilots is plotted against

the load for different number of RBs. The peak throughput increases from T = 1.02 at

L = 1.2 for T = 50 to T = 1.28 at L = 1.3 for T = 200. Since the truncated soliton size

parameter ks is retained at the same value for all T , each user has a larger number of RBs

to choose from with the same ks. Hence, the interference reduces, and the throughput

increases, until it saturates. Note that, increasing T also increases the computational

complexity of decoding and hence the desired number of RBs can be set according to the

throughput requirements and the complexity constraints.

In the case of fully orthogonal pilots, MT symbols are required on average for channel

estimation, whereas for single-length pilots, T symbols are required for channel estimation.

Thus, for example, when M = 60 and T = 50, (M − 1)T = 2950 extra training symbols

required for orthogonal pilot-based channel estimation compared to single-length pilots

based channel estimation.
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3.9.2 Results with LCMMSE channel estimation

Figure 3.15: LCMMSE: Impact of L on the throughput.

This section presents the throughput results with the LCMMSE estimation scheme

presented in Sec. 3.3. Fig. 3.15 shows the system throughput, T (packets per RE),

evaluated for LCMMSE with different pilot lengths under estimated CSI, with N = 16,

capture threshold γth = 16, and regularization parameter λ = 1. The throughputs exceed

unity, which is the throughput of perfectly coordinated orthogonal access, for all τ ≥ 5.

As the load L increases, the peak throughput of the system increases till it reaches a

maximum. In the low load regime (L < 2), all the users’ packets get successfully decoded

through the SIC process, and thus the throughput increases linearly with the load. After

reaching the maximum, it decreases since there are too many users sharing the same

resources, thereby increasing the interference power and decreasing SINR. In the high load

regime (L > 3), the system becomes interference-limited. As the pilot length τ increases,

better quality channel estimates are obtained, and the corresponding SINR increases.

The orthogonal pilots curve is obtained by allocating τ = M = bLT e for each L. At

L = 1.5, there are M = 75 total users that need to be served. For τ = 50, the achievable

throughput at L = 1.5 is nearly T = 1.5. Thus, the throughput with orthogonal pilots

(which requires τ = M) can be achieved with fewer pilot symbols. Further, at low τ ,

there is a significant drop in the throughput with the non-orthogonal pilots compared to
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orthogonal pilots (which achieves nearly the same performance as a genie-aided system

where perfect CSI is available at the BS, not shown in the figure.) This significant drop

in throughput under estimated channels underscores the importance of accounting for the

effect of imperfect CSI in analyzing the performance of IRSA.

Figure 3.16: LCMMSE: Effect of τ on the throughput.

Fig. 3.16 shows the effect of pilot length on the system throughput at different loads

and number of antennas. The capture threshold is set to γth = 10 and regularization

parameter to λ = 10−2 for the rest of this section. At all loads, the throughput saturates

as the pilot length is increased, showing that beyond a certain pilot length, the throughput

is limited by other system parameters such as the load, transmit power, or the number

of antennas. For N = 8 and L = 3, the system throughput is low due to poor quality

channel estimates. Increasing τ does not help since the system is already overloaded.

That is, even though a larger number of measurements are available at high τ , N = 8

is insufficient to ensure successful delivery of all users’ packets at high loads. When N

is increased to 16, the system throughput dramatically improves with τ and approaches

T = 2.8 at τ = 50. For N = 16, the optimal throughput of T = L is achieved with

τ = 20 (with either N = 8 or 16) for L = 2, which corresponds to M = 100 users, and

with τ = 5 for L = 1, which corresponds to M = 50 users.13 For L = 2 and N = 8,

13Note that, the use of orthogonal pilots would require τ ≥ 100 and τ ≥ 50 for M = 100 and M = 50,
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throughput greatly improves as τ increases and nearly optimal throughput is obtained at

τ = 50. To summarize, the pilot length has a significant impact on the performance of

IRSA and yields near-optimal throughputs at significantly lower pilot lengths than that

required for orthogonal pilot transmission.

Figure 3.17: LCMMSE: Effect of N on the throughput.

In Fig. 3.17, the system throughput is plotted against the number of antennas at the

BS for different system loads and pilot lengths. Under all configurations, it is observed

that increasing N has a significant impact, and the peak throughput achieved reaches its

maximum of T = L. For L = 1, changing either τ or N does not have a significant impact

and the throughput remains T = 1 for N ≥ 4. For L = 2, the throughput reaches the

peak T = 2 for N ≥ 32. Similarly, for a high load of L = 3, the throughput reaches the

peak, T = 3, for N ≥ 128. It is observed that at L = 2, N = 16 and L = 3, N = 32,

improving τ greatly improves the throughput. Increasing the number of antennas increases

the array gain and the decoding capability of the regularized zero forcing decoder at the

BS, which in turn leads to more users getting decoded. In particular, the dramatic rise

in the throughput from N = 8 to 32 for a high load of L = 3 shows the effectiveness of

the number of antennas in improving the throughput.

Fig. 3.18 shows the impact of cell edge SNR on the throughput. In the noise-limited

respectively.
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Figure 3.18: LCMMSE: Impact of SNR on the throughput.

regime (SNR < 0 dB), an increase in SNR sharply increases the throughput. Beyond

an SNR of 5 dB, increasing SNR only marginally increases the throughput for all L and

τ , and the system becomes interference-limited for τ = 10. This is because, at low τ ,

both signal and interference powers get scaled equally, and the SINR remains roughly

constant. At τ = 50, for L = 1 and 2, the optimal throughputs can be obtained at a cell

edge SNR = 0 dB. However, the throughput for L = 3 saturates beyond an SNR of 5 dB

and does not yield the optimal throughput of T = 3 due to a high load and low N . In

summary, the system throughput can be improved by increasing the pilot length, number

of antennas, and cell edge SNR, but these need to be increased judiciously, keeping the

other parameters in mind.

Fig. 3.19 shows the effect of regularization parameter λ on the throughput of the

system when LCMMSE estimation is employed, with L = 4 and N = 16. As λ is varied

from 10−6 to 100, the curves go from ZF on the left to RZF in the middle and finally

to MRC on the right. ZF has poor performance at low τ due to low quality channel

estimates. As τ is increased past 60, ZF starts performing better and achieves close

to the optimal throughput of T = 4. RZF shows a huge improvement over both ZF

and MRC for λ ∈ (10−4, 10−2) and achieves near-optimal throughput for τ = 40. The

interference suppression capability of RZF helps it achieve a large improvement over both
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Figure 3.19: LCMMSE: Effect of λ and τ on the throughput.

Figure 3.20: LCMMSE: Impact of λ and N on the throughput.
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ZF and MRC, especially for τ = 40. MRC does not have the interference suppression

capability of RZF, and thus the performance saturates at a low value for all τ . Similar

observations can be made on the joint effect of λ and N as seen in Fig. 3.20, where

L = 4 and τ = 10. Since τ = 10 is fixed, no significant improvement in the throughput

is seen up to N = 64. Increasing both τ and N together yields much better throughput.

Further, since the performance of RZF remains constant over a wide range of λ, it is not

important to choose its value very accurately, and any choice in this interval would result

in near-optimal throughput.

3.9.3 Difficulty of DE

This section explains the difficulty of using the density evolution (DE) process to cal-

culate closed-form theoretical expressions for the asymptotic performance of IRSA-type

protocols. The DE algorithm is iterative in nature, and only the final failure probability

p∞ decides the effective throughput of the system. We can also employ the differential

evolution algorithm [26] to find the optimal degree distribution. While this provides a

numerical recipe to calculate the optimized degree distributions, it usually does not lead

to further insights into the system performance, due to the numerical nature of the DE

process.

The DE process does not yield a closed form expression for T or PLR not just for

IRSA with our system model, but even for the most basic variants of IRSA (such as IRSA

with a Gaussian multiple access channel (GMAC) or CRDSA).

1. For slotted ALOHA, which is the most basic variant of IRSA, users cannot be de-

coded if there are collisions. In this case, θr = 1{r = 1}, and the failure prob-

abilities become qi = 1, pi = 1 − exp(−L) = p∞. Here 1{·} is the indicator

function. Since each user transmits only once, the required degree distributions

are φ(x) = x, λ(x) = 1, ψ(x) = exp(−L(1 − x)). Thus, the packet loss rate is

PLR = φ(p∞) = 1− exp(−L), and the throughput can be calculated as T = Le(−L).

Hence, the peak throughput can be calculated by setting the derivative with respect

to L to be equal to zero, which can be found as T ∗ = 1/e ' 0.37 at inflection load
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of L∗ = 1.

2. For CRDSA, each user transmits only twice, and thus, the degree distributions are

φ(x) = x2, λ(x) = x, and ψ(x) = exp(−2L(1 − x)). Similar to slotted ALOHA,

users cannot be decoded if there are collisions, and thus θr = 1{r = 1}. The

failure probabilities can be found as qi = pi−1, pi = 1 − exp(−2Lqi), and thus,

qi+1 = 1 − exp(−2Lqi), and the throughput can be found as T = Lφ(p∞). In this

case, we cannot find a closed form expression for the PLR or for the throughput, and

we need to empirically find where the throughput peaks. Empirically, the inflection

load can be found to be L∗ = 0.5.

3. For IRSA with the GMAC, the collision model θr = 1{r = 1} is considered. Using a

node-perspective user degree distribution φ(x) = 0.5x2 +0.28x3 +0.22x8 [17] results

in d = 3.6, λ(x) = 0.28x + 0.23x2 + 0.49x7, and ψ(x) = exp(−3.6L(1− x)). Thus,

the failure probabilities can be found as qi = λ(pi−1), pi = 1− exp(−Ldqi), and the

throughput can be found as T = Lφ(p∞). Similar to the previous case, we cannot

find a closed-form analytical expression for PLR or T . Thus, we need to resort

to empirical means to find a relationship between the throughput and the system

parameters (such as L, φ(x), λ(x), and d̄).

4. For IRSA with the GMAC and a MUD [75], the K-collision model is considered,

where θr = 1{1 ≤ r ≤ K}. Here, the BS can decode K or fewer packets cor-

rectly. Thus, with any generic node-perspective user degree distribution, the failure

probability pi can be calculated as

pi = 1− e−c̄qi
K∑
r=1

(c̄qi)
r−1

(r − 1)!
=
γinc(K,Ld̄qi)

Γ(K)
. (3.81)

Thus, qi+1 = λ

(
γinc(K,Ld̄qi)

Γ(K)

)
is the final recursive equation that determines the

performance of the system. Once again, we cannot find a closed form expression for

T , and we need to empirically find a relationship between the throughput and the

system parameters (such as K, L, φ(x), λ(x), and d̄).
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Thus, slotted ALOHA is the only variant of IRSA for which we can obtain a closed

form expression for the throughput. As we have demonstrated above, for all of CRDSA

or IRSA with GMAC and a single-user decoder or IRSA with GMAC and a multi-user

decoder, it is not possible to find closed form expressions for the throughput or the packet

loss rate of the system. The system model we have considered in this chapter is far more

complicated than any of these: we account for path loss, fading, MIMO channel (and thus,

possibly MUD), pilot contamination, and CSI errors. Thus, since we do not have visibility

into the DE process, it is hard to obtain a closed form expression for the throughput using

DE for our system model also.

3.9.4 Pilot Power Boosting

In this section, we analyze the impact of pilot power boosting. So far, we had considered the

pilot power P p and data power P to be equal for simplicity. In pilot power boosting [107,

108], the pilot symbols are typically transmitted at a higher SNR compared to the data

symbols. In Fig. 3.21 and Fig. 3.22, we plot the throughput of IRSA for L = 2 and L = 3,

respectively. The setup for this is with MMSE channel estimation, N = 8, τ = 8, T = 50,

λ = 10−2, and γth = 10. In both the figures, the x-axis is the cell edge SNR, which we

consider to be equal to the data SNR, and the pilot SNR has been boosted appropriately

above the data SNR according to the legends, e.g., P p
dB = PdB + 3 dB for a 3 dB boost.

In Fig. 3.21, we observe that at very low cell edge SNR, the throughput is very low,

and the optimal throughput of T = 2 is achieved at a cell edge SNR of 5 dB. We observe

that at very low cell edge SNR and at SNRs that are optimal for the decoding process,

performing pilot power boosting does not improve the throughputs. This is because at

low cell edge SNR, the system is noise-limited, and the SINR does not improve much

by pilot power boosting. Pilot power boosting does not help much when the power of

the channel estimation error is lower than noise variance. Similarly, at high cell edge

SNRs, the optimal performance is already reached without any boosting. Thus, in the

intermediary SNR region, the performance marginally improves by pilot power boosting.

In this regime, increasing pilot power helps reduce the power of the channel estimation
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Figure 3.21: Pilot power boosting with L = 2.

errors and this in turn can help the packets achieve an SINR that exceeds the capture

threshold. This is also the region in which the system is just around the inflection load (as

revealed by the density evolution process), and thus, boosting pilot power helps increase

the throughput.

Figure 3.22: Pilot power boosting with L = 3.

In Fig. 3.22, we observe similar trends as seen previously, with one change. Here,

unlike the previous figure, the optimal throughput of T = 3 is never achieved. At a load
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of L = 3 and high SNRs, the system is already too interference limited for the power

boosting to affect it. However, pilot power boosting has the same impact at high SNRs as

we observed in the previous plot. Thus, pilot power boosting does not have a significant

impact on the decodability of the packet in most regimes. It helps only at intermediary

SNRs, and hence we next focus on boosting only in this regime.

Figure 3.23: Pilot power boosting with cell edge SNR = 0 dB.

In Fig. 3.23, we plot the throughput of IRSA with pilot power boosting, under identical

settings as the previous figures, and an intermediary cell edge SNR = 0dB. As seen in

the previous figures, operating at this cell edge SNR yields a benefit when we perform

boosting. Here, we observe that pilot power boosting from 3dB and up to 20dB drastically

improves the performance. At L = 1.8, the throughput improves from T = 1.15 with no

boost to T = 1.55 with 20 dB boost, which is a 34.78% improvement. At L = 2, the

throughput improves from T = 1.13 with no boost to T = 1.59 with 20 dB boost, which

is a 40.71% improvement. Thus, pilot power boosting can yield very good improvements,

albeit only at certain intermediate SNRs.
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3.9.5 How to generate the APM at the BS?

In this section, we describe how we can generate the APM at the BS, which justifies the

assumption that the BS knows the APM. In conventional IRSA, each packet header has a

pointer to the position of other replicas. Therefore, once a packet is successfully decoded,

the other replicas can be located and the interference of the replicas can be removed from

other REs.

In a practical system, the BS can generate the APM by using a common seed available

at the users and the BS. The assumption that the APM is known at the BS is present

in other existing works on IRSA as well. The first paper on IRSA [7] says “In practical

implementations, the overhead due to the inclusion of pointers in the header of the burst

may be reduced by adopting more efficient techniques. One may include in the header the

repetition degree for the burst together with a random seed, out of which it is possible

to reconstruct (by a pre-defined pseudo-random number generator) the positions of the

burst replicas.” The authors in [74] point out that “Each replica contains in the header

information about the location of all other related replicas. In principle, this information

can be agreed in advance through, e.g., a shared seed for a random number generator.”;

[109] mentions that “This can be achieved by some pseudo-random mechanism known

by both the transmit and receive ends.”; [110] says that “In practical implementations,

the overhead due to the inclusion of pointers in the segment header may be reduced by

adopting more efficient techniques. For fixed k, one may include in the segment header

the code index h together with a random seed, out of which it is possible to reconstruct

(by a pre-defined pseudo-random number generator) the positions of the nh segments.”

All of these existing works describe the generation of the APM at the BS via a common

pre-defined seed, either after decoding one packet or before decoding any packet. In the

former case, one column of the APM is revealed either after one packet is decoded, while

in the latter case, the APM is fully known at the BS.

We now describe how this can be implemented in practice. One of the simplest and
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widely used pseudo-random number generator (PRNG) is the linear congruential genera-

tor [111]. This generator uses the recurrence relation

Xn+1 = (aXn + b) mod m, (3.82)

where Xi is the ith pseudo-random number, X0 is called the seed, a is called the multiplier,

b is called the increment, and m is called the modulus [112]. Here, X0 ≥ 0,m > 0, a > 0,&

b ≥ 0 completely specify the PRNG, with X0, a, b < m. The detailed discussion of optimal

multipliers [113] and fast parallel generation of numbers [114] is beyond the scope of this

work. Simple PRNGs such as the above can be programmed into the hardware, and the

generation of such a random number only takes about 1− 3 clock cycles. Further, we can

compute the APM offline and store it beforehand at the BS.

Figure 3.24: APM generation time vs. system load.

The seed to be used in the PRNG can be made of the frame index and the user ID.

For example, the seed that is used to generate the APM coefficients for the ith user at the

BS could be generated by appending the current frame index and the user ID, as Seed

= [Current Frame Index; User ID]. For example, let there be a million users (6 decimal

digits) and a thousand frames (3 decimal digits). This would require a total of 9 decimal

digits to represent the seed. With a binary representation, a million users would need
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around 20 bits to represent the user IDs, and a thousand frames would need around 10

bits to represent the frame index: it goes from 0 to 1023 and then cycles back to 0.

Using the above specified PRNG, we report the generation time of the random numbers

required to compute the APM in Fig. 3.24. This is plotted in a log-log scale, and thus,

the generation time increases linearly with the load. This setup is with typical PRNG

settings such as m = 216 − 1, b = 11, and a = 47485 [113]. Along the x-axis, we can see

that the generation time increases linearly whenever the number of users is doubled. The

number of users at any point can be calculated as M = L × T/pa, with pa = 0.1 (this

accounts for user activity). For L = 64, the points for T = 2000, 1000, 500, 200, 100, 50

correspond to M = 1.28 × 106, 6.4 × 105, 3.2 × 105, 1.28 × 105, 6.4 × 104, and 3.2 × 104

users, respectively. Thus, the generation time for a million users is not too much and

can be implemented with ultra-low complexity PRNGs such as the ones described above.

There are also other RNGs that run faster, e.g., the Mersenne twister RNG.

If di is the repetition factor of the ith user, we need to generate 1+di random numbers

for the ith user. That is, the first random number is needed to generate the repetition

factor di itself from the degree distribution, and then, we need to generate di number of

RE indices from the available T REs, without replacement. Thus, the BS would need

to generate a total of
∑M

i=1(1 + di) ≈ M(1 + d̄) random numbers at the BS on average

in every frame. For M = 106 users, we need to generate M(1 + d̄) random numbers.

With T = 1000, we need 10 bits to store the above random numbers each. Thus, with

d̄ = 3/4/5, we would need 40/50/60 Megabits to store the required RE indices in each

frame. With 1024 frames, we would need 40/50/60 Gigabits, or equivalently 5/6.25/7.5

Gigabytes. Thus, it is true that the lookup table can be large for offline generation

and storage. However, one could store partial random numbers, e.g., just the dis and

generate the remaining random number on the fly, as required, during the run-time of the

algorithm.

Further, the BS is assumed to have enough computational power and storage for all

the signal processing that needs to be performed in every frame; it is trying to decode a

fraction of active users among millions of users and perform further processing. In such a
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setting, if the BS is computationally powerful to do everything else in the entire receiver

chain from UAD to channel estimation and data decoding, the generation and/or look-

up of the APM is not a significant overhead for the BS. Also, the scaling of the UAD

algorithm to a massive number of users is a high dimensional problem, which can be

solved using several tools involving partial matrix processing at each stage. These aspects

are beyond the scope of this thesis.

Figure 3.25: Comparison between known and estimated APM.

The MSBL scheme also estimates the APM from the received symbols as seen in

Fig. 3.25. This estimation is done via the sparsity structure of IRSA and not by using

pointers to packet replicas stored in the packet header. Thus, the performance with the

estimated APM is a worst case scenario, and we can only perform better by using pointers

to packet replicas or knowing the APM fully. The estimated APM curves are generated

by applying MSBL on an RE-by-RE basis, and this does not need the knowledge of the

APM or the path loss coefficients. We see that the estimated APM curves achieve the

optimal throughputs (i.e., T = L) for L = 1, 2, 3 at τ = 4, 8, 12, up from τ = 2, 3, 6 in the

known-APM case, respectively, and beyond that, the performance is the same as that of

known-APM. This shows that with a few additional pilot symbols, we can do away with

the assumption of knowing the APM and path loss coefficients. Thus, the knowledge

of the APM is not a strong assumption on the performance of IRSA, and it entails in
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only a moderate increase in the pilot length required. Since the BS benefits due to the

performance gain of the system (as a consequence of the assumption of known APM), it is

advantageous to generate the APM at the BS and exploit this performance improvement,

even at the cost of the computational overhead involved.

3.9.6 Choice of Pilot Sequences

Figure 3.26: Performance comparison of different pilot sequences.

In this section, we explore the effect of different pilot sequences on the throughput

of IRSA. In Fig. 3.26, we compare the throughput obtained when several orthogonal

and non-orthogonal pilot sequence sets are used, with T = 50, N = 16, γth = 6, and

λ = 1. The non-orthogonal pilots, termed as BPSK and QPSK, contain random pilot

symbols belonging to the respective PSK constellations, and Zadoff-Chu (ZC) sequences

are generated according to [115]. ZC sequences require prime pilot length τ [116,117], we

use τ = 7. Mutually orthogonal pilot sequences, such as Hadamard and discrete Fourier

transform (DFT), are limited by the length of the pilot sequence τ , i.e., τ mutually

orthogonal pilot sequences of length τ can be generated. Thus, we perform orthogonal

pilot reuse (OPR), where each user randomly selects a pilot sequence from the available

set of τ pilots, similar to [63] and [118].
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Random QPSK, Gaussian, and BPSK pilots have identical performance, and ZC se-

quences result in a marginally lower throughput at high loads. Similar observations are

made in [53,119]. Any choice of the non-orthogonal pilots generally yield similar through-

puts. Thus, the choice of pilots is not a major point of concern. In the T = L regime, the

performance of non-orthogonal pilots is better than OPR. Too much pilot reuse, which is

worse with OPR due to the smaller set of available pilots, deteriorates the performance.

The use of non-orthogonal pilots provides better diversity, since there is a richer set of

pilot sequences, leading to better performance [53].
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Chapter 4

User Activity Detection in IRSA

4.1 Introduction

Massive machine-type communications (mMTC) is expected to serve around a million de-

vices per square kilometer [1]. Typical mMTC devices transmit short packets to a central

base station (BS), and are sporadically active [2]. To facilitate efficient random access for

such mMTC applications, distributed grant-free random access (GFRA) protocols need

to be used, as they can serve a large number of users without incurring a large signaling

overhead [5]. Since only a subset of users are active in any frame in mMTC [2], it is

essential for the BS to detect the set of users that are active, before proceeding to per-

form channel estimation and data decoding. This process is termed user activity detection

(UAD). Furthermore, without UAD, the BS would waste valuable resources attempting

to decode a large number of users that have not transmitted any packets, i.e., users that

are inactive. Knowing the subset of active users not only saves computational resources

by helping the BS decide which users it needs to decode, it is also important for channel

estimation, as will be seen in the sequel. Errors arising from the UAD process, namely,

false positives and false negatives, deteriorate the channel estimates computed at the BS,

which in turn affects the data decoding. Hence, it is crucial to account for these errors

while analyzing the performance of GFRA protocols.

The contents of this chapter is published in a full length journal paper in the IEEE

111
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Transactions on Signal Processing in 2023 [15].

4.1.1 Motivation

Irregular repetition slotted aloha (IRSA) is a popular GFRA protocol in which users

transmit replicas of their packets in multiple resource blocks (RBs) in a frame [7]. Each

RB can accommodate a whole data packet. In IRSA, each user samples their repetition

factor d from a predefined distribution independently of other users and then transmits

replicas of its packet in d RBs chosen uniformly at random from the set of all RBs in the

frame [7]. The indices of the RBs in which the users transmit their packet replicas define

the access pattern matrix (APM), which we assume is known at the BS. This assumption is

explained in Sec. 4.2. Due to the structure of the APM, applying existing UAD algorithms

to IRSA can lead to suboptimal performance. In particular, it is necessary to combine the

information available in each RB in a principled manner, to accurately detect the active

users.

Typically, UAD and channel estimation is performed by the BS using pilots transmit-

ted by the users in their packet headers. If the users employ mutually orthogonal pilots,

there is no pilot contamination, making UAD and channel estimation simple. However,

the length of orthogonal pilots scales linearly with the total number of users, and hence

the pilot overhead quickly overshadows the data payload size as the number of users gets

large [6]. Thus, non-orthogonal pilots are used, and the resulting pilot contamination leads

to both UAD errors and channel estimation errors. These effects must be accounted for

while analyzing the performance of IRSA. The main goal of this chapter is to understand

the effect of system parameters such as pilot length, SNR, and the number of antennas

at the BS on the performance of IRSA, accounting for UAD errors, channel estimation

errors, and pilot contamination.

4.1.2 Working of the IRSA protocol

Early works in IRSA considered the collision model in which only singleton RBs are de-

codable. Singleton RBs are RBs in which only a single user has transmitted, and since
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there are no collisions in such RBs, users can be decoded with high probability. The de-

coding proceeds in iterations, and occurs via inter-RB successive interference cancellation

(SIC), which refers to the removal of a packet replica from all other RBs where the same

packet was transmitted. The decoding stops when there is no singleton RB available. The

throughput of IRSA under the collision model is at most one packet per RB [7], which is

achievable asymptotically with the number of RBs and users if the soliton distribution is

used to generate the repetition factors [72].

In the case where the BS is equipped with multiple antennas, multiple users could

potentially be decoded in an RB [49], and thus singleton RBs are not necessary for de-

coding. Any user with a sufficiently high instantaneous signal to interference plus noise

ratio (SINR) can first be decoded, and the contribution of that user can be removed from

the same RB. This process, termed intra-RB SIC, refers to the removal of interference of

a packet replica from the same RB within which it was decoded. After the user with the

highest SINR is decoded, other users could potentially be decoded as well. By performing

both intra-RB and inter-RB SIC, the packet replicas of different users are removed from

all RBs wherein the same user has transmitted a packet. This model, which we use in

this chapter, is termed as the SINR threshold model, and it yields a higher throughput

than the conventional singleton decoding model.

4.1.3 Existing Works in IRSA

IRSA has been studied with the SINR threshold model under scalar Rayleigh fading chan-

nels with perfect channel state information (CSI) [17] and pure path loss channels [8].

Coded slotted aloha (CSA), which is a variant of IRSA, was recently analyzed with im-

perfect SIC [88]. The authors in [63] studied CSA with an acknowledgement mechanism

between frames. IRSA was analyzed with an SIC limit, i.e., a limit on the maximum num-

ber of packets that can be recovered in each RB, in [86]. The average age of information

in IRSA in mMTC has also been studied [79]. We have previously [11, 12] analyzed the

IRSA protocol accounting for channel estimation and pilot contamination, with perfect

UAD (See Chapter 3). In contrast, this chapter focuses on UAD in IRSA, and analyzes
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the impact of UAD errors on the throughput.

4.1.4 Existing Works for UAD

To the best of our knowledge, the problem of UAD in IRSA has not yet been considered

in the literature. Further, none of the existing works study the performance of IRSA

accounting for UAD errors, path loss, MIMO fading, pilot contamination, and channel

estimation errors. An initial study into estimating the number of active users in IRSA

was conducted in [93], which does not identify the subset of active users. UAD has been

studied for massive random access outside the context of IRSA [13,14]. The activity ma-

trix to be estimated has jointly-sparse columns, i.e., columns that have the same sparse

support [94]. Typical UAD solutions involve compressed sensing-based solutions [53] or

a maximum aposteriori probability (MAP) detection [95]. The sparse Bayesian learn-

ing (SBL) framework has been employed to perform UAD in mMTC [96]. Faster SBL

algorithms for UAD in mMTC have also been developed [97]. Other low complexity al-

gorithms for UAD include approximate message passing [98] and orthogonal matching

pursuit [99]. These approaches, however, cannot be used in IRSA due to the structure

imposed by the APM. A näıve approach would be to perform UAD on an RB-by-RB basis

and declare users inactive if they are found to be inactive in all the RBs. As we will show,

this approach is inefficient and results in large error rates, especially when non-orthogonal

pilots are used.

4.1.5 Contributions

This chapter proposes a novel UAD algorithm for IRSA, and analyzes the throughput of

IRSA, accounting for UAD and channel estimation errors. Our main contributions are:

1. We develop a novel Bayesian algorithm to detect the set of active users in IRSA in

Sec. 4.3. UAD in IRSA is a joint-sparse signal recovery problem with a measurement

model with an important twist: different and unknown subsets of the row indices

of the joint-sparse matrix participate in different measurements. Our algorithm is
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an enhancement to the multiple sparse Bayesian learning (MSBL) algorithm [16] to

cater to this scenario.1

2. We derive the channel estimates at the BS for users in all RBs in IRSA, acquired via

non-orthogonal pilots, in Sec. 4.4. We also derive the Cramér-Rao bound (CRB)

on the mean squared error (MSE) of the channels estimated by our proposed UAD

algorithm. We show that a genie-aided minimum MSE (MMSE) estimator (that has

knowledge of the second-order statistics and the user activities) achieves the CRB.

Later, we also empirically show that the MSE of the channel estimates output by

the proposed UAD algorithm meets the CRB.

3. Next, we analyze the SINR achieved by all the users in all RBs in Sec. 4.5, accounting

for UAD errors, channel estimation errors, and pilot contamination. The SINR

expression allows us to determine the throughput of IRSA, accounting for the effect

of UAD errors.

Our numerical experiments in Sec. 4.6 show that there is at least a 4-fold reduction

in the number of pilot symbols required to achieve a similar UAD performance as that

of existing approaches. The loss in performance due to UAD errors can be recuperated

by judiciously choosing the system parameters such as pilot length, number of antennas,

and SNR. In essence, it is vital to account for both UAD and channel estimation when

analyzing the throughput of IRSA.

Notation

The symbols a, a, A, [A]i,:, [A]:,j, 0N , 1N , and IN denote a scalar, a vector, a matrix, the

ith row of A, the jth column of A, all-zero vector of length N , all ones vector of length

N , and an identity matrix of size N×N , respectively. [a]S and [A]:,S denote the elements

of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix

with diagonal entries given by a, whereas blkdiag(A,B) is a block diagonal matrix with

1Our UAD algorithm can be applied to other variants of IRSA such as CSA since it entails only a
minor change in the structure of the APM.
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A and B as the diagonal blocks. A⊗B is the Kronecker product of A and B, and A � B

denotes that A−B is positive semi-definite. [N ] denotes the set {1, 2, . . . , N}. | · |, ‖ · ‖,

‖ ·‖F , [·]T , [·]H , E[·], and Ea [·] denote the magnitude, `2 norm, frobenius norm, transpose,

conjugate transpose, unconditional expectation, and the expectation conditioned on a,

respectively. The superscript p is used as a descriptive superscript in association with a

symbol that is related to the pilots. All the other superscripts (or subscripts) that have

not been defined as above are indices.

4.2 System Model

An IRSA system is considered with M single-antenna users communicating with a BS

equipped with N antennas. The users are assumed to be spread randomly within a cell,

with the BS located at the cell center. These users communicate with the BS over frames

consisting of T RBs. The RBs can be slots, subcarriers or both. In every frame, a small

subset of the M users, called active users, attempt to deliver a packet each to the BS. In

a given frame, the activity coefficient of the mth user is denoted by am, where am = 1 if

the mth user is active, and am = 0 otherwise. Note that am can change from one frame

to the next, and the subset of active users (and hence am) is unknown at the BS. The

users transmit replicas of their packet according to the random matrix G ∈ {0, 1}T×M ,

which is called the access pattern matrix (APM). Here, gtm = [G]tm is the access pattern

coefficient of the mth user in the tth RB. If gtm = 1, the mth user transmits its packet in

the tth RB provided am = 1, and if gtm = 0, the mth user does not transmit its packet in

the tth RB even if am = 1. If am = 0, the mth user is inactive in the current frame, and

does not transmit in any RB.

At the BS, the received signal in the tth RB is a superposition of the packets trans-

mitted by the active users that have chosen to transmit in the tth RB. The packets of

the users undergo both path loss and fading. We assume that the path loss component

and the second-order statistics of the fading component are known at the BS, and that
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the fading channel remains constant for the duration of an RB.2 Each packet replica com-

prises a header containing pilot symbols and a payload which includes the coded data

and cyclic redundancy check (CRC) symbols. In the pilot phase, if am = 1, the mth user

transmits a τ−length pilot sequence pm ∈ Cτ in each packet replica (i.e., if gtm = 1).

Each pilot symbol has an average power P p, and the average power of the pilot sequence

is E[‖pm‖2] = τP p. The received pilot signal Yp
t ∈ CN×τ at the BS across the N antennas

in the tth RB is thus

Yp
t =

∑M

m=1
amgtmhtmpHm + Np

t , (4.1)

where Np
t ∈ CN×τ is the complex additive white Gaussian noise at the BS with [Np

t ]:,j
i.i.d.∼

CN (0N , N0IN), ∀ j ∈ [τ ] and t ∈ [T ], where N0 is the noise variance. Here, htm =
√
βmvtm

is the uplink channel vector of the mth user in the tth RB, where βm is the known path loss

coefficient and vtm is the unknown fading vector with vtm
i.i.d.∼ CN (0N , σ

2
hIN), ∀ t ∈ [T ]

and m ∈ [M ], and channel variance σ2
h.

In the data phase, if am = 1, the mth user transmits a data symbol3 xm in each packet

replica that it transmits. The data symbol satisfies E[xm] = 0 and E[|xm|2] = P , where

P denotes the data power. The received data signal yt ∈ CN , at the BS in the tth RB, is

yt =
∑M

m=1
amgtmhtmxm + nt, (4.2)

where nt ∈ CN is the complex additive white Gaussian noise at the BS with nt
i.i.d.∼

CN (0N , N0IN), ∀ t ∈ [T ].

In IRSA, if the mth user is active, it samples its repetition factor dm from a predefined

distribution, independently of other users. Then it chooses dm RBs from a total of T RBs

uniformly at random, and transmits replicas of its packet in these dm RBs. The APM

is formed as [G]tm = gtm, t ∈ [T ],m ∈ [M ], where gtm = 1 if the mth user has chosen

2For simplicity of exposition, we consider i.i.d. Rayleigh fading between the users and the BS in each
RB, although it is straightforward to extend the results to the correlated fading scenario.

3To derive SINR in any given RB, only one data symbol is written out from the multiple data symbols
in each packet.
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to transmit in the tth RB, and gtm = 0 otherwise.4 This generation of repetition factors

is scalable to a large number of users and is completely distributed in nature, and is

thus appropriate for mMTC. In practice, the random subset of RBs is generated using a

pseudo-random number generator, whose seed completely determines the sequence [7].5

This seed can be pre-programmed at each user, and made available to the BS. In this

case, it is reasonable to assume that the BS has knowledge of G. Also, the APM can

be generated in an offline fashion and stored at the BS. However, it is important to note

that although the BS knows the subset of RBs in which a user would transmit its packet

replicas if it were active, the BS still does not have the knowledge of which users are

active in a given frame.

4.2.1 SIC-based Decoding in IRSA

The decoding process in IRSA proceeds as follows. The BS first detects the set of active

users (denoted by âm). Then, it estimates the channels for all the users detected to be

active in the RBs for which gtm = 1. It uses these channel estimates to combine the

received data signal across the BS antennas, and attempts to decode the user’s data

packet, treating interference from other users as noise. If it successfully decodes any

user, which can be verified via the CRC, it performs SIC in all RBs which that user has

transmitted, with both inter-RB and intra-RB SIC. The channels are re-estimated for the

remaining users, and this decoding process proceeds iteratively.

In this chapter, the decoding of any user’s packet is abstracted into an SINR threshold

model as in [8, 17]. That is, the packet can be decoded correctly if and only if the SINR

of an active user’s packet in an RB is greater than a threshold denoted by γth, the packet

can be decoded correctly. The value of γth is usually chosen to be ≥ 1 for a narrowband

system [17]; it is a parameter for the purposes of our analysis.

We now briefly describe how to evaluate the performance of IRSA under the abstract

4Note that users who are inactive in a given frame can also be virtually considered to have chosen the
RBs in which they are scheduled to transmit, even though they do not transmit in any RB.

5For example, the seed could be a function of the current frame index and the user ID, such as,
seed = [Current Frame Index; User ID]. Using simple pseudo-random number generators and with no
computational speed-up, we can generate 106 random numbers within a few ms on a mid-range laptop.
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SINR threshold-based decoding model. We first estimate the user activity coefficients

for all users over the frame. For the users detected to be active, we compute channel

estimates and SINR achieved in all RBs in which the users detected to be active have

transmitted their packets. This SINR accounts for the CSI available at the BS and errors

in the UAD process, as we will see in Sec. 4.5. If we find a user with SINR ≥ γth in

some RB, we mark the data packet as having been decoded successfully, and remove that

user from the set of users yet to be decoded. Also, the contribution of the user’s packet

is removed from all RBs that contain a replica of that packet. In the next iteration,

the channels are re-estimated from the residual pilot symbols after SIC, the SINRs are

recomputed in all RBs, and the decoding of users’ packets continues. The iterations stop

when no additional users are decoded in two successive iterations or if all users detected to

be active have been successfully decoded. The system throughput T is calculated as the

number of correctly decoded unique packets divided by the number of RBs. Note that

the throughput accounts for packet losses that occur due to users that are incorrectly

detected to be active, as well as due to failures in the SIC-based decoding process.

The rest of the chapter is organized as follows. Sec. 4.3 outlines the proposed UAD

algorithm, and Sec. 4.4 describes the channel estimation process. The detailed derivation

of the SINR accounting for both UAD errors and channel estimation errors is presented

later in Sec. 4.5.

4.3 User Activity Detection

In this section, we describe our user activity detection (UAD) algorithm. For this purpose,

we consider the conjugate transpose of the received pilot signal in the tth RB from (4.1)

as Yt , Yp
t
H

, with Nt , Np
t
H

. The signal Yt can be factorized into the product of the
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product of two matrices as follows:

Yt︸︷︷︸
τ×N

= [p1, . . . ,pM ]︸ ︷︷ ︸
P


a1gt1h

H
t1

...

aMgtMhHtM


︸ ︷︷ ︸

Xt

+ Nt︸︷︷︸
τ×N

. (4.3)

Here, P ∈ Cτ×M contains the known pilot sequences of the M users as its columns,

and Xt ∈ CM×N contains the tth row of the known APM G, the unknown user activity

coefficients, and the unknown channels. Note that the ith row of Xt is nonzero only if

ai = 1 and gti = 1, i.e., when the ith user is active and transmits in the tth RB.

Table 4.1: Hyperparameter notation in Algorithm 3.

Symbol Quantity

γ Hyperparameter vector of all M users

Γ Diagonal matrix with γ as it’s diagonal entries

γt Hyperparameter vector of the Mt users who would

have transmitted in the tth RB had they been active

Γt Diagonal matrix with γt as it’s diagonal entries

γj/γjt /Γ
j
t Hyperparameters in the jth MSBL iteration

γ̃jt Auxiliary variable used to store γj

γpr Threshold used to declare support

Let Gt = {i ∈ [M ] | gti = 1} be the set of users who would have transmitted in the

tth RB, had they all been active in the current frame, and Mt = |Gt| be the number of

such users. Since the BS has knowledge of Gt, it can remove the contributions of the

users who do not transmit in the tth RB. We thus obtain a column-reduced pilot matrix

Pt , [P]:,Gt ∈ Cτ×Mt and a row-reduced channel matrix Zt , [Xt]Gt,: ∈ CMt×N in the tth
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RB. Hence, (4.3) can be rewritten as

Yt︸︷︷︸
τ×N

=
[
pi1 , . . . ,piMt

]︸ ︷︷ ︸
Pt


ai1h

H
ti1

...

aiMt
hHtiMt


︸ ︷︷ ︸

Zt

+ Nt︸︷︷︸
τ×N

, (4.4)

where Gt = {i1, i2, . . . , iMt}. The above results in an under-determined system of linear

equations in the mMTC regime (since τ �Mt �M), with rows of Zt being either all zero

or all nonzero. The columns of Zt thus share a common support, i.e., they are joint-sparse.

This structure is referred to as a multiple measurement vector (MMV) recovery problem

in compressed sensing. Note that the above step reduces the dimension of the matrix to

be estimated, but does not solve the UAD problem. The support recovery of Zt from

(4.4) can be performed with well known algorithms from compressed sensing literature

to recover the activity coefficients in the each of the T RBs. By doing so, we would

obtain an RB-specific activity estimate for each user. However, the activity coefficient

for any user is the same across the T RBs, and thus we need a way to infer {ai} using

information available in all T RBs. One näıve way to do this is to declare users to be

active in the current frame if they are detected to be active in at least t′ RBs, where t′ is

a parameter that can be optimized. As we will see, this leads to very poor performance

compared to the algorithm presented in the sequel. In the following paragraph, we briefly

discuss Multiple sparse Bayesian learning (MSBL) [16], which sets the stage for presenting

our enhancement that combines the information gleaned from each RB in a principled

manner. The notation we will now use is described in Table 4.1.

MSBL is an empirical Bayesian algorithm that recovers the joint-sparse columns of Zt

from linear underdetermined measurements Yt. In MSBL, a hierarchical Gaussian prior

is imposed on the columns of Zt as

p(Zt;γt) =
N∏
n=1

p([Zt]:,n;γt) =
N∏
n=1

CN (0Mt ,Γt), (4.5)
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where the columns of Zt are i.i.d. and Γt = diag(γt). Here, the elements of γ ∈ RM
+

are unknown hyperparameters and γt , [γ]Gt ∈ RMt
+ picks the hyperparameters for the

users who would have transmitted in the tth RB had they been active in the current

frame. Such a hierarchical Bayesian model is known to result in sparse solutions for the

maximum likelihood estimates of γt [16, 120]. Recovering the hyperparameters would

yield the users’ activities since [γ]m models the variance of the mth user’s channel. The

hyperparameters in γt are estimated by maximizing the log-likelihood log p(Yt;γt), with

p(Yt;γt) =
∏N

n=1 p([Yt]:,n;γt). Here, p([Yt]:,n;γt) = CN (0τ ,Σγt) because of the linear

measurement model in (4.4), with Σγt = N0Iτ+PtΓtP
H
t . Thus, the log-likelihood reads as

log(p(Yt;γt)) ∝ −N log |Σγt | − Tr(Σ−1
γt YtY

H

t ). (4.6)

This is a non-convex function of γt, and its maximizer cannot be found in closed form.

In MSBL, expectation maximization (EM) is used to optimize the cost function itera-

tively [121].

Let j denote the iteration index in EM. In the jth MSBL iteration, the notations

γjt , [γj]Gt and [γjt ]i denote the hyperparameter vector of the users in the set denoted by

Gt and the ith entry of γjt , respectively. The EM procedure consists of two steps in each

iteration. The first step, termed the E-step, updates the covariance Σj+1
t and mean µj+1

tn

of the posterior p([Zt]:,n|[Yt]:,n,γ
j
t ) as [120]

Σj+1
t = Γj

t − Γj
tP

H
t (N0Iτ + PtΓ

j
tP

H
t )−1PtΓ

j
t , (4.7)

µj+1
tn = N−1

0 Σj+1
t PH

t [Yt]:,n, n ∈ [N ]. (4.8)

The second step, known as the M-step, updates the hyperparameter for the ith user in

the tth RB as

[γj+1
t ]i =

1

N

N∑
n=1

([Σj+1
t ]i,i + |[µj+1

tn ]i|2), i ∈ [Mt]. (4.9)

This M-step estimates the variance of the channel of the ith user in the tth RB, and this
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hyperparameter update contains the information from the tth RB only. The above two

steps are performed for all T RBs. Before the next E-step, the hyperparameter updates

across the RBs must be combined.

4.3.1 The Proposed UAD Algorithm

The main novelty of our UAD algorithm lies in exploiting the access pattern coefficients

across RBs to find a single hyperparameter update, which we term as the new M-step.

For this purpose, let γ̃j+1
t ∈ RM

+ be an auxiliary variable for the tth RB that is updated as

[γ̃j+1
t ]Gt = γj+1

t ∈ RMt
+ and zero otherwise. The hyperparameter update for the mth user

is obtained at the BS by combining the estimated hyperparameters for that user across

all the RBs using the knowledge of gtm as

[γj+1]m =
1

dm

T∑
t=1

gtm[γ̃j+1
t ]m, m ∈ [M ]. (4.10)

Here dm =
∑T

t=1 gtm is the repetition factor of the mth user. Note that, in conjunction

with (4.9), this new M-step is equivalent to executing an M-step that maximizes the

overall log-likelihood,
∑T

t=1 log p(Yt;γt), based on the knowledge of the APM at the BS.

Effectively, since it estimates the variance of the channel of the mth user by averaging

the estimated variances of the channels in each RB, it combines the information obtained

from all RBs in computing the hyperparameter update. By iterating between the E- and

M-steps, the EM algorithm converges to a saddle point or a local maximizer of the overall

log-likelihood [121]. Further, the EM procedure has been empirically shown to correctly

recover the support of Zt, provided τ and N are large enough [16]. In turn, this leads to

significantly lower false positive and false negative rates in UAD, as we will empirically

show later.

The overall UAD procedure is summarized in Algorithm 3. The algorithm is run for

jmax iterations. As the iterations proceed, the hyperparameters corresponding to inactive

users converge to zero, resulting in sparse estimates. At the end of the EM iterations, the

estimated activity coefficient âm for the mth user is obtained by thresholding [γjmax ]m at
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Algorithm 3: UAD in IRSA

Input: τ,N, T,M,N0,G,P, {Yt}Tt=1, {dm}Mm=1, γpr, jmax

1 Initialize: γ0 = 1M

2 Compute: Gt = {m ∈ [M ] | gtm = 1}, Mt = |Gt|, Pt = [P]:,Gt , t ∈ [T ]

3 for j = 0, 1, 2, . . . , jmax do

4 for t = 1, 2, . . . , T do

5 Compute: Γj
t = diag([γj]Gt)

Σj+1
t = Γj

t − Γj
tP

H
t (N0Iτ + PtΓ

j
tP

H
t )−1PtΓ

j
t

µj+1
tn = N−1

0 Σj+1
t PH

t [Yt]:,n, 1 ≤ n ≤ N

6 [γj+1
t ]i =

1

N

N∑
n=1

([Σj+1
t ]i,i + |[µj+1

tn ]i|2),i ∈ [Mt]

7 [γ̃j+1
t ]Gt = γj+1

t , [γ̃j+1
t ][M ]\Gt = 0M−Mt

8 end

9 [γj+1]m =

∑T
t=1 gtm[γ̃j+1

t ]m∑T
t=1 gtm

, 1 ≤ m ≤M

10 end

11 Output: âm =

1, [γjmax ]m ≥ γpr

0, [γjmax ]m < γpr

, 1 ≤ m ≤M ,

Ẑt = [µjmax

t1 µjmax

t2 . . .µjmax

tN ], 1 ≤ t ≤ T
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a value γpr. The algorithm also outputs the MAP estimates of the channels X̂t in each of

the T RBs with [X̂t]Gt,: = Ẑt and [X̂t][M ]\Gt,: = 0(M−Mt)×N , and the channel estimates of

users across all RBs are stacked in X̂ = [X̂1, . . . , X̂T ].

We now discuss the complexity of our algorithm in terms of the number of floating point

operations (flops). Each MSBL iteration has O(τ 2M) flops, if the pilot matrix is of size

τ×M [16]. In our algorithm, each iteration contains T RBs, where the size of the reduced

pilot matrix is τ ×Mt in the tth RB. Also, the new M-step has lower complexity order

than the E-step. Thus, the overall per-iteration complexity of Algorithm 3 is O(τ 2MS),

where MS =
∑T

t=1 Mt ≈ d̄M , where d̄ is the average repetition factor.

Based on the estimated activity âi and the true activity ai, the set of all users can be

divided into four disjoint subsets

P = {i ∈ [M ] | âiai = 1}, (4.11a)

F = {i ∈ [M ] | âi(1− ai) = 1}, (4.11b)

M = {i ∈ [M ] | (1− âi)ai = 1}, (4.11c)

I = {i ∈ [M ] | (1− âi)(1− ai) = 1}. (4.11d)

P is the true positive set of users, i.e., the users that are correctly detected to be active.

F is the false positive set of users, i.e., the users that are detected to be active and are

truly inactive. M is the false negative set of users, i.e., the users that are detected to be

inactive, but are actually active. I is the true negative set of users, i.e., the users that

are correctly detected to be inactive. False positive and false negative users together form

the errors in the UAD process, and the error rates for such users are discussed in Sec.

4.6. After the active users are detected, the next task is to estimate the channels from the

active users. However, before describing channel estimation, we take a small detour to

explain why traditional compressed sensing approaches are not effective for frame-based

UAD in IRSA-based multiple access.
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4.3.2 Why One-Shot UAD Does Not Work

By stacking the received signal in (4.3) across all RBs, we can estimate the user activity

coefficients in one-shot across all RBs. We now briefly explain why this performs poorly.

The received pilot signals in all RBs can be stacked as

Y = [Y1Y2 . . .YT ] = PX + [N1N2 . . .NT ], (4.12)

X =


a1g11h

H
11 . . . a1gT1h

H
T1

...
. . .

...

aMg1MhH1M . . . aMgTMhHTM

 ∈ CM×NT . (4.13)

The above structure is not an MMV recovery problem because the rows of X are not

completely all zero or all nonzero. If the ith user is inactive, then the ith row of X is all

zero. However if the ith user is active, then the ith row of X is not all nonzero. Only the

blocks of the ith row corresponding to the RBs in which the ith user has transmitted in

(i.e., where gti = 1) are all nonzero and the other blocks are all zero. Since IRSA results

in the transmission of replicas in only a small subset of the T RBs, only a few blocks of

the ith row are nonzero. Different blocks of each row of X corresponding to active users

have different block-sparse supports. If an MMV recovery algorithm is applied across all

RBs in one shot as in (4.13), a pilot length of τ = Ω(Ma log M
Ma

) can achieve a vanishing

activity error rate as N → ∞, where Ma is the average number of active users in each

RB [122]. For example, with M = 1500 and Ma = 150, τ = Ω(346) achieves vanishing

error rates in a massive MIMO regime. These pilot lengths are infeasible in practice, and

thus, in practical regimes of interest, one-shot UAD performs poorly.

4.4 Channel Estimation

In addition to performing UAD, Algorithm 3 also outputs an initial channel estimate

for each user that is detected to be active, as a by-product. However, as the decoding

iterations proceed, the interference cancellation can help improve the accuracy of the

channel estimates, when the channels of the remaining users are re-estimated after each
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SIC operation. We now derive MMSE channel estimates in each decoding iteration for

all the users that have been detected to be active.6 MMSE channel estimation is also

required to compute meaningful expressions for the SINR [104].

Since MMSE estimates are recomputed in every iteration, the signals and channel

estimates are indexed by the decoding iteration k. Let the set of users who have not yet

been decoded in the first k − 1 iterations be denoted by Sk, with Smk , Sk \ {m}, and

S1 = [M ]. The received pilot signal at the BS, in the tth RB during the kth decoding

iteration, is

Ypk
t =

∑
i∈Sk

aigtihtip
H
i + Np

t . (4.14)

In this section, we assume perfect SIC for simplicity of analysis; we study the performance

variation under imperfect SIC in Sec. 4.6.5. This received signal is contributed from all

users who are truly active in the current frame. The BS wishes to compute channel

estimates for users who are detected to be active, i.e., for the users in Â = {i ∈ [M ] | âi =

1}, which is output by Algorithm 3. For this purpose, the received pilot signal is right

combined with the pilot pm, ∀m ∈ Â∩Gt ∩Sk, to obtain the post-combining pilot signal

as

ypk
tm = Ypk

t pm =
∑

i∈Sk
aigtihti(p

H
i pm) + Np

tpm, (4.15)

which is further used for estimating the channel between the BS and the user in the tth

RB [49]. The MMSE channel estimate is given by the following theorem.

Theorem 4.1 I Channel Estimation in IRSA Accounting for UAD Er-

rors.

The MMSE estimate ĥktm of the channel htm is calculated from the post-combining

6Specifically, this is the LCMMSE estimator similar to the previous chapter. The MMSE estimator is
described in Sec. 4.9.1.
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pilot signal as

ĥktm = ηktmypk
tm, ∀m ∈ Sk, (4.16)

where ηktm ,
âmgtmβmσ

2
h‖pm‖2

N0‖pm‖2 +
∑

i∈Sk âigtiβiσ
2
h|pHi pm|2

. Further, the estimation error

h̃ktm , ĥktm − htm is uncorrelated with the channel htm, and is distributed as

CN (0N , δ
k
tmIN). Here, δktm is the estimation error variance and is given by

δktm = βmσ
2
h

(∑
i∈Smk
|pHi pm|2âiaigtiβiσ2

h +N0‖pm‖2∑
i∈Sk |p

H
i pm|2âiaigtiβiσ2

h +N0‖pm‖2

)
.

Proof. See Sec. 4.8.1.

Remark 1 : The channel estimate is composed of a scaling coefficient ηktm and the post-

combining pilot signal ypk
tm. ηktm is computed at the BS and is a function of the estimated

activity coefficients âi. Thus, false positive users feature in the denominator of ηktm and

affect the channel estimates of other users. The BS also computes channel estimates for

these false positive users.7 Since false negative users are detected to be inactive, the BS

does not account for the interference caused by them while computing ηktm. From (4.15),

ypk
tm contains signals from other truly active users if pilots are not orthogonal, and is thus

a function of the true activity coefficients ai. Also, false negative users contribute to ypk
tm,

and thus both types of errors affect the estimates of other users.

Remark 2 : In the above theorem, δktm accounts for the pilot contamination from other true

positive users. False positive users are omitted from the expression for δktm because such

users do not contaminate the pilots of other users. Only true positive users contribute to

δktm. When orthogonal pilots are used, pHi pm = 0,∀i 6= m, there is no pilot contamination,

and thus δktm = βmσ
2
hN0/(âmamgtmβmσ

2
h‖pm‖2 +N0).

7Since false positive users will fail an error check, the BS can potentially try to identify such users
as data decoding proceeds and compute better quality channel estimates. However, we make no such
assumption, and thus, our channel estimation procedure models a worst-case scenario where false positive
users contaminate the channel estimates of other true positive users.



Chapter 4. User Activity Detection in IRSA 129

4.4.1 Cramér-Rao Bound

In this subsection, we derive the Cramér-Rao bound (CRB) [123] on the mean squared

error (MSE) of the channel estimated under the hierarchical Bayesian model given by

(4.5). The signal Yt = PtZt + Nt from (4.4) is first vectorized as

yt︸︷︷︸
Nτ×1

, vec(Yt) = Φt︸︷︷︸
Nτ×NMt

zt︸︷︷︸
NMt×1

+ nt︸︷︷︸
Nτ×1

, (4.17)

where Φt , (IN ⊗Pt), zt , vec(Zt), and nt , vec(Nt).

After stacking the received pilot signal across all RBs as y = [yT1 , . . . ,y
T
T ]T , with

z = [zT1 , . . . , z
T
T ]T , n = [nT1 , . . . ,n

T
T ]T , and Φ = blkdiag{Φ1, . . . ,ΦT}, we obtain

y = Φz + n. (4.18)

Here, we wish to estimate z ∈ CNMS from an observation y ∈ CNTτ via a measure-

ment matrix Φ ∈ CNTτ×NMS , with MS =
∑T

t=1 Mt. Let J denote the NMS × NMS

Fisher information matrix (FIM) associated with the vector z. It is easy to see that

J = blkdiag{J1, . . . ,JT}, where Jt is the NMt ×NMt sub-block of the FIM correspond-

ing to the tth RB. Specifically, the CRB derived in this chapter is the hybrid Cramér-Rao

bound [123], which is a bound analogous to the CRB for the estimation problem in MSBL.

Due to the block diagonal structure of the FIM, the CRB for any estimate ẑt of zt is given

by

E[(ẑt − zt)(ẑt − zt)
H ] � J−1

t . (4.19)

Theorem 4.2 I CRB for Channel Estimation in IRSA.

The sub-block of the FIM associated with the channel vector zt = vec(Zt) in the

tth RB is given by

Jt = IN ⊗N−1
0

(
PH
t Pt +N0Γ

−1
t

)
, (4.20)
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where Γt = diag([γ]Gt) picks the hyperparameters for the Mt users in the tth RB.

Further, the CRB for any estimate [Ẑt]:,n of [Zt]:,n in the tth RB across the nth

antenna is given by

E[([Ẑt]:,n − [Zt]:,n)([Ẑt]:,n − [Zt]:,n)H ]

� N0

(
PH
t Pt +N0Γ

−1
t

)−1
, 1 ≤ n ≤ N. (4.21)

Proof. See Sec. 4.8.2.

Remark : Note that the right hand side in (4.21) is independent of the antenna index.

Also, from (4.19), the MSE of any estimate Ẑt of Zt in the tth RB can be bounded below

by Tr(J−1
t ) as

E[‖Ẑt − Zt‖2
F ] ≥ Tr

(
IN ⊗N0

(
PH
t Pt +N0Γ

−1
t

)−1
)

(4.22)

= NTr
(
Γt − ΓtP

H
t

(
N0Iτ + PtΓtP

H
t

)−1
PtΓt

)
, (4.23)

where the last step is obtained by using the Woodbury matrix identity and Tr(IN ⊗A) =

NTr(A). Considering the signals received across the entire frame, the effective MSE of

the estimate X̂ of X can thus be bounded as

MSE = E[‖X̂−X‖2
F ] =

∑T

t=1
E[‖X̂t −Xt‖2

F ] (4.24)

=
∑T

t=1
E[‖Ẑt − Zt‖2

F ] (4.25)

≥ NN0

∑T

t=1
Tr
(
PH
t Pt +N0Γ

−1
t

)−1
. (4.26)

The channel variance can be calculated as

E[‖X‖2
F ] =

∑T

t=1
E[‖Xt‖2

F ] =
∑T

t=1
Tr(E[ZtZ

H
t ]) (4.27)

=
∑T

t=1
Tr(IN ⊗ Γt) = N

∑T

t=1
Tr(Γt) (4.28)

= N
∑M

m=1
dm[γ]m. (4.29)
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Hence, the normalized mean squared error (NMSE) of any channel estimate X̂ of X can

be bounded as

NMSE ,
E[‖X− X̂‖2

F ]

E[‖X‖2
F ]

(4.30)

≥ N0∑M
m=1dm[γ]m

T∑
t=1

Tr
(
PH
t Pt +N0Γ

−1
t

)−1
. (4.31)

To better understand the above expressions, we consider the case of orthogonal pilots,

i.e., PH
t Pt = τP pIMt , applicable when τ ≥ Mt, ∀t ∈ [T ]. In this case, the MSE is

bounded as

MSE ≥ N
T∑
t=1

Mt∑
i=1

(
τP p

N0

+ [Γ−1
t ]i,i

)−1

(4.32)

= N
M∑
m=1

dm

(
τP p

N0

+
1

[γ]m

)−1

= N
M∑
m=1

 dm[γ]m

1 + [γ]m
τP p

N0

 , (4.33)

and the NMSE can be bounded as

NMSE ≥ 1∑M
m=1 dm[γ]m

M∑
m=1

 dm[γ]m

1 + [γ]m
τP p

N0

 . (4.34)

The above bound is for a given set of repetition factors {dm}, hyperparameters γ, the

pilot SNR τP p

N0
, and is independent of the number of antennas N . As τ → ∞, the MSE

goes to zero.

We now describe an estimator that achieves the CRB.

Lemma 2. Assuming the knowledge of the true hyperparameters, the CRB is

achieved by the MMSE channel estimate:

Ẑt =
(
PH
t Pt +N0Γ

−1
t

)−1
PH
t Yt. (4.35)
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Proof. The MSBL algorithm iteratively calculates the MAP estimate. Since the

posterior p([Zt]:,n|[Yt]:,n;γt) is Gaussian distributed, the MAP estimate is the same

as the mean of the distribution, which coincides with the MMSE estimate in (4.35).

Upon substituting the above estimate into the MSE expression in (4.23), it is easy

to show that the CRB is achieved.

Remark: The above estimator requires knowledge of Γt, which in turn needs the user

activity coefficients, and is thus a genie-aided estimator. In practice, one could use the

hyperparameter estimates output by Algorithm 3 in place of Γt to obtain a “plug-in”

MMSE estimator. However, such an estimator need not achieve the CRB. Nonetheless,

as empirically shown in Sec. 4.6, the channel estimates obtained using (4.8) does achieve

the CRB. (See Figs. 4.5 and 4.6.)

4.5 SINR Analysis

In this section, the SINR of each user in all the RBs where it has transmitted data

is derived, accounting for pilot contamination, estimated user activities, and estimated

channels. Let ρktm denote the SINR of the mth user in the tth RB in the kth decoding

iteration. Similar to (4.2), the received data signal in the tth RB and kth iteration is

ykt =
∑

i∈Skaigtihtixi + nt. (4.36)

Let Mk
t = |Â ∩ Gt ∩ Sk| be the number of users who are detected to be active and have

transmitted in the tth RB, but have not been decoded in the first k − 1 iterations. Â

is obtained as an output of Algorithm 3. A combining matrix Ak
t ∈ CN×Mk

t is used at

the receiver in the tth RB and kth decoding iteration. For each m ∈ [Mk
t ], the vector

aktm = [Ak
t ]:,m combines the received data signal as

ỹktm = [AkH
t ykt ]m = akHtm ykt . (4.37)
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ỹktm = akHtm ĥktmamgtmxm − akHtm h̃ktmamgtmxm +
∑

i∈Smk ∩P
akHtmhtiaigtixi

+
∑

i∈Smk ∩M
akHtmhtiaigtixi + akHtmnt. (4.38)

This post-combining data signal is used to decode the mth user and is composed of

five terms as seen in (4.38). The term T1 , akHtm ĥktmamgtmxm is the desired signal of the

mth user; the term T2 , akHtm h̃ktmamgtmxm is due to the estimation error h̃ktm of the mth

user’s channel; the term T3 ,
∑

i∈Smk ∩P
akHtmhtiaigtixi models the inter-user interference

from other true positive users (who have transmitted in the tth RB and have not yet been

decoded); the term T4 ,
∑

i∈Smk ∩M
akHtmhtiaigtixi is the interference from false negative

users (who have transmitted in the tth RB, but cannot be decoded since they are declared

to be inactive); and T5 , akHtmnt is the additive noise.

To compute the SINR, the power of the post-combining data signal is calculated

conditioned on the channel estimates [49]. This is equivalent to computing the power of the

post-combining data signal conditioned on the post-combining pilot signal as Ez[|ỹktm|2] =

Ez[|T1+T2+T3+T4+T5|2]. Here, z contains the post-combining pilot signals of allMk
t users

yet to be decoded. Since noise is uncorrelated with data, T5 is uncorrelated with the other

terms. As MMSE channel estimates are uncorrelated with their estimation errors [49], T1

is uncorrelated with T2. Since the data signals of different users are independent, T3 and

T4 are independent of each other and the other terms as well. Thus, all the five terms are

uncorrelated and the power in the received signal is simply the sum of the powers of the

individual components

Ez[|ỹktm|2] =
∑5

i=1Ez[|Ti|2]. (4.39)

We now compute the SINR in the following theorem.
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Theorem 4.3 I SINR Accounting for Channel Estimation Errors and

UAD Errors.

The signal to interference plus noise ratio (SINR) achieved by the mth user in the

tth RB in the kth decoding iteration can be written as

ρktm =
Gainktm

N0 + Estktm + MUIktm + FNUktm
, ∀m ∈ Sk, (4.40)

where Gainktm represents the useful signal power of the mth user, Estktm represents

the interference power caused due to estimation errors of all true positive users,

MUIktm represents the multi-user interference power of other true positive users, and

FNUktm represents the interference power caused due to the false negative users.

These can be expressed as

Gainktm = P âmamgtm
|akHtm ĥktm|2

‖aktm‖2
, MUIktm = P

∑
i∈Smk

âiaigti
|akHtm ĥkti|2

‖aktm‖2
, (4.41a)

Estktm = P
∑

i∈Sk âiaigtiδ
k
ti, FNUktm = P

∑
i∈Smk

(1− âi)aigtiβiσ2
h. (4.41b)

Proof. See Sec. 4.8.3.

Remark: The interference components in the SINR expression are contributed only by

truly active users, i.e., the true positive and false negative users. False positive users

do not contribute towards the received data signal. Even though they do not cause

interference, false positive users still affect data decoding of other (true positive) users

via their influence on the channel estimates, which also feature in the SINR expression.

Further, the SINR for such false positive users is zero.8 In contrast, false negative users

contribute to the received pilot and data signals, affecting both the channel estimates and

data decoding of true positive users. Since the BS does not detect or decode such users,

their SINR is zero as well, and thus the system performance degrades due to such false

negative users. True negative users do not contribute to the received pilot or data signal,

8The BS computes noise-based channel estimates for false positive users. Even if the SINR for such
users happens to exceed γth, their packets will fail an error check, and thus their SINR can be set to zero.
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and thus do not affect the decoding of other users. Thus, ρktm = 0, ∀ m ∈ F ∪M∪ I.

The SINR expression derived in Theorem 4.3 is applicable to any chosen combining

scheme.9 For example, with regularized zero forcing combining [49], Ak
t is computed as

Ak
t = Ĥk

t (Ĥ
kH
t Ĥk

t + λIMk
t
)−1, (4.42)

where λ is the regularization parameter, and Ĥk
t is an N×Mk

t matrix containing the chan-

nel estimates of the Mk
t users as its columns. The corresponding SINR is obtained by

substituting the columns of the above combining matrix into (4.40). The system through-

put can now be calculated from (4.40) via the decoding model described in Sec. 4.2.1. We

note that, in practice, the BS does not compute the SINR; it simply tries to decode each

user that is detected to be active, in the RBs it has chosen for transmission. However,

the decoding succeeds only if the SINR exceeds the chosen threshold. Thus, we use the

SINR threshold based abstraction to determine which packets are successfully decoded

and hence the throughput.

4.6 Numerical Results

In this section, the UAD and channel estimation performance of Algorithm 3 and the

impact of UAD errors on the throughput of IRSA are studied via Monte Carlo simulations.

In each run, independent realizations of the user activities, user locations, the APM, and

the fades experienced by the users are generated. The results in this section are for

T = 50 RBs, Ns = 103 Monte Carlo runs, jmax = 100 iterations, γpr = 10−4, path loss

exponent α = 3.76, and channel variance σ2
h = 1 [49]. The pilot sequences are generated

as pm
i.i.d.∼ CN (0τ , P

pIτ ) as in [6]. The users are spread uniformly at random locations

within a cell of radius rmax = 1000 m, and the path loss is calculated as βm = (rm/r0)−α,

where rm is the radial distance of the mth user from the BS and r0 = 100 m is the

reference distance. The soliton distribution [72] with ks = 27 and as = 0.02 is used to

9The MMSE combiner is described in Sec. 4.9.1.
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generate the repetition factors.10

The user activity coefficients are generated as am
i.i.d.∼ Ber(pa), where pa = 0.1 is the

per-user activity probability. The system load L is defined as the average number of active

users per RB, L = Mpa/T . The number of users contending for the T RBs is computed

in each simulation based on the load L as M = bLT/pae. The SNR for the mth user is

calculated as SNRm = Pσ2
hβm/N0. The received SNR of a user at the edge of the cell at

the BS is termed as the cell edge SNR. The power levels of all users is set to the same

value, P , chosen such that the signal from a user at a distance rmax from the BS is received

at the cell edge SNR. This ensures that all users’ signals are received at an SNR greater

than or equal to the cell edge SNR, in singleton RBs.11 The power levels of users is set

to P = P p = 20 dB [49] and N0 is chosen such that the cell edge SNR is 10 dB, unless

otherwise stated.12

4.6.1 Error Rates for UAD

In this subsection, the error rates for the recovery of user activity coefficients in IRSA is

presented. The metrics used to characterize the UAD performance are false positive rate,

FPR , |F|
|F|+|I| , and false negative rate, FNR , |M|

|M|+|P| . FPR is the fraction of inactive

users declared to be active whereas FNR is the fraction of active users declared to be

inactive.

Fig. 4.1 shows the receiver operating characteristic (ROC) plot, and compares the

performance of the proposed algorithm with existing approaches such as the maximum

likelihood (ML), non-negative least squares (NNLS), and MMV, proposed in [14]. Here,

the threshold γpr is varied to generate the curves, and the FNR is plotted versus the FPR

for N = 4 and L = 3, which corresponds to M = 1500 total users. The existing algorithms

are applied to (4.4) to detect the ith user’s activity âti in the tth RB and the user is declared

10The soliton distribution achieves near optimal throughputs [8]. Here, we reuse the same distribution
to generate dm. For the optimal distributions, see Chapter 7.

11If the cell edge SNR is such that the cell edge user’s packet is decodable, then all users’ packets are
decodable with high probability in singleton RBs.

12In cases where the cell edge SNR is varied, the noise variance N0 is varied according to the required
cell edge SNR.
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Figure 4.1: ROC of UAD: comparison with existing approaches.

active if it is detected to be active in at least t′ RBs, i.e., âi = 1{
∑T

t=1 â
t
i ≥ t′}. We use

t′ = 1 since it yields the lowest FNR. Note that all of these algorithms estimate users’

activities in each RB, whereas our algorithm combines the estimated hyperparameters in

a principled manner as seen in (4.10), which is then used to infer the activities, and thus

yields far fewer errors. The proposed algorithm outperforms all three approaches which

have themselves shown an improvement over other compressed sensing based algorithms

such as approximate message passing [14]. The ML approach with τ = 40 intersects

with the proposed algorithm with τ = 10, and at the point of intersection, Algorithm 3

offers a 4-fold reduction in the pilot length compared to the ML approach while achieving

the same UAD performance. Further, the proposed algorithm with τ = 15 significantly

outperforms all the other approaches, and achieves a near-ideal performance.

Next, in Fig. 4.2, we plot the error rates (i.e., the FNR and FPR) of Algorithm 3

versus the pilot length for varied L with N = 16. As the load is increased from L = 1

to L = 2, 3, the total number of users over the T RBs increases from M = 500 to

M = 1000, 1500, and a longer pilot length is needed for accurate UAD. Thus, there is

a significant improvement of the error rates with the pilot length τ . This is important,

since short packets are used in mMTC, and using non-orthogonal pilots with as few as
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Figure 4.2: Impact of pilot length on error rates.

20 symbols yields very low error rates with as many as 1500 users. As noted earlier, with

classical compressed sensing approaches for UAD, one would require Ω(346) pilot symbols

for accurate UAD in the same settings.

Figure 4.3: FNR for different pilot lengths and loads.

Next, we illustrate the variation of the FNR with the number of antennas for varied L

and τ , in Fig. 4.3. The FNR is observed to increase with an increase in L. The FNR also



Chapter 4. User Activity Detection in IRSA 139

reduces with an increase in N or τ since the total number of measurements available in

the received pilot signal increases, which improves the recovery of user activities in each

RB. For τ = 10, the FNR saturates with N for L = 2/3, whereas for τ = 15, the FNR

saturates at high L and reduces for low to medium L. This is because the performance

of MSBL depends more critically on the number of rows τ in the received signal than the

number of columns N [16]. Thus, at a given load, if τ is too low, the FNR improves only

slowly with N , but if τ is large enough, the FNR improves dramatically with N . Hence,

as the load increases, it is important to increase τ as well. In our approach, we solve

a reduced problem in each RB as seen in (4.4), after accounting for the APM. Due to

this, in the tth RB, τ = Ω(Mtpa log Mt

Mtpa
) = Ω(−Mtpa log pa) would achieve a vanishing

error rate. This guarantee is applicable when τ > Mtpa, which is the average number of

non-zero entries to be recovered in each column of Zt in (4.4). For ks = 27, the average

repetition factor is d̄ = 4, and thus on an average, Mt = Ld̄
pa

= 120, 80, 40 for L = 3, 2, 1,

and of the order τ = 28, 19, 10 pilot symbols are required, respectively, to achieve a low

error rate for Algorithm 3 as N gets large.

Figure 4.4: Effect of cell edge SNR on error rates.

In Fig. 4.4, the error rates are plotted against the cell edge SNR for varied L and

τ = 10. For low L, the error rates first linearly reduce with SNR and then saturate at
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high SNR. The FPR for L = 1 requires longer simulations to capture the point where

it saturates with SNR. For high L, both the error rates saturate very quickly with the

SNR. As the load L is decreased, the error rates reduce since there are fewer users to be

detected. As seen earlier, for a fixed L, increasing the pilot length can decrease the rates

and the error rates reduce at the point of saturation. In the noise limited regime, i.e.,

SNR < −5 dB, the error rates are high since the Bayesian estimation process performs

poorly at such low SNRs.

4.6.2 Normalized Mean Squared Error

Figure 4.5: Impact of pilot length on NMSE.

Fig. 4.5 shows the impact of the pilot length τ on the normalized mean squared

error (NMSE) of the channels estimated using Algorithm 3 (the curves labeled “Emp”).

The NMSE is calculated as E[‖X− X̂‖2
F ]/E[‖X‖2

F ], where X is the channel matrix from

(4.13) and X̂ is the corresponding matrix of channel estimates obtained from the UAD

algorithm. It is observed that the NMSE converges to the same value at all L as τ is

increased to 40, and the value the NMSE converges to decreases with SNR. As τ increases,

UAD is perfect and the effect of pilot contamination is reduced, resulting in nearly the

same NMSE at all loads. Also, at low τ , the NMSE is higher for L = 3 compared to
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L = 1, since we have to estimate channels for a larger number of users – both UAD errors

and pilot contamination contribute to a worsening of performance. The normalized CRB

from (4.31) is also plotted for the system under all the configurations. It is seen that the

gap between the true NMSE and the normalized CRB reduces as τ increases. The NMSE

is insensitive to the value of N , as both the numerator and the denominator of the NMSE

scale equally with N . Hence, we do not study the impact of N on the NMSE.

Figure 4.6: Effect of cell edge SNR on NMSE.

Fig. 4.6 shows the impact of SNR on NMSE. The NMSE saturates with an increase

in SNR for both L at τ = 10, since the UAD performance saturates and any increase

in SNR does not improve the quality of the channel estimates. For τ = 20, the NMSE

linearly reduces with SNR up to 20 dB. At higher τ , the NMSE is lower since there

are more measurements available in the received pilot signal to obtain both better UAD

performance and high quality channel estimates. Further, the gap between the true NMSE

and the normalized CRB reduces with an increase in SNR for τ = 20. Thus, the CRB,

which is achieved by the genie-aided estimator in (4.35), is also achieved by the estimates

in Algorithm 3 as τ and SNR are increased.
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4.6.3 Throughput Accounting for UAD and Channel Estimation

The performance of IRSA can be characterized by its throughput, which is defined as

the number of packets that were successfully decoded at the BS as a fraction of the total

number of RBs.13 Note that, at a system load of L, the average throughput of the system

is upper bounded by L packets per RB, since there are, on average, LT unique packets

transmitted per frame of duration T RBs. In this subsection, the SINR analysis presented

in Sec. 4.5 is used to evaluate the throughput of IRSA with UAD and estimated channels.

The number of successfully decoded packets per RB for each simulation is calculated as

described in Sec. 4.2.1, and the throughput of the system is found by averaging over the

simulations.

Figure 4.7: Effect of system load L.

Fig. 4.7 shows the system throughput, T (successfully decoded packets per RB), eval-

uated for different pilot lengths under UAD and estimated CSI, with threshold γth = 16

and regularization parameter λ = 1, as a function of the load L. For τ ≥ 20, the through-

puts exceed unity, which is the throughput of perfectly coordinated orthogonal access.

In the moderate load regime (L < 2), the system can serve more users, and thus the

13We note that the throughput T of IRSA is directly related to the packet loss rate PLR and the
spectral efficiency R as T = L(1− PLR) and R = T × log2(1 + γth), respectively [7].
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throughput increases linearly with load. As the load is increased further, the system be-

comes interference limited as there are too many users sharing the same resources, thereby

decreasing the SINR and the throughput. Also, as the pilot length τ increases, UAD per-

formance improves, better quality channel estimates are obtained, and the corresponding

SINR increases. The orthogonal pilots curve is obtained by allocating τ = M = bLT/pae

for each L, and this achieves nearly the same performance as the case where perfect CSI

is available at the BS. At L = 2, there are M = 1000 users that need to be served. For

τ = 80 and 400, the achievable throughputs are T = 1.5 and 2, respectively. At a load

of L = 1.5, the throughput obtained with τ = 80 is identical to the one offered by the

orthogonal pilots, which would need a pilot length of τ = M = 750. This shows one can

use significantly fewer number of pilot symbols and still achieve the same throughput as

fully orthogonal pilots, at low to medium loads.

Figure 4.8: Impact of estimated UAD.

Fig. 4.8 quantifies the effect of UAD on the performance of IRSA, by plotting the

throughput against the system load under perfect and estimated user activities. Here,

γth = 16 and λ = 1 as in the previous figure. In both cases, the throughput increases

linearly with L till it hits a maximum and then reduces. With a pilot length τ = 5, the gap

between estimated and perfect UAD is at its maximum of 0.7 (packets/RB) at L = 1.2.
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As the pilot length is increased, the gap reduces to a maximum of 0.1 (packets/RB) at

L = 2 for τ = 20 and a negligibly small difference for τ = 30. This shows that for lower

pilot lengths, UAD performance has a significant effect on the throughput. For higher

pilot lengths, the UAD is nearly perfect, and, in this regime, channel estimation and data

decoding limits the performance. Thus, UAD is the easier problem in practical regimes

of interest.

Figure 4.9: Impact of pilot length τ on throughput.

In Fig. 4.9, we investigate the effect of pilot length on the system throughput at

different L and SNRs. The threshold is set to γth = 10 and regularization parameter to

λ = 10−2 for the rest of the results. At a cell edge SNR of −5 dB, the system throughput

is very low due to poor UAD as well as poor quality channel estimates. The throughput

saturates with an increase in τ for all loads. Even though more measurements are available

at high τ , even if the UAD process is successful and the channel estimates are accurate,

the low SNR results in data decoding failures, which limits the throughput. As the cell

edge SNR is increased to 10 dB, the system performance dramatically improves. At this

SNR, optimal throughputs of T = L is achieved with τ = 10/25 for L = 1/2, respectively,

which correspond to M = 500/1000 total users and on an average Mpa = 50/100 active

users, respectively. For L = 3, the optimal throughput is obtained at τ = 70, which is not



Chapter 4. User Activity Detection in IRSA 145

depicted here. As seen previously, the UAD problem is dominant for very low τ for these

loads, and for higher τ , channel estimation dominates the performance. To summarize,

the pilot length has a significant impact on the performance of IRSA and is instrumental

in yielding near-optimal throughputs.

Figure 4.10: Effect of number of antennas N .

In Fig. 4.10, the system throughput is plotted against the number of antennas at the

BS for different L and τ , under both perfect and estimated UAD. The gap between the

perfect and estimated UAD throughputs for L = 2, 3 and τ = 5 increases with N , and the

gap is the highest at N = 128. This is because the UAD performance saturates with N

for high L at low τ . Due to the combined effect of UAD errors, pilot contamination, and

interference, low pilot lengths adversely impact both the UAD performance and system

throughput. For τ = 20, increasing N has a dramatic impact at high L, and the curves

with perfect and estimated UAD overlap completely. Nearly optimal throughputs of

T = L can be achieved with N = 16, 32 antennas for L = 2, 3. At τ ≥ 20, increasing the

number of antennas improves UAD, and increases both the array gain and the decoding

capability of the BS, leading to more users getting decoded with RZF. In particular, at

L = 3, the rise in throughput as N is increased from 8 to 32 shows the impact of the

number of antennas in improving the throughput.
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Figure 4.11: Impact of cell edge SNR.

In Fig. 4.11, we illustrate the impact of cell edge SNR on the throughput. In the noise-

limited regime (SNR < 0 dB), an increase in SNR increases the throughput. Beyond an

SNR of 0 dB, increasing SNR only marginally increases the throughput for all L and τ

and the system becomes interference-limited for τ = 10. This is because both signal and

interference powers get scaled equally, and the SINR remains the same. At τ = 40, for

L = 1 and 2, optimal throughputs can be obtained at a cell edge SNR = 0 dB. However,

the throughput for L = 3 saturates beyond 10 to 15 dB SNR and does not yield the

optimal throughput of T = 3 due to high L and low τ . In summary, the throughput can

be improved by increasing the pilot length, number of antennas, and SNR judiciously:

unilaterally increasing one of the three can lead to the throughput saturating at a value

lower than T = L.

4.6.4 Choice of Pilot Sequences for UAD

For a study on the uniqueness of pilot sequences in IRSA, see Sec. 5.9.9.

In Fig. 4.12, we plot the ROC curves for UAD in IRSA for different pilot sequences,

with N = 4, L = 3, and T = 50. The non-orthogonal pilots, labeled as BPSK and QPSK,
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Figure 4.12: ROC comparison with different pilot sequences.

contain random pilot symbols belonging to the respective PSK constellations, and Zadoff-

Chu (ZC) sequences are generated according to [115]. ZC sequences require prime τ ; we

use τ = 7. With mutually orthogonal pilot sequences, such as Hadamard and discrete

Fourier transform (DFT), τ sequences of length τ can be generated. Thus, we perform

orthogonal pilot reuse (OPR), where each user randomly selects a pilot sequence from the

available set of τ pilot sequences, similar to [63]. We see that all the pilot sequences have

similar UAD performance. In particular, QPSK, BPSK, and Gaussian pilot sequences

have nearly identical performance; DFT and Hadamard sequences have identical UAD

performance. Thus, the choice of pilot sequences do not significantly affect the UAD

performance. However, we observe that choosing non-orthogonal pilot sequences (with

low correlation among distinct pilot sequences) results in marginally better throughput

and nearly identical UAD performance compared to OPR.

Using OPR leads to identical pilots being chosen by many more users compared to

non-orthogonal pilots (since the pool of pilot sequences with a given τ is much smaller

with OPR). In IRSA, the collision probability, i.e., the probability that two colliding users

have identical pilot sequences, is lower than in conventional grant-free random access since

only a small subset of users transmit in any given RB. Similar to the calculation of the

collision probability in grant-free random access [53], as an example, with L = 5, d̄ = 4,
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τ = 20, and pa = 0.1, we have around Ma = 200 average number of active users in

any RB, and the collision probability with random QPSK pilots is of the order of 10−8.

Thus, using non-orthogonal pilots has the advantage of lower collision probability and

also better throughput.

4.6.5 Effect of Imperfect SIC

Performing SIC using the estimated channels and decoded data results in a residual signal

depends on the channel estimation errors of users that have already been decoded. We

elaborate on the analysis of pilot-aided and data-aided channel estimation in Sec. 4.9.2.

Under imperfect SIC, the post-combined data signal is given by

ỹktm = akHtm ĥktmamgtmxm − akHtm h̃ktmamgtmxm +
∑

i∈Smk ∩P
akHtmhtiaigtixi

+
∑

i∈S1\Sk
akHtm h̃kiti aigtixi +

∑
i∈Smk ∩M

akHtmhtiaigtixi + akHtmnt. (4.43)

Here,
∑

i∈S1\Sk akHtm h̃kiti aigtixi represents the residual interference due to channel estimation

errors, and ki denotes the iteration in which the ith user was decoded. The above equation

is applicable under both LMMSE data aided channel estimation and MMSE pilot aided

channel estimation. Thus, the SINR can be expressed as

SINRk
tm =

Gainktm
N0 + Estktm + ImpSICktm + MUIktm + FNUktm

, ∀m ∈ Sk. (4.44)

Here, the term ImpSICktm = P
∑

i∈S1\Sk âiaigtiδ
ki
ti is the extra term that arises due to

imperfect SIC, where δkiti is the power of the MMSE estimate error of the ith user in the

tth RB who has been decoded in the kith decoding iteration.

Fig. 4.13 studies the effect of imperfect SIC on the performance of IRSA, with random

BPSK pilots. For this, we use the SINR in (4.44), with MMSE channel estimation. We

also assume perfect UAD here, since we wish to address the effect of imperfect SIC.

The gap between the perfect SIC and imperfect SIC curves reduce as the pilot length is

increased. The gap is negligible at τ = 20, and is very high at τ = 5. Thus, at higher
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Figure 4.13: Effect of imperfect SIC.

pilot lengths, the effect of imperfect SIC due to channel estimation errors can be ignored.

4.6.6 Which UAD error is more harmful?

False positives and false negatives do not equally affect the performance of IRSA. We now

analyze the impact of these UAD errors in each stage of the UAD algorithm.

1. The post-combined signals are

ypk
tm = Ypk

t pm =
∑

i∈Skaigtihti(p
H
i pm) + Np

tpm, (4.45)

ykt =
∑

i∈Skaigtihtixi + nt. (4.46)

This contains terms from both true positive and false negative users, and thus, FNR

affects the received pilot and data signals.

2. The LCMMSE channel estimate is

ĥktm =
âmgtmβmσ

2
h‖pm‖2

N0‖pm‖2 +
∑

i∈Sk âigtiβiσ
2
h|pHi pm|2

ypk
tm, ∀m ∈ Sk. (4.47)

We can see that the estimated activity coefficients are present in both the numerator

and the denominator of the scaling coefficient in the LCMMSE channel estimate.
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This coefficient is contributed by both true positive and false positive users, and

thus, FPR affects the channel estimates. For the MMSE estimate, a huge FPR can

highly affect the covariance of the received signal and its inverse. Consequently, the

channel estimates can be very poor and the performance can be very poor.

3. The SINR has an extra component in the denominator, FNUktm, that models the

contribution of false negative users: FNUktm = P
∑

i∈Smk
(1− âi)aigtiβiσ2

h. A high FNR

can thus reduce the SINR, and consequently the throughput of IRSA. Poor channel

estimates due to high FPR can also reduce the SINR.

It is not immediately clear which error affects the performance the most. Both the

channel estimation and the data decoding processes are affected by both false positives

and false negatives. We thus plot the errors as a function of γpr in Fig. 4.14(a), and the

ensuing throughput in Fig. 4.14(b). The simulation settings for this are T = 50, d̄ = 4,

pa = 0.1, L = 3, and the other settings are chosen similar to the manuscript. As the

pilot length τ increases, the error rates fall, the channel estimation quality and the SINR

improves, and thus, the throughput improves to the optimal value. At varied γpr, different

error rates have different effects on the throughput. For all the cases, we observe a huge

drop in performance when the FPR> 0.1, especially at very low γpr. This drop is not as

pronounced when FNR> 0.1 at very high γpr, and the FPR has a drastic effect on the

throughput.

In summary, both the UAD errors have a huge effect on the performance of IRSA.

In particular, FPR impacts channel quality and has a huge effect on the performance at

very low γpr.

4.7 Summary

This chapter studied the impact of UAD on the throughput of IRSA, which is a GFRA

protocol that involves repetition of packets across different RBs. A novel Bayesian al-

gorithm was proposed to detect the set of active users in IRSA, which exploited the

knowledge of the APM, and combined the hyperparameter updates across all RBs to
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(a) UAD errors in IRSA

(b) Throughput of IRSA.

Figure 4.14: Impact of UAD errors on the performance of IRSA.
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yield an improved UAD performance. Next, the channel estimates were derived account-

ing for UAD errors. A Cramér-Rao bound was then derived for the channels estimated

under the hierarchical Bayesian model used to develop the proposed algorithm. Then, the

SINR of all users was derived accounting for UAD, channel estimation errors, and pilot

contamination. The effect of these errors on the throughput was studied via extensive

simulations. Many new insights into the design of the IRSA protocol were discussed,

namely, the complexity of UAD compared to channel estimation, and the improvement of

both UAD and throughput with respect to τ , N , SNR, and L. The results underscored

the importance of accounting for UAD errors and channel estimation, in studying the

throughput offered by the IRSA protocol in mMTC. We assumed perfect RB- and frame-

level synchronization across users and the BS; future work can consider relaxing this as-

sumption. Exploiting the asynchronous nature of random access transmissions to detect

active users and estimate their channels instead of orthogonal/non-orthogonal pilots is

also an interesting direction for future work.

4.8 Proofs

4.8.1 Proof of Theorem 4.1: Channel Estimation

Since the channel coefficients are Gaussian distributed, the MMSE estimator14 is ĥktm ,

Ez [htm], where z contains the post-combining pilot signals for all users detected to be

active. The channel estimation error h̃ktm , ĥktm − htm is uncorrelated with the received

pilot signal and the estimate itself [49]. The conditional statistics of a Gaussian random

vector x are

Ez [x] = E [x] + KxzK
−1
zz (z− E [z]) , (4.48)

Kxx|z = Kxx −KxzK
−1
zz Kzx. (4.49)

14Specifically, this is the LCMMSE estimator from the previous chapter. The MMSE estimator is
described in Sec. 4.9.1.
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Here, Kxx, Kxx|z, and Kxz are the unconditional covariance of x, the conditional covari-

ance of x conditioned on z, and the cross-covariance of x and z, respectively. From (4.48),

the MMSE channel estimate ĥktm can be calculated as

ĥktm = E [htmypkH
tm ]E[ypk

tmypkH
tm ]−1ypk

tm (4.50)

=
âmgtmβmσ

2
h‖pm‖2

(N0‖pm‖2 +
∑

i∈Sk âigtiβiσ
2
h|pHi pm|2)

ypk
tm , ηktmypk

tm. (4.51)

The above is computed based on the users detected to be active and is thus a func-

tion of estimated activity coefficients âi. From (4.49), the conditional covariance of the

channel htm is calculated conditioned on z, which contains the post-combining pilot sig-

nals for users detected to be active. Also, Khtmhtm = βmσ
2
hIN , Khtmz = E[htmypkH

tm ]

= ‖pm‖2amgtmβmσ
2
hIN . Thus, the conditional covariance is

Khtmhtm|z = Khtmhtm −KhtmzK
−1
zz Kzhtm (4.52)

= (βmσ
2
h − ηktm‖pm‖2amgtmβmσ

2
h)IN , δktmIN . (4.53)

Here, δktm = βmσ
2
h

(∑
i∈Sm

k
|pH

i pm|2âiaigtiβiσ2
h+N0‖pm‖2∑

i∈Sk
|pH

i pm|2âiaigtiβiσ2
h+N0‖pm‖2

)
represents the interference caused due

to estimation errors of other true positive users. It is a function of the pilots of the other

true positive users only and not the pilots of false positive users. False positive users are

omitted from the above because such users do not contaminate the pilots of other users.

The conditional correlation follows from its definition as

Ez[htmhHtm] = Khtmhtm|z + Ez[htm]Ez[htm]H = δktmIN + ĥktmĥkHtm . (4.54)

The unconditional and conditional means of the error are E[h̃ktm] = E[ĥktm−htm] = 0 and

Ez[h̃
k
tm] = Ez[ĥ

k
tm − htm] = ĥktm − ĥktm = 0. The conditional covariance of the error is

Kh̃k
tmh̃k

tm|z
= Ez[h̃

k
tmh̃kHtm ] = Ez[(ĥ

k
tm−htm)(ĥktm−htm)H ] (4.55)

= Ez[htmhHtm]− ĥktmĥkHtm = δktmIN . (4.56)
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Since hktm ∼ CN (0N , βmσ
2
hIN), the estimate ĥktm and the error h̃ktm are distributed as CN

(0N , η
k
tm‖pm‖2amgtmβmσ

2
hIN) and CN (0N , δ

k
tmIN) respectively. Also, MMSE estimates

are uncorrelated with their errors [49].

4.8.2 Proof of Theorem 4.2: Cramér-Rao Bound

The FIM sub-block associated with zt in the tth RB is defined as Jt = Jt1 + Jt2 [123],

with

Jt1 = E

[(
∂ log p(zt)

∂z∗t

)(
∂ log p(zt)

∂z∗t

)H]
, (4.57)

Jt2 = E

[
E

[(
∂ log p(yt|zt)

∂z∗t

)(
∂ log p(yt|zt)

∂z∗t

)H ∣∣∣∣∣zt
]]

. (4.58)

The conditional probability of yt given zt is CN (Φtzt, N0IτN), whereas the channel vector

zt is distributed as CN (0NMt , IN ⊗ Γt). Hence, the log of the conditional probabilities

behave as

log p(zt) ∝ −zHt (IN ⊗ Γt)
−1zt, (4.59)

log p(yt|zt) ∝ −
‖yt −Φtzt‖2

2

N0

. (4.60)

Upon taking the derivative and then calculating the required expectations, it is straight-

forward to show that Jt1 = IN ⊗Γ−1
t and Jt2 = IN ⊗ (PH

t Pt/N0). Further, the sub-blocks

of Jt corresponding to different antennas are identical and equal to PH
t Pt/N0 + Γ−1

t . The

result follows.

4.8.3 Proof of Theorem 4.3: SINR Computation

In order to compute the SINR, we first compute the power of the individual components.

The desired signal power is

Ez[|T1|2] = Ez[|akHtm ĥktmamgtmxm|2] = Pa2
mg

2
tm|akHtm ĥktm|2. (4.61)
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The powers of ai and gti are dropped, since they are binary-valued. In order to account

for zero data rates for false positive users, the desired signal power is non-zero only for

true positive users and the desired gain is written as

Gainktm ,
Ez[|T1|2]

‖aktm‖2
= P âmamgtm

|akHtm ĥktm|2

‖aktm‖2
. (4.62)

The power of the estimation error term is calculated as

Ez[|T2|2] = Ez[|akHtm h̃ktmamgtmxm|2] = Pa2
mg

2
tmδ

k
tm‖aktm‖2. (4.63)

Next, the power of the first inter-user interference term is

Ez[|T3|2] = Ez

[∣∣∣∑i∈Smk ∩P
akHtmhtiaigtixi

∣∣∣2]
= P

∑
i∈Smk ∩P

a2
i g

2
tia

kH
tmEz[htih

H
ti ]a

k
tm

(a)
= P

∑
i∈Smk ∩P

a2
i g

2
tia

kH
tm (δktiIN + ĥktiĥ

kH
ti )aktm

= P
∑

i∈Smk ∩P
a2
i g

2
ti(‖aktm‖2δkti + |akHtm ĥkti|2), (4.64)

where (a) follows from Theorem 4.1. Here, Ez[|T2|2]+Ez[|T3|2] represents the contribution

of estimation error components of all true positive users and multi-user interference com-

ponents of other true positive users. We now split the normalized version of the above into

the sum of the error component Estktm and the multi-user interference MUIktm as follows

Estktm , P
∑

i∈Sk âiaigtiδ
k
ti, (4.65)

MUIktm , P
∑

i∈Smk
âiaigti

|akHtm ĥkti|2

‖aktm‖2
. (4.66)

The power of the second inter-user interference term is

Ez[|T4|2] = Ez

[∣∣∣∑i∈Smk ∩M
akHtmhtiaigtixi

∣∣∣2]
(b)
= P

∑
i∈Smk ∩M

a2
i g

2
tia

kH
tmE[htih

H
ti ]a

k
tm
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= P
∑

i∈Smk ∩M
a2
i g

2
tia

kH
tm (βiσ

2
hIN)aktm

= P
∑

i∈Smk ∩M
a2
i g

2
tiβiσ

2
h‖aktm‖2, (4.67)

where the conditional expectation is dropped in (b) since the BS does not have the knowl-

edge of the channel estimates of false negative users. The normalised power of the false

negative users is calculated as

FNUktm , P
∑

i∈Smk
(1− âi)aigtiβiσ2

h. (4.68)

Finally, the noise power is calculated as

Ez[|T5|2] = Ez[|akHtmnt|2] = N0‖aktm‖2. (4.69)

Since the five terms in the received signal in (4.38) are mutually uncorrelated, a meaningful

expression for the SINR can be obtained by dividing the useful signal power from (4.62)

by the sum of the interference and the noise powers (which follow from (4.65), (4.66),

(4.68), and (4.69)) [49, 104]. The SINR can thus be calculated as in (4.40) for all the

users.

4.9 Appendix

4.9.1 MMSE Channel Estimation and MMSE Combining with

UAD

In the channel estimation process in Sec. 4.4, we use the low complexity MMSE

(LCMMSE) estimator. We now derive the MMSE estimator similar to the previous chap-

ter, accounting for the UAD process. After the UAD phase, the BS performs channel

estimation based on the received pilot signal. The received pilot and data signals are

indexed by the decoding iteration since the signals are processed in iterations. For this

purpose, we let k denote the current decoding iteration index, and Sk denote the number
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of users not yet decoded up to the kth decoding iteration, with S1 = [M ] and S ik , Sk\{i}.

The received pilot signal at the BS in the tth RB in the kth decoding iteration is given

by

Ypk
t =

∑
i∈Skaigtihtip

H
i + Np

t , (4.70)

where the first term contains signals from users who have transmitted in the current

frame. Since the BS has detected only users in Â = {i ∈ [M ]|âi = 1} to be active, it

constructs channel estimates only for these users.

We now derive the MMSE channel estimates at the BS in each RB. Let Gt = {i ∈

[M ]|gti = 1} be the set of users who would have transmitted in the tth RB had they been

active. LetMk
t = Gt ∩Sk ∩ Â, where Mk

t = |Mk
t |. This is the set of users who have been

detected to be active in the tth RB but have not been decoded up to the kth iteration

at the BS. Let us stack the channels of the Mk
t users as the columns of Hk

t ∈ CN×Mk
t ,

let Pk
t ∈ Cτ×Mk

t denote a matrix that contains the pilot sequences of the Mk
t users as its

columns, and let Bk
t , σ2

hdiag(βi1 , βi2 , . . . , βiMk
t

) be a diagonal matrix that contains the

path loss coefficients of the Mk
t users, with Mk

t = {i1, i2, . . . , iMk
t
}. Hence, the received

pilot signal from (4.70) can be written as Ypk
t = Hk

tP
kH
t + Np

t . We now find the channel

estimates using the signal Ypk
t .

Theorem 4.4 I MMSE Channel Estimation in IRSA Accounting for

UAD Errors.

The minimum mean squared error (MMSE) channel estimate Ĥk
t of Hk

t can be

found as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t . (4.71)

Specifically, the estimate of the channel hti of the ith user at the BS is calculated

as ĥkti = [Ĥk
t ]:,i. Further, the estimation error h̃kti , ĥkti − hti is distributed as
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h̃kti ∼ CN (0N , δ
k
tiIN), where δkti is calculated as

δkti=βiσ
2
h

(
N0‖ckti‖2+

∑
j∈Sik
|pHj ckti|2âjajgtjβjσ2

h

N0‖ckti‖2+
∑

j∈Sk |p
H
j ckti|2âjajgtjβjσ2

h

)
, (4.72)

where Ck
t , Pk

tD
k
t (P

kH
t Pk

tD
k
t + N0IMk

t
)−1, ckti , [Ck

t ]:,i, and Dk
t ,

diag(dti1 , dti2 , . . . , dtiMk
t

), with dti= âiaigtiβiσ
2
h.

Proof. The proof is similar to the proof of Theorem 3.1 in Chapter 3.

Remarks: The MMSE channel estimate Ĥk
t of Hk

t can be written as seen in (4.71) as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t , (4.73a)

(a)
= Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, (4.73b)

where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

via an inverse of either a τ × τ matrix or an Mk
t ×Mk

t matrix as required.

4.9.1.1 SINR Calculation

Similar to (4.70), we can find the received data signal in the tth RB in the kth decoding

iteration as

ykt =
∑

i∈Skaigtihtixi + nt. (4.74)

Here, we have that E[xi] = 0 and E[|xi|2] = pi.

ỹktm = amgtmxmakHtm ĥktm − amgtmxmakHtm h̃ktm

+
∑

i∈Smk ∩P
aigtixia

kH
tmhti +

∑
i∈Smk ∩M

aigtixia
kH
tmhti + akHtmnt. (4.75)

We use a generic combining vector aktm to combine the received data signal across
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antennas to obtain the post-combined data signal ỹktm , akHtm ykt as seen in (4.75).

The term T1 , amgtmxmakHtm ĥktm is the desired signal of the mth user; the term

T2 , amgtmxmakHtm h̃ktm is due to the estimation error h̃ktm of the mth user’s channel;

the term T3 ,
∑

i∈Smk ∩P
aigtixia

kH
tmhti models the inter-user interference from other

true positive users (who have transmitted and have not yet been decoded); the term

T4 ,
∑

i∈Smk ∩M
aigtixia

kH
tmhti is the interference from false negative users (who have trans-

mitted, but cannot be decoded since they are declared to be inactive); and T5 , akHtmnt is

the additive noise. Since noise is uncorrelated with the other terms and the data streams of

distinct users are uncorrelated, all the terms are uncorrelated with each other. The power

in the received signal is a sum of the powers of the terms. Based on the post-combined

data signal, we now compute the SINR.

Theorem 4.5 I SINR in IRSA Accounting for UAD Errors.

The signal to interference plus noise ratio (SINR) achieved by the mth user at the

CPU in the tth RB and the kth decoding iteration can be written as

ρktm=
Gainktm

N0 + Estktm + MUIktm + FNUktm
,∀m ∈ Sk. (4.76)

Here, Gainktm is the desired signal power, Estktm is the power of the channel estima-

tion error, MUIktm is the multi-user interference due to other true positive users, and

FNUktm is the interference due to false negative users. These can be calculated as

Gainktm , pmâmamgtm|akHtm ĥktm|2/‖aktm‖2, (4.77)

Estktm ,
∑

i∈Skpiâiaigtiδ
k
ti, (4.78)

MUIktm ,
∑

i∈Smk
piâiaigti|akHtm ĥkti|2/‖aktm‖2, (4.79)

FNUktm ,
∑

i∈Skpi(1− âi)aigtiβiσ
2
h. (4.80)

Proof. The proof is similar to the proof of Theorem 4.2 in Sec. 4.8.3.

The channel estimates ĥkti and the error covariance δkti in the above expressions are
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obtained from Thm. 4.4. The combining vector that maximizes the SINR in (4.76) is the

MMSE combiner [49], which can be found as

Ak
t = Ĥk

tD
k
t,p(d

k
t IMk

t
+ ĤkH

t Ĥk
tD

k
t,p)
−1, (4.81)

= (dkt IN + Ĥk
tD

k
t,pĤ

kH
t )−1Ĥk

tD
k
t,p, (4.82)

where Dk
t,p,diag(pi1 , pi2 , . . . , piMk

t

) contains the power coefficients of the Mk
t users, and

dkt , N0 +
∑

i∈Skpiâigtib
k
ti, where

bkti = βiσ
2
h

(
N0‖fkti‖2 +

∑
j∈Sik
|pHj fkti|2âjgtjβjσ2

h

N0‖fkti‖2 +
∑

j∈Sk |p
H
j fkti|2âjgtjβjσ2

h

)
. (4.83)

Here, Fk
t , Pk

tE
k
t (P

kH
t Pk

tE
k
t + N0IMk

t
)−1, with fkti , [Fk

t ]:,i, and Ek
t ,

diag(eti1 , eti2 , . . . , etiMk
t

), where eti, âigtiβiσ2
h.

Thus, we have derived the MMSE channel estimator similar to the previous chapter,

accounting for the UAD process.

4.9.2 Channel Estimation – Pilot Aided vs Data Aided

This section investigates the application of data aided channel estimation as opposed to

pilot aided channel estimation. It also describes the effect of imperfect SIC due to channel

estimation errors on the performance of IRSA.

First, we briefly discuss the handling of imperfect SIC in the literature. Coded slotted

aloha (CSA), which is a variant of IRSA, has been recently analyzed with imperfect

SIC [88]. Also, square-norm-based (SNB) interference subtraction and payload-aided-

based (PAB) subtraction techniques have been used to analyze the effect of imperfect SIC

in CSA [124]. The SNB scheme performs IC on the post-combined pilot signal ypk
tm using

‖htm‖2, i.e., norm-squared of the channel. This assumes perfect CSI and neglects the

cross products between channels of different users. The PAB scheme treats the decoded

data symbols as virtual pilots and re-estimates the channels of the decoded user. This

yields a significantly higher quality channel estimate compared to the one obtained via
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only the pilots. The SBS SIC technique performs well in the massive MIMO setup, and it

is outperformed by the PAB scheme, especially as the payload length increase. IRSA has

also been analyzed with an SIC limit [86], i.e., a limit on maximum number of packets

that can be recovered in each RB (which, however, is different from imperfect SIC).

We now describe a data-aided (DA) channel estimation process. Let Yd
t ∈ CN×τd be

the received data signal of users, where τd is the number of data symbols in any packet.

This can be written as

Yd
t =

∑M

i=1
aigtihtix

H
i + Nd

t , (4.84)

where xi ∈ Cτd is the data vector of the ith user. After the mth user is decoded, xm is

known at the BS, and it can compute a least squares (LS) DA channel estimate similar

to [124] as follows:

ĥLS,DA
tm = Yd

txm/‖xm‖2. (4.85)

However, the LS channel estimate is not uncorrelated with the estimation error [49], and

thus, we cannot write out a meaningful SINR expression [104]. This is needed to quantify

the SINR in order to use the SINR threshold model. Thus, we do not employ the LS

channel estimate.

Since linear minimum mean squared error (LMMSE) estimates are uncorrelated with

their estimation errors, we compute LMMSE estimates using decoded data symbols as a

virtual pilot sequence. Firstly, the received data signal is right multiplied by the decoded

data packet as

yDA
tm = Yd

txm = amgtmhtm‖xm‖2 +
∑

i 6=m
aigtihtix

H
i xm + Nd

txm, (4.86)

where yDA
tm is the post-combined signal which is to be used for DA channel estimation.

The LMMSE channel estimate can be obtained as

ĥLMMSE,DA
tm = E

[
htmyDAH

tm

] (
E
[
yDA
tm yDAH

tm

])−1
yDA
tm (4.87)
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=
âmgtmβmσ

2
h

N0 + âmgtmβmσ2
h‖xm‖2 + P p

∑
i 6=m âigtiβiσ

2
h

yDA
tm . (4.88)

For comparison, we now present the MMSE channel estimate that is obtained from

the pilot symbols, i.e., the pilot-aided MMSE estimate:

ĥMMSE,PA
tm =

âmgtmβmσ
2
h

N0 + âmgtmβmσ2
h‖pm‖2 +

∑
i 6=m âigtiβiσ

2
h
|pH

i pm|2
‖pm‖2

yp1
tm. (4.89)

We note a fundamental difference between the LMMSE DA and the MMSE PA estimates.

In the former, the data sequences of other users are unknown while calculating the channel

estimates, whereas in the latter, the pilot sequences of other users are known at the BS.

This helps the MMSE PA estimation perform much better than LMMSE DA even when

the number of data symbols is large.

Figure 4.15: NMSE under different channel estimation schemes.

In Fig. 4.15, we plot the normalized mean squared error (NMSE) in channel recon-

struction for four different channel estimation schemes. Here, τd denotes the number of

data symbols, and τp = τ denotes the number of pilot symbols. The DA estimates (la-

beled LS DA/LMMSE DA) are computed using purely the data symbols of the decoded

users, and these estimates do not use the pilot symbols. In contrast, the pilot aided (PA)

estimates (labeled LS/MMSE) are computed using purely the pilot symbols alone. The
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data symbols are generated as random BPSK symbols for DA estimates, whereas for PA

estimates, we use Hadamard pilots. We observe that the LS PA estimates perform poorly

whereas the MMSE PA estimates perform the best, yielding up to −36 dB NMSE. The

DA estimates remain below NMSE of −10 dB. As we increase either τp or τd, the perfor-

mance of all the estimates improve. Thus, we can use DA estimates similar to [124], but

they yield a higher NMSE compared to MMSE estimates obtained using the pilot symbols

only, which we have used here. This shows that MMSE estimation is quite powerful, and

yields a channel estimation error that has very low variance. In turn, this results in lower

residual noise after SIC. Thus, we just use the MMSE estimates from the pilot symbols

and derive an expression for SINR, as detailed in 4.6.5.

4.9.3 Necessity of UAD in IRSA

This section details the necessity of performing UAD in IRSA. Firstly, we explain the

need for a UAD algorithm. In traditional collision-based IRSA, the BS looks for an RB

in which a single user has transmitted, i.e., an RB with no collisions [7]. That is, a user’s

packet can be decoded in an RB if and only if that user is the only one transmitting in

that RB (i.e., a singleton slot). Since the user’s packet is received without any collisions,

the synchronization sequence transmitted by the users as part of the header of the packet

itself can be used by the BS to perform accurate channel estimation and then subsequently

decode the data packet. Thus, in a collision based model, UAD is not necessary, since

decoding succeeds only in singleton slots.

In contrast, we use the SINR-threshold model for decoding in IRSA, with multiple

antennas at the BS. Here, users can be decoded even when there are collisions, provided

their SINR exceeds a threshold. This approach is more practical than the collision-based

model [74], since multiple users could potentially be simultaneously decoded when the

BS is equipped with multiple antennas. Now, even though multiple users can be decoded

based on the SINR analysis, their pilot signals still collide, and thus, the synchronization

signal (which can be viewed as a common pilot signal across the users) alone is not

sufficient to perform either activity detection or channel estimation of multiple such users.
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In this chapter, similar to [6, 53], the goal of using pilot sequences is to detect active

users as well as estimate the channels of the users declared to be active. This approach

has been pursued previously in the GFRA literature, in the case where multiple antennas

are employed at the BS [6]. UAD is necessary when users’ packets collide, and we wish to

potentially recover all the packets using multiple antennas at the BS. We note that using

non-orthogonal pilots is also enough for detecting the active users in each RB, estimating

their channels, and performing decoding. We follow this viewpoint, and the protocol

is still distributed in nature [53]. The BS tries to decode the users using the channel

estimates that it computes in the pilot phase. As a consequence, without UAD, the

BS would waste valuable resources (especially in the mMTC scenario) trying to decode

users that have not even transmitted any packets, i.e., users that are inactive. Further,

the quality of the channel estimates computed at the BS would be poor while trying to

decode the users from collided packets. Knowing the subset of active users helps the BS

decide which users it needs to decode, thereby saving computational resources and also

aiding the channel estimation process. It also helps with conserving valuable resources at

the BS, since it can focus on decoding the packets of users detected to be active.

Finally, we explain the relation of our analysis to unsourced random access (URA).

In URA, introduced by Polyanskiy in [56], the base station (BS) only aims to decode the

messages transmitted by the users, and the identity of the users is not important. Initial

work on IRSA [7] and coded slotted aloha (CSA) [54] predate the idea of unsourced mul-

tiple access [56,58,59]. While it is true that IRSA can also be used as a URA protocol, it

can also be used in massive random access without requiring the access to be “unsourced”.

In this chapter, we are not specifically looking at IRSA as a URA protocol. In particular,

we do not insist that the BS be able to identify which user is transmitting, nor do we

preclude it from being able to do so.
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Chapter 5

Censored-IRSA for

Interference-Limited mMTC

5.1 Introduction

Massive machine-type communications (mMTC) is an evolving use-case in next generation

wireless technologies that is expected to serve millions of devices per square km [125].

Typical mMTC devices sporadically transmit their data to a central base station (BS),

and then sleep until the next time when they have data to transmit [3]. In order to

serve mMTC applications efficiently, we need to use distributed massive random access

protocols such as irregular repetition slotted aloha (IRSA) [7]. The performance of IRSA

depends on the load of the system, which is the ratio of the number of users participating

in a frame to the number of slots in the frame. Existing works in IRSA [7,11] talk about

an inflection load, which is the load beyond which the system becomes overloaded or

interference-limited, resulting in a dramatic reduction of the throughput of IRSA. In this

chapter, we address the issue of the poor throughput of IRSA in the overloaded regime by

proposing a distributed self-censoring protocol which allows the system to maintain the

throughput at the maximum possible value even as the load increases.

The contents of this chapter is published in part in a conference paper, for the SISO

case, in IEEE ICC in 2023 [18], and a full-length journal paper, for the MIMO case, in

166
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under preparation [19].

5.1.1 Interference Limitation in IRSA

In IRSA, each user samples a repetition factor from a predefined distribution, and then

transmits those many replicas of their packets over multiple (randomly chosen) slots in

a frame [82]. If the BS decodes a user in a slot, it uses the decoded data to perform

successive interference cancellation (SIC) in all the other slots in which the user has

transmitted a packet replica [79]. The decodability of a user in IRSA depends on its

signal to interference plus noise ratio (SINR) [17]. The SINR of the user drops if the

user has a poor channel state or there are too many collisions resulting in high multi-user

interference (MUI). At low loads, the system is not MUI-limited, and the packet loss rate

(PLR) is near-zero [86]. Beyond the inflection load, the system is overloaded, IRSA is

MUI-limited, and the PLR rapidly goes to one [8]. In this case, allowing only users with

good channel states to transmit increases their decodability by improving their SINRs via

reducing MUI.

To tackle the MUI-limitation of IRSA in overloaded mMTC, we develop a novel

censored-IRSA (C-IRSA) protocol, as follows. At the start of each frame, the BS trans-

mits a pilot signal using which the users estimate their channel state information (CSI).

Users with poor CSI self-censor, i.e., they refrain from transmitting, which reduces colli-

sions and enables successful decoding of the users with good CSI. A user has good CSI if

‖v‖2≥ν,where v is the fading channel of the user and ν is a censor threshold that can be

chosen at the BS based on the system load and periodically broadcast to the users. Note

that this approach retains the fully distributed nature of IRSA. A high censor thresh-

old can lead to too few users participating, resulting in low throughputs, whereas a low

threshold can lead to too many collisions, again resulting in low throughput. Analyzing

the trade-off between the censor threshold and the throughput is one of the focuses of

this chapter.
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5.1.2 Related Works

IRSA was initially proposed in [7] for the collision channel, wherein packets could only be

decoded in singleton slots. Singleton slots refer to slots in which only a single packet has

been received. The maximum throughput of IRSA, with a collision channel, was shown to

be one, when the Soliton distribution is used to generate the repetition factors [72]. When

the BS is equipped with multiple antennas, it can potentially decode multiple packets in a

single slot, if the SINRs of the packets are sufficiently high, which can result in throughputs

greater than 1. Thus, an SINR threshold model has been considered for IRSA, where

users can be decoded if and only if their SINR exceeds a threshold [8,74]. IRSA has been

studied with several practical aspects such as the Rayleigh fading channel [17], with path

loss [8], and with multiple antennas and pilot contamination [11]. In particular, in mMTC

applications, since it is not possible to assign orthogonal pilots to all users, the resulting

pilot contamination can significantly degrade the performance of IRSA [42].

The age-of-information metric has recently gained interest in IRSA [51, 79]. IRSA

has been examined with energy harvesting [81], and analyzed in an information theoretic

setting [82]. Several variants of aloha have been proposed like polar slotted aloha [83]

and K-repetition [84, 85]. We have previously analyzed IRSA with channel estimation

errors [11], pilot contamination [12], user activity detection [15], and multi-cell deploy-

ments [24]. Density evolution has been used to characterize the asymptotic throughput of

IRSA [8,11,17]. Authors in [86] propose a feedback mechanism for IRSA based on which

decoded users cease transmissions.

However, none of the above papers address the dramatic reduction in the throughput

at high loads, which is the main focus in this chapter.

5.1.3 Contributions

The contributions of this chapter are as follows:

1. Firstly, in Sec. 5.2, we develop censored-IRSA (C-IRSA) to tackle the MUI-limitation

of IRSA at high system loads. This involves self-censoring of users, wherein users
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with poor CSI refrain from transmitting, which decreases the effective system load

and ensures that the uncensored users are all successfully decoded.

2. Secondly, in Sec. 5.3, we empirically analyze the performance of C-IRSA accounting

for path loss, channel estimation errors, MIMO fading, and pilot contamination.

3. Next, in Sec. 5.4, using density evolution (DE), we theoretically analyze the perfor-

mance of C-IRSA when the users perform path loss inversion based power control.

4. In Sec. 5.5, we derive the optimal censor threshold accounting for path loss, MIMO,

fading, channel estimation, and pilot contamination. We present two approaches:

the first is a semi-analytic approach, whereas the second is an algorithmic approach

that is PLR-optimal. Using these choices of the censor threshold, the PLR of un-

censored users can be driven close to zero at all system loads, while maintaining the

throughput of the system at its highest value.

Using extensive numerical simulations, we show that, C-IRSA operates at the full

throughput at all loads, in contrast to vanilla IRSA which has near-zero throughput as

the load is increased. In particular, at high loads, C-IRSA offers a 10× throughput

improvement over IRSA without user censoring.

Notation

The symbols a, a, A, [A]i,:, [A]:,j, 0N , 1N , and IN denote a scalar, a vector, a matrix, the

ith row of A, the jth column of A, all-zero vector of length N , all ones vector of length

N , and an identity matrix of size N×N , respectively. [a]S and [A]:,S denote the elements

of a and the columns of A indexed by the set S, respectively. diag(a) is a diagonal matrix

with diagonal entries given by a. The set of real and complex matrices of size N ×M

are denoted as RN×M and CN×M . N (a,A) and CN (a,A) denote the real and complex

Gaussian distribution, respectively, with mean a and covariance A. [N ] denotes the set

{1, 2, . . . , N}. | · |, ‖ · ‖, [·]T , [·]∗, [·]H , E[·], and Ea [·] denote the magnitude (or cardinality

of a set), `2 norm, transpose, conjugate, hermitian, expectation, and the expectation



Chapter 5. Censored-IRSA for Interference-Limited mMTC 170

conditioned on a, respectively. The superscript p is used as a descriptive superscript in

association with a symbol that is related to the pilots. All the other superscripts (or

subscripts) that have not been defined as above are indices.

5.2 System Model

We consider a typical IRSA setup where M single-antenna users want to communicate

with a BS having N antennas, over frames consisting of T slots each. These M users

are located arbitrarily within a cell centered at the BS location. mMTC applications use

similar settings as narrowband internet of things, which uses a bandwidth of 180 kHz [3].

Over this band, the channel can be assumed to be flat and Rayleigh block fading. The BS

allocates a pre-specified narrowband channel, and all the M users transmit their packets

within this band.1 The system load, L, is defined as the ratio of the number of users to

the number of slots per frame, L , M/T . In any given frame, the users randomly select

a subset of the T slots, and transmit replicas of their packets in those slots. In vanilla

IRSA, when L is high, there are too many collisions in each slot, leading to a failure in

the SIC decoding process and therefore poor performance.

In C-IRSA, users censor themselves from transmitting if they have a poor channel

state. The BS computes the censor threshold, denoted by ν, based on the system load L.2

The BS occasionally broadcasts the threshold ν to all the users. The BS also transmits

a pilot signal at the start of each frame, using which the users estimate their channel

state. The users participate in any IRSA frame if and only if the norm squared of its

fading vector exceeds the censor threshold. We refer to the users who self-censor as

inactive or censored users, and the other users as active or uncensored users. A censored

user can sleep till the next time it has data to transmit, by when its channel state would

change. In the overloaded regime, vanilla IRSA has near-zero throughput due to too many

collisions. At such high L, performing censoring only helps improve the performance of

1The BS can distribute the load over several bands, but the problem formulation does not change as
IRSA is used in each band.

2The BS can estimate the system load from the collisions in the previous IRSA frames. We discuss
the optimal choice of ν in Sec. 5.5.
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the system. Thus, we allow users who self-censor to drop their packets, and not perform

any re-transmissions in subsequent frames.

In a given frame, the access of the T slots is represented as an access pattern matrix

(APM) G ∈ {0, 1}T×M [11]. If the mth user (if it were active) transmits its packet in the

tth slot, then gtm , [G]tm = 1; otherwise gtm = 0. This user transmits a symbol xm with

E[xm] = 0 and E[|xm|2] = pm. Thus, the received data signal at the BS in the tth slot is

yt =
∑M

m=1amgtmhmxm + nt, (5.1)

where hm =
√
βmvm is the uplink channel vector of themth user, vm

i.i.d.∼ CN (0N , σ
2
hIN) ∀m ∈

[M ] is the uplink fading channel of the mth user (assumed independent across users

and frames), βm is the path loss coefficient of the mth user,3 am is the activity coeffi-

cient of the mth user (am = 1 if the mth user is active and am = 0 otherwise), and

nt
i.i.d.∼ CN (0N , N0IN) is the complex AWGN at the BS, σ2

h is the fading variance, and N0

is the noise variance. We define the signal to noise ratio (SNR) as ρ0 , Pσ2
h/N0, and the

cell edge SNR as ρe , Pβedgeσ
2
h/N0, where P denotes the transmit power of a user at the

cell edge. The cell edge SNR ρe refers to the received SNR of a user placed at the edge of

the cell, if that were the only user transmitting, with βedge denoting that user’s path loss

coefficient.

Similar to (5.1), we can write the received pilot signal at the BS in the tth slot as

Yp
t =

∑M
m=1amgtmhmpHm + Np

t , (5.2)

where Np
t is the additive Gaussian noise, and pm ∈ Cτ is the pilot sequence employed

by the mth user. Here, τ is the length of the pilot sequence and [Np
t ]nr

i.i.d.∼ CN (0, N0),

∀ n ∈ [N ], r ∈ [τ ] and t ∈ [T ].

Remark 1: At the start of each frame, the BS transmits a pilot signal, using which

the users estimate their channel state. The ith user participates in the frame if and

only if the norm squared of its fading-only estimate v̂i exceeds the threshold ν. Thus,

3For a study of C-IRSA accounting for the effects of shadowing, see Sec. 5.9.8.
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we have that ai = 1{‖v̂i‖2 ≥ ν}, ∀i ∈ [M ]. The set of active users is denoted by

A , {i ∈ [M ]|‖v̂i‖2 ≥ ν}, and the number of active users is Ma , |A|.4 The active load

La is defined as La ,Ma/T .

Remark 2: We note that users self-censor based only on the fading vector vi, which

does not include path loss. This makes the censoring process fair and not dependent on

the user locations. Further, the users do not send any information to the BS, such as its

estimated CSI. The BS still needs to detect the set of active users and then estimate their

channels.

5.2.1 Decoding Process

The BS first carries out an activity detection phase based on which it knows the subset

of users that have not self-censored. The BS then processes the received pilot and data

signals iteratively. In every slot, the BS attempts to decode the users’ packets. If a user

is successfully decoded, which can be verified via a cyclic redundancy check, then the BS

performs SIC in all slots in which that user has transmitted a packet [7]. This process

repeats and the decoding proceeds in iterations until no new packets can be decoded.

In this work, the SINR threshold model: any packet is decoded correctly if and only

if its SINR is above a threshold γth ≥ 1 [17, 74]. With the SINR threshold model, the

performance of C-IRSA can be computed as follows. First, the SINRs achieved by all users

in all slots is computed. If there is a user with SINR ≥ γth in some slot, that packet is

successfully decoded and its contribution is removed all other slots in which that user has

transmitted a replica [8]. We then proceed to the next decoding iteration and recompute

the SINRs for all users yet to be decoded. This process stops when no additional users

are decoded in two successive iterations. The throughput T is calculated as the number

of unique packets correctly decoded divided by the number of slots.

4Due to channel reciprocity, users can estimate their uplink channels using the downlink pilots. The
CSI is used only for self-censoring, and is not sent to the BS. The details of this channel estimation
process is presented in Section 5.9.3.
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5.3 Performance Analysis of C-IRSA

At the BS, the users’ packets are decoded using the SIC process as with vanilla IRSA. This

entails a user activity detection (UAD) phase, followed by a channel estimation phase, and

finally a data decoding phase. The BS first performs UAD to detect the subset of active

users in each slot. This can be performed, for example, using the UAD algorithm proposed

in [15].5 For simplicity, we assume perfect UAD, i.e., the BS has perfect knowledge of

A. The results presented in this work can be easily extended to include UAD errors as

seen in Chapter 4,6 where it is shown that a short pilot sequence length used for channel

estimation at the BS is also sufficient for accurate UAD.7

5.3.1 Channel Estimation

The BS first performs channel estimation based on the received pilot signal. The received

pilot and data signals are indexed by the decoding iteration since the signals are processed

in iterations. For this purpose, we let k denote the current decoding iteration index, and

Sk denote the set of users not yet decoded up to the kth decoding iteration, with S1 = [M ]

and S ik , Sk \ {i}. The received pilot signal at the BS in the tth slot in the kth decoding

iteration is given by

Ypk
t =

∑
i∈Skaigtihip

H
i + Np

t , (5.3)

where the first term contains signals from uncensored users.

We now derive the channel estimates at the BS in each slot. Let Gt , {i ∈ [M ]|gti = 1}

be the set of users who would have transmitted in the tth slot had they been active. Let

Mk
t , Gt ∩ Sk ∩ A and Mk

t , |Mk
t |. This is the set of Mk

t active users who have

5Details of the UAD process can be found in Chapter 4.
6Analysis including UAD errors is presented in Section 5.9.4.
7In practice, the UAD errors become negligibly small when the pilot length is chosen as τ = k1 log(L)+

k2, where k1 and k2 are constants. This guarantee can be derived from [122], and it ensures that low
pilot lengths are sufficient for extremely accurate UAD. We have explored the performance with tuned
k1 and k2 for τ = k1 log(L) + k2, and have found that we achieve near ideal UAD. For more information,
check out the results presented in Section 5.9.5.
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transmitted in the tth slot but have not been decoded up to the kth iteration at the BS.

We stack the channels of the Mk
t users as the columns of Hk

t ∈ CN×Mk
t , let Pk

t ∈ Cτ×Mk
t

denote a matrix that contains the pilot sequences of the Mk
t users as its columns, and let

Bk
t , σ2

hdiag(βi1 , βi2 , . . . , βiMk
t

) be a diagonal matrix that contains the path loss coefficients

of the Mk
t users, with Mk

t = {i1, i2, . . . , iMk
t
}. Hence, the received pilot signal from (5.3)

can be written as Ypk
t = Hk

tP
kH
t + Np

t . We now find the channel estimates using Ypk
t .

Lemma 3. The minimum mean squared error (MMSE) channel estimate Ĥk
t of Hk

t

is

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t . (5.4)

Specifically, the MMSE estimate of the channel hi of the ith user at the BS is

calculated as ĥkti , [Ĥk
t ]:,i. Further, the estimation error h̃kti , ĥkti−hi is distributed

as h̃kti ∼ CN (0N , δ
k
tiIN), where δkti is calculated as

δkti=βiσ
2
h

(
N0‖ckti‖2+

∑
j∈Sik
|pHj ckti|2ajgtjβjσ2

h

N0‖ckti‖2+
∑

j∈Sk |p
H
j ckti|2ajgtjβjσ2

h

)
, (5.5)

with Ck
t , Pk

tD
k
t (P

kH
t Pk

tD
k
t + N0IMk

t
)−1, ckti , [Ck

t ]:,i, and Dk
t ,

diag(dti1 , dti2 , . . . , dtiMk
t

), with dti,aigtiβiσ2
h.

Proof. This can be derived in a similar fashion as the proof of Theorem 3.1 in

Chapter 3.

Remark 3: We note that the channel estimate is indexed by the slot index, since we obtain

different channel estimates in different slots. The MMSE channel estimate Ĥk
t of Hk

t can

be written as seen in (5.4) as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t , (5.6a)

(a)
= Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, (5.6b)
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where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

as an inverse of either a τ × τ matrix or an Mk
t ×Mk

t matrix. Also, higher the value of

δkti, higher is the estimation error as well as pilot contamination.

5.3.2 SINR Calculation

Similar to (5.3), we can write the received data signal in the tth slot in the kth decoding

iteration as

ykt =
∑

i∈Skaigtihixi + nt. (5.7)

We use a generic combining vector aktm to combine the received data signal across

antennas to obtain the post-combined data signal ỹktm , akHtm ykt as

ỹktm = amgtmxmakHtm ĥktm − amgtmxmakHtm h̃ktm

+
∑

i∈Smk
aigtixia

kH
tmhi + akHtmnt. (5.8)

The term T1 , amgtmxmakHtm ĥktm is the desired signal of the mth user; the term T2 ,

amgtmxmakHtm h̃ktm is due to the estimation error h̃ktm of the mth user’s channel; the term

T3 ,
∑

i∈Smk
aigtixia

kH
tmhi models the inter-user interference from other active users; and

T4 , akHtmnt is the additive noise. Since noise is uncorrelated with the other terms and the

data streams of distinct users are uncorrelated, all the terms are uncorrelated with each

other. The power in the received signal is the sum of the powers of the terms. Based on

the post-combined data signal, we now compute the SINR.

Lemma 4. The signal to interference plus noise ratio (SINR) achieved by the mth

user at the BS in the tth slot and the kth decoding iteration in C-IRSA can be

written as

ρktm=
Gainktm

N0 + Estktm + MUIktm
,∀m ∈ Sk. (5.9)
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Here Gainktm is the desired signal power, Estktm is the power of the channel estimation

error, MUIktm is the multi-user interference. These can be calculated as

Gainktm , pmamgtm|akHtm ĥktm|2/‖aktm‖2, (5.10a)

Estktm ,
∑

i∈Skpiaigtiδ
k
ti, (5.10b)

MUIktm ,
∑

i∈Smk
piaigti|akHtm ĥkti|2/‖aktm‖2. (5.10c)

Proof. This can be derived in a similar fashion as the proof of Theorem 4.3 in

Chapter 4.

Remark 4: The channel estimates ĥkti and the error covariance δkti in the above expressions

are obtained from Lemma 3. The combiner that maximizes the SINR in (5.9) is the MMSE

combiner [49], which can be found as

Ak
t = Ĥk

tD
k
t,p(d

k
t IMk

t
+ ĤkH

t Ĥk
tD

k
t,p)
−1, (5.11)

= (dkt IN + Ĥk
tD

k
t,pĤ

kH
t )−1Ĥk

tD
k
t,p, (5.12)

where Dk
t,p,diag(pi1 , pi2 , . . . , piMk

t

) contains the power coefficients of the Mk
t users, and

dkt , N0 +
∑

i∈Skpiaigtiδ
k
ti.

The empirical performance of C-IRSA can be found as detailed in Alg. 4. The decoding

is run for kmax iterations, and the output is the system throughput, T , the PLR of the

active users, PLRa, and the system PLR, PLR. We now characterize the theoretical

performance of C-IRSA and then discuss the optimal choice of the censor threshold.

5.4 Theoretical Analysis of C-IRSA

In the previous section, we described the empirical evaluation of the performance of C-

IRSA, as detailed in Alg. 4. In this section, we describe the process of density evolution

(DE) [7, 11], which is used to characterize the theoretical performance of C-IRSA. DE is

applicable as Ma and T →∞ with a fixed La = Ma/T [17], i.e., it yields the asymptotic
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Algorithm 4: Performance Evaluation of C-IRSA

Input: τ,N, T,M, ρ0, N0, kmax,G,P, {Yp
t }Tt=1,A

1 Initialize: S1 = [M ], Gt = {i ∈ [M ]|gti = 1}

2 for k = 1, 2, . . . , kmax do

3 for t = 1, 2, . . . , T do

4 Find Mk
t = Gt ∩ Sk ∩ A, Pk

t = [P]:,Mk
t
, Ypk

t

5 Obtain channel estimates Ĥk
t from (5.4)

6 Evaluate the SINR ρkti, ∀i ∈ Sk from (5.9)

7 If ρkti ≥ γth, remove user i from Sk and perform SIC in all slots where

gti = 1

8 end

9 end

10 Output: PLR = |Skmax|/M, T = M(1− PLR)/T, PLRa = |A ∩ Skmax|/|A|.

throughput. Hence, we describe the DE process in terms of the active load, La. We only

outline the high-level steps in the analysis here; detailed discussion of the DE process can

be found in several references [7,8,11,17]. For the DE analysis in this section, for analytical

tractability, we assume that users perform path loss inversion (PLI) based power control,

and that the BS has perfect knowledge of the CSI.

SIC decoding has been viewed as message passing on a bipartite graph [7,8], and thus,

C-IRSA can be decoded on graphs as well. The underlying bipartite graph contains the

user nodes on one side, the slot nodes on the other, and the edges between them. There

exists an edge between a user node and a slot node if and only if that user has transmitted

a packet in the slot. During decoding, an edge is removed if the user connected to it has

been decoded in any of the slots. The process of an edge removal corresponds to an SIC

operation. Decoding is successful, if all edges in the graph are removed by the end of the

decoding process. A failure is declared if not all edges are removed and no new edge is

removed from the graph in two consecutive iterations.

With every user, there is an associated repetition factor, which is the number of replicas

that user has transmitted in a given frame. With every slot, there is an associated
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collision factor, which is the number of packets that have collided in that slot. The node-

perspective user degree distribution is defined as the set of probabilities {φd}dmax
d=2 , where

φd is the probability that a user has a repetition factor d; with minimum and maximum

repetition factors of 2 and dmax, respectively. The edge-perspective user degree distribution

is defined as the set of probabilities {λd}dmax
d=2 , where λd = dφd/φ

′(1) is the probability that

an edge is connected to a user with repetition factor d. The corresponding polynomial

representations of the node- and edge- perspective user degree distributions are

φ(x) =
∑dmax

d=2 φdx
d, λ(x) =

∑dmax

d=2 λdx
d−1, (5.13)

respectively. The average repetition is d̄ ,
∑

d dφd.

We now use the above degree distributions to find a pair of interdependent failure

probabilities denoted by “pi” and “qi” in the ith decoding iteration. When a decoding

failure happens, an edge passes a failure message between the user and the slot nodes.

This happens when the user connected to an edge is not decoded in the slot that is

connected to the same edge, in the current decoding iteration. We denote the probability

that an edge carries a failure message from a slot node to a user node by pi, and the

probability that an edge carries a failure message from a user node to a slot node by qi.

The failure probability qi is calculated using the edge-perspective user degree distribution

as

qi =
∑dmax

d=2 λdp
d−1
i−1 = λ(pi−1). (5.14)

Here, pd−1
i−1 is the probability that an edge carries a failure message in the ith iteration

given that it is connected to a user node with repetition factor d. If all the other d − 1

incoming edges to that user node carry failure messages in the previous iteration, then

the edge will carry a failure message from that user node in the ith iteration. The failure

probability pi is calculated as in [11,17] as

pi = 1− e−Lad̄qi
∞∑
r=1

θr
(Lad̄qi)

r−1

(r − 1)!
, f(qi). (5.15)



Chapter 5. Censored-IRSA for Interference-Limited mMTC 179

Here, θr is the probability that a reference packet gets decoded in any iteration in a slot of

degree r using only intra-slot SIC [17]. Intra-slot SIC refers to interference cancellation

within the same slot a user is decoded in, whereas inter-slot SIC refers to interference

cancellation in a different slot in which a user is decoded. The evaluation of θr, which is

the crucial step in the DE process, is described in Theorem 5.1.

In DE, qi = λ(pi−1) and pi = f(qi) are calculated recursively as functions of each other

using (5.14) and (5.15). The iterations are initialized with either q0 = 1 or p0 = f(1).

At the end of the iterations, the failure probability is obtained as p∞ = limi→∞ pi. The

probability that a packet from a user with repetition factor d does not get decoded at all

is (p∞)d. Thus, the asymptotic PLR of the active users (PLRa), which is the fraction of

packets of active users that are not decoded at the BS, can be found as

PLRa = φ(p∞) =
∑dmax

d=2 φd(p∞)d. (5.16)

Now, for CSI based censoring with a threshold ν, the fraction of active users is denoted

by F̄(ν). Since the channel states of users are i.i.d., we can calculate F̄(ν) as F̄(ν) =

Pr(‖v‖2 ≥ ν). The active load La of the system is then La=LF̄(ν).8 Since the fraction of

censored users in the system is F(ν) = 1− F̄(ν), the effective PLR of the system (including

censored users) can be calculated as

PLR = F(ν) + F̄(ν)PLRa. (5.17)

Using the asymptotic PLR, we can now obtain the throughput T of the users in the system

as

T = L(1− PLR) = La(1− PLRa). (5.18)

The iterations pi=f(λ(pi−1)) converge to p∞ = 0 if the active load La < L∗a, asymptoti-

cally [7,11]. Here, L∗a is called the active inflection load of the system, and it corresponds

8Similar to [17], La is calculated using the fraction of the average number of active users as opposed
to the instantaneous number of active users.
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to a system inflection load of L∗=L∗a/F̄(ν), with a threshold ν. For La<L
∗
a, since p∞ = 0,

we have PLRa = 0, PLR = F(ν), and T = LF̄(ν) = La. For any La ≥ L∗a, PLRa does not

converge to 0, and T decreases monotonically with La. Also, from (5.17), we see that

PLR≥F(ν), and thus, T ≤ LF̄(ν).

Note that in (5.15), pi depends on the active load La, which itself is a function of the

threshold ν as La = LF̄(ν). Consequently, the active inflection load L∗a, the system inflec-

tion load L∗, the active PLR, the system PLR, and the throughput T are all dependent

on ν.

We now describe the evaluation of the success probability θr.

5.4.0.1 Single Input Single Output (SISO)

The result below is applicable for C-IRSA when the BS and UEs are equipped with single

antennas.

Theorem 5.1 I Success Probability in Censored-IRSA with SISO.

For the Rayleigh block-fading channel with an SNR ρ0, a censor threshold ν, and

an SINR threshold γth, the probability that a reference packet gets decoded in a

slot of degree r using only intra-slot SIC, can be obtained as

θr =
r∑

k=1

exp(rν − (r − k)νγ̄th,k − ρ−1
0 (γ̄th,k − 1))

r γ̄
r−(k+1)/2
th,k

, (5.19)

where γ̄th,k = (1 + γth)k, and ν ≤ ρ−1
0 γth.

Proof. See Section 5.8.1.

Remark 5: When ν=0, i.e., there is no censoring, the expression for θr matches with the

results by Clazzer et. al. [17].
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5.4.0.2 Multiple Input Multiple Output (MIMO)

Closed form expressions for the success probability θr are difficult to compute [8, 11] due

to several reasons. With MIMO, there is no clear ordering of the peak SINRs across

intra-slot SIC iterations. Further, the channel estimates of the users are correlated across

the intra-slot SIC iterations as well as across the user indices, which makes order statistics

not directly applicable. Finally, θr is dependent on a large number of random channel

vectors, the order statistics of the peak SINRs, and the pilot sequences of the users. Thus,

we now present two approximations to θr, which are valid when perfect CSI is available

at the BS and the BS uses maximal ratio combining (MRC) to decode the users. These

lead to interpretable expressions for the SINR and θr, and provide approximations to the

throughput with estimated CSI.

Theorem 5.2 I Success Probability in Censored-IRSA with MIMO.

When perfect CSI is available at the BS, and MRC is used for decoding users in

C-IRSA, θr can be calculated as follows. Firstly, θ1 can be exactly found as

θ1 =

Γinc(N, ρ
−1
0 γth)/Γinc(N, ν), ν ≤ ρ−1

0 γth,

1, ν > ρ−1
0 γth.

(5.20)

where Γinc(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete gamma function. Next, θ2

can be calculated as

θ2 =1{t0(ν)>1}+(1−(1−t0(ν))N)1{0≤ t0(ν)≤1}. (5.21)

Here, t0(ν) , γ−1
th − (H̄(ν)ρ0)−1, H̄(ν) , N + νN/SN(ν), and SN(ν) , (N −

1)!
∑N−1

k=0 (νk/k!), with SN(0) , 1.

For r ≥ 3, two approximations to θr with large N are described below. The Gamma

approximation is

Gamma: θr = 1− Γinc(r − 1, Nt0(ν))/Γ(r − 1). (5.22)
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With µN , (N + 1)−1, and σ2
N , N(N + 1)−2(N + 2)−1, we obtain the Normal

approximation

Normal: θr = 1−Q
(
t0(ν)− (r − 1)µN√

r − 1σN

)
, (5.23)

where Q(·) is the standard Normal Q-function.

Proof. See Section 5.8.2.

Remark 6: The above approximations are derived using the theory of deterministic equiv-

alents, and they provide closed form expressions for θr, and are valid when N is large [106].

5.5 Choice of Censor Threshold

In this section, we discuss the optimal choice of the censor threshold. Firstly, we develop

a semi-analytic approach that fixes a target load Ltgt based on a target threshold νtgt.

Next, we develop an optimization based approach to calculate the censor threshold in

Alg. 5, which computes two censor thresholds ν1 and ν2 in the linear throughput and

MUI-limited regions of IRSA, respectively. Under both the approaches, the active PLR

of C-IRSA can be made to approach zero while maintaining the throughput of the system

at its highest. For notational convenience, this section has been written for perfect CSI,

but the results are also applicable for estimated CSI.

5.5.1 Semi-Analytic Approach to Find the Censor Threshold

In this subsection, we describe a semi-analytic approach to find the optimal censor thresh-

old for C-IRSA, under both SISO and MIMO cases. The semi-analytic approach is appli-

cable with path loss, channel estimation errors, MMSE combining, pilot contamination,

etc.

In order to find the censor threshold, we first choose a target PLR for the active

users, PLRa,tgt, which is a maximum permissible PLR among the active users. Let Ltgt be
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the target load, which is the minimum L at which the system achieves an active PLR of

PLRa,tgt, with ν = νtgt. At Ltgt, the active load is La =LtgtF̄(νtgt), with a corresponding

throughput Ttgt. For a load L≥Ltgt, we wish to continue to operate at the same PLR of

PLRa,tgt, and to keep the throughput fixed at Ttgt. This can be done by maintaining the

same active load La at L and Ltgt. Thus, we need to choose ν such that

La = LF̄(ν) = LtgtF̄(νtgt). (5.24)

5.5.1.1 SISO

For the SISO case, we have that F̄(ν)= Pr(|v|2 ≥ ν). Thus, F(x) and F̄(x),1−F(x) are

the CDF and the CCDF, respectively, of the exponential distribution (of |v|2 ∼ exp(1))

evaluated at x. Since F̄(x)=exp(−x), we obtain

ν = log(L/La) = log(L/Ltgt) + νtgt. (5.25)

The above is valid when L≥Ltgt. When L<Ltgt, the threshold that maximizes the active

inflection load L∗a is νtgt = ρ−1
0 γth. An intuitive reason for this is that the probability of

decoding a user, if that user was the only one transmitting in a slot, is θ1 = Pr(|h1|2 ≥

ρ−1
0 γth | |h1|2≥ ν) = exp(ν−ρ−1

0 γth) · 1{ν≤ ρ−1
0 γth} + 1{ν >ρ−1

0 γth}, when the threshold

is ν. So if we set ν > ρ−1
0 γth or ν < ρ−1

0 γth, we are censoring more or fewer users than

required, respectively. Thus, the optimal choice of the censor threshold is given by the

function g(·, ·) defined as

ν = g(L,Ltgt) ,

ρ
−1
0 γth, L < Ltgt,

log(L/Ltgt) + ρ−1
0 γth, L ≥ Ltgt.

(5.26)

For νtgt =ρ−1
0 γth, the system inflection load is L∗=L∗a/F̄(ρ−1

0 γth). For Ltgt<L
∗, the set of

functions {g(·, ·)} achieve PLRa≤PLRa,tgt among the set of active users. In practice, we

set a low target PLR of PLRa,tgt≈10−3 or 10−4 to ensure near-zero PLRa. We summarize

the result in the theorem below.
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Theorem 5.3 I Optimal Censor Function in Censored-IRSA with SISO.

Let νtgt =ρ−1
0 γth and Ltgt be the minimum load at which the system achieves a PLR

of PLRa,tgt using Alg. 4. Then, for any given L, the optimal choice of the censor

threshold is given by ν=g(L,Ltgt), where

ν = g(L,Ltgt) ,

ρ
−1
0 γth, L < Ltgt,

log(L/Ltgt) + ρ−1
0 γth, L ≥ Ltgt.

(5.27)

The above choice of the censor threshold maximizes that throughput while main-

taining a maximum PLR of PLRa,tgt among the uncensored users.

5.5.1.2 MIMO

For the MIMO case, we have that F̄(ν)= Pr(‖v‖2 ≥ ν). Thus, F(x) and F̄(x) , 1− F(x)

are the CDF and the CCDF, respectively, of the Gamma distribution (of ‖v‖2 ∼ Gamma

(rate = 1, shape = N)) evaluated at x. Thus, we have F̄(x) , exp(−x)
∑N−1

k=0 (xk/k!).

When the BS is equipped with multiple antennas, it can potentially decode multiple

packets in a slot, if the SINRs of the packets are sufficiently high. This is referred to as

the capture effect, and is the main difference between the SISO and MIMO cases. Packet

capture can also occur due to receive power disparity between users arising from the

differences in the distances of the users to the BS. Thus, we need to analyze the optimal

censor threshold both when we have multiple antennas at the BS as well as when users

do not perform PLI. Recall that censoring is done using only the fades, and not including

the path loss, to maintain fairness across users.

The target threshold νtgt maximizes the active inflection load L∗a. For the SISO case,

νtgt =ρ−1
0 γth is the least ν that maximizes L∗a. In the general case, we choose νtgt = ρ−1

e γth,

where ρe is the cell edge SNR. Here, we choose the cell edge SNR since it ensures that a

user at the cell edge gets decoded if that were the only user transmitting. An intuitive

reason for choosing νtgt = ρ−1
e γth is that, as before, the probability of decoding a user, if

that user were the only one transmitting in a slot, is θ1 =Pr(‖v1‖2≥ρ−1
e γth | ‖v1‖2≥ν),
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when the threshold is ν. So if we set ν >ρ−1
e γth or ν <ρ−1

e γth, we are censoring more or

fewer users than required, respectively.

When L ≥ Ltgt, the system contains too many users, and is MUI-limited. In this

regime, censoring enhances the throughput via a combination of improved channel states

among the active users and lower MUI. If we choose the censor threshold similar to SISO,

the choice of the threshold with MIMO is given by the function h(·, ·) defined as

h(L,Ltgt) ,

νtgt, L < Ltgt,

H(L,Ltgt, νtgt), L ≥ Ltgt.

(5.28)

Here, the function H(·, ·, ·) is defined as

H(L,Ltgt, νtgt) , Ḡ(La/L) = Ḡ(F̄(νtgt)Ltgt/L). (5.29)

Here x = Ḡ(y) is the inverse CCDF of the Gamma distribution (with rate 1 and shape

N), which is the x such that y = F̄(x). For N = 1, L ≥ Ltgt, and νtgt = ρ−1
e γth, we have

ν = H(L,Ltgt, νtgt) = log(L/Ltgt)+ρ−1
e γth, which coincides with the expression in (5.27).

In (5.28), we censor with a threshold ν = νtgt for L < Ltgt. Censoring need not always

help reduce PLR for L < Ltgt. This can happen in two cases. In the first case, if the

system has zero PLR at a low L, then no censoring is needed since the system is already

operating optimally.9 This is possible, for example, when there are multiple antennas at

the BS, due to capture effect. In the second case, the system can be power-limited when

the transmit powers of users are not high enough, and thus, the MUI component is low

to begin with at low L. Censoring does not reduce MUI significantly, and ensures that

there are fewer active users upon censoring, and thus, the throughput reduces. Hence,

we do not need to censor users in this case. Thus, we see that the censor function from

(5.28) need not always be the optimal function, and we need to account for cases where

we do not need to perform any censoring for L < Ltgt.

9In practice, PLR= 0 is not feasible, but rather only a sufficiently low PLR (for example, < 10−3) is
achievable. For convenience, in this chapter, we use PLR=0 to mean a sufficiently low PLR.
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We now derive a generalized censor function that maximizes the throughput of C-IRSA

at all loads. For this, we define the parameter L0, which denotes the load up to which

users do not self-censor, with L0 < Ltgt. L0 can be computed as the system inflection

load L∗ corresponding to the threshold ν=0.10 We summarize our choice of the threshold

in the theorem below.

Theorem 5.4 I Optimal Censor Function in Censored-IRSA with

MIMO.

Let L0 be the system inflection load L∗ corresponding to the threshold ν = 0,

νtgt = ρ−1
e γth be the target threshold, and Ltgt be the minimum load at which

the system achieves a PLR of PLRa,tgt with ν = νtgt, obtained using Alg. 4. The

generalized censor function in IRSA is given by ν= i(L,Ltgt, L0), where

i(L,Ltgt, L0) ,


0, L < L0,

log(L/L0)

log(Ltgt/L0)
νtgt, L0 ≤ L < Ltgt,

H(L,Ltgt, νtgt), L ≥ Ltgt,

(5.30)

Proof. See Section 5.8.3.

Remark 7: The proposed functions are identical for L≥Ltgt, and different for L<Ltgt.

The h(·,·) function is an extension of g(·,·), and uses a fixed threshold for L<Ltgt. However,

i(·,·,·), which has ν=0 for L<L0, does not use a fixed threshold for L0≤L<Ltgt. Choosing

L0 = 0 does not result in identical h(·,·) and i(·,·,·). In fact, the logarithmic interpolation

in i(·,·,·) is not defined for L0 =0. Further, as we will see in Sec. 5.6, i(·,·,·) maximizes the

throughput, whereas h(·,·) minimizes PLRa.

Remark 8: Recall that we set νtgt as ρ−1
0 γth with PLI, as opposed to ρ−1

e γth without PLI.

The latter ensures that a user at the cell edge is successfully decoded if they were the only

user transmitting in a slot. With PLI, the received power of all users are the same up to

10In practice, L0 can be modelled as a parameter which can be fine-tuned. This choice of L0 is addressed
in Fig. 5.3. Also, we have investigated the performance of C-IRSA with various other censor functions in
Sec. 5.9.6.
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the variations due to fading. PLI results in higher power consumption per transmission

by cell edge users compared to without PLI. Another benefit of not inverting the path loss

is the additional packet captures due to the disparity in the received power levels across

users.

Via numerical experiments, we have found that the results in Theorem 5.4 hold true

when the system model accounts for pilot contamination, MMSE combining, channel

estimation errors, and UAD errors. Thus, the semi-analytic approach described here is

applicable under any of these practical non-idealities.

5.5.2 Algorithmic Approach to Find the Censor Threshold

In the previous subsection, we presented a semi-analytic approach to find the censor

threshold, which uses Alg. 4. In this subsection, we develop an active PLR-optimal

algorithm for the same. This algorithmic approach does not require choosing either L0

or Ltgt, and it optimizes the censor threshold by minimizing the active PLR at every L.

This algorithmic approach is based on the DE process. Let PLRa(ν) be the function (see

(5.16)) that outputs the active PLR for the C-IRSA protocol with a censor threshold ν.

Since censoring only helps reduce the active PLR, the function PLRa(ν) is a non-increasing

function of ν. Let L∗(ν) denote the system inflection load with a censor threshold ν. Thus,

for all L ≤ L∗(ν), we have PLRa(ν) ≈ 0, and ∀L > L∗(ν), we have PLRa(ν) > 0. As we

vary ν ∈ R+, the corresponding L∗(ν) is also a non-decreasing function on R+. Since

we can operate with any ν ∈ R+, every L can be viewed as a system inflection load for

some threshold ν0, i.e., L = L∗(ν0) for some ν0. Our goal thus reduces to finding ν0,

since the throughput equals L till L = L∗(ν0) and reduces thereafter. We now develop an

optimization algorithm in order to find this threshold ν0.

We term the region L ≤ L∗(ν) as the linear throughput region and L > L∗(ν) as the

MUI-limited region of C-IRSA. In the linear throughput region, the system has either

optimal censoring or excessive self-censoring since PLRa(ν) = 0 in this region. Thus, we

need to identify a threshold ν1 ≥ ν0 such that PLRa(ν1) = 0. In the MUI-limited region,

enough users have not self-censored. Thus, we need to identify a threshold ν2 < ν0 such
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that PLRa(ν2) > 0. The optimal value of ν0 can be identified by performing a line search

between ν1 and ν2.

Algorithm 5: Algorithm to compute the PLR-optimal censor threshold in C-

IRSA
Input: ν1, ν2, νε, νδ, pε, PLRa(·)

Output: Optimal threshold νalgo

1 if PLRa(0) ≤ pε then

2 Output: νalgo = 0 // Output ν = 0 if PLRa = 0

3 end

4 while PLRa(ν1) > pε do

5 ν1 = ν1 + νδ // Increase ν1 if PLRa > 0

6 end

7 while PLRa(ν2) ≤ pε do

8 ν2 = max{ν2 − νδ, 0} // Decrease ν2 if PLRa = 0

9 break if ν2 = 0

10 end

11 Initialize: ν = ν2

12 if PLRa(ν) > pε and |ν1 − ν2| > νε then

13 ν2 = ν, ν = (ν1 + ν2)/2 // Update ν2 and ν

14 go to Step 9

15 else

16 if PLRa(ν) ≤ pε and |ν1 − ν2| > νε then

17 ν1 = ν, ν = (ν1 + ν2)/2 // Update ν1 and ν

18 go to Step 9

19 else

20 Output: νalgo = ν1 // Optimal solution reached

21 end

22 end
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We present the PLR-optimal approach in Alg. 5. Here, the active PLR function PLRa(·)

can be found using the DE process as detailed in Sec. 5.4 (specifically using (5.14), (5.15),

and (5.16)). We also input tolerance parameters pε and νε for the PLR function and

the censor threshold respectively, to account for finite precision. If ν = 0 is the optimal

threshold, then it is output immediately. This happens for example when L ≤ L∗(ν = 0).

The rest of the algorithm proceeds when L > L∗(ν = 0). The thresholds ν1 and ν2 can

be initialized with a high ν1 ≥ ν2 and either a low ν2 or ν2 = 0. If the threshold ν1 is

too low or if PLRa(ν1) > 0, then ν1 is incremented in steps of νδ (ν1 = ν1 + νδ) to ensure

PLRa(ν1) = 0. If the threshold ν2 is too high or if PLRa(ν2) = 0, then ν2 is decremented in

steps of νδ (ν2 = max{ν2 − νδ, 0}) to ensure PLRa(ν2) > 0.

Once we have identified two thresholds ν1 and ν2 such that PLRa(ν1) = 0, PLRa(ν2) > 0,

and ν1 ≥ ν2, we perform a bisection search between ν1 and ν2. We ensure updates to ν1

and ν2 are always maintained such that PLRa(ν1) = 0, PLRa(ν2) > 0, and ν1 ≥ ν2, i.e., we

ensure that ν1 is such that the system is in the linear throughput region and ν2 is such

that the system is MUI-limited. Since ν1 and ν2 are updated in every iteration to take a

step toward each other, the algorithm is guaranteed to converge to the optimal threshold

νalgo.

5.5.2.1 Computational Complexity

The computational complexity of the algorithm depends only on the computation of the

active PLR function PLRa(·), since the other operations in the algorithm are only simple

addition operations. We recall that dmax is the maximum repetition factor, and imax is the

maximum number of iterations within the DE process. Let rmax be the index up to which

θr is numerically significant, i.e., θr > 10−3. Each iteration in the DE process, namely

(5.14) and (5.15), require dmax(dmax + 1)/2 − 1 and rmax(rmax + 1)/2 + 1 multiplication

operations, respectively. This amounts to a total of NPLRa multiplication operations per a

single computation of PLRa(·), which can be found as

NPLRa = 0.5(dmax(dmax + 1)(imax + 1) + rmax(rmax + 1)imax + 2(dmax − 2)). (5.31)
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The above linearly depends on the number of iterations imax, the square of the maximum

repetition factor dmax, and the square of the maximum number of collisions rmax for the

success probability θr. For typical system parameters with dmax = 4 and rmax = 10,

this amounts to a maximum of NPLRa = (141imax + 24)/2 multiplication operations in

each computation of the active PLR function PLRa(·). DE usually converges in imax = 10

iterations, which yields a complexity of 717 multiplication operations per computation of

PLRa(·).

5.5.2.2 Choice of Algorithm Parameters

The threshold ν1 is initialized as a high value sufficient enough to ensure that the system

is interference-free amongst the subset of active users, whereas ν2 is initialized as a low

value sufficient enough to ensure that the system is MUI-limited among the active users.

For example, ν1 = ρ−1
0 γth and ν2 = 0.1ρ−1

0 γth. The algorithm tunes these initializations

and verifies if they are indeed valid. If invalid, the thresholds are varied in steps of

νδ = ρ−1
0 γth, till they are validated. The tolerance parameters pε and νε can be chosen to

be small values such as 10−3 or 10−4.

Remark 9: Since the optimal thresholds discussed so far are continuous functions, any

change to the system load will change the optimal threshold only by a small quantity.

That is, if the algorithm outputs a threshold νalgo, when the load marginally changes, the

existing threshold νalgo can be used to next initialize the threshold ν1. This ensures a

faster convergence. Further, the algorithm needs to be run only once at the BS for every

L, and not in every frame.

Remark 10: The DE analysis presented in this work contains closed form expressions

for θr and thus, is an iterative recipe to compute the theoretical active PLR when perfect

CSI is available at the BS and the BS uses MRC to combine signals of users across

antennas. However, the developed algorithm can be used under any system model, as long

as we can evaluate the active PLR function PLRa(·). Thus, the algorithm itself can be used

with MMSE combining, channel estimation errors, UAD errors, pilot contamination, etc.,

when the PLR function PLRa(·) can be computed, possibly empirically. Further, the DE
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process which yields the function PLRa(·) is asymptotic in nature. Thus, for finite frame

lengths, we can operate with 5% higher νalgo which operates at a slightly lower L∗(νalgo).

5.6 Numerical Results

In this section, we evaluate the empirical and theoretical performance of C-IRSA via

Monte Carlo runs, and provide insights into the dependence of the system performance

on the various parameters. In each run, we generate independent realizations of the user

locations, the APM, and the fades of the users. For the empirical results, the number of

users is computed as M = bLT e; whereas the theoretical results are dependent only on

L, as described in Sec. 5.4. The throughput for each run is calculated using Alg. 4 as

described in Sec. 5.3, and the effective throughput is averaged over the runs.

The results in this section are for 104 Monte Carlo runs, T = 50 slots, σ2
h = 1, τ = 10,

N = 4, MMSE combining, and SINR threshold γth =30 [11]. The path loss is calculated as

βi (dB)=−37.6 log(ri/10), where ri is the distance of the ith user from the BS in meters.

The location of each user is uniformly sampled from within a cell of radius rmax = 1 km

centered at the BS. The Soliton distribution [72] φ(x)=0.625x2 + 0.25x3 + 0.125x4 is used

to generate the repetition factors of the users [11].11 The repetition factor di is used to

form the access vector for the ith user, by uniformly randomly choosing di slots from T

slots without replacement [7]. The packet replicas are transmitted in these di slots. The

power levels of all the users is set to P =0 dBm, P p=3 dBm, and N0 is chosen such that

ρe =10 dB, unless otherwise stated. This ensures that all users’ signals are received at an

SINR that is at least ρe on average, in singleton slots. The pilots are chosen as τ -length

vectors with random symbols belonging to the QPSK constellation, normalized to have

power τP p.12

We first elucidate the choice of the target load Ltgt using PLRa in Fig. 5.1. The PLRa

of the system increases with L for ν = 0, 3, and 4, and becomes 1 at high loads, since

11The repetition distribution is optimized in Chapter 7.
12For the performance of C-IRSA with other pilot sequences, see Sec. 5.9.10. We have also studied the

uniqueness of pilot sequences in IRSA and C-IRSA in Sec. 5.9.9.
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Figure 5.1: Choice of target load Ltgt.

Figure 5.2: Impact of active load La on T .
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Figure 5.3: Throughput of C-IRSA.

Figure 5.4: Effect of threshold ν on PLRa.
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Figure 5.5: Effect of threshold ν on PLR.

Figure 5.6: Impact of SINR threshold γth on T .
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the system is MUI-limited at higher L. Vanilla IRSA is equivalent to C-IRSA with no

censoring, i.e., with ν = 0. It is seen that vanilla IRSA has a high PLRa at all loads, and,

with censoring, the PLRa reduces. The curves with ν=h(L,Ltgt) follow the performance

of ν = ρ−1
e γth = 3 up to a load of L = Ltgt, and beyond that PLRa stays constant at

every load. We first fix a PLRa,tgt and the minimum L with which the system achieves

PLRa =PLRa,tgt, with ν = ρ−1
e γth, forms the target load. For example, PLRa,tgt = 10−1 or

10−2 yields Ltgt =5 or 4.6.

In Fig. 5.2, we show the impact of the active load La on T . All the curves linearly

increase till their respective inflection points, after which they drop down since the system

in MUI-limited. The linear increase in T is the region in which PLRa = 0 [7], i.e., when

La ≤ 3, all active users are decoded. With N = 4, the BS can potentially decode four

users per slot. However, due to the SINR threshold model, small pilot lengths, pilot

contamination, estimated CSI, etc., the number of users that can be decoded per slot is

less than 4. On the other hand, the disparity in the received powers across users can

occasionally allow the BS to decode even more than 4 users per slot. The net effect is

that up to 3 active users can be decoded in practice. At La=2.7, ν=0 achieves T =2.4,

whereas ν = 2.7 achieves full throughput of T = La = 2.7. The throughput improves as

ν is increased since users with poor channel states are self-censored. Even with a little

amount of censoring, C-IRSA performs better than IRSA. Thus, C-IRSA helps overcome

packet losses due to both poor CSI and MUI. For ν≥γth/ρe, T very marginally increases

and the system achieves nearly the same T for ν = 5 and 4 as for ν = 3. This increase

is due to capture effect from both path loss and MIMO fading. Further, the threshold

ν must be such that the system is always operated at La ≤L∗a = 3. Also, by optimally

choosing the threshold using ν = h(L,Ltgt) as described in Sec. 5.5, we can obtain the

same T as that obtained with ν = 3 at higher loads also. Note that in the MUI-limited

regime, the PLR of IRSA is non-zero, and both users with poor channel states and packets

that experience collisions cannot be decoded correctly. Censoring improves T on both

counts by choosing users whose packets are more likely to be decoded correctly as well as

reducing the number of collisions.
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In Fig. 5.3, we depict the impact of the developed censor functions on the throughput

of C-IRSA. Vanilla IRSA, C-IRSA with ν = 3, and C-IRSA with ν = 4 achieve a peak

performance of T =2.5 at L=2.8, T =2.95 at L=4.6, and T =3 at L=7.2, respectively.

For all three curves, T increases linearly with the load up to the peak, and beyond that,

the throughput drops to zero. C-IRSA with ν = 4 has too many users which are self-

censoring, and we could potentially reduce ν. Thus, we could choose ν for every L such

that we obtain an envelope of all curves for ν≥3, which yields the same performance as

ν= i(L,Ltgt =4.6, L0 =2). The throughput of C-IRSA with ν= i(L,Ltgt, L0) outperforms

ν=h(L,Ltgt) for all L < Ltgt = 4.6, and then remains constant for L ≥ Ltgt = 4.6. Up to

L=2.8, no censoring is needed, i.e., ν = 0 is sufficient. For 2.8 < L < 4.6, T is maximized

with ν = i(L,Ltgt = 4.6, L0 = 2). For all L ≥ 4.6, T remains constant at T = 2.95, with

both ν= i(L,Ltgt = 4.6, L0) (with any choice of L0) and ν=h(L,Ltgt = 4.6). Choosing a

high L0 = 2.6 yields a censor function with a low slope (as seen in (5.30)) which censors

too few users, whereas choosing a low L0 = 1 yields a censor function with a high slope

which censors too many users. L0 can be fine tuned to yield the peak performance, e.g.,

with L0 = 2. At L = 8, the throughput of vanilla IRSA is T = 0.25, whereas C-IRSA

achieves T = 2.95, which is over a 10× improvement. Thus, at high L, the system can

be operated at its maximum potential in C-IRSA, compared to vanilla IRSA which has

near-zero throughput.

We illustrate the effect of the threshold ν on PLRa in Fig. 5.4. For ν = 3, we have

PLRa = 0 and thus, PLR = F̄(3) = 0.65 up to L = 4.6. Choosing any Ltgt < 4.6 always

yield PLRa=0 at all L since the active load will then always be maintained at La≤2.95.

We thus choose Ltgt = 4.6 to maximize T , which can be obtained from our analysis as

Ltgt =L∗a/F̄(ρ−1
e γth) = 2.95/F̄(3) = 4.6. Further, when L ≤ 4.6, we see that ν= i(L,Ltgt =

4.6, L0) (with any choice of L0) has a non-zero PLRa, whereas ν=h(L,Ltgt =4.6) achieves

PLRa = 0. Both the functions have PLRa = 0 for L > 4.6. This is the exact opposite

trend on the throughput as seen in Fig. 5.3. This shows that in order to maximize the

throughput of the system, with a small hit on the PLRa, we choose the censor threshold

as ν = i(L,Ltgt, L0). In order to ensure zero PLRa with a small hit on T , we choose the
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censor threshold as ν=h(L,Ltgt).

In Fig. 5.5, we present the system PLR corresponding to the throughput curves in

Fig. 5.3. It is observed that the lowest PLR is obtained with the ν = i(·, ·, ·) function

with parameters Ltgt = 4.6 and L0 = 2. Tuning the value of L0 helps us achieve the

lowest system PLR. These trends are similar to the ones observed in Fig. 5.3 since the

throughput and the system PLR have a one-to-one relation (see (5.18)).

In Fig. 5.6, we vary the threshold γth, with a fixed ρe = 10. We observe that the peak

throughputs of the system increase as we decrease γth. This is because more users have

SINRs that cross γth. Further, the gap between the functions i(·, ·, ·) and h(·, ·) reduces as

we reduce γth. In general, the less MUI-limited the system becomes at lower L, the closer

L0 and Ltgt become, which implies the functions i(·, ·, ·) and h(·, ·) both yield nearly the

same performance. This can happen, e.g., with high N or high ρe. In these cases, we

need not censor at low L and censor at high L using the function in (5.29).

The impact of various system parameters on the generalized censor function is pre-

sented in Sec. 5.9.7.

Figure 5.7: Impact of threshold ν on T with ρ−1
e γth = 1.

In Fig. 5.7, we present the throughput curves for varied censor thresholds with a fixed

value of ρ−1
e γth = 1. The curves shift downwards when the parameters are changed from
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ρe = γth = 10 to ρe = γth = 30. This is because fewer users are decoded when the

threshold is increased. Further, the gap between ν = h(L,Ltgt) and ν = i(L,Ltgt, L0)

remains the same for L < Ltgt and beyond Ltgt, they stay the same. The performance

of ν = i(L,Ltgt, L0) is, however, slightly better than ν = h(L,Ltgt) for L < Ltgt. This is

because, in this regime, not censoring at low loads is good for the system. Note that in

this plot, we choose L0 to be very close to Ltgt since the gap is very small.

5.6.1 Asymptotic Results with DE

In this subsection, we evaluate the theoretical throughput of C-IRSA as discussed in

Sec. 5.4 and provide insights into the impact of various system parameters on the perfor-

mance. For this subsection, we assume that perfect CSI is available at the BS, the users

perform PLI, and the BS uses MRC for decoding users. The results are presented for

N=8 antennas, ρ0 =10 dB, SINR threshold γth =10 [11], and 50 maximum DE iterations.

For Alg. 5, we use the tolerance parameters pε = νε = 10−3, step size νδ = ρ−1
0 γth, with

initializations ν1 =2ρ−1
0 γth and ν2 =0.1ρ−1

0 γth.

Figure 5.8: Verification of the DE approximations.

In Fig. 5.8, we verify the asymptotic DE T obtained using the Normal and the Gamma

approximations with the empirical T . For both ν = 0 and 8, the Normal approximation
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Figure 5.9: Theoretical performance of C-IRSA with N = 8.

Figure 5.10: Empirical performance of C-IRSA with N = 8.
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results in T that is slightly in excess of the empirical T , albeit the inflection loads are

approximated well. The Gamma approximation slightly underperforms compared to the

Normal approximation but it also achieves the same performance as the empirical through-

puts at high L. For both ν=0 and 8, the peak empirical T increases with an increase in T ,

and they get closer towards the asymptotic T . The asymptotic T drops very quickly after

the inflection load L∗. The Normal approximation yields an inflection load of L∗=1.48 for

ν=0, and L∗=3.33 for ν=8. At these inflection loads, the peak asymptotic throughputs

are T =1.48 and T =1.5, respectively.

Fig. 5.9 shows the theoretical performance of C-IRSA with the Normal approximation

for θr. As ν is increased from 0 to 8 to 10, there is a marginal increase in the peak

throughput. We have skipped the curve for ν = 1 since it overlaps with ν = 0. The

function h(L,Ltgt) follow the ν=0 curve up to L=Ltgt and remain constant for L ≥ Ltgt.

Specifically, Ltgt = 1, 1.3, and 1.48 achieve a peak performance of T = 1, 1.3, and 1.48

at all L ≥ Ltgt. Thus, there is a 100% increase in the throughput compared to vanilla

IRSA. The optimized threshold obtained using Alg. 5 is labelled as νalgo and it achieves

the envelope of all the curves with a fixed ν. There is a very small gap between the peak

performance with Ltgt =1.48 and the throughput with the optimized threshold. Fig. 5.10

shows the equivalent empirical performance of C-IRSA with the same parameters as in

Fig. 5.9. Here, choosing ν=h(·, ·) achieves the same performance as ν= i(·, ·, ·) with L0

very close to Ltgt. The theoretical T from the previous plot coincides with the empirical

T for Ltgt =1 and 1.3. The censor function for the theoretical curve can be obtained with

Ltgt =1.48 and T =1.48, whereas for the empirical curve we have Ltgt =1.4 and a slightly

lower peak throughput of T =1.4. This is because DE curves are achieved asymptotically.

Thus, in practice, we back off from 1.48 to Ltgt =1.4 or 1.3. The solid curve with legend

ν=νalgo uses the threshold that is optimized asymptotically, but is applied with T =500,

and thus, it drops a little as L increases. Both h(·, ·) or i(·, ·, ·) achieve nearly the same

performance as the optimized threshold and can be used in practice.

In Fig. 5.11, we show the theoretical performance with N = 2. ν = 0 achieves the

lowest peak T , and both ν = νalgo and i(L,Ltgt = 1.2, L0 = 0.2) achieve nearly similar
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Figure 5.11: Theoretical throughput with N = 2.

Figure 5.12: Theoretical throughput with N = 16.



Chapter 5. Censored-IRSA for Interference-Limited mMTC 202

Figure 5.13: Theoretical active PLR with N = 2.

Figure 5.14: Theoretical PLR with N = 2.
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Figure 5.15: Effect of active load La on asymptotic T .

performance. It is seen that a small change in ν from 1 to 2 results in a huge shift of the

curves towards the right. Previously, in Fig. 5.9, with N = 8, increasing the threshold by

a large amount from ν=0 to ν=8 shifts T to the right, after which increasing by a small

amount to ν=10 shifts T by a large amount. This is an effect of channel hardening [106],

which is the phenomenon that as N increases the norm squared of the fade converges to

a constant, i.e.,‖vi‖2 → Nσ2
h. Since we perform fade-based censoring as ‖vi‖2 ≥ ν, the

threshold has to be made close to Nσ2
h (± a standard deviation) to ensure a significant

impact on T . Similar trends are observed for N = 16 as seen in Fig. 5.12.

Fig. 5.13 shows the theoretical PLRa with N = 2, whereas the PLR curves are seen

in Fig. 5.14. ν = 0 achieves the highest PLRa and ν = i(L,Ltgt = 1.2, L0 = 0.2) achieves

PLRa = 0 beyond L = 1.2. Alg. 5 yields PLRa = pε at all L, and thus the tolerance

parameter pε can be tuned by choosing a target active PLR. In practice, choosing Ltgt =

0.9L∗ or 0.8L∗ achieves near-zero PLRa at all L.
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Impact of Random Censoring:

The censoring of users can be done in a random fashion as opposed to CSI-based censoring.

That is, users independently participate in each frame with a probability pa, and self-

censor with probability 1 − pa. This yields an active load of La = Lpa. For a load

L ≥ L∗, the optimal random censoring can be done by choosing pa = L∗/L, which

ensures La = L∗ for all L. Specifically, with optimal random censoring, we need to choose

pa = min{1, 0.6/L}, which operates the system at L∗a = 0.6 and achieves T = 0.45 at

all L. For random censoring, θr is obtained by substituting for ν = 0 in (5.19) and in

Theorem 5.2. Analysis for optimal random censoring is presented in Sec. 5.9.2.

The curve marked “Random” in Figs. 5.11 and 5.13 uses the above optimal random

censoring and achieves the same throughput as peak vanilla IRSA for every pa ∈ (0, 1].

For the same active load La, the channel states of the uncensored users with CSI-based

censoring are better than the channel states of the active users with random censoring.

The PLRa of random censoring is very high whereas CSI-based censoring yields arbitrarily

low PLRa.

In Fig. 5.15, we study the effect of active load La on asymptotic T . For N = 2,

increasing ν from 0 to ρ−1
e γth = 1 shows a drastic improvement and after that it shows

a negligible improvement. For N = 16, however, increasing the threshold has a very

negligible effect since the system is already well performing without censoring in the

linear throughput regime. For such a system, performing random censoring as opposed

to CSI based censoring could be beneficial.

5.7 Summary

In this work, we developed Censored-IRSA (C-IRSA), which overcame the interference

limitation of IRSA at high loads. In C-IRSA, users self-censor based on their CSI and

an adaptive threshold that is periodically broadcast by the BS. The protocol retains the

fully distributed, random access nature of IRSA. First, the MMSE channel estimates

and the SINR were derived in C-IRSA accounting for MIMO, fading, path loss, pilot
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contamination, and estimation errors. The empirical performance of C-IRSA was then

analyzed using the SINR threshold model. We analyzed the theoretical performance

of C-IRSA using DE, and derived closed-form expressions for the success probability θr

under the Normal and Gamma approximations. We developed two semi-analytic functions

i(L,Ltgt, L0) and h(L,Ltgt), with which the system throughput was maximized and the

active PLR was minimized, respectively, when L < L0. With both these functions, the

throughput was maximized when L ≥ Ltgt. Next, we developed an algorithm to find the

active PLR-optimal censor threshold. With this, the active PLR can be driven close to

zero, whilst achieving the highest throughput. At high loads, C-IRSA operates at the

full capacity compared to IRSA which has near-zero throughput. Finally, we discussed

several insights into the design of C-IRSA: the choice of the target load Ltgt, the load L0,

and the optimal censor function.

An interesting extension we can explore for C-IRSA is based not just on fading, but

also based on the time since a user attempted a transmission. This would involve censoring

a user with good channel state to ensure that a user with bad channel state, who has also

not transmitted for a long duration of time, can transmit its packet. This can be achieved,

for example, using proportional fairness. With this, the censoring is performed not just

based on the channel state of the user in the current frame, but also based on the average

throughput a specific user has seen in the previous C-IRSA frames.

5.8 Proofs

5.8.1 Proof of Theorem 5.1: Success Probability for SISO

We now characterize θr, which is the probability of decoding a reference packet in a

single slot where r users have transmitted their packets. Since there is only one slot

under consideration, users are decoded via intra-slot SIC. These r packets are from r

active users who are not yet decoded. The reference packet is one of the r packets, and

it gets decoded only if the packets having a higher SINR get successfully decoded first.

Hence, they must also satisfy the SINR ≥ γth constraint. Thus, θr is the probability
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that the reference packet and the packets with higher SINRs all get decoded. Since θr is

evaluated based on the SINR of multiple active users in a slot, we consider a slot wherein

r active users have transmitted their packets, and use the active load La (and not L) to

characterize the performance.

We denote the set of active users who have not yet been decoded in the first k−1 intra-

slot decoding iterations by Sk, and Smk , Sk\{m}, with S1 =[r]. The SINR of the mth user

in the kth intra-slot decoding iteration, ρkm, is calculated as ρkm= |hm|2/(ρ−1
0 +

∑
i∈Smk
|hi|2).

Let ρkmax denote the SINR of the user with the highest SINR in the kth intra-slot decoding

iteration, calculated as ρkmax =maxm∈Sk ρkm. Let s be the index of the intra-slot decoding

iteration in which the reference packet is decoded, with 1≤ s≤ r. Thus, θr is calculated

as θr = Pr(ρ1
max ≥ γth, ρ

2
max ≥ γth, . . . , ρ

s
max ≥ γth). Since the reference packet is tagged

uniformly at random from the users, the reference packet is equally likely to get decoded

in any decoding iteration. We denote the probability that the k packets with the highest

SINRs across decoding iterations all exceed the threshold γth by θrk,Pr(ρ1
max≥γth, ρ

2
max≥

γth, . . . , ρ
k
max≥ γth). We can calculate θr using θrk as θr = (

∑r
k=1 θrk)/r. Without loss of

generality, let the channels of the users be ordered as |h1|2 ≥ |h2|2 ≥ . . . ≥ |hr|2. Now,

θrk = Pr

(
|h1|2

ρ−1
0 +

∑r
i=2 |hi|2

≥γth,
|h2|2

ρ−1
0 +

∑r
i=3 |hi|2

≥γth,

. . . ,
|hk|2

ρ−1
0 +

∑r
i=k+1 |hi|2

≥γth

∣∣∣∣|hj|2 ≥ ν,∀j ∈ [r]

)
. (5.32)

The above is a conditional probability, conditioned on |hj|2 ≥ ν, since we are considering

only uncensored users. Thus, θrk from (5.32) can be calculated equivalently as

θrk = Pr(t1 ≥ γth(ρ−1
0 +

∑r
i=2ti), t2 ≥ γth(ρ−1

0 +
∑r

i=3ti), . . . , tk ≥ γth(ρ−1
0 +

∑r
i=k+1ti)).

Here, ti is a random variable follows a truncated exponential distribution with the density

function f(t) = exp(ν − t) · 1{ν ≤ t < ∞}. Assuming ν ≤ ρ−1
0 γth, with γ̄th,i = (1 + γth)i,
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θrk can be calculated as

θrk = erν
∫ ∞
ν

e−trdtr

∫ ∞
ν

e−tr−1dtr−1 · · ·
∫ ∞
ν

e−tk+1dtk+1

×
∫ ∞
γth(ρ−1

0 +
∑r

i=k+1ti)

e−tkdtk · · ·
∫ ∞
γth(ρ−1

0 +
∑r

i=2ti)

e−t1dt1

=
exp(rν − (r − k)νγ̄th,k − ρ−1

0 γth(
∑k

i=1 γ̄th,i−1))

γ̄
r−(k+1)/2
th,k

. (5.33)

Thus, we get

θr=
r∑

k=1

exp(rν − (r − k)νγ̄th,k − ρ−1
0 (γ̄th,k − 1))

r γ̄
r−(k+1)/2
th,k

. (5.34)

5.8.2 Proof of Theorem 5.2: Success Probability for MIMO

We now characterize θr, which is the probability of decoding a reference packet in a

single slot where r users have transmitted their packets. Since there is only one slot

under consideration, users are decoded via intra-slot SIC. These r packets are from r

active users who are not yet decoded. The reference packet is one of the r packets, and

it gets decoded only if the packets having a higher SINR get successfully decoded first.

Hence, they must also satisfy the SINR ≥ γth constraint. Thus, θr is the probability

that the reference packet and the packets with higher SINRs all get decoded. Since θr is

evaluated based on the SINR of multiple active users in a slot, we consider a slot wherein

r active users have transmitted their packets, and use the active load La (and not L) to

characterize the performance.

We now setup some notation for precisely characterizing θr. Let k denote the intra-slot

decoding iteration. We denote the set of active users who have not yet been decoded in

the first k−1 intra-slot decoding iterations by Sk, and Smk , Sk \{m}, with S1 =[r]. With

PLI, the channel of the user is the same as the fading state, i.e., hi = vi, and hence we use

both equivalently. When perfect CSI is available at the BS and the users perform PLI,

the SINR of the mth user in the kth intra-slot decoding iteration, ρkm, is calculated as

ρkm =
P‖hm‖4

N0‖hm‖2 +
∑

i∈Smk
P |hHmhi|2

. (5.35)
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Let ρkmax denote the SINR of the user with the highest SINR in the kth intra-slot decoding

iteration, calculated as ρkmax =maxm∈Sk ρkm. Let s be the index of the intra-slot decoding

iteration in which the reference packet is decoded, with 1≤s≤r. Thus, with a threshold

ν, θr is calculated as

θr = Pr(ρ1
max ≥ γth, ρ

2
max ≥ γth, . . . , ρ

s
max ≥ γth | ‖hj‖2 ≥ ν,∀j ∈ [r]). (5.36)

Since the reference packet is tagged uniformly at random from the users, the reference

packet is equally likely to get decoded in any decoding iteration. The above is a conditional

probability, conditioned on ‖hj‖2 ≥ ν, since we are considering only users who have not

censored.

For r = 1, ρ1
1 = P‖h1‖2/N0, and θ1 reduces to Pr(ρ1

1 ≥ γth | ‖h1‖2 ≥ ν). This can be

computed in closed form as

θ1 =

Γinc(N, ρ
−1
0 γth)/Γinc(N, ν), ν ≤ ρ−1

0 γth,

1, ν > ρ−1
0 γth.

(5.37)

where ρ0 , Pσ2
h/N0, and Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the upper incomplete gamma

function.

For r ≥ 2, we resort to computing the deterministic equivalents [106] of the norms

of the channels as well as the interference components to compute approximations to

the SINR. We first find the deterministic equivalents of the norms. Let ‖hi‖2|‖hi‖2≥ν

denote the random variable ‖hi‖2 conditioned on the event {‖hi‖2 ≥ ν}. We use
a.s.−→ to

denote convergence in the almost sure sense. Since ‖hi‖2 a.s.−→ Nσ2
h [106], we can find that

‖hi‖2|‖hi‖2≥ν
a.s.−→ H̄(ν)σ2

h, where

H̄(ν) = Γinc(N + 1, ν)/Γinc(N, ν) = N + νN/SN(ν), (5.38)

with SN(ν) , (N − 1)!
∑N−1

k=0 (νk/k!) and SN(0) , 1.

We now find the deterministic equivalents of the interference components. Let us



Chapter 5. Censored-IRSA for Interference-Limited mMTC 209

write the channel of the ith user hi as the product of the norm ni=‖hi‖ and the direction

di = hi/‖hi‖, i.e., hi =nidi. Since the norm and the direction of a circularly symmetric

complex Normal random vector are independent [105], ni and di are independent. Thus,

when we employ a censor threshold ν, only the distribution of the norms of the channels

changes but the distribution of the directions of the channels remains the same. That

is, ‖hi‖2 is Gamma distributed whereas ‖hi‖2|‖hi‖2≥ν is truncated Gamma distributed.

Further, the distribution of di and di|‖hi‖2≥ν remain the same. Thus, the interference

tmi , |hHmhi|2/(‖hm‖2‖hi‖2) = |dHmdi|2 is Beta distributed as tmi ∼ Beta(α= 1, β =N),

both with and without censoring.

For r ≥ 2, the SINR with MRC and large N , can be approximated as

ρkm ≈ ((H̄(ν)ρ0)−1 +
∑

i∈Smk
tmi)

−1. (5.39)

Here, we have applied the theory of deterministic equivalents to only the channel norms

and not to the interference, and we have an SINR that is affected only by the random-

ness in the multi-user interference components. This is supported by the fact that the

interference components converge to their deterministic equivalents slower than the norms

converge to their deterministic equivalents [106].

For r = 2, since t12 = t21, ρ1
1 = ρ1

2 = ((H̄(ν)ρ0)−1 +t12)−1. Thus, ρ1
max = ((H̄(ν)ρ0)−1 +

t12)−1 and ρ2
max = H̄(ν)ρ0, with ρ1

max ≤ ρ2
max. Thus, the success probability reduces to

θr = Pr(ρ1
max ≥ γth). Let t0(ν) , γ−1

th − (H̄(ν)ρ0)−1. Hence, θ2 is calculated as

θ2 ≈ Pr(ρ1
max ≥ γth) = Pr(t12 ≤ t0(ν))

=1{t0(ν)>1}+(1−(1−t0(ν))N)1{0≤ t0(ν)≤1}. (5.40)

For r ≥ 3, ρkm need not be a monotonically increasing function of k as seen in (5.39), and

thus we cannot order the SINRs meaningfully to compute θr in closed-form. With um =∑
i∈[r]\m tmi, the maximum SINR in the first intra-slot iteration is ρ1

max = maxm∈[r]((H̄(ν)ρ0)−1+

um)−1. Here, um is not independent across m and it is not clear which um is the minimum.

Thus, we approximate ρ1
max as ρ1

1, and upon dropping the other SINR terms from (5.36),
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θr becomes

θr ≈ Pr(ρ1
1 ≥ γth) = Pr(u1 ≤ t0(ν)). (5.41)

We now discuss two approximations to um to evaluate θr, with the assumption that um

is independent across m.

Since limN→∞ Beta(α = 1, β = N) = exp(λ = N), we approximate tmi ∼ exp(N),

which is a good approximation at high N [105]. Even with this approximation, um is

identically Gamma distributed across users but not independent. With the independence

assumption, um is i.i.d. Gamma distributed with shape r − 1 and rate N , i.e., um
i.i.d.∼

Gamma(r − 1, N). Thus, we obtain the Gamma approximation:

θr ≈ 1− Γinc(r − 1, Nt0(ν))/Γ(r − 1). (5.42)

Similarly, when we assume tmi is Normal distributed, um is identically Normal distributed

across users but not independent. Let µN = (N + 1)−1 and σ2
N = N(N + 1)−2(N + 2)−1.

If we approximate tmi ∼ N (µN , σ
2
N) and um is independent across m, then um

i.i.d.∼ N ((r−

1)µN , (r − 1)σ2
N). Thus, we obtain the Normal approximation:

θr ≈ 1−Q
(
t0(ν)− (r − 1)µN√

r − 1σN

)
, (5.43)

where Q(·) is the standard Normal Q-function.

5.8.3 Proof of Theorem 5.4: Generalized Censor Function for

MIMO

In order to derive a generalized censor function, we analyze the system behaviour below

and above the target load Ltgt.
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5.8.3.1 L≥Ltgt

The system is MUI-limited when L≥Ltgt, and censoring improves the performance. This

enhancement happens via a combination of improved channel states among the active

users and lesser MUI. In this regime, similar to the SISO threshold, we can compute ν by

inverting the CCDF in (5.24). For this, we define the function H(·, ·, ·) as

H(L,Ltgt, νtgt) , Ḡ(La/L) = Ḡ(F̄(νtgt)Ltgt/L). (5.44)

Here x = Ḡ(y) is the inverse CCDF of the Gamma distribution (with rate 1 and shape

N), which is the x such that y = F̄(x).

5.8.3.2 L<Ltgt

Censoring need not always help improve the performance when L<Ltgt. We handle this

by introducing a load parameter L0, which denotes the load up to which users do not

self-censor, with L0 < Ltgt. There are two cases when censoring is not needed. The first

case happens when PLR= 0 at low L, for which no censoring is needed. This is because

the throughput is at the optimal value of T = L already. One instance when this can

happen is when there are multiple antennas at the BS and the BS can decode all the

users via a combination of SIC and interference-suppression due to multiple antennas.

When PLR=0 at low loads, L0 can be found as the system inflection load L∗ with ν=0.

In the second case, the system can be power-limited when the transmit powers of

users are not high enough, and thus, the MUI component is low to begin with at low L.

While there are fewer active users upon censoring, the MUI does not reduce. In this case,

PLR 6= 0 at low L, censoring does not increase T , and thus, we do not need to censor

users at low L. When PLR > 0 at low loads, we can still choose L0 as the inflection load

corresponding to ν = 0, but this can be fine tuned if needed. In both the cases mentioned

above, users need not self-censor for L < L0.

If we choose the censor threshold similar to SISO, the choice of the threshold with
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MIMO is given by the function h(·, ·) defined as

h(L,Ltgt) ,

νtgt, L < Ltgt,

H(L,Ltgt, νtgt), L ≥ Ltgt.

(5.45)

Thus, we need to modify (5.45) so that ν=0 for L < L0 in these two cases.

So far, we have addressed how to compute ν for L ≥ Ltgt and L < L0. We now

discuss how to compute ν for L0 ≤ L < Ltgt. In the SISO case, L∗a is maximized at

νtgt = ρ−1
0 γth. However, for MIMO, as the censor threshold is increased, the subset of

active users experience a higher degree of capture effect since there are fewer users. This

behaviour is prominent especially at loads very close to the inflection loads L∗ and L∗a,

and this variation in the censor threshold occurs only in a small region between L0 and

Ltgt.

Choosing a fixed ν = νtgt for L0 ≤ L < Ltgt yields a censor threshold that is a

discontinuous function of L at L = L0 and L = Ltgt. This is not ideal, since in practice,

the throughput/PLR linearly change with L and they do not exhibit such discontinuous

behaviour. So, to make it a continuous function, in this small region, we choose ν based

on a logarithmic interpolation function as

(log(L/L0)/ log(Ltgt/L0))νtgt. (5.46)

We have investigated many functions in this regime (See Sec. 5.9.6), and observed that

the log-interpolation yields the best throughput. The log-interpolation with a properly

tuned L0 outperforms linear-interpolation as well as other functions.

5.9 Appendix

5.9.1 Preliminary Results

This section presents the preliminary results that were published in the conference ver-

sion [18] of this chapter, specifically for C-IRSA with SISO and perfect CSI.The results are
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presented for 104 Monte Carlo runs, SNR ρ0 = 10 dB, SINR threshold γth = 10 [11]. We

use the truncated Soliton distribution [72] φ(x)=0.625x2 + 0.25x3 + 0.125x4 to generate

the repetition factors of the users [11]. The repetition factor di is used to form the access

vector for the ith user, by uniformly randomly choosing di slots from T slots without

replacement [7]. The packet replicas are transmitted in these di slots.

Figure 5.16: Impact of T on the throughput.

Fig. 5.16 shows the impact of T on the empirical throughput with ν=ρ−1
0 γth =1. The

theoretical asymptotic throughput curves for ν=0, 0.4, and 1, obtained via DE, are also

shown. The curves linearly increase till a peak, after which they drop quickly to zero as

the system becomes MUI-limited. The asymptotic T is maximized at L∗a =T = 0.76, for

ν= 1. The linear increase in T marks the region in which PLRa = 0 [7]: when La≤ 0.76,

all active users are decoded. Conventional IRSA corresponds to no censoring (ν=0). At

La= 0.4, ν= 0 achieves T = 0.15, whereas ν= 1 achieves full throughput of T =La= 0.4.

The asymptotic throughput dramatically improves as ν is increased from 0 to 1, because

users with poor channel states are self-censored. Even with a little amount of censoring,

C-IRSA performs better than IRSA. Thus, C-IRSA helps overcome packet losses due to

both poor CSI and MUI.

We have seen that the choice of the threshold ν must be such that La ≤ L∗a. In
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Figure 5.17: Choice of target load Ltgt using theoretical PLRa.

Fig. 5.17, we depict the influence of the choice of the target load, Ltgt, using the asymptotic

active PLR, PLRa. The PLR is close to 1 with no censoring. The PLRa of the system

increases with L for ν = 0, 1, and 2, and becomes 1 at high loads. The curves with

ν=g(L,Ltgt) follow the performance of ν=ρ−1
0 γth =1 up to a load of L=Ltgt, and beyond

that PLRa stays constant at every load. Fixing a PLRa,tgt yields the choice of Ltgt and

the corresponding threshold ν = g(L,Ltgt). The asymptotic PLR increases very quickly

around the inflection load L∗. In practice, however, choosing Ltgt =0.9L∗ or 0.8L∗ works

well.

In Fig. 5.18, we show the effect of the active load La on the empirical throughput T ,

with T = 250. Conventional IRSA (no censoring, i.e., ν = 0) achieves very low through-

puts since the system is highly interference limited. Similar to the previous plot, where

the theoretical throughput increased with increase in ν, the empirical throughput also

increases with an increase in from ν=0 to ν=γth/ρ0 =1. For ν≥γth/ρ0, the throughput

of the system stays constant with respect to the active load and the system achieves the

same throughput for ν=2 as for ν=1. From the plot, we also see that we should choose a

threshold ν such that we always operate the system at active load of La≤L∗a=0.65. Also,

by optimally choosing the threshold using ν= g(L,Ltgt) as described in Sec. 5.5, we can
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Figure 5.18: Effect of active load La on T .

obtain the same throughput as that obtained with ν = 1. Note that in the MUI-limited

regime, the PLR of IRSA is nonzero, and both users with poor channel states as well

as users who collide with many users cannot be decoded correctly. Censoring improves

the performance of the system on both counts by choosing users whose packets are more

likely to be decoded correctly as well as reducing the number of collisions.

Figure 5.19: Impact of threshold ν on T .
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So far, we have observed that both the theoretical and empirical throughputs are

maximized at ν = ρ−1
0 γth for every La. We now study the effect of censoring and the

system load L on the empirical throughput in Fig. 5.19, with T = 250. With ν = 0, i.e.,

no censoring, the throughput of IRSA becomes zero at L= 3. With ν = ρ−1
0 γth = 1, the

throughput of the system increases linearly with load up to T =0.65 at L=2, and beyond

that, the throughput drops to zero. This is also observed with ν = 2, which achieves a

peak throughput of T = 0.65 at L= 5. The linearity of the curve up to L= 5 indicates

that too many users are self-censoring, and we could reduce ν.

Figure 5.20: Impact of threshold ν on PLRa.

We present the PLR curves corresponding to the above throughput curves in Figs. 5.20

and 5.21. For ν = 1, we have PLRa = 0 and PLR = F̄(1) up to L= 2; for ν = 2, we have

PLRa = 0 and PLR = F̄(2) up to L= 5. Thus, we could choose ν for every L such that

we obtain an envelope of all curves for ν≥1, which yields the same performance as that

of the curve marked ν = g(L,Ltgt = 2).13 All the curves marked ν = g(L,Ltgt) follow

the performance of ν = 1 up to Ltgt, beyond which T stays constant for every L. Since

13The theoretical throughputs for Figs. 5.18 and 5.19 match the above observations. Also, the results
are presented for ρ−1

0 γth = 1. The trends are similar for any other ρ−1
0 γth, and T is maximized at

ν=ρ−1
0 γth for every La.
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Figure 5.21: Effect of threshold ν on PLR.

L∗ = 2, choosing Ltgt = 3 is not preferred since the system is operating at a high PLR.

Choosing Ltgt = 1, 1.6, and 2 all yield PLRa = 0 at all L since the active load La ≤ 0.65.

We thus choose Ltgt = 2 to maximize T , which can be obtained from our analysis as

Ltgt = L∗a/F̄(ρ−1
0 γth) = 0.65/F̄(1) = 2. Since the DE curves are achieved asymptotically,

in practice, we back off from Ltgt by 10% to 20% to Ltgt = 1.8 or 1.6, to achieve zero

PLRa at all L. At high L, we see that C-IRSA with Ltgt ≤ L∗ operates with T = 0.65,

whereas conventional IRSA has T =0. Thus, the system can be operated at its maximum

potential in C-IRSA compared to vanilla IRSA which has zero throughput.

5.9.2 Impact of Random Censoring

The censoring of users can be done in a random fashion as opposed to CSI-based censoring.

That is, users independently participate in each frame with a probability pa, and self-

censor with probability 1−pa. This yields an active load of La = Lpa. For a load L ≥ L∗,

the optimal random censoring can be done by choosing pa = L∗/L. This ensures that the

active load is La = Lpa = L∗. Thus, the active load stays constant at L∗ for all L. This

choice of the activity probability is applicable to any underlying PHY layer system model

(e.g., SISO with PLI, SISO without PLI, MIMO with PLI, MIMO without PLI and pilot
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contamination, etc.,) since the optimal choice depends only on the inflection load. The

inflection load itself varies based on the underlying system model parameters, but the

choice of the optimal activity probability is dependent only on the inflection load L∗.

We now describe the computation of the success probability θr under random censoring

for both SISO and MIMO.

Lemma 5. For the SISO Rayleigh block-fading channel with an SNR of ρ0, and an

SINR threshold γth, the probability that a reference packet gets decoded in a slot of

degree r using only intra-slot SIC, with random censoring, can be obtained as

θr =
r∑

k=1

exp(−ρ−1
0 ((1 + γth)k − 1))

r (1 + γth)rk−k(k+1)/2
. (5.47)

Proof. In random censoring, there is no CSI threshold. Substituting for ν = 0 in

(5.19), we obtain the above.

Lemma 6. When perfect CSI is available at the BS, and MRC is used for decoding,

with random censoring, θr can be calculated as follows. Firstly, θ1 can be exactly

found as

θ1 = Γinc(N, ρ
−1
0 γth)/Γ(N), (5.48)

where ρ0 , Pσ2
h/N0, Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the upper incomplete gamma

function, and Γ(s) is the ordinary gamma function. For r ≥ 2, the SINR with

MRC and large N can be computed as ρkm = N(ρ−1
0 + N

∑
i∈Smk

tmi)
−1, where tmi ,

|hHmhi|2/(‖hm‖2‖hi‖2). With t0 , γ−1
th −N−1ρ−1

0 , θ2 can be calculated as

θ2 = 1{t0 ≥ 1}+ (1− (1− t0)N)1{0 ≤ t0 ≤ 1}. (5.49)

Three approximations to θr for r ≥ 3 and large N are described below. Approximat-

ing ρ1
max as ρ1

1, and assuming um as i.i.d. Gamma distributed with shape r− 1 and
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rate N , we obtain the Gamma approximation:

Gamma: θr = 1− Γinc(r − 1, Nt0)/Γ(r − 1). (5.50)

Approximating ρ1
max = ρ1

1 and um
i.i.d.∼ N ((r − 1)µN , (r − 1)σ2

N), where µN , (N +

1)−1, and σ2
N , N(N + 1)−2(N + 2)−1, we obtain the Normal approximation:

Normal: θr = 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (5.51)

where Q(·) is the standard Normal Q-function.

Proof. In random censoring, there is no CSI threshold. Substituting for ν = 0 in

Theorem 5.2, we obtain the above.

Let us use an arbitrary censoring scheme in which pa fraction of the users are active.

The active load La of the system is then La = Lpa. The effective PLR of the system

(including censored users) can be calculated as

PLR = (1− pa) + paPLRa. (5.52)

The throughput T of the users in the system can now be obtained from the asymptotic

PLR as

T = L(1− PLR) = La(1− PLRa). (5.53)

The iterations pi=f(λ(pi−1)) converge to p∞ = 0 if the active load La < L∗a, asymptoti-

cally [7,11]. Here, L∗a is called the active inflection load of the system, and it corresponds

to a system inflection load of L∗=L∗a/pa. For La<L
∗
a, since p∞ = 0, we have PLRa = 0,

PLR=(1− pa), and T =Lpa=La. For any La≥L∗a, PLRa does not converge to 0, and T

decreases monotonically with La. Also, from (5.52), we see that PLR≥(1− pa), and thus,

T ≤ Lpa.
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The curve marked “Random” in Fig. 5.18 uses random censoring and achieves the

same throughput as vanilla IRSA for every pa ∈ (0, 1]. For the same active load La,

the channel states of the uncensored users with CSI-based censoring are better than

the channel states of the active users with random censoring. With optimal random

censoring, in order to operate the system at Ttgt = 0.15 at L∗a = 0.6, we need to choose

pa = min{1, 0.6/L}. With this choice of pa, we obtain the curve marked “Random” in

Fig. 5.19, which achieves T = 0.15 at all L. Thus, the optimal CSI-based censoring in

C-IRSA achieves a peak throughput of T = 0.65 whereas optimal random censoring in

IRSA has a peak throughput of T = 0.15, which is a 4× improvement.

Similar trends are observed for the MIMO case, as seen with the curves marked “Ran-

dom” in Figs. 5.11 and 5.13.

5.9.3 Channel Estimation at the Users

We formalize the process of channel estimation at the users and the consequent self-

censoring. Prior to the start of each frame, let the BS transmit a set of N orthogonal

pilots {φ1,φ2, . . . ,φN} as N consecutive symbols across the N antennas. With Φ =

[φ1,φ2, . . . ,φN ], the received downlink signal yD
i ∈ C1×N at the ith user across the N

symbols is

yD
i = hHi Φ + nD

i , (5.54)

where nD
i ∈ C1×N is the AWGN at the ith user. The ith user can obtain the minimum

mean squared error (MMSE) estimate of its fading vector vi ∈ CN as

v̂i =
√
βiσ

2
h(βiσ

2
hΦ

HΦ +N0IN)−1ΦHyDH
i . (5.55)

The ith user participates in the frame if and only if the norm squared of its fading estimate

v̂i exceeds the threshold ν. Thus, we have that ai = 1{‖v̂i‖2 ≥ ν}, ∀i ∈ [M ].
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5.9.4 Analysis of C-IRSA Accounting for UAD Errors

In mMTC systems, users transmit data as and when they have data to transmit, and they

largely remain inactive. Due to this sporadic activity of the users, the BS needs to figure

out which users are active at any instant of time. In typical IRSA systems, the users’

activities are contributed only from the sporadic activity property in mMTC. In C-IRSA,

the users are active only when two conditions are satisfied: users have chosen to transmit

data in the current frame and they have good channel states in the current frame. The

former arises due to the sporadic activity of the users in mMTC, whereas in the latter,

the “goodness” of the channel states is measured by the property that they have a fading

channel v such that ‖v‖2 ≥ ν.

In the C-IRSA protocol, the users’ packets are decoded at the BS using the SIC process

as with the conventional IRSA protocol. This entails a UAD phase, followed by a channel

estimation phase, and finally a data decoding phase. The BS first carries out an activity

detection phase based on which it knows the subset of users that have not self-censored.

The BS then processes the received pilot and data signals iteratively. In every slot, the

BS attempts to decode the users’ packets. If a user is successfully decoded, which can

be verified via a cyclic redundancy check, then the BS performs SIC in all slots in which

that user has transmitted a packet [7]. This process repeats and the decoding proceeds

in iterations until no new packets can be decoded.

5.9.4.1 UAD Phase

In the UAD phase, the BS first performs UAD (possibly, using the UAD algorithm pro-

posed in Chapter 4) to detect the subset of active users in each slot. We now setup some

notation for analyzing the performance of C-IRSA with UAD. Let the total number of

users in the system be Mtot and the corresponding load be the total load Ltot , Mtot/T .

Let the number of users in the system who wish to transmit in the current frame in

C-IRSA be M and the corresponding load be the system load L , M/T . M denotes

the number of users who wish to transmit in the current frame, regardless of whether

they have a good or a bad channel state. M out of the Mtot users wish to transmit in
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the current frame due to the sporadic activity property in mMTC. Let the number of

users who have not censored themselves in the current frame in C-IRSA be Ma and the

corresponding load be the active load La ,Ma/T . Ma denotes the number of users who

wish to transmit in the current frame, who also have a good channel state. The censoring

is performed based on L and La as described before.

Let the true activity coefficient of the ith user be denoted by ai, which is 1 if the ith

user is truly active in the frame and has not censored itself, and 0 otherwise. Let the set

of truly active users (users who are active in the frame and have not censored themselves)

be denoted by A , {i ∈ [Mtot]|ai = 1}. Let the estimated activity coefficient of the ith

user be denoted by âi, which is 1 if the ith user is truly active in the frame and has not

censored itself, and 0 otherwise. Let the set of users detected to be active by the UAD

algorithm be denoted by Â , {i ∈ [Mtot]|âi = 1}. Let bi denote the sporadic activity

coefficient of the ith user. That is, if the ith user has data to transmit in the current

frame, irrespective of whether the user is censored or not, bi = 1. If the ith user does not

have data to transmit in the current frame, then bi = 0. We see that ai = 1 if and only if

bi = 1 and ‖v̂i‖2 ≥ ν, i.e., ai = bi · 1{‖v̂i‖2 ≥ ν}.

The errors in the UAD process are the false positives, which refer to inactive users who

have been falsely declared to be active, and the false negatives, which refer to active users

who have been missed to be declared active. We denote F as the set of false positives

and M as the set of false negatives. These can be written as

F = {i ∈ [Mtot]|âi(1− ai) = 1}, (5.56)

M = {i ∈ [Mtot]|(1− âi)ai = 1}. (5.57)

In contrast with the above, true positives refer to active users who have been truly declared

to be declared active, and true negatives refer to inactive users who have been truly

declared to be inactive. We denote P as the set of true positives and I as the set of true

negatives. These are defined as

P = {i ∈ [Mtot]|âiai = 1}, (5.58)
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I = {i ∈ [Mtot]|(1− âi)(1− ai) = 1}. (5.59)

Chapter 4 presents an in-depth discussion about the algorithm and the effect of the

UAD errors (namely the false positives and the false negatives) on the performance of

IRSA.

5.9.4.2 Channel Estimation Phase

After the UAD phase, the BS performs channel estimation based on the received pilot

signal. The received pilot and data signals are indexed by the decoding iteration, since

the signals are processed in iterations. For this purpose, we let k denote the current

decoding iteration index, and Sk denote the number of users not yet decoded up to the

kth decoding iteration, with S1 = [Mtot] and S ik , Sk \ {i}. The received pilot signal at

the BS in the tth slot in the kth decoding iteration is given by

Ypk
t =

∑
i∈Skaigtihip

H
i + Np

t , (5.60)

where the first term contains signals from users who have transmitted in the current frame.

Since the BS has detected only users in Â = {i ∈ [Mtot]|âi = 1} to be active, it constructs

channel estimates only for the users in Â. Thus, the BS could possibly construct channel

estimates for the false positive users as well, in addition to true positive users.

We now derive the MMSE channel estimates at the BS in each slot. Let Gt = {i ∈

[Mtot]|gti = 1} be the set of users who would have transmitted in the tth slot had they

been active. Let Mk
t = Gt ∩ Sk ∩ Â and Mk

t , |Mk
t |. Mk

t is the set of users who

have been detected to be active in the tth slot but have not been decoded up to the

kth iteration at the BS (includes true positive and false positive users). Let us stack

the channels of the Mk
t users as the columns of Hk

t ∈ CN×Mk
t , let Pk

t ∈ Cτ×Mk
t denote a

matrix that contains the pilot sequences of the Mk
t users as its columns, and let Bk

t ,

σ2
hdiag(βi1 , βi2 , . . . , βiMk

t

) be a diagonal matrix that contains the path loss coefficients of

the Mk
t users, with Mk

t = {i1, i2, . . . , iMk
t
}. Hence, the received pilot signal from (5.60)

can be written as Ypk
t = Hk

tP
kH
t + Np

t .
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We now find the channel estimates using the signal Ypk
t .

Theorem 5.5 I Channel Estimation in Censored-IRSA with Activity Er-

rors.

The minimum mean squared error (MMSE) channel estimate Ĥk
t of Hk

t can be

found as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t . (5.61)

Specifically, the estimate of the channel hi of the ith user at the BS is calculated

as ĥkti = [Ĥk
t ]:,i. Further, the estimation error h̃kti , ĥkti − hi is distributed as

h̃kti ∼ CN (0N , δ
k
tiIN), where δkti is calculated as

δkti=βiσ
2
h

(
N0‖ckti‖2+

∑
j∈Sik
|pHj ckti|2âjajgtjβjσ2

h

N0‖ckti‖2+
∑

j∈Sk |p
H
j ckti|2âjajgtjβjσ2

h

)
, (5.62)

where Ck
t , Pk

tD
k
t (P

kH
t Pk

tD
k
t + N0IMk

t
)−1, ckti , [Ck

t ]:,i, and Dk
t ,

diag(dti1 , dti2 , . . . , dtiMk
t

), with dti= âiaigtiβiσ
2
h.

Proof. The proof is similar to the proof of Theorem 4.1 in Chapter 4.

Remarks: The MMSE channel estimate Ĥk
t of Hk

t can be written as seen in (5.61) as

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )

−1Pk
tB

k
t , (5.63a)

(a)
= Ypk

t Pk
tB

k
t (P

kH
t Pk

tB
k
t +N0IMk

t
)−1, (5.63b)

where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

via an inverse of either a τ × τ matrix or an Mk
t ×Mk

t matrix as required.



Chapter 5. Censored-IRSA for Interference-Limited mMTC 225

5.9.4.3 Data Decoding Phase

Similar to (5.60), we can find the received data signal in the tth slot in the kth decoding

iteration as

ykt =
∑

i∈Skaigtihixi + nt. (5.64)

We use a generic combining vector aktm to combine the received data signal across

antennas to obtain the post-combined data signal ỹktm , akHtm ykt as seen in (5.65).

ỹktm = amgtmxmakHtm ĥktm − amgtmxmakHtm h̃ktm

+
∑

i∈Smk ∩P
aigtixia

kH
tmhi +

∑
i∈Smk ∩M

aigtixia
kH
tmhi + akHtmnt. (5.65)

Here, the term T1 , amgtmxmakHtm ĥktm is the desired signal of the mth user; the term

T2 , amgtmxmakHtm h̃ktm is due to the estimation error h̃ktm of the mth user’s channel;

the term T3 ,
∑

i∈Smk ∩P
aigtixia

kH
tmhi models the inter-user interference from other true

positive users (who have not censored and have not yet been decoded); the term T4 ,∑
i∈Smk ∩M

aigtixia
kH
tmhi is the interference from false negative users (who have not censored,

but cannot be decoded since they are declared to be inactive); and T5 , akHtmnt is the

additive noise. Since noise is uncorrelated with the other terms and the data streams

of distinct users are uncorrelated, all the terms are uncorrelated with each other. Thus,

the power in the received signal is a sum of the powers of the terms [49]. Based on the

post-combined data signal, we now compute the signal to interference plus noise ratio

(SINR).

Theorem 5.6 I SINR Calculation in Censored-IRSA with Activity Er-

rors.

The signal to interference plus noise ratio (SINR) achieved by the mth user at the

BS in the tth slot and the kth decoding iteration in C-IRSA can be written as

ρktm=
Gainktm

N0 + Estktm + MUIktm + FNUktm
,∀m ∈ Sk. (5.66)
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Here, Gainktm is the desired signal power, Estktm is the power of the channel estima-

tion error, MUIktm is the multi-user interference due to other true positive users, and

FNUktm is the interference due to false negative users. These can be calculated as

Gainktm , pmâmamgtm|akHtm ĥktm|2/‖aktm‖2,

Estktm ,
∑

i∈Skpiâiaigtiδ
k
ti,

MUIktm ,
∑

i∈Smk
piâiaigti|akHtm ĥkti|2/‖aktm‖2,

FNUktm ,
∑

i∈Skpi(1− âi)aigtiβiσ
2
h.

Proof. The proof is similar to the proof of Theorem 4.3 in Chapter 4.

The channel estimates ĥkti and the error covariance δkti in the above expressions are

obtained from Theorem 5.5. The combining vector that maximizes the SINR in (5.66) is

the MMSE combiner [49], which can be found as

Ak
t = Ĥk

tD
k
t,p(d

k
t IMk

t
+ ĤkH

t Ĥk
tD

k
t,p)
−1,

= (dkt IN + Ĥk
tD

k
t,pĤ

kH
t )−1Ĥk

tD
k
t,p,

where Dk
t,p,diag(pi1 , pi2 , . . . , piMk

t

) contains the power coefficients of the Mk
t users, and

dkt , N0 +
∑

i∈Skpiâigtib
k
ti, where

bkti = βiσ
2
h

(
N0‖fkti‖2 +

∑
j∈Sik
|pHj fkti|2âjgtjβjσ2

h

N0‖fkti‖2 +
∑

j∈Sk |p
H
j fkti|2âjgtjβjσ2

h

)
.

Here, Fk
t , Pk

tE
k
t (P

kH
t Pk

tE
k
t + N0IMk

t
)−1, with fkti , [Fk

t ]:,i, and Ek
t ,

diag(eti1 , eti2 , . . . , etiMk
t

), where eti, âigtiβiσ2
h.

We use the SINR threshold model to abstract the decoding of a user’s packet: any

packet is decoded correctly if and only if its SINR is above a threshold γth ≥ 1 [17, 74].

With the SINR threshold model, the performance of C-IRSA can be computed as follows.

First, the SINRs achieved by all users in all slots is computed. If there is a user with SINR
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≥ γth in some slot, that packet is successfully decoded and its contribution is removed all

other slots in which that user has transmitted a replica [8]. We then proceed to the next

decoding iteration and recompute the SINRs for all users yet to be decoded. This process

stops when no additional users are decoded in two successive iterations. The throughput

T is calculated as the number of unique packets correctly decoded divided by the number

of slots.

We have thus obtained channel estimates and the SINR in C-IRSA accounting for

UAD errors.

5.9.5 Numerical Results in C-IRSA Accounting for UAD Errors

In this subsection, we study the performance of our UAD algorithm from Chapter 4 ap-

plied to C-IRSA. We also analyze the impact of UAD errors on the throughput of C-IRSA

via Monte Carlo simulations. The metrics used to characterize the UAD performance are

false positive rate, FPR , |F|
|F|+|I| , and false negative rate, FNR , |M|

|M|+|P| . FPR is the

fraction of inactive users declared to be active whereas FNR is the fraction of active users

declared to be inactive. The UAD algorithm is run for jmax = 100 maximum iterations.

The UAD algorithm has an activity threshold parameter γpr = 10−8, which is used to

declare the estimated activities of the users.14

The results in this section are for T = 50 slots and Ns = 104 Monte Carlo runs [49].

The sporadic activities of the users are modelled as being Bernoulli distributed, i.e.,

bi
i.i.d.∼ Ber(pa), where pa = 0.1 is the per-user sporadic activity probability [53]. Since we

are evaluating the performance averaged over Monte Carlo simulations, we calculate the

system load L in each frame as the average number of users expected to be active in each

frame per slot, i.e., L = Mtotpa/T = Ltotpa. The number of users contending for the T

slots is computed in each simulation based on the load L as Mtot = bLT/pae. The other

system parameters are chosen similar to the settings in Section 5.6.

14We can obtain different FNRs and FPRs by varying the activity threshold γpr, similar to Chapter 4.
This threshold can be used to trade-off the false negatives for the false positives and vice versa as required,
similar to Chapter 4. If needed, γpr can be tuned at each load to achieve the lowest balanced error rate,
which is the average of the FNR and the FPR.
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(a) Effect of ν = i(L,Ltgt, L0) on Ma.

(b) Effect of ν = i(L,Ltgt, L0) on Ma/Mtot.

Figure 5.22: Effect of ν = i(L,Ltgt, L0) on the number of active users in C-IRSA.
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(a) UAD Performance in C-IRSA.

(b) Performance depicted with a linear y-axis.

Figure 5.23: UAD in C-IRSA.
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(a) Perfect UAD vs Estimated UAD in C-IRSA.

(b) Impact of pilot length choices on C-IRSA with estimated UAD.

Figure 5.24: Impact of UAD errors on C-IRSA.
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Before we study the UAD performance in C-IRSA, we study the effect of the censor

function ν = i(L,Ltgt, L0) on the active users Ma and the fraction of active users to the

total number of users Ma/Mtot. As the load is increased from L = 1 to 2, 3, . . . , 8, the

total number of users over the T slots increases from Mtot = 500 to 1000, 1500, . . . , 4000.

In Fig. 5.22(a), we plot the active users as a function of the load L. For each of the curves,

when L < L0, all the users are active, i.e., Ma = M = LT/pa. This is because we do not

censor when L < L0. For each of the curves, when L0 ≤ L < Ltgt, we see that Ma starts

increasing and it hits a peak value at L = Ltgt. This is because we start censoring when

L0 ≤ L < Ltgt, and thus, Ma < M = LT/pa. Beyond L > Ltgt, the main idea of the

censor function ν = i(L,Ltgt, L0) is to maintain a fixed number of active users. Thus, we

see a constant Ma for every L > Ltgt. In Fig. 5.22(b), we plot the ratio of active users to

the total number of users as a function of the load L. In the previous figure, we saw the

trends of the number of active users Ma as the load L is varied. Here, we observe that

all the curves trend downwards as the load increases. Thus, as L is increased beyond L0,

using the censor function ν = i(L,Ltgt, L0) monotonically reduces Ma/Mtot and keeps Ma

fixed.

The performance of compressed sensing algorithms such as orthogonal matching pur-

suit [99], approximate message passing [98], sparse Bayesian learning (SBL) [68, 69, 120],

multiple sparse Bayesian learning (MSBL) [16], and our algorithm as well depends not

just on the number of sparse entries but also on the fraction of the number of non-zero

entries to the total number of entries [122]. Specifically, the result is as follows: If a

multiple measurement vector recovery algorithm (such as ours) is applied, a pilot length

of τ = Ω(Ma log(Mtot/Ma)) can achieve a vanishing activity error rate as N →∞ [122].15

Thus, the error rates that we expect to see for C-IRSA must adhere to the above result.

In Fig. 5.23(a), we plot the UAD error rates in C-IRSA versus the load L under the

generalized censor function ν = i(L,Ltgt = 4.6, L0 = 2). With a pilot length of τ = 10,

the FNR drops below an error rate of 10−4 at L = 4.2. In contrast with this, the FNR

15The Ω(·) notation provides a best case guarantee as opposed to the O(·) notation which provides a
worst case guarantee. The formal definition of Ω(·) is Ω(g(n)) = {f(n)|∃c, n0 > 0 such that 0 ≤ cg(n) ≤
f(n)∀n ≥ n0}.
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drops below 10−4 for τ = 20 at L = 3.2 and for τ = 10 at L = 2.9. This demonstrates

the efficacy of increasing the pilot length in improving the UAD performance. The FPR

for τ = 10 crosses 10−4 at L = 5.2, beyond which the FPR becomes unity. Similarly,

the FPR for τ = 20 crosses 10−4 at L = 6.8, beyond which the FPR becomes unity.

The FPR for τ = 30 is zero for the depicted range of L, and does not show up in the

plot since the y-axis is on a logarithmic scale. However, we can see that FPR is zero as

plotted in Fig. 5.23(b), where the y-axis is on a linear scale. The FPR for τ = 30 will

cross 10−4 at some high load beyond L = 8. Thus, we observe that increasing the pilot

length decreases both the FPRs and the FNRs, and hence the pilot length highly affects

the UAD performance of C-IRSA.

We see that the FPR is zero at low to moderate loads and becomes unity at high

loads. This is because a pilot length of τ = 10 is insufficient at such high loads, and the

UAD performance suffers as a consequence. At this high load, the result we previously

saw dictates that τ = Ω(Ma log(Mtot/Ma)) can achieve a vanishing activity error rate as

N → ∞ [122]. Since we use the censor function ν = i(L,Ltgt = 4.6, L0 = 2), we start

censoring users at L0 = 2 and we wish to continue the same number of active users beyond

Ltgt = 4.6. Since Ma is fixed for all L > Ltgt, and Mtot is increasing, a pilot length of

τ = 10 becomes insufficient at L = 5.2, and a pilot length of τ = 20 becomes insufficient

at L = 6.8, whereas a pilot length of τ = 30 is sufficient for 0 < L ≤ 8. FPR becomes

non-zero since Mtot is increasing, which requires higher τ to achieve near-zero error rates.

Further, the FNR is fairly constant upto L0 = 2 (since we do not censor), and then drops

beyond L0 = 2. This is because we are in the regime where the pilot length is sufficient

and the percentage of active users starts dropping. Also, the activity threshold is high

enough to ensure that no user is missed. This comes at the cost of high FPR at higher

loads.

We compare the performance of estimated UAD and perfect UAD in C-IRSA in

Fig. 5.24(a). For τ = 10, we see that with estimated UAD, the throughput drops to

near-zero beyond L = 5.2. For τ = 20, we see that with estimated UAD, the throughput

drops to near-zero beyond L = 7.2. These are the same loads at which we observed the
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FPR becomes unity in Fig. 5.23(a). For τ = 30, we see that the performance of estimated

UAD is the same when we assume perfect UAD. The low FNRs observed in Fig. 5.23(a)

do not have a significant impact on the throughput. In fact, we have observed that to

have a significant impact on the throughput, the error rates need to be higher than 0.1.

But we have observed in Fig. 5.23(b), that only the FPRs for τ = 10 and 20 are higher

than 0.1 and consequently, the corresponding throughputs are near-zero. Otherwise, all

the error rates are indeed very low and thus, the throughput results presented before are

indeed valid given the fact that we choose an appropriate pilot length.

When we keep the ratio Ma/Mtot fixed, τ = Ω(Ma) pilot symbols are sufficient. But

in IRSA and C-IRSA, the number of collisions in each slot is far fewer than Ma, and as

a result very low pilot lengths are sufficient for accurate UAD. In fact, we had observed

earlier that a pilot length of τ = 10 was indeed sufficient for peak channel estimation per-

formance, and increasing τ beyond 10 did not have a significant impact on the throughput

(See Chapter 4). The UAD problem is easier to solve when compared to channel estima-

tion (See Chapter 4), and thus, any pilot length that is sufficient for channel estimation

is indeed sufficient for accurate UAD. In practice, the optimal pilot length must be calcu-

lated for every L, and this optimal pilot length not only provides good UAD performance

but also good channel estimation.

A simple solution to achieve very accurate UAD is to perhaps consider a fixed pilot

length of τ = 30 or even higher. While this keeps the throughput at the peak as seen

in Fig. 5.24(a), it also leads to low spectral efficiencies (SEs) at low loads. At low loads,

such a high pilot length is excessive and fewer symbols are used for data, and thus, lower

SEs are achieved. Thus, we must consider variable pilot lengths as opposed to fixed pilot

lengths as above. In Fig. 5.24(b), we plot the performance of C-IRSA with estimated UAD

under different variable choices for the pilot length. In all of the cases plotted in the figure,

we round up the choice of the pilot lengths to the nearest integer with the ceil function

to ensure integer valued pilot lengths. That is, the legend of τ = 10L, τ = 10 log(L+ 1),

and τ = 10 log(L) + 13 are actually implemented as τ = d10Le, τ = d10 log(L+ 1)e, and

τ = d10 log(L) + 13e. We first analyze the case when the pilot length varies linearly with
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the load, i.e., when τ = k1L, where k1 is a constant. If we choose τ = 10L or τ = 12L,

we see that the throughput is maximized and it achieves the best performance of the

system. But this leads to excessive pilot lengths of τ = 40/80 or τ = 48/96 at L = 4/8,

respectively, for τ = 10L or τ = 12L. This is again excessive for both UAD and channel

estimation, and leads to low SEs.

The recovery guarantee of τ = Ω(Ma log(Mtot/Ma)) can help us calculate the pilot

lengths that are required for accurate UAD. The guarantee τ = Ω(Ma log(Mtot/Ma)) can

be rewritten in terms of the load as τ = Ω(Ma log(LtotT/Ma)) = Ω(Ma log(LT/(paMa))).
16

When Ma is fixed, this guarantee becomes τ = Ω(log(Lk2)), where k2 is a constant. Thus,

we explore the case when the pilot length is varied as a logarithmic function of the load L

as τ = k3 log(L), where k3 is a constant. To ensure that the pilot length does not become

negative for L < 1, we can choose the pilot length alternatively as τ = k4 log(L + 1),

where k4 is a constant. In Fig. 5.24(b), we plot the performance with τ = 10 log(L + 1),

τ = 12 log(L + 1), and τ = 15 log(L + 1). While τ = 15 log(L + 1) maintains the

performance at the peak, τ = 10 log(L + 1) and τ = 12 log(L + 1) do not maintain the

peak performance beyond L = 6.2 and L = 7.4, respectively. This is because these curves

have FPR= 1 beyond L = 6.2 and L = 7.4, and thus, their throughput becomes near-zero.

When Ma is fixed, since the recovery guarantee was τ = Ω(log(Lk2)), where k2 is

a constant, we can alternately choose the pilot length as τ = k5 log(L) + k6, where k5

and k6 are constants. In accordance with this, in Fig. 5.24(b), we plot the performance

with τ = 10 log(L) + 13, τ = 12 log(L) + 11, and τ = 15 log(L) + 9. The throughputs

corresponding to all three of these choices coincide with each other. All the choices of k5

and k6 in these functions are fine tuned to ensure that the UAD error rates are near-zero.

In fact, since the recovery guarantee is asymptotic, there exists a choice of pilot length

τ = k5 log(L) + k6 with minimal k5 and k6 such that UAD is extremely accurate at all

16In order to vary the total number of users Mtot = LT/pa, we can alternately vary T or the activity
probability pa, instead of varying L. In this case, the recovery guarantees become τ = Ω(log(T )) or
τ = Ω(− log(pa)), respectively. In either case, the load L is fixed, and the complexity of the compressed
sensing recovery problem is fixed as Mtot increases. We have considered the more difficult problem
which deals with increasing L, which involves a higher complexity of the compressed sensing recovery
problem [67].
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L [122]. This choice needs to be found in practice, and can be fine tuned as we observed

above. For upto loads of L = 8, τ = 30 or τ = 10 log(L) + 13 is sufficient. This implies

that we can indeed assume perfect UAD upto such pilot lengths. Further, we do not need

very large pilot lengths for accurate UAD. The generalized censor function also does not

depend on the pilot length.

5.9.6 Other Censor Functions

We now investigate the performance with various other censor functions defined as

h1(L,Ltgt) ,

4, L < Ltgt,

H(L,Ltgt, ν = 4), L ≥ Ltgt,

(5.67)

h2(L,Ltgt) ,

2, L < Ltgt,

H(L,Ltgt, ν = 2), L ≥ Ltgt,

(5.68)

h3(L,Ltgt) ,

0, L < Ltgt,

H(L,Ltgt, ν = 0), L ≥ Ltgt.

(5.69)

The functions h1(·, ·), h2(·, ·), and h3(·, ·) are obtained from the h(·, ·) function, when the

target threshold is chosen as a fixed value as ν = 4, 2, and 0, respectively. We have also

explored other variants of the generalized censor function defined as

i1(L,Ltgt, L0) ,


0, L < L0,

νtgt, L0 ≤ L < Ltgt,

H(L,Ltgt, νtgt), L ≥ Ltgt,

(5.70)

i2(L,Ltgt, L0) ,


0, L < L0,(
L− L0

Ltgt − L0

)
νtgt, L0 ≤ L < Ltgt,

H(L,Ltgt, νtgt), L ≥ Ltgt.

(5.71)
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(a) Comparison between i(·, ·, ·), h(·, ·), h1(·, ·), h2(·, ·),

and h3(·, ·).

(b) Comparison between i(·, ·, ·), i1(·, ·, ·), and i2(·, ·, ·).

(c) Comparison between different L0 with i(·, ·, ·).

Figure 5.25: Performance comparison of varied censor functions.
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Here, i1(·, ·, ·) is obtained from h(·, ·) if we do not censor below L0 and i2(·, ·, ·) is obtained

from i(·, ·, ·) if we perform linear interpolation instead of logarithmic interpolation.

In Fig. 5.25, we evaluate the performance of C-IRSA with varied censor functions

defined as above. Firstly, in Fig. 5.25(a), we compare the performance between i(·, ·, ·),

h(·, ·), h1(·, ·), h2(·, ·), and h3(·, ·). i(L,Ltgt = 4.6, L0 = 2) performs the best and achieves

the highest throughput at every L. When L < L0, censoring is not always needed.

If we censor with ν = νtgt, we achieve the performance with h(L,Ltgt = 4.6). The

performance of h(L,Ltgt = 4.6) coincides with the performance of i(L,Ltgt = 4.6, L0 =

2) when L > Ltgt. h1(·, ·), h2(·, ·), and h3(·, ·) operate with different νtgt compared to

h(·, ·). Their performances coincide with their respective νtgt of 4, 2, and 0 upto the

respective Ltgt, and beyond Ltgt their performance remains fixed at the same throughput

achieved at L = Ltgt. h1(·, ·) performs poorly when L < Ltgt since it operates with a

very high νtgt. The performance of h2(L,Ltgt = 3.6) is very close to the performance of

i(L,Ltgt = 4.6, L0 = 2), both above and below L = 3.6. h3(L,Ltgt = 2.8) performs good

upto L < Ltgt, and beyond that it performs poorly w.r.t. i(L,Ltgt = 4.6, L0 = 2).

In summary, this figure validates the reason why we should not censor at low loads.

At low loads, ν = 0 performs the best and hence, there is no requirement of censoring

users with a high νtgt. At high loads, a high νtgt can help. We can extract more juice out

of the system by crossing the gap between h3(L,Ltgt = 2.8) and i(L,Ltgt = 4.6, L0 = 2).

This is why we need to resort to censoring between L0 ≤ L < Ltgt. The generalized censor

function takes care of all of this within one continuous function.

We now study various functions and see which performs the best when L0 ≤ L < Ltgt

in Fig. 5.25(b). The first variant of h(·, ·) is the i1(·, ·, ·) function, which is a discontinuous

function which blindly sets ν = 0 below a chosen L0 and maintains ν = νtgt between

L0 ≤ L < Ltgt. i1(L,Ltgt = 4.6, L0 = 2.6) sees an abrupt drop in the throughput at

L = 2.6 because of this discontinuity. i1(L,Ltgt = 4.6, L0 = 3.2) follows the performance

of ν = 0 up to L = 3.2 and then follows the performance of h(·, ·). Both perform poorly

when L0 ≤ L < Ltgt compared to i(L,Ltgt = 4.6, L0 = 2). We need to obtain better

censor thresholds in this region.
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In order to make the throughput slowly continuously vary with the load, we resort to

interpolation. We see that linear interpolation performs very well, and nearly achieves the

best performance. Specifically, i2(L,Ltgt = 4.6, L0 = 2.6) and i2(L,Ltgt = 4.6, L0 = 2.8)

nearly achieve the performance of i(L,Ltgt = 4.6, L0 = 2). However, we could never reach

the peak performance of i(L,Ltgt = 4.6, L0 = 2) no matter how much L0 was fine tuned.

When L < Ltgt is close to Ltgt = 4.6, we see that i2(L,Ltgt = 4.6, L0 = 2.6) just starts

achieving the best performance of i(L,Ltgt = 4.6, L0 = 2). This suggests that we need to

choose a higher censoring threshold when L just exceeds L0. This can be achieved, for

example, if we choose a logarithmic interpolation function as seen in the SISO case. This

is precisely the reason why we choose the logarithmic interpolation, and as seen in the

figure, it achieves the peak performance. The logarithmic interpolation approach closely

approximates the algorithmic approach presented in the paper, which is PLRa-optimal.

This validates our choice of the logarithmic interpolation.

Finally, in Fig. 5.25(c), we fine-tune L0 with the logarithmic interpolation. With

L0 = 1 or 2.6, the performance is not at the peak. The system is censoring too much with

L0 = 2.6 and too less with L0 = 1. We can fine-tune L0, and see with which value of L0,

the system performs the best. In this case, L0 = 2 performs the best.

5.9.7 Impact of System Parameters on the Generalized Censor

Function

We now plot the generalized censor function as a function of the various system parame-

ters. In Fig. 5.26(a), we plot the generalized censor function as a function of the system

load L. Each of the curves have a logarithmic interpolation for L0 ≤ L < Ltgt as described

in the previous comment. The censor function is a monotonically non-decreasing function

of L. As we increase the system load, as expected, the censor function increases to censor

more users. The curves shift downwards as ρ−1
e γth decreases from 2.5 to 2 to 1 to 0.5.

This is because a decrease in target threshold monotonically decreases the optimal censor

function via the H(·, ·, ·) function. In the L0 ≤ L < Ltgt region, increasing L0 decreases

the slope of the censoring function and hence reduces the value of the generalized censor
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(a) Impact of load.

(b) Impact of number of antennas.

Figure 5.26: Impact of system parameters on the generalized censor function i(L,Ltgt, L0).
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(a) Impact of SINR threshold.

(b) Impact of cell edge SNR.

Figure 5.27: Impact of system parameters on the generalized censor function i(L,Ltgt, L0).
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function.

Fig. 5.26(b) studies the impact of the number of antennas N on the generalized cen-

sor function. The censor function is a monotonically non-decreasing function of γth for

L ≥ Ltgt. This is because an increase in N monotonically decreases (non-increases) the

optimal censor function via the H(·, ·, ·) function. We also observe that at high N , the

optimal censoring function tends to concentrate near N . Channel hardening [106] is the

phenomenon that as N increases the norm squared of the fade converges to a constant,

i.e.,‖vi‖2 → Nσ2
h. Since we perform fade-based censoring as ‖vi‖2 ≥ ν, the threshold has

to be made close to Nσ2
h (± a standard deviation) to ensure a significant impact on T .

The effect of channel hardening gets more pronounced at higher N as seen in Fig. 5.26(b).

In Fig. 5.27(a), we study the impact of the SINR threshold γth on the generalized censor

function. The censor function is a monotonically non-decreasing function of γth. This is

because an increase in the SINR threshold γth monotonically increases (non-decreases)

the optimal censor function via the H(·, ·, ·) function. As we increase the SINR threshold

γth, fewer users cross the SINR threshold, and as a consequence more users are censored

to ensure the remaining users who have good channel states cross the SINR decoding

threshold. Fig. 5.27(b) studies the impact of the cell edge SNR ρe on the generalized

censor function. The censor function is a monotonically non-increasing function of ρe.

This is because an increase in the SNR ρe monotonically decreases (non-increases) the

optimal censor function via the H(·, ·, ·) function. In both of these plots, changing N

changes the slope of the optimal censoring function. At low SNRs, we need to censor

users with a very high threshold to ensure only users with better channel states have

good decodability and hence get decoded.

5.9.8 C-IRSA accounting for Shadowing

So far, we have accounted for only the path loss coefficient in the system model and not the

shadowing component, since we model the large scale fading coefficient (LSFC) as βm (dB)

= −37.6 log10(ri/r0), where r0 represents the reference distance. The parameter βm, which

represents the LSFC, can model the contribution of both path loss as well as shadowing.
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It is quite prevalent to model the LSFC, in typical communication systems, as βm (dB)

= −37.6 log10(ri/r0) + Shad., where Shad. represents the shadowing component [21]. In

C-IRSA, users estimate their small scale fading coefficient (SSFC) and perform censoring

based on the estimated fading coefficient. Similar to estimating their SSFCs, the users

can estimate their LSFCs every once in a while. Since LSFCs change very slowly with

time [126], they need not be estimated every frame like the SSFCs, but can be estimated

irregularly, say every 50 or every 100 frames.

Multiple techniques have been used in existing works to estimate the shadow powers.

A Kalman-filter-based shadow power estimation and prediction algorithm is developed

in [127] for the Rayleigh-lognormal scenario. A sequential Bayesian method has been

proposed for dynamic estimation and prediction of shadow powers from instantaneous

signal powers in composite fading-shadowing wireless communication channels [128]. Fur-

ther, [128] also reviews 10 other papers which perform very accurate shadow power esti-

mation. Existing works show that it can be estimated over time by averaging over the

beacon signals at the start of multiple frames. A few works do this via moving window

based averaging, and it captures the effect of both shadowing and path loss [129]. Path

loss estimation based on distances is terrain and frequency dependent [130, 131]. LSFC

estimation can be incorporated into the protocol as well.

We now present the performance of C-IRSA accounting for shadowing as well as path

loss in Fig. 5.28. Here, we model the LSFC as βi (dB) = −37.6 log10(ri/r0) + Shad,

where Shad ∼ N (0, σ2
Shad) is a standard log-normal shadowing component, with shadowing

variance σ2
Shad. The censoring is still performed based only on the SSFC and not the

LSFC, as earlier. The users can estimate their LSFCs under any of the previous mentioned

techniques. We choose the censor thresholds as ν= i(L,Ltgt =4.6, L0 =2). In Fig. 5.28, we

compare the performance of C-IRSA without accounting for shadowing (with σ2
Shad = 0)

with the performance accounting for shadowing (with non-zero σ2
Shad). We observe that

σ2
Shad = 9 is nearly coincidental with σ2

Shad = 0, and both achieve a peak throughput of

T = 2.93.17 With a realistic value of σ2
Shad = 16 [49], we observe that the peak throughput

17We have excluded the curves with σ2
Shad = 1, σ2

Shad = 2, and σ2
Shad = 4, since they are nearly
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Figure 5.28: Performance of C-IRSA with shadowing.

only slightly drops to T = 2.87, which is a very small performance reduction when we

account for shadowing. When σ2
Shad is higher, few users experience deep fades, and the

performance drops as expected. Similar to conventional communication systems, if users

experience deep fades, then the users can change their frequency of operation and transmit

in a different frequency band.

5.9.9 Uniqueness of Pilot Sequences

In IRSA, in each slot, there are Ld̄ packet collisions on an average in every frame [7]. Even

if we were to do UAD on a slot by slot basis, we would need only Ld̄ unique pilot sequences

in each slot on an average. For example, if we use an average repetition factor of d̄ = 3,

then in each slot, there would be 3L packet collisions on an average; with L = 2, 4, 8, this

would be 6, 12, and 24 packet collisions in each slot. If we employ QPSK pilots, with a

pilot sequence length of dlog4(Ld̄)e, we could potentially “pre-assign” unique sequences.

Let the pilot sequence used by the mth user be pm ∈ Cτ . If we use a QPSK constel-

lation to generate the pilot sequences, then the entries of pm lie in {(±1 ± j)/
√

2}. Let

coincidental with σ2
Shad = 0.
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Pr2,τ denote the probability that any 2 colliding users in a slot have picked an identical

pilot sequence of length τ . We study this probability under different scenarios.

1. For a conventional mMTC system, M users transmit concurrently in the same time

slot, and the BS needs to detect which subset of the [M ] users are active. In this case,

the probability that any 2 users out of the M users pick identical pilot sequences of

length τ is calculated as [53]

Pr2,τ =


1−

M−1∏
k=1

(
1− k

4τ

)
, M ≤ 4τ ,

1, M > 4τ .

(5.72)

The above implies that if the number of users M is greater than 4τ , then it is not

possible to assign unique pilot sequences to all the M users, and there are at least

2 users who have identical pilot sequences. For example, with M = 1000 users, we

need a low pilot length of τ = dlog4(M)e = 5 symbols to ensure that unique pilot

sequences are picked by the users, in the conventional mMTC setup.

2. In IRSA, the number of users transmitting in a specific slot is much lower than the

total number of users in a conventional mMTC setup. If the length of the frame is

T slots, the number of users is M , with the load being L , M/T , and the average

repetition factor of the users is d̄, then the number of users transmitting in any slot

is Ld̄ on an average [7,8]. For an arbitrarily large M , the number of packet collisions

in any slot is instantaneously close to Ld̄ relative to M . For ease of calculation, let

us consider that Ld̄, or more precisely dLd̄e, users are indeed colliding in any slot.

In this case, in IRSA, the probability that any 2 users out of the dLd̄e users pick

identical pilot sequences of length τ is calculated as

Pr2,τ =


1−

dLd̄e−1∏
k=1

(
1− k

4τ

)
, dLd̄e ≤ 4τ ,

1, dLd̄e > 4τ .

(5.73)
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For a frame with load L = 3 and average repetition factor d̄ = 2, 3, and 4, the num-

ber of users colliding in each slot are Ld̄ = 6, 9, and 12, on an average, respectively.

Hence a pilot length of τ = dlog4(Ld̄)e = 2, 2, and 2, respectively, is theoretically

sufficient for the pilot sequences of two colliding users to not be identical in any

slot. For an average repetition factor d̄ = 4, with load L = 3, 10, 30, 100, and

1000, the number of users colliding in each slot are Ld̄ = 12, 40, 120, 400, and

4000, on an average, respectively. For this, we only need pilot sequences of length

τ = dlog4(Ld̄)e = 2, 3, 4, 5, and 6, respectively, to ensure any two users do not

pick the same pilot sequence in any time slot. This is applicable for any M such

that L = M/T is fixed to the above values. This implies that we can choose an

arbitrarily high M (and correspondingly a high T = LM) to ensure no two users

pick the same pilot sequences in IRSA with as low a pilot length as less than 10

symbols.

3. In C-IRSA, with a censor threshold ν, the effective active load of the system in

any frame is La = LF̄(ν). The repetition factor generation is same in both IRSA

and C-IRSA. This implies that LF̄(ν)d̄ users collide in each slot on an average in

C-IRSA, compared to Ld̄ users on an average in IRSA. In this case, the probability

that any 2 users out of the dLF̄(ν)d̄e users pick identical pilot sequences of length

τ is calculated as

Pr2,τ =


1−

dLF̄(ν)d̄e−1∏
k=1

(
1− k

4τ

)
, dLF̄(ν)d̄e ≤ 4τ ,

1, dLF̄(ν)d̄e > 4τ .

(5.74)

Since F̄(ν) ≤ 1, the number of users colliding in each slot in C-IRSA is always lesser

than in IRSA, i.e., LF̄(ν)d̄ ≤ Ld̄. For a frame with load L = 3, N = 4 antennas,

average repetition factor d̄ = 2, and a censor threshold of ν = 0, 1, 2, 3, and 4,

the number of users colliding in each slot are dLF̄(ν)d̄e = 6, 6, 6, 4, and 3, on an

average, respectively. Hence, a pilot length of τ = dlog4(LF̄(ν)d̄)e = 2, 2, 2, 1 and 1,

respectively, is theoretically sufficient for the pilot sequences of two colliding users to
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not be identical in any slot. For an average repetition factor d̄ = 4, N = 4 antennas,

and a censor threshold of ν = 3, with load L = 3, 10, 30, 100, and 1000, the number

of users colliding in each slot are dLF̄(ν)d̄e = 8, 26, 78, 259, and 2589, on an average,

respectively. Here we only need pilot sequences of length τ = dlog4(Ld̄)e = 2, 3, 4,

5, and 6, respectively, to ensure any two users do not pick the same pilot sequence in

any time slot. This is applicable for any M such that L = M/T is fixed to the above

values. This implies that we can choose an arbitrarily high M (and correspondingly

a high T = LM) to ensure no two users pick the same pilot sequences in C-IRSA

with as low a pilot length as less than 10 symbols.

4. When users use random Gaussian pilots, the pilot sequences are almost surely

unique. This is true for any mMTC system, IRSA system or C-IRSA system.

Since the pilot symbols in a Gaussian pilot sequence have an infinite support, the

probability that two users pick identical pilot sequences is almost surely zero, i.e.,

Pr2,τ = Probability that any 2 users pick the same sequence = 0. (5.75)

5.9.10 Impact of Different Pilot Sequences

So far, we have only talked about the uniqueness of the pilot sequences. In practice, the

UAD performance depends not just on the uniqueness of the pilot sequences, but also

depends on other properties of the pilots. We have demonstrated in Chapter 4, that the

length of the pilot sequence is the most critical factor in deciding the UAD performance

of the protocol. The number of antennas is the next critical factor. There are other

properties such as low cross correlation [117] or low mutual coherence [116] among the

pilots, that can be used to design sequences that are as “orthogonal” as possible [119], and

thereby achieve the best possible performance. Examples of sequences with low mutual

coherence are Zadoff-Chu sequences [117] or orthogonal pilot reuse [63, 118], where users

reuse the pilots amongst a pool of orthogonal sequences. We now study the performance

of IRSA and C-IRSA with these pilot sequences.

In 5.29, we plot the throughput of C-IRSA for different choices of the pilot sequences.
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Figure 5.29: Throughput of C-IRSA with different pilot sequences.

The non-orthogonal pilots, labeled as BPSK and QPSK, contain random pilot symbols

belonging to the respective PSK constellations, and Zadoff-Chu (ZC) sequences are gen-

erated according to [115]. ZC sequences require prime τ ; we use τ = 7. We plot the

performance using random BPSK pilots of length τ = 10, ZC pilots of length τ = 11, and

Gaussian pilots of length τ = 10 as described earlier. The curves for ν = 0 are nearly

identical across the varied choice of the pilots; the curves for ν = i(L,Ltgt = 4.6, L0 = 2)

are nearly identical across the varied choice of the pilots. The throughput of C-IRSA

remains at its highest beyond the inflection load for each of the curves. These figures

indicate that as long as we choose such low coherence pilots, the specific choice of the

pilots is not that integral to the performance of the UAD algorithm or to the performance

of the protocol itself.
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Chapter 6

Analysis of IRSA in Multi-Cell and

Cell-Free Systems

6.1 Introduction

Massive machine-type communications (mMTC) require random access protocols that

serve a massive numbers of users [3, 4]. One such protocol is irregular repetition slotted

aloha (IRSA), a successive interference cancellation (SIC) aided protocol, in which users

transmit multiple packet replicas in randomly chosen resource blocks (RBs) [7]. Channel

estimation in IRSA is accomplished using training or pilot sequences transmitted by the

users at the start of their packets. Assigning mutually orthogonal pilots to users avoids

pilot contamination, but is prohibitive in mMTC, since the pilot overhead would be pro-

portional to the total number of users [9]. Thus, pilot contamination (PC), which reduces

the accuracy of channel estimation and makes the estimates correlated [10], is unavoid-

able in mMTC, and significantly degrades the throughput of IRSA. PC is caused by both

within-cell and out-of-cell users, termed intra-cell PC and inter-cell PC, respectively. The

goal of this chapter is to analyze the performance of IRSA, accounting for both intra-cell

PC and inter-cell PC.

Cell-free (CF) architectures have been proposed for expanding the coverage of com-

munication systems [20]. In a typical CF system, instead of conventional BSs deployed at

249
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the centers of cells and serving only the users within the cell, several access points (APs)

are used to jointly and cooperatively serve the users [21]. These APs are spread across

the entire region of interest where users have to be served [132]. The APs are connected

to a central processing unit (CPU) which is responsible for data aggregation and network

coordination [22]. mMTC has the goal of increased connectivity and packet success rates.

This is especially challenging to achieve when there are several cell-edge users who may

not be decoded in mMTC due to high path losses. Further, these devices are expected to

consume low power and have long battery lives, because of which they cannot transmit

at high powers to compensate for the path loss. CF architectures naturally overcome

this issue by exploiting the macro-diversity gain (MDG), which helps decode these edge

users [23]. Thus, mMTC scenarios are a natural application for using CF architectures,

and studying IRSA for mMTC in a CF setup is another key goal of this chapter.

Since the received signal power at the BS decays rapidly with the propagation distance,

the users that are close to an AP (i.e., in the cell center) will experience a higher signal-

to-noise ratio (SNR) than those that are close to the cell-edge. Further, the users at

the cell edge are also affected by interference from neighbouring BSs, thus, the signal-

to-interference-plus-noise ratio (SINR) can be substantially lower than the SNR at these

locations. Thus, there is a huge disparity in the throughputs achieved by the cell edge

users compared to the users located closer towards the cell center. This issue of path

loss is still present in a massive MIMO (mMIMO) system, wherein the BSs are equipped

with a massive number of antennas that aid interference suppression. Cell-edge users still

face the same issue of high path loss, and especially in mMTC, they cannot transmit at

higher powers to compensate for the path loss in order to increase the battery life. This is

another reason why we study CF systems for mMTC, which help in decoding these users

who would otherwise not be decoded in conventional small cell systems.

The contents of this chapter are published in part for the multi-cell setup in a con-

ference paper in IEEE SPAWC in 2022 [24], and a journal paper for the cell-free setup is

under preparation [25].
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6.1.1 Existing Works in IRSA

Initial studies on IRSA focused on MAC [7] and path loss channels [8]. IRSA has been

analyzed in a single-cell (SC) setup, accounting for intra-cell PC, estimation errors, path

loss, and MIMO fading [11,12]. Multi-user interference from users within the same cell is

termed intra-cell interference and from users across cells is termed inter-cell interference.

In the SC setup, only intra-cell interference affects the decoding of users since users do not

face inter-cell interference. In practice, multiple BSs are deployed to cover a large region,

and thus inter-cell interference is inevitable [100]. Furthermore, MC processing (e.g., MC

MMSE combining of signals) schemes can achieve better performance compared to SC

processing, since it accounts for inter-cell interference [49].

6.1.2 Existing Works in CF mMIMO

Analysis of CF mMIMO systems is a topic that has recently received intense research

attention. We review only the existing works that are relevant to this chapter.

In CF systems, the APs are connected to the CPU via a fronthaul link [20]. As opposed

to a conventional massive MIMO system, where a single BS has a large number of antennas

to serve users, a CF system has multiple APs that are geographically spread with fewer

antennas per AP [116]. Collocated mMIMO architectures, where all service antennas are

located in a compact area, have the advantage of low backhaul requirements. In contrast,

in distributed mMIMO systems, the antennas are spread out over a large area. The CPU

is connected to the core network via backhaul links, whereas the fronthaul links between

the APs and the CPUs is used for sharing received signals, CSI, and phase reference

signals [132]. Further, CF systems have smaller variations in the SNR compared to SC

massive MIMO systems, and have an advantage of joint processing at the CPU [21].

Scalability is an important aspect of CF mMIMO systems [133]. Scalability here

is defined as the ability to add more APs and users to the system without having to

increase the capabilities of existing APs [134]. Cellular systems achieve scalability via a

small cell approach. Different levels of receiver cooperation levels have been studied in

CF systems [133].
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Densification is another topic of interest in small cell networks [135]. Interference-

limitation of communication systems due to path loss is typically handled by using the

divide-and-conquer approach, where the network is split up into small cells [22]. This

reduces the effect of path loss and improves the performance. Existing works have con-

sidered varied schemes in CF systems and compared it with small cell networks [22]. In

conventional cellular architectures, for a given spatial antenna density, a single cell mas-

sive MIMO system usually performs poorly compared with the small cell setup due to a

high degree of path loss. For the same spacial antenna density, CF architectures achieve a

huge gain in performance as described previously due to cooperative processing. In gen-

eral, densifying always helps improve the performance of the system, but it is not clear if

this relation still holds for IRSA in MC or CF mMTC systems.

6.1.3 Existing Works in GFRA for CF Systems

Very few works have analyzed GFRA protocols for the CF setup. Most of the existing

works are for UAD in CF setups. Authors in [136] have proposed UAD algorithms for

GFRA in a CF mMIMO setup. Distributed algorithms for UAD in CF mMIMO have

been recently proposed [137]. CF systems have shown to have a better UAD performance

compared to collocated MIMO [138]. Authors in [139] have explored cooperative and

non-cooperative ML and MAP detection of users. Approximate message passing has

been used to jointly detect the users and estimate their channels in a CF IoT setup [140].

A strongest-user collision resolution protocol has been proposed for CF IoT [141].

None of the above works analyze IRSA in the MC or CF setup, which forms the main

novelty of our work.

6.1.4 Contributions

The main contributions in this chapter are as follows:

1. We first analyse IRSA in the MC setup. We derive the channel estimates and

the SINR in MC IRSA accounting for path loss, MIMO fading, intra-cell pilot

contamination (PC), and inter-cell PC.
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2. We next analyze IRSA in the CF setup, with all of the above non-idealities. Specif-

ically, we study three CF schemes for IRSA: one with local processing at each AP,

termed local-cell-free (LCF); next with fully centralized processing at the CPU,

termed centralized-cell-free (CCF); and finally, with hybrid processing at both the

APs and the CPU, termed hybrid-cell-free (HCF). These schemes have different

levels of partial signal processing at the APs and the CPU.

3. We provide insights into the effect of system parameters such as number of antennas,

number of APs (or BSs), pilot length, and SNR on the throughput of MC IRSA and

CF IRSA. We study the effect of BS and AP densification in MC and LCF IRSA,

respectively, where we observe an inverse behaviour in the throughput compared to

CCF and HCF IRSA. Specifically, densification improves the performance of CCF

and HCF IRSA, whereas the performance of MC and LCF IRSA deteriorate.

To the best of our knowledge, no existing work has analyzed the effect of MC interference

or CF processing in IRSA. Through numerical simulations, we show that inter-cell PC

and inter-cell interference result in up to 70% loss in the MC throughput compared to the

SC setup. Further, MC IRSA requires a significantly higher training length (about 4−5×

compared to SC IRSA), in order to support the same user density and achieve the same

throughput. Under the CF architecture, we show that we can achieve more than 14×

improvement in the throughput or around 9× reduction in the pilot length of CCF IRSA

compared to a massive MIMO SC setup at high loads. We also study the densification

trends in MC IRSA and CF IRSA: for CCF IRSA and HCF IRSA, densification always

improves the performance; for LCF IRSA and MC IRSA, densification does not help at

loads near the inflection loads, i.e., it is better not to densify and to operate with a massive

MIMO SC setup.

Structure of this Chapter

We now study IRSA in the multi-cell setup in Section 6.2. The goal of this section is to

contrast it with the SC setup and discuss the shortcomings of ignoring inter-cell effects.
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Thus, we analyze the performance of the cell at the center of a multi-cell setup, as seen in

Fig. 6.1. Hence, the notation for the MC setup will be established on a per-cell basis, and

the notation for the necessary signals would be associated with an index denoting the cell

to which the user belongs to as well as the cell whose BS has received the corresponding

signal. Later, we study IRSA in the cell-free setup under three different schemes in

Section 6.3. The goal of this section is to contrast CF with small cell systems and massive

MIMO single cell systems. For an apt comparison among them, we keep a fixed spatial

antenna density across all the configurations; also, we evaluate the network throughput,

i.e., the performance of the entire system, as seen in Fig. 6.2. Further, there is no cell

boundary, and thus, the notation for each signal is associated with the receiver AP index

and no index for the association of a user with an AP is present.

Notation

The symbols a, a, A, [A]i,:, [A]:,j, 0N , 1N , and IN denote a scalar, a vector, a matrix, the

ith row of A, the jth column of A, all-zero vector of length N , all ones vector of length

N , and an identity matrix of size N×N , respectively. [a]S and [A]:,S denote the elements

of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix

with diagonal entries given by a. The set of real and complex matrices of size N ×M

are denoted as RN×M and CN×M . N (a,A) and CN (a,A) denote the real and complex

Gaussian distribution, respectively, with mean a and covariance A. [N ] denotes the set

{1, 2, . . . , N}. | · |, ‖ · ‖, [·]T , [·]∗, [·]H , E[·], and Ea [·] denote the magnitude (or cardinality

of a set), `2 norm, transpose, conjugate, hermitian, expectation, and the expectation

conditioned on a, respectively. The superscript p is used as a descriptive superscript in

association with a symbol that is related to the pilots. All the other superscripts (or

subscripts) that have not been defined as above are indices.

6.2 Multi-Cell IRSA
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6.2.1 System Model

We consider an uplink MC system with Q cells, where each cell has an N -antenna BS

located at its center as seen in Fig. 6.1. We refer to the BS at the center of the qth cell as

the qth BS. Every cell has M single antenna users arbitrarily deployed within the cell who

wish to communicate with their own BS.1 The time-frequency resource is divided into T

RBs. These T RBs are common to all the cells, and thus, a total of QM users contend over

the T RBs. Each user randomly accesses a subset of the available RBs according to the

IRSA protocol, and transmits packet replicas in the chosen RBs. Each replica comprises

of a header containing pilot symbols for channel estimation, and a payload containing

data and decoding error detection symbols.

Figure 6.1: A typical uplink MC system with Q cells.

The access of the RBs by the users can be represented by an access pattern matrix

G = [G1,G2, . . . ,GQ] ∈ {0, 1}T×QM . Here Gj ∈ {0, 1}T×M represents the access pattern

matrix of the users in the jth cell, and gtji = [Gj]ti is the access coefficient such that gtji =

1 if the ith user in the jth cell transmits in the tth RB, and gtji = 0 otherwise. The ith user

1For apt comparison with SC IRSA, we consider M users per cell in the MC setup, which will later
help us compare the performance of an IRSA system with M users with and without inter-cell effects.
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in the jth cell samples its repetition factor dji from a preset probability distribution. It

then chooses dji RBs from the T RBs uniformly at random for transmission. The access

pattern matrix is known at the BS, which is made possible by using pseudo-random

matrices generated from a seed that is available at the BS and the users [11]. This can

be done in an offline fashion.

The received signal at any BS in the tth RB is a superposition of the packets trans-

mitted by the users who choose to transmit in the tth RB, across all cells. In the pilot

phase, the ith user in the jth cell transmits a pilot pji ∈ Cτ in all the RBs that it has

chosen to transmit in, where τ denotes the length of the pilot sequence. The received

pilot signal at the qth BS in the tth RB, denoted by Yp
tq ∈ CN×τ , is

Yp
tq =

∑Q

j=1

∑M

i=1
gtjih

q
tjip

H
ji + Np

tq, (6.1)

where Np
tq ∈ CN×τ is the additive complex white Gaussian noise at the qth BS with

[Np
tq]nr

i.i.d.∼ CN (0, N0) ∀ n ∈ [N ], r ∈ [τ ] and t ∈ [T ], and N0 is the noise variance.

Here, hqtji ∈ CN is the uplink channel vector between the ith user in the jth cell and the

qth BS on the tth RB. The fading is modeled as block-fading, quasi-static and Rayleigh

distributed. The uplink channel is distributed as hqtji
i.i.d.∼ CN (0N , β

q
jiσ

2
hIN), ∀ t ∈ [T ], i ∈

[M ] and j ∈ [Q], where σ2
h is the fading variance, and βqji is the path loss coefficient

between the ith user in the jth cell and the qth BS.

In the data phase, the received data signal at the qth BS in the tth RB is denoted by

ytq ∈ CN and is given by

ytq =
∑Q

j=1

∑M

i=1
gtjih

q
tjixji + ntq, (6.2)

where xji is a data symbol with E[xji] = 0 and E[|xji|2] = pji, i.e., with transmit power

pji, and ntq ∈ CN is the complex additive white Gaussian noise at the BS, with [ntq]n
i.i.d.∼

CN (0, N0), ∀ n ∈ [N ] and t ∈ [T ].
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6.2.1.1 Decoding Process in MC IRSA

The decoding of a packet is abstracted into an signal to interference plus noise ratio

(SINR) threshold model. Here, if the SINR of a packet in a given RB in any decoding

iteration exceeds a threshold γth, then the packet can be decoded correctly [8, 15].

We now describe the performance evaluation of IRSA via the SINR threshold model.

In each cell, the BS computes channel estimates and the SINRs of all users in all RBs. If

it finds a user with SINR ≥ γth in some RB, it marks that user’s packet as decoded, and

performs SIC from all RBs in which the same user has transmitted a replica. This process

of estimation and decoding is carried out iteratively. Decoding stops when no more users

are decoded in two successive iterations. The throughput is calculated as the number of

correctly decoded packets divided by the number of RBs.

Power Control

To ensure fairness among users within each cell, each user performs path loss inversion

with respect to the BS in its own cell [142]. That is, the ith user in the jth cell transmits

its symbol xji at a power pji, i.e., E[|xji|2] = pji, according to pji = P/βjji, where P is

a design parameter. The same power control policy is used in the pilot phase where the

transmit power of the ith user in the jth cell is ppji = P p/βjji, and P p ≥ P is a design

parameter, with ‖pji‖2 = τppji. This ensures a uniform SNR at the BS across all users,

with the pilot SNR being P pσ2
h/N0 and the data SNR being ρ0 = Pσ2

h/N0. This ensures

the power disparity between cell edge users and users located near the BS is reduced, thus

ensuring fairness [142].

6.2.2 Channel Estimation

Channel estimation is performed based on the received pilot signal in each cell. The

signals and the channel estimates are indexed by the decoding iteration k, since they are

recomputed in every decoding iteration of the SIC-based decoder. We denote the set of

users in the jth cell who have not yet been decoded up to the kth decoding iteration by

Skj. For some m ∈ Skj, let Smkj , Skj \ {m}, with S1j = [M ]. Let the set of all cell indices
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be denoted by Q , {1, 2, . . . , Q}, and let Qq , Q \ {q}. The received pilot signal at the

qth BS in the tth RB in the kth decoding iteration is given by

Ypk
tq =

∑
i∈Skq

gtqih
q
tqip

H
qi +

∑
j∈Qq

∑
i∈S1j

gtjih
q
tjip

H
ji + Np

tq, (6.3)

where the first term contains signals from users within the qth cell who have not yet been

decoded up to the kth decoding iteration, i.e., ∀i ∈ Skq. The second term contains signals

from all users outside the qth cell, i.e., from every i ∈ S1j,∀j ∈ Qq. We note that there is

no coordination among BSs, and thus, all the users outside the qth cell do not get decoded

by the qth BS, and they permanently interfere with the decoding of users in other cells,

across all the decoding iterations.

Let Gtq , {i ∈ S1q|gtqi = 1} denote the set of users within the qth cell who have

transmitted in the tth RB, with Mtq = |Gtq|. We denote the set of users in the qth cell

who have transmitted on the tth RB but have not yet been decoded up to the kth decoding

iteration by Mqk
tq , Gtq ∩ Skq, with M qk

tq , |Mqk
tq |. Let Hq

tj , [hqtj1,h
q
tj2, . . .h

q
tjM ] contain

the uplink channels between all the users in the jth cell and the qth BS in the tth RB, with

Hqk
tq , [Hq

tq]:,Mqk
tq

and Hqk
tj , [Hq

tj]:,Gtj ,∀j ∈ Qq. Let Pj , [pj1,pj2, . . . ,pjM ] contain the

pilots of all users within the jth cell, with Pqk
tq , [Pq]:,Mqk

tq
and Pqk

tj , [Pj]:,Gtj ,∀j ∈ Qq.

Let Bq
j , σ2

hdiag(βqj1, β
q
j2, . . . , β

q
jM) contain the path loss coefficients between the users

within the jth cell and the qth BS, with Bqk
tq , [Bq

q]:,Mqk
tq

and Bqk
tj , [Bq

j ]:,Gtj ,∀j ∈ Qq.

Thus, the received pilot signal from (6.3) can be written as

Ypk
tq = H̄qk

tq P̄kH
tq + Np

tq = Hqk
tq PqkH

tq +
∑

j∈Qq
Hqk
tj PqkH

tj + Np
tq,

where H̄qk
tq , [Hqk

tq ,H
qk
t1 , . . . ,H

qk
tq−1,H

qk
tq+1, . . . ,H

qk
tQ] ∈ CN×M̄qk

tq , with M̄ qk
tq , M qk

tq +∑
j∈Qq Mtj, and P̄k

tq , [Pqk
tq ,P

qk
t1 , . . . ,P

qk
tq−1,P

qk
tq+1, . . . ,P

qk
tQ] ∈ Cτ×M̄qk

tq . We de-

fine B̄qk
tq , [Bqk

tq ,B
qk
t1 , . . . ,B

qk
tq−1,B

qk
tq+1, . . . ,B

qk
tQ] ∈ CM̄qk

tq ×M̄
qk
tq to derive the chan-

nel estimates. Let C̄qk
t , P̄k

tqB̄
qk
tq (P̄kH

tq P̄k
tqB̄

qk
tq + N0IM̄qk

tq
)−1, be split as C̄qk

t =

[Cqk
tq ,C

qk
t1 , . . . ,C

qk
tq−1,C

qk
tq+1, . . . ,C

qk
tQ], and cqktji , [Cqk

tj ]:,i.
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Lemma 7. The minimum mean squared error (MMSE) channel estimate ˆ̄Hqk
tq of

H̄qk
tq in the tth RB in the kth decoding iteration at the qth BS can be calculated as

ˆ̄Hqk
tq = Ypk

tq P̄k
tqB̄

qk
tq (P̄kH

tq P̄k
tqB̄

qk
tq +N0IM̄qk

tq
)−1. (6.4)

Further, the estimation error h̃qktji , ĥqktji − hqtji is distributed as h̃qktji ∼

CN (0N , δ
qk
tjiIN), where δqktji is calculated as

δqktji = βqjiσ
2
h



N0‖cqktji‖2 +
∑

n∈Sikj
|pHqnc

qk
tji|2gtqnβqqnσ2

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tji|2gtlnβ

q
lnσ

2
h

N0‖cqktji‖2 +
∑

n∈Skj |p
H
qnc

qk
tji|2gtqnβqqnσ2

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tji|2gtlnβ

q
lnσ

2
h


.

Proof. See Sec. 6.6.1.

Remark 1: The estimate ˆ̄Hqk
tq can also be calculated as ˆ̄Hqk

tq = Ypk
tq (P̄k

tqB̄
qk
tq P̄kH

tq +

N0Iτ )
−1P̄k

tqB̄
qk
tq , (a τ × τ inverse.) Lemma 7 is applicable for any choice of (possibly

non-orthogonal) pilots. We now discuss the case where pilots are reused by users within

and across cells.

6.2.2.1 Pilot Reuse

Channel estimation is done based on a pilot codebook {φi}τi=1 of τ orthogonal pilots [142],

with each φi ∈ Cτ , such that φH
i φj = 0,∀i 6= j, and ‖φi‖2 = τP p. Here P p is the pilot

power, and the pilot codebook is the same across all cells. Each user uses a pilot from

this codebook, and thus, many users share the same pilot sequence, possibly, both within

the cell and out of the cell, leading to pilot contamination. Since τ < M , both intra-cell

PC and inter-cell PC occur.

Let Pji denote the set of users that reuse the pilot of the ith user in the jth cell.

With this codebook, the channel estimate is distributed as ĥqktji ∼ CN (0N , ς
qk
tjiIN), where
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ςqktji =
τP pgtjiβ

q2
ji σ

4
h(

N0 +
∑

n∈Skj∩Pji
τP pgtqnβ

q
qnσ2

h +
∑

l∈Qq

∑
n∈S1j∩Pli

τP pgtlnβ
q
lnσ

2
h

) , and the estima-

tion error variance is calculated as δqktji = βqjiσ
2
h − ς

qk
tji.

6.2.3 Data Decoding in MC IRSA

Let ρktqm denote the SINR of the mth user in the qth cell at the qth BS in the tth RB in

the kth decoding iteration. Similar to (6.2), the received data signal at the qth BS in the

tth RB in the kth decoding iteration is given by

yktq =
∑

i∈Skq
gtqih

q
tqixqi +

∑
j∈Qq

∑
i∈S1j

gtjih
q
tjixji + ntq. (6.5)

We use a generic combining vector aktqm ∈ CN to obtain the post-combined data signal

ỹktqm = akHtqmyktq as

ỹktqm = gtqmxqmakHtqmĥqktqm − gtqmxqmakHtqmh̃qktqm +
∑

i∈Smkq
gtqixqia

kH
tqmhqtqi

+
∑

j∈Qq

∑
i∈S1j

gtjixjia
kH
tqmhqtji + akHtqmntq, (6.6)

where h̃qktqm is as defined in Lemma 7. This combined signal, used to decode the mth user

in the qth cell, is composed of five terms. The first term gtqmxqmakHtqmĥqktqm is the useful

signal component of the mth user; the term gtqmxqmakHtqmh̃qktqm arises due to the estimation

error h̃ktqm; the term
∑

i∈Smkq
gtqixqia

kH
tqmhqtqi represents the intra-cell interference from the

users within the qth cell who have transmitted in the tth RB and have not yet been

decoded up to the kth decoding iteration; the term
∑

j∈Qq

∑
i∈S1j

gtjixjia
kH
tqmhqtji models

the inter-cell interference from users outside the qth cell; and the last term akHtqmntq is the

additive noise. We now present the SINR for all the users.

Theorem 6.1 I SINR in Multi-Cell IRSA.

The signal to interference plus noise ratio (SINR) achieved by the mth user within

the qth cell at the qth BS in the tth RB and the kth decoding iteration can be
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written as

ρktqm=
Gainktqm

N0 + InCIktqm + Estktqm + ICIktqm
, ∀m ∈ Skq, (6.7)

where

Gainktqm , pqmgtqm|akHtqmĥqktqm|2/‖aktqm‖2,

InCIktqm ,
∑

i∈Smkq
pqigtqi|akHtqmĥqktqi|2/‖aktqm‖2,

Estktqm ,
∑

i∈Skqpqigtqiδ
qk
tqi +

∑
j∈Qq

∑
i∈S1j

pjigtjiδ
qk
tji,

ICIktqm ,
∑

j∈Qq

∑
i∈S1j

pjigtji|akHtqmĥqktji|2/‖aktqm‖2.

The channel estimates ĥqktji and the error variances δqktji in the above expressions are

obtained from Lemma 7.

Proof. See Sec. 6.6.2.

Remark 2: The SINR derived in Theorem 6.1 holds for any choice of the combining vector

aktqm, the pilots, and the power control policy. The first M qk
tq columns of the combining

matrix Ak
tq ∈ CN×M̄qk

tq is used at the qth BS to decode the M qk
tq users within the qth

cell who have not yet been decoded up to the kth decoding iteration in the tth RB. The

SINR in (6.7) is maximized by multi-cell MMSE combining [49], under which the optimal

combining matrix can be evaluated as

Ak
tq = ˆ̄Hqk

tq D̄qk
tq,p1(ē

k
tqIM̄qk

tq
+ ˆ̄HqH

tq
ˆ̄Hqk
tq D̄qk

tq,p1)
−1,

= (ēktqIN + ˆ̄Hqk
tq D̄qk

tq,p1
ˆ̄HqH
tq )−1 ˆ̄Hqk

tq D̄qk
tq,p1,

where ēktq ,N0 +
∑

i∈Skqpqigtqiδ
qk
tqi+

∑
j∈Qq

∑
i∈S1j

pjigtjiδ
qk
tji, Dj,p1 , diag(pj1, pj2, . . . , pjM)

contains the power coefficients of the users within the jth cell, Dqk
tj,p1 , [Dj,p1]:,Gtj ,∀j ∈

Qq, Dqk
tq,p1 , [Dq,p1]:,Mqk

tq
, and D̄qk

tq,p1 , [Dqk
tq,p1,D

qk
t1,p1, . . . ,D

qk
tq−1,p1,D

qk
tq+1,p1, . . . ,D

qk
tQ,p1] ∈

CM̄qk
tq ×M̄

qk
tq . We note that the above MC processing outperforms the application of SC
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processing applied to the MC setup [49].

Algorithm 6: Performance Evaluation of MC IRSA in the qth cell

Input: τ,N, T,M,N0, {Gj}Qj=1, {Pj}Qj=1, {Y
p
tq}Tt=1, {ytq}Tt=1, kmax

1 Initialize: S1q = [M ], Gtj = {i ∈ [M ]|gtji = 1}, S̄q = {}

2 for k = 1, 2, . . . , kmax do

3 for t = 1, 2, . . . , T do

4 Find M qk
tq = |Gtq ∩ Skq|, Pqk

tq = [Pq]:,Gtq∩Skq , {P
qk
tj = [Pj]:,Gtj}j 6=q,Y

pk
tq ,y

k
tq

5 Compute ĥqktji, ∀i ∈ Skq via Lemma 7

6 Evaluate the SINR ρktqi, ∀i ∈ Skq via Theorem 6.1

7 If ρktqi ≥ γth, remove user i from Skq and perform IC in all RBs where

gtqi = 1

8 Add user i to set of decoded users: S̄q = S̄q ∪ {i}

9 end

10 end

11 Output: Set of users decoded in the qth cell: S̄q

We now evaluate the performance of MC IRSA in the qth cell using Algorithm 6. The

algorithm is run till no more users are decoded in two successive iterations (or up to a

maximum of kmax iterations). The algorithm outputs S̄q, which is the set of users decoded

in the qth cell, i.e., at the qth BS. Thus, the packet loss rate (PLR) at the qth BS can be

computed as PLRq , (1 − |S̄q|/M), and the throughput at the qth BS can be computed

as Tq ,M(1− PLRq)/T .

6.2.3.1 Deterministic Equivalent of the SINR

We now present simple and interpretable expressions for the SINR in the massive MIMO

(large N) regime, and with maximal ratio combining (MRC), i.e., aktqm = ĥqktqm [49].

Lemma 8. As the number of antennas N gets large, the SINR with maximal ratio
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combining converges almost surely to

ρktqm =
Sigktqm

εktqm(N0 + IntNCktqm) + IntCktqm
, (6.8)

where Sigktqm is the desired signal, IntNCktqm represents the non-coherent interfer-

ence, and IntCktqm represents the coherent interference. These can be evaluated as

εktqm =

 N0‖cqktqm‖2 +
∑

n∈Skj |p
H
qnc

qk
tqm|2gtqnβqqnσ2

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tqm|2gtlnβ

q
lnσ

2
h

 ,

Sigktqm = Npqmgtqm(εktqm)2,

IntNCktqm =

 pqmgtqmδ
qk
tqm +

∑
n∈Skj pqngtqnβ

q
qnσ

2
h

+
∑

l∈Qq

∑
n∈S1j

plngtlnβ
q
lnσ

2
h

 ,

IntCktqm = N

 ∑
n∈Skj |p

H
qnc

qk
tqm|2pqngtqnβq2qnσ4

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tqm|2plngtlnβ

q2
lnσ

4
h

 .

Proof. See Sec. 6.6.3.

Remark 3: IntNCktqm represents the non-coherent interference that arises due to estimation

errors, intra-cell interference, and inter-cell interference. IntCktqm is the coherent interfer-

ence that arises due to intra-cell PC and inter-cell PC. The former does not scale with the

number of antennas N , whereas the latter scales linearly with N . Both inter-cell PC and

inter-cell interference degrade the performance of the system [100], and thus it is vital to

account for both while analyzing the performance of IRSA.

6.3 Cell-Free IRSA

The term cell-free is used to imply that no cell boundaries exist between the users and

the APs. Depending on the specific scheme used, the decoding of users can happen

separately at each AP or by a subset of the APs or jointly at the CPU. With distributed

processing, decoding happens separately at each AP, and any user can be decoded by any
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AP if received at a strong enough power. With coordinated processing, decoding happens

at the CPU, and the CPU jointly serves the users within the network, and there is no

assignment of users to cells. In this work, as opposed to a network-centric CF architecture,

where the APs are allocated disjoint sets of users to serve, we adopt the user-centric CF

architecture, where each user could be decoded by multiple APs.2

6.3.1 System Model

We consider a system with M users who are located arbitrarily across the network.3 In

order to serve these users, Q APs are arbitrarily placed across the network, wherein each

AP is equipped with N antennas. This amounts to a total QN number of antennas across

the entire network.4 As seen in Fig. 6.2, the APs are connected via fronthaul links to

the CPU, which facilitates the AP coordination. The users contend to communicate with

the Q APs across T time-frequency RBs. Each user samples their repetition factor di

from a predefined distribution and transmits packet replicas in di RBs chosen uniformly

at random from the T RBs. The access of the RBs is governed by G, which is termed the

access pattern matrix (APM). Here, gti , [G]ti = 1 if the ith user transmits their packet

on the tth RB, and 0 otherwise. By using a common seed at the AP and the users, the

APM can be generated at the AP and thus, we can assume that the AP has knowledge

of G.

The APs receive pilot and data signals as superposition of the signals from all the

users. The received pilot signal at the qth AP in the tth RB, denoted by Yp
tq is

Yp
tq =

∑M
i=1gtih

q
tip

H
i + Np

tq, (6.9)

2In practice, clustering needs to be implemented to ensure subsets of APs jointly decode any user.
This also reduces the complexity of decoding at the APs. However, to establish a baseline for CF IRSA,
we do not perform any clustering in this chapter, and we leave it for future work.

3For apt comparison with IRSA with small cells and IRSA in the massive MIMO setup, where the goal
is to study the effect on the entire system, we consider M users to be located across the entire network
in the CF setup.

4One major deviation of the CF architecture considered in this chapter is the relation between Q, M ,
and N . Typical CF mMIMO architectures are for ultra-dense networks where the typical assumption
QN �M , whereas in our work, we make no such assumption.
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Figure 6.2: A typical uplink CF system with Q APs.

where hqti ∈ CN is the N -length channel vector between the ith user and the qth AP on the

tth RB, pi ∈ Cτ is the τ -length pilot signal of the ith user, and Np
tq ∈ CN×τ is the complex

additive white Gaussian noise at the qth AP in the tth RB. Here, [Np
tq]nr

i.i.d.∼ CN (0, N0)

∀ n ∈ [N ], r ∈ [τ ] and t ∈ [T ], where N0 is the noise variance. The fading is modeled

as block-fading, quasi-static and Rayleigh distributed: hqti
i.i.d.∼ CN (0N , β

q
i σ

2
hIN), ∀ t ∈

[T ], i ∈ [M ], where σ2
h is the fading variance, and βqi is the path loss coefficient between

the ith user and the qth AP.

We now write out the data signal corresponding to a single transmitted symbol. The

received data signal in the data phase at the qth AP in the tth RB, denoted by ytq, is

ytq =
∑M

i=1gtih
q
tixi + ntq, (6.10)

where xi is the data symbol of the ith user with E[xi] = 0 and E[|xi|2] = pi, i.e., with

transmit power pi, and ntq ∈ CN is the complex additive white Gaussian noise at the qth

AP, with [ntq]n
i.i.d.∼ CN (0, N0), ∀ n ∈ [N ] and t ∈ [T ].
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6.3.1.1 SINR Threshold Model

Similar to the MC and SC setups, we now use the signal to interference plus noise ratio

(SINR) threshold model to abstract the decoding of users’ packets. Here, if the SINR

of a packet in a given RB in any decoding iteration exceeds a threshold γth, then the

packet can be decoded correctly [8,15]. Depending on the specific CF architecture under

consideration, the decoding process may vary. In the next subsection, we describe the

decoding process for each scheme separately.

6.3.2 Local-Processing in Cell-Free IRSA: LCF IRSA

The notation introduced earlier is now used to analyze IRSA in the cell-free scenario with

local AP processing as depicted in Fig. 6.3. We use the acronym LCF IRSA to denote the

above: Local Cell-Free processing in IRSA. In LCF, each AP performs channel estimation

and data decoding for as many users as possible. Then, the APs forward only the data

symbols of the successfully decoded users to the CPU on the fronthaul links. The CPU is

not responsible for decoding any user. LCF resembles a multi-cell setup but without cell

boundaries; LCF is similar to a cooperative MIMO setup [143].

Figure 6.3: Setup of LCF IRSA.

The access pattern structure of IRSA adds a layer to the decoding of users in LCF

IRSA. In SC IRSA, we saw that users in singleton slots could be decoded even if they
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were far away from the BS and two collided users who were both near to the BS need not

be decodable due to low SINR. In MC IRSA, users closer towards the cell edge could not

be decoded due to inter-cell interference from adjacent cell’s edge users. In LCF IRSA,

these cell boundaries are removed. In slots where multiple users collide, users may not be

decodable at one AP, but they could be decodable at a different AP (either in a singleton

slot or after other users have been decoded). Thus, we allow each AP to decode as many

users as possible, even possibly users which are geographically located far away.

LCF IRSA is somewhat similar to a network-centric implementation of coordinated

multi-point [21], in which multiple BSs coordinate to decode users. In LCF IRSA, however,

there is no coordination or any data exchange amongst the APs. Note that LCF IRSA

somewhat resembles Level 1 receiver cooperation that is considered in many existing

works [21,133]. A major difference is that each user is decoded only by the nearest AP in

Level 1 CF systems, whereas in CCF IRSA, due to the access pattern structure of IRSA,

users can get decoded at far away APs as well.

6.3.2.1 Decoding Process in LCF IRSA

We now describe the decoding process in LCF IRSA. Firstly, each AP computes the

channel estimates and the SINRs of all users in all RBs. If an AP successfully decodes

a user in some RB, it performs SIC from all the RBs in which that user has transmitted

packets in. This decoding is abstracted into the SINR model as seen before: if the AP

finds a user with SINR ≥ γth in some RB, it marks that user’s packet as decoded. This

process of estimation and data decoding is carried out iteratively. Decoding stops when

no more users are decoded in two successive iterations. The throughput of the network

is calculated as the total number of correctly decoded unique packets across all the APs

divided by the number of RBs. The above definition includes “unique” since users packets

could be decoded at multiple APs.

It is possible that some users near to one AP could be decoded at other APs, but we

do not consider any inter-AP coordination in LCF IRSA, and thus, the same users could

get decoded at multiple APs (depending on the decodability of the users). In order to
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reduce complexity, we can allocate the users to each AP via clustering. Here, the qth

AP attempts to decode only Aq, which is the set of users allocated to the qth AP. The

notation defined previously is still applicable, we simply initialize the decoding process

with S1q = Aq.

6.3.2.2 Performance Analysis of LCF IRSA

In this subsection, we evaluate the performance of LCF IRSA. Channel estimation is per-

formed based on the received pilot signal at each AP. Since the data signals are processed

iteratively for each user, the received pilot and data signals are indexed by the decoding

iteration. Let k denote the current decoding iteration index, and Skq denote the set of

users not yet decoded up to the kth decoding iteration at the qth AP, with S1q = [M ]

and S ikq , Skq \ {i}. The received pilot signal at the qth AP in the tth RB in the kth

decoding iteration is given by

Ypk
tq =

∑
i∈Skqgtih

q
tip

H
i + Np

tq, (6.11)

where the first term contains signals from users who have not yet been decoded up to the

kth decoding iteration at the qth AP, i.e., ∀i ∈ Skq. Similarly, we can find the received

data signal at the qth AP in the tth RB in the kth decoding iteration as

yktq =
∑

i∈Skqgtih
q
tixi + ntq. (6.12)

Let Gt , {i ∈ [M ]|gti = 1} be the set of users who have transmitted in the tth RB.

Let Mk
tq , |Gt∩Skq| be the number of users who have transmitted in the tth RB and have

not been decoded in the first k − 1 iterations at the qth AP. Let us stack the channels of

the Mk
tq users as the columns of the matrix Hk

tq ∈ CN×Mk
tq , and let Pk

tq ∈ Cτ×Mk
tq denote

a matrix that contains the pilot sequences of the Mk
tq users as its columns. Let Bk

tq ,

σ2
hdiag(βqi1 , β

q
i2
, . . . , βqi

Mk
tq

) be a diagonal matrix that contains the path loss coefficients of

the Mk
tq users, with Gt ∩ Skq , {i1, i2, . . . , iMk

tq
}. Hence, the received pilot signal from

(6.11) can be written as Ypk
tq = Hk

tqP
kH
tq + Np

tq. The estimate of Hk
tq from the above is
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presented in Theorem 6.2.

Let ρktqm denote the SINR of the mth user in the tth RB in the kth decoding iteration

at the qth AP. Using a combining vector aqktm, the qth AP obtains the post-combined data

signal ỹqktm as ỹqktm , aqkHtm yktq, where yktq is from (6.12). Thus, we obtain the post-combined

data signal as

ỹqktm = aqkHtm ĥqktmgtmxm − aqkHtm h̃qktmgtmxm + aqkHtm

∑
i∈Smkq

gtih
q
tixi + aqkHtm ntq. (6.13)

Here the first term on the RHS, aqkHtm ĥqktmgtmxm, denotes the useful signal component

and it contains the channel estimate ĥqktm of the mth user; the second term aqkHtm h̃qktmgtmxm

contains h̃qktm, the estimation error of the mth user; the third term aqkHtm

∑
i∈Smkq

gtih
q
tixi is the

multi-user interference faced by the mth user due to the other users in the entire network

who have not yet been decoded up to the kth decoding iteration at the qth AP; and the

fourth term aqkHtm ntq is the additive noise component. We need to compute the SINR from

the above post-combined data signal. For this purpose, let Cqk
t , Pk

tqB
k
tq(P

kH
tq Pk

tqB
k
tq +

N0IMk
tq

)−1, and cqkti , [Cqk
t ]:,i.

We now present the channel estimates of the users and the SINR achieved by the users

at the qth AP in LCF IRSA in the following theorem.

Theorem 6.2 I Performance Analysis of LCF IRSA.

The minimum mean squared error (MMSE) channel estimate Ĥk
tq of Hk

tq in the tth

RB in the kth decoding iteration at the qth AP can be calculated as

Ĥk
tq = Ypk

tq (Pk
tqB

k
tqP

kH
tq +N0Iτ )

−1Pk
tqB

k
tq. (6.14)

Specifically, the estimate of the channel hqti of the ith user to the qth AP is calculated

as ĥqkti = [Ĥk
tq]:,i. Further, the estimation error h̃qkti , ĥqkti − hqti is distributed as
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h̃qkti ∼ CN (0N , δ
qk
ti IN), where δqkti is calculated as

δqkti = βqi σ
2
h

N0‖cqkti ‖2 +
∑

n∈Sikq
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Skq |p
H
n cqkti |2gtnβ

q
nσ2

h

. (6.15)

The signal to interference plus noise ratio (SINR) achieved by the mth user at the

qth AP in the tth RB and the kth decoding iteration can be written as

ρktqm=
Gainktqm

N0 + Estktqm + MUIktqm
,∀m ∈ Skq, (6.16)

where

Gainktqm , pmgtm|aqkHtm ĥqktm|2/‖a
qk
tm‖2,

Estktqm ,
∑

i∈Skqpigtiδ
qk
ti ,

MUIktqm ,
∑

i∈Smkq
pigti|aqkHtm ĥqkti |2/‖a

qk
tm‖2.

Proof. See Sec. 6.6.4.

Remark 4: The MMSE channel estimate Ĥk
tq of Hk

tq can be computed as

Ĥk
tq = Ypk

tq (Pk
tqB

k
tqP

kH
tq +N0Iτ )

−1Pk
tqB

k
tq, (6.17a)

(a)
= Ypk

tq Pk
tqB

k
tq(P

kH
tq Pk

tqB
k
tq +N0IMk

tq
)−1, (6.17b)

where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

via an inverse of either a τ × τ matrix or an Mk
tq ×Mk

tq matrix as required.

Remark 5: The results derived in Theorem 6.2 holds for any choice of the combining vector

aktqm, the pilots {pm}, and the power control policy {pm}. The combining vector that

maximizes the SINR in (6.7) is the MMSE combiner, which can be found as aqktm = [Ak
tq]:,m,

where

Ak
tq = Ĥk

tqD
qk
t,p1(e

k
tqIMk

tq
+ ĤkH

tq Ĥk
tqD

qk
t,p1)

−1, (6.18a)
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= (ektqIN + Ĥk
tqD

qk
t,p1Ĥ

kH
tq )−1Ĥk

tqD
qk
t,p1, (6.18b)

where Dqk
t,p1 , diag(pi1 , pi2 , . . . , piMk

tq

) contains the power coefficients of the Mk
tq users, and

ektq , N0 +
∑

i∈Skqpigtiδ
qk
ti .

Algorithm 7: Performance Evaluation of LCF IRSA at the qth AP

Input: τ,N, T,M,N0,G,P, {Yp
tq}Tt=1, {ytq}Tt=1, kmax

1 Initialize: S1q = [M ], Gt = {i ∈ [M ]|gti = 1}, S̄q = {}

2 for k = 1, 2, . . . , kmax do

3 for t = 1, 2, . . . , T do

4 Find Mk
tq = |Gt ∩ Skq|, Pk

tq = [P]:,Gt∩Skq ,Y
pk
tq ,y

k
tq

5 Compute ĥqkti , ∀i ∈ Skq via Theorem 6.2

6 Evaluate the SINR ρktqi, ∀i ∈ Skq via Theorem 6.2

7 If ρktqi ≥ γth, remove user i from Skq and perform IC in all RBs where

gti = 1

8 Add user i to set of decoded users: S̄q = S̄q ∪ {i}

9 end

10 end

11 Output: Set of users decoded at the qth AP: S̄q

We now evaluate the performance of LCF IRSA at the qth AP using Algorithm 7.

The algorithm is run till no more users are decoded in two successive iterations (or up

to a maximum of kmax iterations). The algorithm outputs S̄q, which is the set of users

decoded at the qth AP. To compute the set of users decoded at all the APs, we construct

the set S̄ , ∪Qq=1S̄q. Thus, the packet loss rate (PLR) of the network can be computed

as PLR , (1− |S̄|/M), and the throughput can be computed as T ,M(1− PLR)/T .

6.3.3 Centralized-Processing in Cell-Free IRSA: CCF IRSA

We now analyze IRSA in the cell-free scenario with fully centralized CPU processing as

depicted in Fig. 6.4. We use the acronym CCF IRSA to denote the above: Centralized
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Cell-Free processing in IRSA. In CCF IRSA, each AP blindly forwards its received signals

to the CPU, on the fronthaul, which is responsible for performing data decoding. The qth

AP forwards the received pilot {Yp
tq, t ∈ [T ]} from (6.9) and the received data {ytq, t ∈ [T ]}

from (6.10) to the CPU, which attempts to decode users who are transmitting their data

packets in an IRSA fashion. Note that CCF IRSA resembles Level 4 receiver cooperation

that is considered in many existing works [21,133].

Figure 6.4: Setup of CCF IRSA.

In the previous subsection, we saw that the access pattern structure of IRSA adds a

layer to the decoding of users in LCF IRSA. For CCF IRSA, the gain is primarily because

the effect of path loss is not pronounced. The access pattern structure affects the decoding

of CCF IRSA in the exact same way as SC IRSA: in singleton slots, users can be decoded

even if they are far away and in slots with collisions, users need not be decodable even if

they are nearby.

One major difference between the SC architecture and the CCF architecture is the

presence of a virtual distributed antenna array (DAA) in the system. The CCF archi-

tecture can be viewed as a single cell mMIMO system with the CPU as the BS and the

N antennas of each of the Q APs together acting as a virtual DAA with QN antennas.

In a conventional mMIMO SC setup, the users signals are affected by higher path loss

since the QN antennas are collocated at the BS. Further, the antenna array gain and
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interference suppression capability of a SC mMIMO setup with QN antennas helps the

BS decode more users. Compared to the SC mMIMO setup, the DAA setup in CCF

performs better. This is because each user is closer to the nearest AP,and thus, the effect

of path loss is not as pronounced. Since the distributed antenna setup in CCF contains

QN antennas, the array gain and interference suppression capabilities carry over from the

SC mMIMO setup. Thus, CCF is expected to perform better than a SC mMIMO setup,

as we will observe in 6.4.2.

6.3.3.1 Decoding Process in CCF IRSA

We now describe the performance evaluation of CCF IRSA via the SINR threshold model.

Each AP forwards the received pilot and data signals from all RBs to the CPU. The CPU

computes the channel estimates of all the users and the corresponding SINR in all RBs.

If the CPU successfully decodes a user in some RB, it performs SIC from all the RBs in

which that user has transmitted packets in. This decoding is abstracted into the SINR

model as seen before: if the CPU finds a user with SINR ≥ γth in some RB, it marks

that user’s packet as decoded. This process of channel estimation and data decoding is

carried out iteratively at the CPU. Decoding stops when no more users are decoded in two

successive iterations. The throughput of the network is calculated as the total number of

correctly decoded packets divided by the number of RBs.

6.3.3.2 Performance Analysis of CCF IRSA

In this subsection, we evaluate the performance of CCF IRSA. In the channel estimation

phase, the CPU computes channel estimates of all the users to the qth AP similar to

(6.14) and then finally combines them to obtain an effective CPU channel estimate. Let k

denote the current CPU decoding iteration index, and Sk denote the set of users not yet

decoded at the CPU after k−1 decoding iterations, with S1 = [M ], and S ik , Sk \{i}. At

the CPU, the received pilot signal sent by the qth AP in the tth RB in the kth decoding
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iteration is given by

Ypk
tq =

∑
i∈Skgtih

q
tip

H
i + Np

tq. (6.19)

where the first term contains signals from users who have not yet been decoded up to the

kth decoding iteration at the CPU, i.e., ∀i ∈ Sk. Note that in the above, unlike (6.11),

we have dropped the AP index for the set of undecoded users.

We recall that Gt , {i ∈ [M ]|gti = 1} is the set of users who have transmitted in

the tth RB. Let Mk
t , Gt ∩ Sk, and Mk

t , |Mk
t | be the number of users yet to be

decoded, Pk
t contain as its columns the pilots of the Mk

t users yet to be decoded, and

Bk
tq , σ2

hdiag(βqi1 , β
q
i2
, . . . , βqi

Mk
t

) contain the path loss coefficients of the Mk
t users to the

qth AP, with Mk
t , {i1, i2, . . . , iMk

t
}. Let us stack the channels of the Mk

t users to the

qth AP as the columns of the matrix Hk
tq ∈ CN×Mk

t , and let Pk
t ∈ Cτ×Mk

t denote a matrix

that contains the pilot sequences of the Mk
t users as its columns. The channel of the

ith user in the tth slot to the CPU can be computed by stacking the user-AP channels

as hti = [h1H
ti ,h

2H
ti , . . . ,h

QH
ti ]H ∈ CQN×1. The CPU channel estimation error is found as

h̃kti , ĥkti − hti. The estimate of hti is presented in Theorem 6.3.

Let ρktm denote the SINR of the mth user in the tth RB in the kth decoding iteration

at the CPU. The received data signal can be stacked as yt = [yHt1,y
H
t2, . . . ,y

H
tQ]. Similar

to (6.19), in the kth decoding iteration at the CPU, the stacked received data signal in

the tth RB at the CPU can be expressed as

ykt =
∑

i∈Skgtihtixi + nt, (6.20)

where nt , [nHt1,n
H
t2, . . . ,n

H
tQ]H . The CPU uses a combining vector aktm to combine the

received data signal. Thus, we obtain the post-combined data signal as ỹktm , akHtm ykt

which is expanded as

ỹktm = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm + akHtm
∑

i∈Smk
gtihtixi + akHtmnt. (6.21)
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The first term on the RHS, akHtm ĥktmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate ĥktm of the mth user; the second term akHtm h̃ktmgtmxm

contains h̃ktm, the CPU estimation error of the mth user; the third term akHtm
∑

i∈Smk
gtihtixi

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU; and the fourth

term akHtmnt is the additive noise component. We need to compute the SINR from the above

post-combined data signal. For this purpose, let Cqk
t ,Pk

tB
k
tq(P

kH
t Pk

tB
k
tq +N0IMk

t
)−1, and

cqkti , [Cqk
t ]:,i.

We now present the channel estimates of the users’ channels hti and the SINR achieved

by the users at the CPU in CCF IRSA in the following theorem.

Theorem 6.3 I Performance Analysis of CCF IRSA.

The minimum mean squared error (MMSE) channel estimate Ĥk
tq of Hk

tq in the tth

RB in the kth decoding iteration to the qth AP can be calculated as

Ĥk
tq = Ypk

tq (Pk
tB

k
tqP

kH
t +N0Iτ )

−1Pk
tB

k
tq. (6.22)

Specifically, the CPU estimate of the channel hqti of the ith user to the qth AP is

calculated as ĥqkti = [Ĥk
tq]:,i. For the ith user in the tth RB in the kth decoding

iteration, the effective QN -length CPU channel estimate is found as

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H ∈ CQN×1. (6.23)

Further, the estimation error h̃qkti , ĥqkti −hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN),

where δqkti is calculated as

δqkti = βqi σ
2
h

N0‖cqkti ‖2 +
∑

n∈Sikq
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Skq |p
H
n cqkti |2gtnβ

q
nσ2

h

. (6.24)
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The covariance of the channel estimation error at the CPU is

∆k
ti , blkdiag(δ1k

ti IN , δ
2k
ti IN , . . . , δ

Qk
ti IN). (6.25)

The SINR achieved by the mth user at the CPU in the tth RB and the kth decoding

iteration can be written as

ρktm=
Gainktm

N0 + Estktm + MUIktm
,∀m ∈ Sk, (6.26)

where

Gainktm , pmgtm|akHtm ĥktm|2/‖aktm‖2,

Estktm ,
∑

i∈Skpigtia
kH
tm∆k

tia
k
tm/‖aktm‖2,

MUIktm ,
∑

i∈Smk
pigti|akHtm ĥkti|2/‖aktm‖2.

Proof. See Sec. 6.6.5.

Remark 6: The MMSE channel estimate Ĥk
tq in (6.22) can be computed as

Ĥk
tq = Ypk

tq (Pk
tB

k
tqP

kH
t +N0Iτ )

−1Pk
tB

k
tq, (6.27a)

(a)
= Ypk

tq Pk
tB

k
tq(P

kH
t Pk

tB
k
tq +N0IMk

tq
)−1, (6.27b)

where (a) follows from (AB + I)−1A = A(BA + I)−1 [144]. Here, the estimate can be

calculated via an inverse of either a τ × τ matrix or an Mk
t ×Mk

t matrix as required.

Remark 7: The results derived in Theorem 6.3 holds for any choice of the combining

vector aktm, the pilots {pm}, and the power control policy {pm}. The channel estimates

ĥkti are stacked into the matrix Ĥk
t ∈ CQN×Mk

t . The combining vector that maximizes the

SINR in (6.26) is the MMSE combiner, which can be found as aktm = [Ak
t ]:,m, where

Ak
t = (Lk

t + Ĥk
tD

k
t,p1Ĥ

kH
t )−1Ĥk

tD
k
t,p1, (6.28)
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where Lk
t ,

∑
i∈Skpigti∆

k
ti +N0IQN , and Dk

t,p1,diag(pi1 , pi2 , . . . , piMk
t

) contains the power

coefficients of the Mk
t users. Using the Woodbury identity [144], the combiner matrix can

also be found via an Mk
t ×Mk

t inverse as

Ak
t = Jkt Ĥ

k
tD

k
t,p2(IQN − (Gk

t )
−1Dk

t,p2Ĥ
kH
t Jkt Ĥ

k
t )D

k
t,p2, (6.29)

where Jkt,blkdiag(jkt1IN , j
k
t2IN , . . . , j

k
tQIN), Gk

t , IUk
t

+Dk
t,p2Ĥ

kH
t Jkt Ĥ

k
tD

k
t,p2, j

k
tq , 1/(N0 +∑

i∈Skpigtiδ
qk
ti ), and Dk

t,p2,diag(
√
pi1 ,
√
pi2 , . . . ,

√pi
Mk

t

).

Algorithm 8: Performance Evaluation of CCF IRSA at the CPU

Input: τ,N, T,M,N0,G,P, {Yp
tq}t=1,2,...,T ;q=1,2,...,Q, {ytq}t=1,2,...,T ;q=1,2,...,Q, kmax

1 Initialize: S1 = [M ], Gt = {i ∈ [M ]|gti = 1}, S̄ = {}

2 Compute received signal at the CPU yt = [yHt1,y
H
t2, . . . ,y

H
tQ]

3 for k = 1, 2, . . . , kmax do

4 for t = 1, 2, . . . , T do

5 Find Mk
t = |Gt ∩ Sk|, Pk

t = [P]:,Gt∩Sk , {Y
pk
tq }

Q
q=1,y

k
t

6 Compute local estimates ĥqkti , ∀i ∈ Sk,∀q ∈ {1, 2, . . . , Q} via (6.22)

7 Stack local estimates to obtain CPU estimate

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H , ∀i ∈ Sk as in Theorem 6.3

8 Evaluate the SINR ρkti, ∀i ∈ Sk via Theorem 6.3

9 If ρkti ≥ γth, remove user i from Sk and perform IC in all RBs where gti = 1

10 Add user i to set of decoded users: S̄ = S̄ ∪ {i}

11 end

12 end

13 Output: Set of users decoded at the CPU: S̄

We now evaluate the performance of CCF IRSA at the CPU using Algorithm 8. The

algorithm is run till no more users are decoded in two successive iterations (or up to a

maximum of kmax iterations). The algorithm outputs S̄, which is the set of users decoded

at the CPU. Thus, the PLR of the network can be computed as PLR , (1− |S̄|/M), and

the throughput can be computed as T ,M(1− PLR)/T .
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6.3.4 Hybrid-Processing in Cell-Free IRSA: HCF IRSA

We now analyze IRSA in the cell-free scenario with hybrid processing as depicted in

Fig. 6.5. We use the acronym HCF IRSA to denote the above: Hybrid Cell-Free processing

in IRSA. In HCF IRSA, there are two phases: the first phase is at the APs and the second

phase is at the CPU. In the first phase, each AP tries to decode as many users as possible

similar to LCF IRSA. Once any AP cannot decode any more users in two successive

iterations, it forwards the residual pilot and data signals alongside a list of users it has

already decoded to the CPU on the fronthaul. In the second phase, the CPU attempts

to decode users using the combined signal made up of the residual signals from all APs.

This exploits the distributed array gain and can achieve a much better performance when

compared with LCF IRSA. Further, compared to CCF IRSA, HCF IRSA reduces the load

on the CPU by offloading the decoding tasks to the APs. Of course, this depends on the

regime (load, pilot length, SNR) in which we are operating as we will see in Sec. 6.4.4.

Figure 6.5: Setup of HCF IRSA.

Note that HCF IRSA does not resemble any existing receiver cooperation levels that

are considered in existing works [21, 133]. Receiver cooperation designs similar to Level

2 and Level 3 can be considered for CF IRSA in future work. For example, in Level 3

receiver cooperation for CF, the APs send not the original received signal but the local

estimates obtained from the post-combined signals.
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6.3.4.1 Decoding Process in HCF IRSA

We now describe the performance evaluation of HCF IRSA via the SINR threshold model.

HCF IRSA has two phases: phase 1 at the APs and phase 2 at the CPU. In phase 1, the

decoding is similar to the decoding process of LCF IRSA: each AP iteratively computes

the channel estimates and the SINRs of all users in all RBs, decodes users (using the SINR

threshold model) and performs SIC. Decoding stops when no more users are decoded in

two successive iterations. The APs forward the residual pilot and data signals to the CPU

via the fronthaul links, alongside a list of users already decoded. This marks the end of

the first phase.

In phase 2, the CPU uses the residual signals to decode the set of users not decoded at

any AP. The process is similar to the decoding process of CCF IRSA: the CPU iteratively

computes the channel estimates of all the users yet to be decoded at any AP and the

corresponding SINR in all RBs, decodes users (using the SINR threshold model) and

performs SIC. Decoding stops when no more users are decoded in two successive iterations.

The throughput of the network is calculated as the total number of correctly decoded

packets (at both the APs as well as the CPU) divided by the number of RBs.

6.3.4.2 Performance Analysis of HCF IRSA

In this subsection, we evaluate the performance of HCF IRSA.

Phase 1: In Phase 1, as discussed earlier, the APs decode as many users as possible

similar to LCF IRSA. This has been discussed in Sec. 6.3.2.2. The same can be repeated

here as well, and we skip the details. At the end of Algorithm 7, we obtain the set S̄q,

which is the set of decoded users at the qth AP at the end of the qth AP’s decoding

process in phase 1.

Phase 2: The set of users that have been decoded across the entire network is given by

S̄ = S̄1 ∪ S̄2 ∪ · · · ∪ S̄Q. We now denote Uk as the set of users in the network not decoded

up to the kth CPU decoding iteration, with U1 = [M ] \ S̄ and U ik , Uk \ {i}. U1 contains
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only the signals of the users who need to be decoded at the CPU since they have not been

decoded at any of the APs.

Let the decoding at the qth AP stop at a decoding iteration kq, i.e., it cannot decode

any more users. Thus, the residual received pilot and data signals sent from the qth AP

are denoted by Zp1
tq , Y

pkq
tq and z1

tq , y
kq
tq . These can be expressed at the CPU as

Zp1
tq =

∑
i∈U1

gtih
q
tip

H
i +

∑
i∈S̄\S̄qgtih

q
tip

H
i + Np

tq, (6.30)

z1
tq =

∑
i∈U1

gtih
q
tixi +

∑
i∈S̄\S̄qgtih

q
tixi + ntq, (6.31)

where S̄ is the set of users who have been decoded at the APs in phase 1, and S̄ \ S̄q is

the set of users who have been decoded at all the other APs in phase 1 except for the

qth AP. These components are still present in the residual signal of the qth AP since IC

is not performed for all the other users at the qth AP. Thus, Dp
tq ,

∑
i∈S̄\S̄qgtih

q
tip

H
i and

dtq ,
∑

i∈S̄\S̄qgtih
q
tixi are the interference components due to users decoded at all APs

other than the qth AP.

At the CPU, the processed residual pilot signal from the qth AP in the kth CPU

decoding iteration is given by

Zpk
tq =

∑
i∈Ukgtih

q
tip

H
i + Dp

tq + Np
tq. (6.32)

We now need to derive the channel estimates at the CPU in phase 2, which are computed

based on Zpk
tq . Based on the notation setup above, Uk ∪ (S̄ \ S̄q) is the set of users who

have not yet been decoded up to the kth iteration at the CPU in phase 2 and also the

users who have been decoded at all the APs except for the qth AP in phase 1. Thus,

Ūktq , Gt ∩ Uk ∪ (S̄ \ S̄q) is the set of such users who have transmitted in the tth RB and

Ūk
tq = |Ūktq| is the number of users who are yet to be decoded at the CPU up to the kth

CPU decoding iteration plus users who transmitted in the tth RB but were not decoded

at the qth AP. Note that we account for the pilot contamination due to users decoded at

the APs in phase 1 as well.5

5Similar to the single-cell estimators ignoring inter-cell pilot contamination, we can also ignore the
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Let P̄k
tq contain as its columns the pilots of the Ūk

tq users, and B̄k
tq ,

σ2
hdiag(βqi1 , β

q
i2
, . . . , βqi

Ūk
tq

) contain the path loss coefficients of the Ūk
tq users, with Ūktq =

{i1, i2, . . . , iŪk
tq
}. The subset of the users who are yet to be decoded at the CPU up to the

kth CPU decoding iteration is Gt ∩Uk, for whom the channel estimate matrix is obtained

as Ĥk
tq = [ ˆ̄Hk

tq]:,Gt∩Uk , with Uk
t , |Gt ∩ Uk|. Finally, the channel estimate of the channel

hqti of the ith user to the qth AP is calculated as ĥqkti = [Ĥk
tq]:,i. The channel of the ith

user in the tth slot to the CPU can be computed by stacking the user-AP channels as

hti = [h1H
ti ,h

2H
ti , . . . ,h

QH
ti ]H ∈ CQN×1. Thus, the CPU channel estimation error is given

by h̃kti , ĥkti − hti. The estimate of hti is presented in Theorem 6.4.

Let ρktm denote the SINR of the mth user in the tth RB in the kth decoding iteration

at the CPU. The received data signal can be stacked as zt = [zHt1, z
H
t2, . . . , z

H
tQ]. Similar to

(6.20), in the kth decoding iteration at the CPU, the stacked received data signal in the

tth RB at the CPU can be expressed as

zkt =
∑

i∈Ukgtihtixi + dt + nt. (6.33)

where dt , [dHt1,d
H
t2, . . . ,d

H
tQ]H , and nt , [nHt1,n

H
t2, . . . ,n

H
tQ]H . The CPU uses a combining

vector aktm to combine the received data signal. Thus, we obtain the post-combined data

signal as z̃ktm = akHtm zkt which is expanded as

z̃ktm = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm + akHtm
∑

i∈Um
k
gtihtixi + akHtmdt + akHtmnt. (6.34)

The first term on the RHS, akHtm ĥktmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate ĥktm of the mth user; the second term akHtm h̃ktmgtmxm

contains h̃ktm, the CPU estimation error of the mth user; the third term akHtm
∑

i∈Um
k
gtihtixi

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU (and who

have also not been decoded at any AP in phase 1); the fourth term akHtmdt is due to the

interference from users already decoded at all the APs in phase 1; and the fifth term

same and perform low complexity channel estimation. For more details, see Sec. 6.7.2.
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akHtmnt is the additive noise component. We need to compute the SINR from the above

post-combined data signal. For this purpose, let C̄qk
t , P̄k

tqB̄
k
tq(P̄

kH
tq P̄k

tqB̄
k
tq + N0IŪk

tq
)−1,

and cqkti , [C̄qk
t ]:,i.

We now present the channel estimates of the users’ channels hti and the SINR achieved

by the users at the CPU in HCF IRSA in the following theorem.

Theorem 6.4 I Performance Analysis of HCF IRSA.

The minimum mean squared error (MMSE) channel estimate ˆ̄Hk
tq of H̄k

tq in the tth

RB in the kth CPU decoding iteration to the qth AP at the CPU

ˆ̄Hk
tq = Zpk

tq (P̄k
tqB̄

k
tqP̄

kH
tq +N0Iτ )

−1P̄k
tqB̄

k
tq. (6.35)

The subset of the users who are yet to be decoded at the CPU up to the kth CPU

decoding iteration is Gt ∩ Uk, for whom the channel estimate matrix is obtained as

Ĥk
tq , [ ˆ̄Hk

tq]:,Gt∩Uk . Finally, the channel estimate of the channel hqti of the ith user to

the qth AP is calculated as ĥqkti , [Ĥk
tq]:,i. For the ith user in the tth RB in the kth

CPU decoding iteration, the effective QN -length CPU channel estimate is found as

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H ∈ CQN×1. (6.36)

Further, the estimation error h̃qkti , ĥqkti −hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN),

where δqkti is calculated as

δqkti = βqi σ
2
h

(
N0‖cqkti ‖2 +

∑
n∈Ūk

tq\{i}
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Ūk
tq
|pHn cqkti |2gtnβ

q
nσ2

h

)
. (6.37)

The covariance of the channel estimation error at the CPU is

∆k
ti , blkdiag(δ1k

ti IN , δ
2k
ti IN , . . . , δ

Qk
ti IN). (6.38)

The SINR achieved by the mth user at the CPU in the tth RB and the kth decoding
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iteration can be written as

ρktm=
Gainktm

N0 + Estktm + MUIktm + Decktm
,∀m ∈ Uk, (6.39)

where

Gainktm , pmgtm|akHtm ĥktm|2/‖aktm‖2,

Estktm ,
∑

i∈Ukpigtia
kH
tm∆k

tia
k
tm/‖aktm‖2,

MUIktm ,
∑

i∈Um
k
pigti|akHtm ĥkti|2/‖aktm‖2,

Decktm , akHtmΣdta
k
tm/‖aktm‖2.

Here, Σdt , blkdiag(d̄t1IN , d̄t2IN , . . . , d̄tQIN), with d̄tq ,
∑

i∈S̄\S̄qpigtiβ
q
i σ

2
h.

Proof. See Sec. 6.6.6.

Remark 8: The channel estimates ˆ̄Hk
tq for the users in Ūktq in (6.35) can be computed as

ˆ̄Hk
tq = Zpk

tq (P̄k
tqB̄

k
tqP̄

kH
tq +N0Iτ )

−1P̄k
tqB̄

k
tq, (6.40a)

(a)
= Zpk

tq P̄k
tqB̄

k
tq(P̄

kH
tq P̄k

tqB̄
k
tq +N0IŪk

tq
)−1, (6.40b)

where (a) follows from (AB + I)−1A = A(BA + I)−1 [144]. Here, the estimate can be

calculated via an inverse of either a τ × τ matrix or an Ūk
tq × Ūk

tq matrix as required.

Remark 9: The results derived in Theorem 6.4 holds for any choice of the combining

vector aktm, the pilots {pm}, and the power control policy {pm}. The channel estimates

ĥkti are stacked into the matrix Ĥk
t ∈ CQN×Uk

t . The combining vector that maximizes the

SINR in (6.39) is the MMSE combiner, which can be found as aktm = [Ak
t ]:,m, where

Ak
t = (Lk

t + Ĥk
tD

k
t,p1Ĥ

kH
t )−1Ĥk

tD
k
t,p1,

where Lk
t , Σdt +

∑
i∈Ukpigti∆

k
ti + N0IQN , and Dk

t,p1,diag(pi1 , pi2 , . . . , piUk
t

) contains the
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Algorithm 9: Performance Evaluation of Phase 1 of HCF IRSA at the APs

Input: τ,N, T,M,N0,G,P, {Yp
tq}t=1,2,...,T ;q=1,2,...,Q, {ytq}t=1,2,...,T ;q=1,2,...,Q, kmax

1 for q = 1, 2, . . . , Q do

2 Initialize: S1q = [M ], Gt = {i ∈ [M ]|gti = 1}, S̄q = {}

3 for k = 1, 2, . . . , kmax do

4 for t = 1, 2, . . . , T do

5 Find Mk
tq = |Gt ∩ Skq|, Pk

tq = [P]:,Gt∩Skq ,Y
pk
tq ,y

k
tq

6 Compute ĥqkti , ∀i ∈ Skq via Theorem 6.2

7 Evaluate the SINR ρktqi, ∀i ∈ Skq via Theorem 6.2

8 If ρktqi ≥ γth, remove user i from Skq and perform IC in all RBs where

gti = 1

9 Add user i to set of decoded users: S̄q = S̄q ∪ {i}

10 end

11 end

12 Output: Set of users decoded at the qth AP S̄q, residual pilot signal

Zp1
tq , Ypkmax

tq , and residual data signal z1
tq , ykmax

tq

13 end
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Algorithm 10: Performance Evaluation of Phase 2 of HCF IRSA at the CPU

Input: τ,N, T,M,N0,G,P, {Zp1
tq }t=1,2,...,T ;q=1,2,...,Q, {z1

tq}t=1,2,...,T ;q=1,2,...,Q, kmax

1 Compute set of users decoded at all the APs S̄ = S̄1 ∪ S̄2 ∪ · · · ∪ S̄Q
2 Compute residual received data signal at the CPU z1

t = [z1H
t1 , z

1H
t2 , . . . , z

1H
tQ ]

3 Initialize: U1 = [M ] \ S̄, Gt = {i ∈ [M ]|gti = 1}, Ū = {}

4 for k = 1, 2, . . . , kmax do

5 for t = 1, 2, . . . , T do

6 Find Ūktq = Gt ∩ Uk ∪ (S̄ \ S̄q), Ūk
tq = |Ūktq|,

Pk
tq = [P]:,Ūk

tq
,Zpk

tq ,∀q ∈ {1, 2, . . . , Q}, and zkt

7 Compute local estimates ĥqkti , ∀i ∈ Uk,∀q ∈ {1, 2, . . . , Q} via (6.35)

8 Stack local estimates to obtain CPU estimate

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H , ∀i ∈ Uk as in Theorem 6.4

9 Evaluate the SINR ρkti, ∀i ∈ Uk via Theorem 6.4

10 If ρkti ≥ γth, remove user i from Uk and perform IC in all RBs where gti = 1

11 Add user i to set of decoded users: Ū = Ū ∪ {i}

12 end

13 end

14 Output: Set of users decoded at the CPU: Ū
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power coefficients of the Uk
t users. Alternately, using the Woodbury identity [144], the

combiner matrix can also be found via a Uk
t × Uk

t inverse as

Ak
t = Jkt Ĥ

k
tD

k
t,p2(IQN − (Gk

t )
−1Dk

t,p2Ĥ
kH
t Jkt Ĥ

k
t )D

k
t,p2,

where Jkt,blkdiag(jkt1IN , j
k
t2IN , . . . , j

k
tQIN), Gk

t , IUk
t

+Dk
t,p2Ĥ

kH
t Jkt Ĥ

k
tD

k
t,p2, j

k
tq , 1/(N0 +

d̄tq +
∑

i∈Ukpigtiδ
qk
ti ), and Dk

t,p2,diag(
√
pi1 ,
√
pi2 , . . . ,

√pi
Uk
t

).

We now evaluate the performance of HCF IRSA at the APs using Algorithm 9 and

at the CPU using Algorithm 10. Algorithm 9 is run similar to LCF IRSA. Algorithm 10

at the CPU is run till no more users are decoded in two successive iterations (or up to a

maximum of kmax iterations). The algorithm outputs S̄, which is the set of users decoded

at all the APs in phase 1, and Ū , which is the set of users decoded at the CPU, in phase

2. Thus, the PLR of the network can be computed as PLR , (1 − |S̄ ∪ Ū|/M), and the

throughput can be computed as T ,M(1− PLR)/T .

6.4 Numerical Results

6.4.1 MC IRSA

In this section, we evaluate the throughput of MC IRSA via Monte Carlo simulations and

provide insights into the impact of various system parameters on the performance of the

system. In each simulation, we generate independent realizations of the user locations,

the access pattern matrix, and the channels. The throughput in each run is calculated as

described in Sec. 6.2.1.1, and the effective system throughput is calculated by averaging

over the runs. We consider a set of Q = 9 square cells, stacked in a 3× 3 grid, and report

the performance of the center cell [10]. Each cell has M users spread uniformly at random

across an area of 250× 250 m2, with the BS at the center [49].6

The results in this section are for T = 50 RBs, Ns = 103 Monte Carlo runs, σ2
h = 1,

6Due to path loss inversion, the area of the cell does not significantly affect the throughput, but affects
the area spectral efficiency, which we do not analyze here.
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SINR threshold γth = 10. The number of users contending for the T RBs in each cell is

computed based on the load L as M = bLT e. The path loss is calculated as βqji (dB)

= −37.6 log10(dqji/10m), where dqji is the distance of the ith user in the jth cell from the

qth BS [49]. The pilot sequences are chosen as the columns of the τ × τ discrete Fourier

transform matrix normalized to have column norm
√
τP p. The soliton distribution [72]

with dmax = 8 maximum repetitions is used to generate the repetition factor dji, for the

ith user in the jth cell, whose access vector is formed by uniformly randomly choosing

dji RBs from T RBs without replacement [7].7 The access pattern matrix is formed by

stacking the access vectors of all the users. The power level is set to P = P p = 10 dBm [49]

and N0 is chosen such that the data and pilot SNR are 10 dB, unless otherwise stated.

Figure 6.6: MC IRSA: Effect of load L with τ = M .

In Fig. 6.6, we show the effect of the load L on the center cell’s throughput TC . All

the curves increase linearly till a peak, which is the desired region of operation, and then

drop quickly to zero as the system becomes interference limited. All the users’ packets

are successfully decoded in the linear region of increase, and at high L, beyond the peak,

the throughputs drop to zero. For N = 8, γth = 10, we see a 70% drop in the peak

throughput from TC = 4 at L = 4 for SC to TC = 1.2 at L = 1.2 for MC. This is because

users face a high degree of inter-cell interference in the MC setup, unlike the SC setup,

especially at high L. In the SC setup, the peak throughput reduces from TC = 4 for

7The soliton distribution has been shown to achieve 96% of the throughput that can be achieved with
the optimal repetition distribution [8]. For the optimal repetition distribution, see Chapter 7.
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Figure 6.7: MC IRSA: Impact of pilot length τ with N = 32.

Figure 6.8: MC IRSA: Effect of number of antennas N .

Figure 6.9: MC IRSA: Impact of SNR.
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N = 8 to TC = 3 at L = 3 for N = 4. This trend is similar to the MC setup for which the

peak throughputs are TC = 4, 2.6, 1.2 for N = 32, 16, 8, respectively. This is because the

system’s interference suppression ability with MMSE combining reduces as we decrease

N [49]. This holds true with γth = 6 also, which corresponds to a lower SINR threshold,

and consequently higher TC . To summarize, at high L, there is a high degree of inter-cell

interference which SC processing does not account for, resulting in a substantial drop in

performance.

Fig. 6.7 studies the impact of the pilot length τ . The performance of SC IRSA at all

L is optimal (note that the throughput is upper bounded by L) for τ > 10. In MC IRSA,

nearly optimal throughputs are achieved for L = 1, 2, 3 at τ = 10, 30, 40, respectively.

The throughput for L = 4 does not improve much with τ . At high L, the impact of

inter-cell interference is severe, as expected. Increasing τ implies that each cell has a

higher number of orthogonal pilots, and hence can help in reducing intra-cell PC, but the

system is still impacted by inter-cell PC and inter-cell interference. Thus, we see that

MC IRSA requires significantly higher τ (at least 4− 5×) to overcome inter-cell PC and

inter-cell interference to achieve the same performance as that of SC IRSA.

In Fig. 6.8, we study the effect of N for L = 1, 2, 3, 4, with SNR = 10,−5 dB and τ =

M . Nearly optimal throughputs for L = 1, 2, 3, 4 can be achieved with N = 8, 16, 32, 32

for SNR = 10 dB, and with N = 64 for SNR = −5 dB. The system performance improves

because of the array gain and higher interference suppression ability at high N . This aids

in reducing not only intra-cell interference, but also inter-cell interference. However, as

discussed in Remark 3, the SINRs of the users have a coherent interference component

that scales with N . Thus, while an increase in N helps reducing intra-cell interference and

inter-cell interference, and improves the system performance, it does not reduce intra-cell

PC and inter-cell PC. Similar observations about N can be made where we study the

impact of SNR in Fig. 6.9. At very low SNR, the system is noise limited, and increasing

N does not help increase the throughput, which is at zero. For N = 16, the throughput is

always zero and nearly zero for L = 4 and L = 3, respectively. Optimal throughputs are

obtained at higher SNRs for N = 32 and 64. Since boosting transmit powers of the users
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scales both the signal and interference components equally, the SINR does not increase,

and therefore the system performance saturates with SNR. To summarize, increasing τ ,

N , and the SNR can judiciously help reduce the impact of intra-cell PC and inter-cell

PC, as well as intra-cell interference and inter-cell interference.

6.4.2 CCF IRSA

So far we have studied the performance of the central cell in MC IRSA via the center cell’s

throughput. We now study the performance of the network in CF IRSA via the system

throughput. In this section, we evaluate the performance of CCF IRSA via Monte Carlo

simulations and then, we provide insights into the impact of varied system parameters on

the performance of the system. In each simulation, we generate independent realizations

of the user locations, the access pattern matrix, and the channels. The throughput in

each run is calculated as described in Sec. 6.3.3.2, and the effective system throughput

is calculated by averaging over the runs. The results in this section are for T = 50 RBs,

Ns = 103 Monte Carlo runs, σ2
h = 1, SINR threshold γth = 10, plane size dp = 1km, and

τ = 10 symbols [48]. The number of users contending for the T RBs is computed based

on the load L as M = bLT e. The pilot sequences are chosen as τ -length pilot sequences

made up of random QPSK symbols, normalized to have column norm
√
τP p. The soliton

distribution [72] with dmax = 4 maximum repetitions is used to generate the repetition

factor di, for the ith user, the access vector is formed by uniformly randomly choosing

di RBs from T RBs without replacement [7]. The access pattern matrix is formed by

stacking the access vectors of all the users.

To generate the AP locations and make a fair comparison with SC IRSA, we divide

the plane of size dp × dp into a total of Q virtual square cells of size dc × dc with dc =

dp/
√
Q [116]. We place the APs at the locations where the BSs would have been placed

in a multi-cell setup, i.e., the centre of each cell, and then remove the cell boundaries

to make up the CF system [21]. The path loss at the qth AP is calculated as βqi (dB)

= −37.6 log10(dqi/10m) + Shad., where dqi is the distance of the ith user from the qth AP,

and Shad. ∼ N (0, 16) is the log-normal shadowing component [21]. The received SNR at
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the center of the plane of a user situated at the edge of the plane is termed as the edge

SNR, and is denoted by ρe. The power levels of all users is chosen such that the signal

from a user at the edge of the plane, i.e., at a distance dp/
√

2 from the center of the plane,

is received at ρe. This ensures that all users’ signals are received at an SINR that at least

ρe on average, in singleton RBs. The power level is set such that ρe = 10 dB [49], unless

otherwise stated. We consider typical communication settings over a 100kHz bandwidth

with a noise figure of 7 dB in the receiver hardware and calculate the noise power N0 based

on this, according to standard models [49]. The pilot power P p is chosen to be twice the

data power P [49].

In Fig. 6.10, we study the effect of the system load L on the performance of CCF

IRSA. In Fig. 6.10(a), we plot the throughput for a fixed QN = 32 and varying Q in

order to study the effects of densification on CCF IRSA (and the PLR in Fig. 6.10(b)).

Here densification refers to increase in the number of cells with the same fixed network

size, thereby having smaller cells in order to combat fading. The throughput under each

configuration initially increases linearly with the load L since more users are decoded as

and when they are added to the system. Once they hit a peak at the inflection load L∗

for the corresponding configuration, the throughput starts dropping due to interference

limitation. The throughput at high L beyond the inflection load saturates at a constant

value since users close to the BS always get decoded due to high received powers. In the

linear throughput regime, i.e., when L ≤ L∗, the corresponding PLR is zero and becomes

a non-zero value and close to unity at high load beyond L∗. We observe peak throughputs

of T = 12, 16, 19, 23, 26, and 29 for (Q,N) = (1, 32), (2, 16), (4, 8), (8, 4), (16, 2), and

(32, 1). The inflection load of IRSA increases from L∗ = 12 for SC IRSA to L∗ = 29 for

CCF IRSA, which is a 142% increase in the load. Specifically, at a load of L = 29, SC

IRSA with a mMIMO setup achieves a throughput of T = 2 packets per RB and CCF

IRSA achieves a throughput of T = 29 packets per RB, which is over a 14× improvement

in the throughput. This is because CCF IRSA exploits the MDG offered due to the

distributed nature of the antennas. As we increase Q (keeping QN fixed), even though

the N at each AP reduces, since we perform CPU only processing in CCF IRSA, the
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(a) Throughput in CCF IRSA.

P
L
R

(b) Packet loss rate in CCF IRSA.

Figure 6.10: CCF IRSA: Effect of system load L.
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distances between the users and the nearest AP reduces. Users are closer to the decoders

in CCF IRSA and as such, the effect of path loss is compensated by the MDG. Thus,

CCF IRSA outperforms SC IRSA due to the MDG of CF mMIMO systems.

Figure 6.11: CCF IRSA: Impact of Q.

Figure 6.12: CCF IRSA: Effect of pilot length τ with QN = 32.

In Fig. 6.11, we study the impact of Q on the throughput of CCF IRSA for QN = 128

and QN = 64. The curves in the previous figure were for QN = 32. Here we study it

for higher QN and higher L. We observe that all the curves improve with an increase

in Q and achieve the optimal throughputs. With QN = 128, the optimal throughput of
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(a) For L = 56,40, and 24.

(b) For L = 48,32, and 16.

Figure 6.13: CCF IRSA: Effect of pilot length τ with QN = 64.
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Figure 6.14: CCF IRSA: Impact of edge SNR.

T = L are achieved at Q = 2, 2, 4, 8, and 16 for L = 16, 24, 32, 40, and 48, respectively.

With QN = 64, the optimal throughput of T = L are achieved at Q = 2, 4, 8, 16, and

64 for L = 16, 24, 32, 40, and 48, respectively. For L = 32, with Q = 8, having N = 8

antennas per AP yields a low throughput of T ≈ 10, whereas having N = 16 antennas

per AP yields the optimal throughput of T = L = 32. Similar observations can be made

for L = 48 with Q = 16. This shows the behaviour of doubling the antennas per AP close

to the inflection load in CCF IRSA. The observation about densification in CF systems

is in agreement with existing works [22]. CCF IRSA yields optimal peak throughputs of

T = L for every L. Comparing this with SC IRSA, we obtain improvements of 1.6×,

6×, 8×, 10×, and 12× in the throughput for L = 16, 24, 32, 40, and 48. Thus, for higher

QN , we achieve even higher gains in both the throughputs at high loads as well as higher

inflection loads.

In Fig. 6.12 and Fig. 6.13, we study the effect of the pilot length on the performance

of CCF IRSA with QN = 32 and QN = 64 respectively. As observed before, densifi-

cation highly improves the performance of CCF IRSA. In both the figures, we observe

that all the curves improve with an increase in Q, but only a few achieve the optimal

throughputs. Majority of the configurations in both figures perform poorly at τ = 5, but

the performance of all of them improve significantly with an increase in τ . For QN = 32



Chapter 6. Analysis of IRSA in Multi-Cell and Cell-Free Systems 296

and L = 32, we observe that the peak throughput is achieved at τ = 15 for CCF IRSA

whereas SC IRSA achieves a throughput of 4, which is a 8× improvement in the per-

formance due to MDG in CCF IRSA. We also observe that the curves for L = 40 with

QN = 32 never achieve the optimal throughputs, which is because L = 40 is always

beyond the inflection load for QN = 32 (and L = 32 and 16 are well below the inflection

load). When we increase QN from 32 to 64, we see that the optimal throughputs can

be achieved. The increase in the antennas helps improve interference suppression. At

τ = 5, CCF IRSA achieves more than a 10× improvement in the throughput for L = 40.

Also, for L = 40, CCF IRSA achieves the optimal throughput with just τ = 5, whereas

SC mMIMO achieves the same with τ = 45, which is a 9× reduction in the pilot length.

Further, we observe that for a few configurations, the performance is poor at for a wide

range of τ , but at high τ , we achieve the optimal performance: with Q = 8, N = 8 and

L = 56, 48, with Q = 1, N = 64 and L = 40, 32, with Q = 4, N = 8 and L = 32. For low

L, the optimal throughputs are achieved by lower pilot lengths. This demonstrates the

impact of the length of the pilot sequences in improving the performance of the system.

Finally, in Fig. 6.14, we study the impact of the edge SNR on the performance of the

system for varied loads. As observed before, densification highly improves the performance

of CCF IRSA. All the curves initially marginally improve with the SNR at very low SNRs

(< −40 dB), significantly improve at moderate SNRs (between −40 dB and −20 dB), and

then saturate at high SNRs (> −20 dB). This saturation occurs at the peak optimal

performance for Q = 64, N = 1 at all loads, and at low values for Q = 1, N = 64 at all

loads. With Q = 8, N = 8, we observe that L = 32 and 16 achieve the peak throughputs

at 0 dB and −10 dB SNRs, whereas the performance of L = 48 saturates near T = 7. This

is because L = 48 is higher than the inflection load for the corresponding configuration.

This plot also shows that devices could transmit with lower powers in CCF IRSA and still

be decodable at the CPU compared to SC IRSA which does not even achieve the optimal

throughputs for these high loads.

In summary, CCF IRSA massively improves upon the performance of SC IRSA, mainly

due to the MDG of CF mMIMO systems. A fully densified network operates with the
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best performance and can even achieve the peak optimal throughputs up to L = 56 for

QN = 64 and even beyond. The inflection load massively improves with densification,

pilot length, and the edge SNR.

6.4.3 LCF IRSA

In this section, we study the impact of system parameters on the performance of LCF

IRSA. The system parameters are identical to the previous subsection. Existing works

handle interference-limitation of communication systems by using the divide-and-conquer

approach, where the network is split up into small cells [22]. This reduces the effect of

path loss and improves the performance. This is the exact behaviour we observed with

CCF IRSA, and what we will also next observe in HCF IRSA. However, this behaviour

is not observed in either MC or LCF IRSA systems as we will see below.

We first study the effect of densification on the performance of LCF IRSA in Fig. 6.15,

keeping the antenna density QN fixed and τ = 10. In Figs. 6.15(a), 6.15(b), 6.15(c), we

study the effect of the edge SNR on LCF IRSA with L = 4, 14, and 16, respectively. As

observed in SC IRSA, improving the edge SNR of the system improves the performance

up to the point where the system either performs optimally or where the performance

saturates. L = 4 is well below the inflection load L∗, and thus, the performance is

optimal at high SNR. At low L < L∗, the system performance is dominated by the

path loss, and thus, the performance improves with densification. L = 16 is beyond the

inflection load L∗, and thus, the performance saturates at high SNR. At high L > L∗, the

system’s performance is already saturated, and thus, densifying helps only decode a few

more users, thereby improving the performance only slightly. At both low load of L = 4

and high load L = 16, densification helps improve the performance unilaterally across all

edge SNRs, i.e., SC IRSA performs the poorest and densification in LCF IRSA improves

the performance for every SNR. L = 14 is close to the inflection load L∗, and thus, the

performance is optimal at high SNR under certain configurations and the performance

saturates at a suboptimal value under other configurations. For SNR < −10 dB, any

densification only improves the throughput. In this noise-limited regime, densifying the
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(a) L = 4.

(b) L = 14.

(c) L = 16.

Figure 6.15: LCF IRSA: Effect of densification.
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(a) L = 4.

(b) L = 14.

(c) L = 16.

Figure 6.16: MC IRSA: Effect of densification.
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network pushes users closer to APs, thereby increasing the throughput. However, an

inverse trend is observed for SNR > −10 dB. In this regime, it is better to operate the

system as a SC mMIMO system with 64 antennas rather than a small cell setup with 64

cells with 1 antenna each.

We observe similar trends for MC IRSA in Fig. 6.16, for which the simulation settings

are identical to that of the previous figure. Here we compute the system throughput

of MC IRSA and do not perform any path loss inversion. For a low load of L = 4,

we observe that Q = 2, N = 32 performs the best, and it performs slightly better than

Q = 1, N = 64, which is SC IRSA. All the other configurations, as the system is made

more dense with smaller cells, perform poorly. Specifically for MC IRSA, even when the

cells are made small, there are users out-of-cell who could be decoded at a different cell’s

BS, but will not be decoded. However, in LCF IRSA, these users get decoded as well

since there are no cell boundaries. Other than this, the MC setup performs similar to the

LCF setup, and the trends are similar: this is because LCF IRSA is similar to MC IRSA

when each AP is replaced by a BS and the cell boundaries are removed, enabling each AP

to decode users in singleton slots even from adjacent cells. For L = 14, Q = 1, N = 64

performs the best at edge SNR ≥ 0 dB, whereas for edge SNR < 0 dB, Q = 2, N = 32

performs the best. This trend is similar to LCF IRSA. For L = 16, Q = 2, N = 32

performs the best, Q = 4, N = 16 is the next best configuration, Q = 1, N = 64 is the

next best configuration, and the other configurations perform poorly. Similar to what was

observed in LCF IRSA, for L = 4 and L = 16, both of which are not near to the inflection

load, densification helps improve the performance of MC IRSA; albeit this happens only

initially, and the most dense network performs very poorly. For L = 14, using a SC

mMIMO system would help us even achieve the optimal throughput at high SNR.

Even though the dense network in MC or LCF IRSA has many small cells which can

help overcome the effect of path loss, the system is now operating with fewer antennas,

with which the system has a lower interference suppression ability. Thus, both MC and

LCF IRSA perform poor with higher densification. This observation about densification

in MC systems is different when compared with the observations in existing works [22].
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This is because the main metric of interest in usual cellular communications is the spectral

efficiency (SE) or sum-rate-type metrics and the main metric of interest in our work is

the packet throughput of the system, i.e., the connectivity of the system. The SE metric

does not talk about the connectivity of the system and captures the achievable rate of the

system. It only measures the number of bits that can be successfully decoded. The metric

we consider is captures “outage” events where packets transmitted at a given (fixed) rate

are successfully decoded. Thus, in systems where the connectivity or outage is the main

metric of interest, densification need not always help improve the performance of the

system. Thus, in MC and LCF systems, densification helps improve the performance of

IRSA at loads below or higher than the inflection load; at loads close to the inflection

load, an SC mMIMO system performs better than MC and LCF systems.

Figure 6.17: MC IRSA vs LCF IRSA.

In Fig. 6.17, we compare MC IRSA and LCF IRSA with identical parameter settings.

With Q = 4, N = 4, LCF IRSA achieves an inflection load of L∗ = 4.7, whereas MC

IRSA achieves an inflection load of L∗ = 2.6. With Q = 2, N = 8, LCF IRSA is still in

the linear throughput regime, whereas MC IRSA achieves an inflection load of L∗ = 5.

Further, we still observe the same densification trends as before for both MC and LCF

IRSA: densification does not help in improving the throughput. Also, by removing the

cell boundaries and allowing the BSs or APs to decode as many users as possible, the
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performance of the system improves.

(a) L = 8.

(b) L = 16.

(c) L = 24.

Figure 6.18: LCF IRSA: Impact of pilot length τ .
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In Fig. 6.18, we study the effect of the pilot length τ on the performance of LCF IRSA

for L = 8,16, and 24. Under all the configurations, the throughput either increases or

saturates with the pilot length τ . For L = 8, the throughput is optimal when densifying

from Q = 1, N = 64 to Q = 8, N = 8, and suboptimal otherwise, for τ ≥ 10. For L = 16,

the throughput is optimal when densifying from Q = 1, N = 64 to Q = 4, N = 16, and

suboptimal otherwise, for τ ≥ 25. For L = 24, the throughput is optimal when densifying

from Q = 1, N = 64 to Q = 2, N = 32, and suboptimal otherwise, for τ ≥ 35. These

observations are in agreement with the previous results, and they show that densifying

is not always the solution to improve the performance of communication systems. The

inflection pilot lengths for the SC IRSA setup in each of the figures are τ ∗ = 10, 20, and 30,

i.e., for all τ < τ ∗, the throughput is poor and for all τ ≥ τ ∗, the throughput is optimal.

In fact in each of the figures here, this inflection pilot length demarcates the regions when

densification helps: for τ < τ ∗, densifying unilaterally improves the system throughput;

for τ ≥ τ ∗, densifying unilaterally reduces the system throughput. Similar to what we

observed in Chapter 3, we can identify these inflection loads, inflection pilot lengths,

inflection SNRs, and inflection number of antennas under any system configuration, and

then use it to operate the system in the required regimes of interest.

Figure 6.19: LCF IRSA: Effect of Q.

In Fig. 6.19, we study the impact of increasing the antenna density QN on the per-

formance of LCF IRSA. For this, we plot the throughput versus the number of APs Q
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and keep the number of antennas per AP N fixed. All of the curves improve with den-

sification and reach optimal throughputs of T = L with high enough Q (N = 4, L = 32

is nearly optimal at Q = 128). These trends match the densification strategy in existing

works, albeit we are increasing the antenna density, making the comparison unfair from

an energy efficiency/power consumed perspective. L = 8 achieves the optimal throughput

with N = 4, 8, 32 antennas at Q = 16, 2, and 1 AP(s), respectively. L = 16 achieves the

optimal throughput with N = 4, 8, 32 antennas at Q = 64, 32, and 4 APs, respectively.

L = 32 achieves the optimal throughput with N = 4, 8, 32 antennas at Q > 128, Q = 128,

and 32 APs, respectively. Thus, increasing the antenna density can help overcome the

limitations of LCF IRSA.

6.4.4 HCF IRSA

In this section, we study the impact of system parameters on the performance of HCF

IRSA. The system parameters are identical to the previous subsection. In Fig. 6.20, we

study the impact of densification on the performance of HCF IRSA for edge SNR ρe =

−10 dB and −30 dB, and antenna density QN = 64 and 128. For QN = 64, ρe = −10 dB,

the peak performances are achieved for all L with densification; for ρe = −30 dB, the

peak performances are nearly obtained with densification only for L = 16, 24, and 32. For

QN = 64, ρe = −10 dB, the optimal throughputs with L = 16, 24, 32, 40, and 48 are

achieved at Q = 2, 4, 8, 32, and 64 APs. Thus, for QN = 64, ρe = −10dB, HCF IRSA

performs 4×, 6×, 8×, 10×, and 12× for L = 16, 24, 32, 40, and 48, compared to SC IRSA.

We see similar trends for QN = 128. For QN = 128, ρe = −30 dB, with densification, the

system performs optimally at high Q for all loads, whereas for QN = 64, ρe = −30 dB, it

did not. Thus, at low SNRs, increasing the antenna density (by doubling the number of

antennas) helps improve the throughput.

In Fig. 6.21, we study the impact of SNR on the performance of HCF IRSA. Here,

we compare only the fully densified HCF IRSA (with Q = 128, N = 1) with mMIMO SC

IRSA (with Q = 1, N = 128). HCF IRSA achieves an inflection SNR of ρ∗e = −30 dB, i.e.,

for ρe < ρ∗e, the system performs poorly and for ρe ≥ ρ∗e, the system performs optimally.
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(a) QN = 64.

(b) QN = 128.

Figure 6.20: HCF IRSA: Effect of densification.

Figure 6.21: HCF IRSA: Impact of SNR.
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SC IRSA achieves the optimal performance beyond 0 dB only for L = 8 and L = 16; for

L = 24 and L = 32 the system throughput saturates at very low values. In fact, the

trends in HCF are similar to the trends in CCF IRSA, as we will see next.

(a) L = 24.

(b) L = 32.

Figure 6.22: CCF vs LCF vs HCF vs SC IRSA.

In Fig. 6.22, we compare all the schemes presented in this chapter for L = 24 and

L = 32.8 Firstly, we observe that HCF performs closely to CCF IRSA in both the

subfigures. The gap between CCF and HCF increases from L = 24 to L = 32, which

indicates that the interference from decoded users in HCF IRSA increases with the load

L.9 For L = 24, with τ ≤ 20, SC IRSA performs the poorest and CCF IRSA with

8We have already compared MC and LCF IRSA previously, and thus, we skip MC IRSA in this plot.
9We note that for lower L, CCF and HCF perform identically. We have not included the plots for the
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Q = 32, N = 1 performs the best; HCF is very close to CCF and LCF performs poorly.

For L = 24, with τ > 20, SC IRSA performs better than LCF IRSA and also achieves

the optimal throughput at τ = 30, same as CCF and HCF IRSA. For L = 32, with

τ ≤ 35, SC IRSA performs the poorest and CCF IRSA with Q = 32, N = 1 performs

the best; HCF is very close to CCF and LCF performs poorly at all τ . For L = 32,

with τ > 35, SC IRSA performs better than LCF IRSA and also achieves the optimal

throughput at τ = 50, same as CCF and HCF IRSA. In both figures, it is evident that

densification helps improve the performance of CCF IRSA and HCF IRSA, but not LCF

IRSA, which performs the poorest at all pilot lengths. Thus, depending on the regime

of interest, SC IRSA performs better than LCF IRSA. Further, the CCF scheme has the

best performance amongst the proposed schemes.

6.5 Summary

In this chapter, we first studied the effect of MC interference, namely inter-cell PC and

inter-cell interference, on the performance of IRSA. Firstly, we derived the channel esti-

mates and the SINR in MC IRSA, accounting for path loss, MIMO fading, intra-cell PC,

and intra-cell interference. We saw that MC IRSA had a significant degradation in per-

formance compared to SC IRSA, even resulting in up to 70% loss of throughput in certain

regimes. Recuperating this loss requires at least 4−5× larger pilot length in MC IRSA to

yield the same performance as that of SC IRSA. Increasing τ,N , and SNR helped improve

the performance of MC IRSA. These results underscore the importance of accounting for

multiuser interference in analyzing IRSA in multi-cell settings. Future work could include

design of optimal pilot sequences to reduce PC and density evolution [7] to obtain the

asymptotic throughput.

We then analyzed IRSA in the CF setup, accounting for path loss, MIMO fading,

and channel estimation errors. Specifically, we studied three CF schemes for IRSA: LCF

IRSA, CCF IRSA, and HCF IRSA, which have different levels of partial signal processing

same.
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at the APs and the CPU. We provided insights into the effect of system parameters such

as number of antennas, number of APs, pilot length, and SNR on the performance of all

three schemes in CF IRSA. We showed that we can achieve more than 14× improvement

in the throughput or a 9× reduction in the pilot length of CCF IRSA compared to a

massive MIMO SC setup at high loads. We also studied the BS and AP densification

trends in MC IRSA and LCF IRSA, respectively, where we observe an inverse behaviour

in the throughput compared to CCF IRSA and HCF IRSA. For CCF IRSA and HCF

IRSA, densification always improves the performance. For LCF IRSA and MC IRSA,

densification does not help at loads near the inflection loads: it is better to not densify

and to operate with a massive MIMO SC setup. Future work could include calculating

the load on the CPU and involve user-AP clustering to reduce the decoding complexity.

We can also design optimal distributions for the MC and CF setups.

6.6 Proofs

6.6.1 Proof of Lemma 7: Channel Estimation

The minimum mean squared error (MMSE) channel estimate ˆ̄Hqk
tq of the channel matrix

H̄qk
tq in the tth RB in the kth decoding iteration at the qth BS can be calculated as

ˆ̄Hqk
tq = Ypk

tq P̄k
tqB̄

qk
tq (P̄kH

tq P̄k
tqB̄

qk
tq +N0IM̄qk

tq
)−1. (6.41)

6.6.1.1 Channel estimation

The received signal is first vectorized as

yktq , vec(Ypk
tq ) = (P̄k∗

tq ⊗ IN)hktq + ntq, (6.42)

where hktq , vec(H̄qk
tq ), ntq , vec(Np

tq), and ⊗ is the Kronecker product. The MMSE esti-

mate is ĥktq , Ez[h
k
tq], where z = yktq. The estimation error h̃ktq , ĥktq−hktq is uncorrelated

with the estimate and with z. The conditional statistics of a Gaussian random vector x
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are

Ez [x] = E [x] + KxzK
−1
zz (z− E [z]) , (6.43)

Kxx|z = Kxx −KxzK
−1
zz Kzx. (6.44)

Here, Kxx, Kxx|z, and Kxz are the unconditional covariance of x, the conditional covari-

ance of x conditioned on z, and the cross-covariance of x & z respectively. From (6.43),

the MMSE estimate ĥktq of the channel can be evaluated as

ĥktq = E [hktq] + E [hktqy
kH
tq ]E[yktqy

kH
tq ]−1(yktq − E [yktq]).

The terms in the above expression can be calculated as

E [hktqy
kH
tq ] = B̄qk

tq P̄kT
tq ⊗ IN ,

E[yktqy
kH
tq ] = (P̄k∗

tq B̄qk
tq P̄kT

tq +N0Iτ )⊗ IN ,

ĥktq = (B̄qk
tq P̄kT

tq (P̄k∗
tq B̄qk

tq P̄kT
tq +N0Iτ )

−1 ⊗ IN)yktq,

and thus, the MMSE estimate ˆ̄Hqk
tq of H̄qk

tq is

ˆ̄Hqk
tq = Ypk

tq (P̄k
tqB̄

qk
tq P̄kH

tq +N0Iτ )
−1P̄k

tqB̄
qk
tq (6.45)

(a)
= Ypk

tq P̄k
tqB̄

qk
tq (P̄kH

tq P̄k
tqB̄

qk
tq +N0IM̄qk

tq
)−1, (6.46)

where (a) follows from (AB + I)−1A = A(BA + I)−1.

6.6.1.2 Error variance

The conditional covariance of hqtji is calculated conditioned on the knowledge of

z = ĥqktji. Let C̄qk
t , P̄k

tqB̄
qk
tq (P̄kH

tq P̄k
tqB̄

qk
tq + N0IM̄qk

tq
)−1 be split as C̄qk

t =

[Cqk
tq ,C

qk
t1 , . . . ,C

qk
tq−1,C

qk
tq+1, . . . ,C

qk
tQ], and cqktji , [Cqk

tj ]:,i. Thus, we can evaluate

Khq
tjih

q
tji

= E[hqtjih
qH
tji ] = βqjiσ

2
hIN ,
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Khq
tjiz

= E[hqtjiĥ
qkH
tji ] = pHjic

qk
tjigtjiβ

q
jiσ

2
hIN ,

Kzz =

N0‖cqktji‖2 +
∑

n∈Skj |p
H
qnc

qk
tji|2gtqnβqqnσ2

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tji|2gtlnβ

q
lnσ

2
h

IN .

Thus, the conditional covariance is

Khq
tjih

q
tji|z = Khq

tjih
q
tji
−Khq

tjiz
K−1

zz Kzhq
tji

, δqktjiIN ,

where δqktji is calculated as

δqktji = βqjiσ
2
h

N0‖cqktji‖2 +
∑

n∈Sikj
|pHqnc

qk
tji|2gtqnβqqnσ2

h +
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tji|2gtlnβ

q
lnσ

2
h

N0‖cqktji‖2 +
∑

n∈Skj |p
H
qnc

qk
tji|2gtqnβ

q
qnσ2

h +
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tji|2gtlnβ

q
lnσ

2
h

 .

The conditional autocorrelation follows as

Ez[h
q
tjih

qH
tji ] = Khq

tjih
q
tji|z + Ez[h

q
tji]Ez[h

q
tji]

H = δqktjiIN + ĥqktjiĥ
qkH
tji .

The unconditional and conditional means of the estimation error are E[h̃qktji] = E[ĥqktji −

hqtji] = 0 and Ez[h̃
qk
tji] = Ez[ĥ

qk
tji − hqtji] = ĥqktji − ĥqktji = 0. The conditional autocovariance

of the error therefore simplifies as

Kh̃qk
tjih̃

qk
tji|z

= Ez[h̃
qk
tjih̃

qkH
tji ] = Ez[h

q
tjih

qH
tji ]− ĥqktjiĥ

qkH
tji = δqktjiIN ,

and thus, δqktji is also the variance of the estimation error.

6.6.2 Proof of Theorem 6.1: SINR Computation

In order to calculate the SINR, we first evaluate the power of the received signal, which

is calculated conditioned on the knowledge of the channel estimates z , vec( ˆ̄Hqk
tq ) as

Ez[|ỹktqm|2] = Ez[|
∑5

i=1 Ti|2]. Since noise is uncorrelated with data, Ez[T1T
H
5 ] = Ez[T2T

H
5 ]

= Ez[T3T
H
5 ] = Ez[T4T

H
5 ] = 0. Since MMSE estimates are uncorrelated with their errors

[49], Ez[T1T
H
2 ] = 0. Finding the other components requires Ez[xjixjl] for i 6= l which can
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be found as Ez[xjixjl] = Ez[xji]Ez[xjl] = 0. Thus, all the five terms are uncorrelated and

the power in the received signal is just a sum of the powers of the individual components

Ez[|ỹktqm|2] =
∑5

i=1 Ez[|Ti|2]. We now compute the powers of each of the components. The

useful signal power is

Ez[|T1|2] = Ez[|akHtqmĥqktqmgtqmxqm|2] = pqmg
2
tqm|akHtqmĥqktqm|2.

The desired gain is written as

Gainktqm ,
Ez[|T1|2]

‖aktqm‖2
= pqmgtqm

|akHtqmĥqktqm|2

‖aktqm‖2
. (6.47)

The power of the estimation error is expressed as

Ez[|T2|2] = Ez[|akHtqmh̃qktqmgtqmxqm|2] = pqmg
2
tqmδ

qk
tqm‖aktqm‖2.

Next, the power of the intra-cell interference term T3 is

Ez[|T3|2] = Ez[|akHtqm
∑

i∈Smkq
gtqih

q
tqixqi|2]

=
∑

i∈Smkq
pqig

2
tqia

kH
tqmEz[h

q
tqih

qH
tqi ]a

k
tqm

=
∑

i∈Smkq
pqig

2
tqia

kH
tqm(δqktqiIN + ĥqktqiĥ

qkH
tqi )aktqm

=
∑

i∈Smkq
pqig

2
tqi(‖aktqm‖2δqktqi + |akHtqmĥqktqi|2).

Then, the power of the inter-cell interference term T4 is

Ez[|T4|2] = Ez[|akHtqm
∑

j∈Qq

∑
i∈S1j

gtjih
q
tjixji|2]

=
∑

j∈Qq

∑
i∈S1j

pjig
2
tjia

kH
tqmEz[h

q
tjih

qH
tji ]a

k
tqm

=
∑

j∈Qq

∑
i∈S1j

pjig
2
tjia

kH
tqm(δqktjiIN + ĥqktjiĥ

qkH
tji )aktqm

=
∑

j∈Qq

∑
i∈S1j

pjig
2
tji(‖aktqm‖2δqktji + |akHtqmĥqktji|2).

Let Pint = Ez[|T2|2]+Ez[|T3|2]+Ez[|T4|2] represent the joint contribution of estimation
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errors and multi-user interference components of the other users (both within the qth

cell and outside the qth cell). Since gtji is binary, its powers are dropped. We now split

Pint/‖aktqm‖2 into the sum of the estimation error component Estktqm, intra-cell interference

InCIktqm and inter-cell interference ICIktqm as follows

Estktqm =
∑

i∈Skqpqigtqiδ
qk
tqi +

∑
j∈Qq

∑
i∈S1j

pjigtjiδ
qk
tji,

InCIktqm =
∑

i∈Smkq
pqigtqi|akHtqmĥqktqi|2/‖aktqm‖2,

ICIktqm =
∑

j∈Qq

∑
i∈S1j

pjigtji|akHtqmĥqktji|2/‖aktqm‖2.

The noise power is calculated as

Ez[|T5|2] = Ez[|aktqmntq|2] = N0‖aktqm‖2. (6.48)

A meaningful SINR expression can be written out by dividing the useful gain from (6.47)

by the sum of the interference and the noise powers (from Pint and (6.48)) [49]. Note

that the interference component is comprised of the estimation error term and the signal

powers of other users who have also transmitted in the same RB (from both in-cell and

out-of-cell users). SINR can thus be evaluated as in (6.7) for all users. The SINR can be

calculated by plugging in the channel estimates as detailed in Theorem 6.1.

6.6.3 Proof of Lemma 8: Massive MIMO Equivalent

As the number of antennas gets large, both ‖ĥqktqm‖2 and |ĥqkHtqm ĥqktji|2 converge almost surely

(a.s.) to their deterministic equivalents [106]. Evaluating the deterministic equivalents as

in [106] and plugging into the SINR expression in place of the original terms, we can find

an approximation to the SINR in the high antenna regime. As N gets large, the SINR

with maximal ratio combining converges almost surely (ρktqm
a.s.−→ ρktqm) to

ρktqm =
Sigktqm

εktqm(N0 + IntNCktqm) + IntCktqm
,
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where Sigktqm is the desired signal, IntNCktqm represents the non-coherent interference, and

IntCktqm represents the coherent interference. These can be evaluated as

εktqm =

 N0‖cqktqm‖2 +
∑

n∈Skj |p
H
qnc

qk
tqm|2gtqnβqqnσ2

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tqm|2gtlnβ

q
lnσ

2
h

 ,

Sigktqm = Npqmgtqm(εktqm)2,

IntNCktqm =

 pqmgtqmδ
qk
tqm +

∑
n∈Skj pqngtqnβ

q
qnσ

2
h

+
∑

l∈Qq

∑
n∈S1j

plngtlnβ
q
lnσ

2
h

 ,

IntCktqm = N

 ∑
n∈Skj |p

H
qnc

qk
tqm|2pqngtqnβq2qnσ4

h

+
∑

l∈Qq

∑
n∈S1j

|pHlnc
qk
tqm|2plngtlnβ

q2
lnσ

4
h

 .

Here, δqktqm and cqktqm are obtained from Lemma 7 and Theorem 6.1, respectively, for the

three estimation schemes. The above expressions are obtained by setting aktqm = ĥqktqm [49]

and replacing each of the terms involving ĥqktji in (6.7) with their respective deterministic

equivalents.

6.6.4 Proof of Theorem 6.2: LCF IRSA

6.6.4.1 Channel Estimation

Let k denote the current decoding iteration index, and Skq denote the set of users not yet

decoded up to the kth decoding iteration at the qth AP, with S1q = [M ] and S ikq , Skq\{i}.

As seen before, the received pilot signal at the qth AP in the tth RB in the kth decoding

iteration is

Ypk
tq =

∑
i∈Skqgtih

q
tip

H
i + Np

tq, (6.49)

where the first term contains signals from users who have not yet been decoded up to the

kth decoding iteration at the qth AP, i.e., ∀i ∈ Skq.

We now derive the MMSE channel estimates at the qth AP in each RB. Let Gt = {i ∈

[M ]|gti = 1} be the set of users who have transmitted in the tth RB. Let Mk
tq = |Gt ∩Skq|
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be the number of users who have transmitted in the tth RB and have not been decoded in

the first k − 1 iterations at the qth AP. Let us stack the channels of the Mk
tq users as the

columns of the matrix Hk
tq ∈ CN×Mk

tq , and let Pk
tq ∈ Cτ×Mk

tq denote a matrix that contains

the pilot sequences of the Mk
tq users as its columns. Let Bk

tq , σ2
hdiag(βqi1 , β

q
i2
, . . . , βqi

Mk
tq

)

be a diagonal matrix that contains the path loss coefficients of the Mk
tq users, with Gt ∩

Skq = {i1, i2, . . . , iMk
tq
}. Hence, the received pilot signal from (6.49) can be written as

Ypk
tq = Hk

tqP
kH
tq + Np

tq.

The MMSE channel estimate Ĥk
tq of Hk

tq can be computed similar to Chapter 3 (see

Section 3.8.1) as

Ĥk
tq = Ypk

tq (Pk
tqB

k
tqP

kH
tq +N0Iτ )

−1Pk
tqB

k
tq, (6.50a)

(a)
= Ypk

tq Pk
tqB

k
tq(P

kH
tq Pk

tqB
k
tq +N0IMk

tq
)−1, (6.50b)

where (a) follows from (AB+I)−1A = A(BA+I)−1. Here, the estimate can be calculated

via an inverse of either a τ × τ matrix or an Mk
tq ×Mk

tq matrix as required. Specifically,

the estimate of the channel hqti of the ith user at the qth AP is calculated as ĥqkti = [Ĥk
tq]:,i.

Let Cqk
t ,Pk

tqB
k
tq(P

kH
tq Pk

tqB
k
tq + N0IMk

tq
)−1, and cqkti , [Cqk

t ]:,i. Further, the estimation

error h̃qkti , ĥqkti − hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN), where δqkti is calculated as

δqkti = βqi σ
2
h

N0‖cqkti ‖2 +
∑

n∈Sikq
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Skq |p
H
n cqkti |2gtnβ

q
nσ2

h

. (6.51)

6.6.4.2 Data Decoding

Similar to (6.49), we can find the received data signal at the qth AP in the tth RB in the

kth decoding iteration as

yktq =
∑

i∈Skqgtih
q
tixi + ntq. (6.52)

Let ρktqm denote the SINR of the mth user in the tth RB in the kth decoding iteration at

the qth AP. Using a combining vector aqktm, the qth AP obtains the post-combined data
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signal ỹqktm as ỹqktm = aqkHtm yktq, where yktq is from (6.52). Thus, we obtain

ỹqktm = aqkHtm ĥqktmgtmxm − aqkHtm h̃qktmgtmxm + aqkHtm

∑
i∈Smkq

gtih
q
tixi + aqkHtm ntq. (6.53)

Here the first term on the RHS, aqkHtm ĥqktmgtmxm, denotes the useful signal component and

it contains the channel estimate ĥqktm of the mth user; the second term aqkHtm h̃qktmgtmxm

contains h̃qktm, the estimation error of the mth user; the third term aqkHtm

∑
i∈Smkq

gtih
q
tixi is

the multi-user interference faced by the mth user due to the other users in the entire

network who have not yet been decoded up to the kth decoding iteration at the qth AP;

and the fourth term aqkHtm ntq is the additive noise component.

In order to evaluate the SINR, we first calculate the power of the received signal,

which is calculated conditioned on the knowledge of the estimates. Similar to Chapter 3,

all the four terms are uncorrelated and the power in the received signal is just a sum of

the powers of the individual components. A meaningful SINR expression can be written

out by dividing the useful signal power from by the sum of the interference and the noise

powers [49]. Thus, the signal to interference plus noise ratio (SINR) achieved by the mth

user at the qth AP in the tth RB and the kth decoding iteration can be calculated similar

to Chapter 3 (see Section 3.8.2) and can be written as

ρktqm=
Gainktqm

N0 + Estktqm + MUIktqm
,∀m ∈ Skq, (6.54)

where

Gainktqm , pmgtm|aqkHtm ĥqktm|2/‖a
qk
tm‖2,

Estktqm ,
∑

i∈Skqpigtiδ
qk
ti ,

MUIktqm ,
∑

i∈Smkq
pigti|aqkHtm ĥqkti |2/‖a

qk
tm‖2.

6.6.5 Proof of Theorem 6.3: CCF IRSA
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6.6.5.1 Channel Estimation

In the channel estimation phase, the CPU computes channel estimates ĥqkti of all the users

similar to (6.17a) and then finally obtains an effective CPU channel estimate.

Let Sk denote the set of users not yet decoded at the CPU after k − 1 decoding

iterations, with S1 = [M ], and S ik , Sk \ {i}. At the CPU, the received pilot signal of the

qth AP in the kth decoding iteration is given by

Ypk
tq =

∑
i∈Skgtih

q
tip

H
i + Np

tq. (6.55)

The channel estimates can be obtained similar to LCF IRSA as

Ĥk
tq = Ypk

tq (Pk
tB

k
tqP

kH
t +N0Iτ )

−1Pk
tB

k
tq, (6.56a)

(a)
= Ypk

tq Pk
tB

k
tq(P

kH
t Pk

tB
k
tq +N0IMk

t
)−1, (6.56b)

Here, Mk
t = Gt ∩ Sk, and Mk

t = |Mk
t | is the number of users yet to be de-

coded, Pk
t contains as its columns the pilots of the Mk

t users yet to be decoded, and

Bk
tq , σ2

hdiag(βqi1 , β
q
i2
, . . . , βqi

Mk
t

) contains the path loss coefficients of the Mk
t users, with

Mk
t = {i1, i2, . . . , iMk

t
}. Here, the estimate can be calculated via an inverse of either

a τ × τ matrix or an Mk
t ×Mk

t matrix as required: (a) follows from (AB + I)−1A =

A(BA + I)−1 [144]. Specifically, the CPU estimate of the channel hqti of the ith user to

the qth AP is calculated as ĥqkti = [Ĥk
tq]:,i.

For the ith user, the effective channel and the channel estimate at the CPU is found

by stacking the channels and the channel estimates as

hti = [h1H
ti ,h

2H
ti , . . . ,h

QH
ti ]H ∈ CQN×1, (6.57)

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H ∈ CQN×1. (6.58)

Combining the channel estimates as above helps in exploiting the distributed array gain

due to the inherent locations of the APs.

Let Cqk
t , Pk

tB
k
tq(P

kH
t Pk

tB
k
tq + N0IMk

t
)−1, and cqkti , [Cqk

t ]:,i. The estimation error
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h̃qkti , ĥqkti − hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN), where δqkti can be calculated

similar to LCF IRSA as

δqkti = βqi σ
2
h

(
N0‖cqkti ‖2 +

∑
n∈Sik
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Sk |p
H
n cqkti |2gtnβ

q
nσ2

h

)
. (6.59)

The channel estimation error at the CPU is given by h̃kti , ĥkti −

hti. If C = blkdiag(A,B) and E[ABH ] = 0, then covariance(C) =

blkdiag(covariance(A),covariance(B)) [105, 144]. Thus, the covariance of the estimation

error at the CPU is ∆k
ti , blkdiag(δ1k

ti IN , δ
2k
ti IN , . . . , δ

Qk
ti IN).

6.6.5.2 Data Decoding

Let ρktm denote the SINR of the mth user in the tth RB in the kth decoding iteration at

the CPU. The received data signal can be stacked as yt = [yHt1,y
H
t2, . . . ,y

H
tQ]. Similar to

(6.55), in the kth decoding iteration at the CPU, the received data signal can be expressed

as

ykt =
∑

i∈Skgtihtixi + nt, (6.60)

where nt , [nHt1,n
H
t2, . . . ,n

H
tQ]H . The CPU uses a combining vector aktm to combine the

received data signal. Thus, we obtain the post-combined data signal as ỹktm = akHtm ykt

which is expanded as

ỹktm = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm + akHtm
∑

i∈Smk
gtihtixi + akHtmnt. (6.61)

The first term on the RHS, akHtm ĥktmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate ĥktm of the mth user; the second term akHtm h̃ktmgtmxm

contains h̃ktm, the CPU estimation error of the mth user; the third term akHtm
∑

i∈Smk
gtihtixi

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU; and the

fourth term akHtmnt is the additive noise component. We need to compute the SINR from
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the above post-combined data signal. All the terms in the above equation are pairwise

uncorrelated. The structure of (6.61) resembles the structure of the post-combined signal

in Chapter 3, but with QN -length signals instead of N -length signals. We can derive the

SINR similar to Chapter 3. The SINR achieved by the mth user at the CPU in the tth

RB and the kth decoding iteration can thus be calculated as

ρktm=
Gainktm

N0 + Estktm + MUIktm
,∀m ∈ Sk, (6.62)

where

Gainktm , pmgtm|akHtm ĥktm|2/‖aktm‖2,

Estktm ,
∑

i∈Skpigtia
kH
tm∆k

tia
k
tm/‖aktm‖2,

MUIktm ,
∑

i∈Smk
pigti|akHtm ĥkti|2/‖aktm‖2.

6.6.6 Proof of Theorem 6.4: HCF IRSA

6.6.6.1 Channel Estimation

In the channel estimation process in phase 2 of HCF IRSA, the CPU computes channel

estimates ĥqkti of all the users similar to (6.27a) and then finally obtains an effective CPU

channel estimate.

Let S̄q denote the set of decoded users at the qth AP at the end of the APs decoding

process in the first phase. The set of users that have been decoded across the entire

network is given by S̄ = S̄1 ∪ S̄2 ∪ · · · ∪ S̄Q. We now denote Uk as the set of users not

decoded up to the kth CPU decoding iteration, with U1 = [M ] \ S̄ and U ik , Uk \ {i}. U1

contains only the signals of the users who need to be decoded at the CPU since they have

not been decoded at any of the APs.

At the CPU, the processed residual pilot signal from the qth AP in the kth CPU

decoding iteration is given by

Zpk
tq =

∑
i∈Ukgtih

q
tip

H
i + Dp

tq + Np
tq. (6.63)
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We now need to derive the channel estimates at the CPU in phase 2, which are computed

based on Zpk
tq . Based on the notation setup in Sec. 6.3.4.2, the channel estimates can be

obtained similar to CCF IRSA (6.23) as

ˆ̄Hk
tq = Zpk

tq (P̄k
tqB̄

k
tqP̄

kH
tq +N0Iτ )

−1P̄k
tqB̄

k
tq, (6.64a)

(a)
= Zpk

tq P̄k
tqB̄

k
tq(P̄

kH
tq P̄k

tqB̄
k
tq +N0IŪk

tq
)−1, (6.64b)

Here, the estimate can be calculated via an inverse of either a τ × τ matrix or an Ūk
tq× Ūk

tq

matrix as required: (a) follows from (AB + I)−1A = A(BA + I)−1 [144]. The subset of

the users who are yet to be decoded at the CPU up to the kth CPU decoding iteration is

Gt ∩ Uk, for whom the channel estimate matrix is obtained as Ĥk
tq = [ ˆ̄Hk

tq]:,Gt∩Uk . Finally,

the channel estimate of the channel hqti of the ith user to the qth AP is calculated as

ĥqkti = [Ĥk
tq]:,i. For the ith user, the effective channel and the channel estimate at the CPU

is found by stacking the channels and the channel estimates as

hti = [h1H
ti ,h

2H
ti , . . . ,h

QH
ti ]H ∈ CQN×1, (6.65)

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H ∈ CQN×1. (6.66)

Combining the channel estimates as above helps in exploiting the distributed array gain

due to the inherent locations of the APs.

Let C̄qk
t , P̄k

tqB̄
k
tq(P̄

kH
tq P̄k

tqB̄
k
tq + N0IŪk

tq
)−1, and cqkti , [C̄qk

t ]:,i. The estimation error

h̃qkti , ĥqkti − hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN), where δqkti can be calculated

similar to CCF IRSA as

δqkti = βqi σ
2
h

(
N0‖cqkti ‖2 +

∑
n∈Ūk

tq\{i}
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Ūk
tq
|pHn cqkti |2gtnβ

q
nσ2

h

)
.

The channel estimation error at the CPU is given by h̃kti , ĥkti−hti. If C = blkdiag(A,B)

and E[ABH ] = 0, then covariance(C) = blkdiag(covariance(A),covariance(B)) [105,

144]. Thus, the covariance of the estimation error at the CPU is ∆k
ti ,

blkdiag(δ1k
ti IN , δ

2k
ti IN , . . . , δ

Qk
ti IN).
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6.6.6.2 Data Decoding

Let ρktm denote the SINR of the mth user in the tth RB in the kth decoding iteration at

the CPU. The received data signal can be stacked as zt = [zHt1, z
H
t2, . . . , z

H
tQ]. Similar to

(6.63), in the kth decoding iteration at the CPU, the received data signal can be expressed

as

zkt =
∑

i∈Ukgtihtixi + dt + nt. (6.67)

where dt , [dHt1,d
H
t2, . . . ,d

H
tQ]H , and nt , [nHt1,n

H
t2, . . . ,n

H
tQ]H . The CPU uses a combining

vector aktm to combine the received data signal. Thus, we obtain the post-combined data

signal as z̃ktm = akHtm zkt which is expanded as

z̃ktm = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm + akHtm
∑

i∈Um
k
gtihtixi + akHtmdt + akHtmnt. (6.68)

The first term on the RHS, akHtm ĥktmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate ĥktm of the mth user; the second term akHtm h̃ktmgtmxm

contains h̃ktm, the CPU estimation error of the mth user; the third term akHtm
∑

i∈Um
k
gtihtixi

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU (and who

have also not been decoded at any AP in phase 1); the fourth term akHtmdt is due to the

interference from users already decoded at all the APs in phase 1; and the fifth term

akHtmnt is the additive noise component. We need to compute the SINR from the above

post-combined data signal. All the terms in the above equation are pairwise uncorrelated.

The structure of (6.68) resembles the structure of the post-combined signal in Chapter 3,

but with QN -length signals instead of N -length signals. We can derive the SINR similar

to Chapter 3. For this, the covariance of the interference due to decoded users in phase

1 reduces to Σdt , blkdiag(d̄t1IN , d̄t2IN , . . . , d̄tQIN), where d̄tq ,
∑

i∈S̄\S̄qpigtiβ
q
i σ

2
h. The

SINR achieved by the mth user at the CPU in the tth RB and the kth CPU decoding



Chapter 6. Analysis of IRSA in Multi-Cell and Cell-Free Systems 321

iteration can thus be calculated as

ρktm=
Gainktm

N0 + Estktm + MUIktm + Decktm
,∀m ∈ Uk, (6.69)

where

Gainktm , pmgtm|akHtm ĥktm|2/‖aktm‖2,

Estktm ,
∑

i∈Ukpigtia
kH
tm∆k

tia
k
tm/‖aktm‖2,

MUIktm ,
∑

i∈Um
k
pigti|akHtm ĥkti|2/‖aktm‖2,

Decktm , akHtmΣdta
k
tm/‖aktm‖2.

6.7 Appendix

6.7.1 HCF IRSA with SIC

There can be an additional SIC phase at the CPU to cancel out the interference of decoded

users from the residual signal of each of the Q APs at the CPU. Let the decoding at the

qth AP stop at a decoding iteration kq, i.e., it cannot decode any more users. Thus, the

residual received pilot and data signals at the qth AP are Y
pkq
tq and y

kq
tq . The additional

SIC phase follows as

Zp1
tq = Y

pkq
tq −

∑
i∈S̄\S̄qgtih

q
tip

H
i , (6.70)

z1
tq = y

kq
tq −

∑
i∈S̄\S̄qgtih

q
tixi, (6.71)

where the processed residual pilot and data signals are denoted by Zp1
tq and z1

tq, respectively.

6.7.2 Channel estimation ignoring PC from decoded users

In the channel estimation process described previously, we can ignore the contamination

due to decoded users, similar to the single-cell MMSE channel estimator that ignores the

pilot contamination due to pilots from other cells. Then, the effective channel estimate
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for all the users becomes

Ĥk
tq = Zpk

tq (Pk
tB

k
tqP

kH
t +N0Iτ )

−1Pk
tqB

k
tq, (6.72a)

(a)
= Zpk

tq Pk
tB

k
tq(P

kH
t Pk

tB
k
tq +N0IUk

t
)−1, (6.72b)

Here, Ukt = Gt ∩ Uk, and Uk
t = |Ukt | is the number of users yet to be decoded, Pk

t

contains as its columns the pilots of the Uk
t users yet to be decoded, and Bk

tq ,

σ2
hdiag(βqi1 , β

q
i2
, . . . , βqi

Uk
t

) contains the path loss coefficients of the Uk
t users, with Ukt =

{i1, i2, . . . , iUk
t
}. Specifically, the estimate of the channel hqti of the ith user to the qth AP

is calculated as ĥqkti = [Ĥk
tq]:,i.

Let Cqk
t , Pk

tB
k
tq(P

kH
t Pk

tB
k
tq + N0IUk

t
)−1, and cqkti , [Cqk

t ]:,i. The estimation error

h̃qkti , ĥqkti − hqti is distributed as h̃qkti ∼ CN (0N , δ
qk
ti IN), where δqkti is calculated as

δqkti = βqi σ
2
h

(
N0‖cqkti ‖2 +

∑
n∈U i

k
|pHn cqkti |2gtnβqnσ2

h

N0‖cqkti ‖2 +
∑

n∈Uk |p
H
n cqkti |2gtnβ

q
nσ2

h

)
. (6.73)

The effective channel estimate at the CPU for the ith user is formed by stacking the

channel estimates as

ĥkti = [ĥ1kH
ti , ĥ2kH

ti , . . . , ĥQkHti ]H ∈ CQN×1. (6.74)

Thus, the channel estimation error at the CPU is given by h̃kti , ĥkti − hti, where hti =

[h1H
ti ,h

2H
ti , . . . ,h

QH
ti ]H ∈ CQN×1. The covariance of the estimation error at the CPU is

∆k
ti , blkdiag(δ1k

ti IN , δ
2k
ti IN , . . . , δ

Qk
ti IN).

The channel estimates ĥkti are stacked into the matrix Ĥk
t ∈ CQN×Uk

t . The combining

vector that maximizes the SINR in (6.39) is the MMSE combiner, which can be found as

aktm = [Ak
t ]:,m, where

Ak
t = (Lk

t + Ĥk
tD

k
t,p1Ĥ

kH
t )−1Ĥk

tD
k
t,p1,

where Lk
t ,

∑
i∈Ukpigti∆

k
ti + N0IQN , and Dk

t,p1,diag(pi1 , pi2 , . . . , piUk
t

) contains the power
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coefficients of the Uk
t users. Alternately, using the Woodbury identity [144], the combiner

matrix can also be found via a Uk
t × Uk

t inverse as

Ak
t = Jkt Ĥ

k
tD

k
t,p2(IQN − (Gk

t )
−1Dk

t,p2Ĥ
kH
t Jkt Ĥ

k
t )D

k
t,p2,

where Jkt,blkdiag(jkt1IN , j
k
t2IN , . . . , j

k
tQIN), Gk

t , IUk
t

+Dk
t,p2Ĥ

kH
t Jkt Ĥ

k
tD

k
t,p2, j

k
tq , 1/(N0 +∑

i∈Ukpigtiδ
qk
ti ), and Dk

t,p2,diag(
√
pi1 ,
√
pi2 , . . . ,

√pi
Uk
t

).

In this case, Decktm, the extra interference due to decoded users, does not arise in

(6.39). The rest of the SINR-based decoding process continues as usual.
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Chapter 7

Optimal Repetition Distributions

7.1 Introduction

In this chapter, we optimize the repetition distributions in IRSA via the Differential Evo-

lution algorithm (DEA). The objective here is to optimize the IRSA system by aptly

choosing the repetition distribution under the system constraints, by solving an optimiza-

tion problem. We use DEA to obtain the throughput optimal and the energy efficiency

optimal repetition distributions for the IRSA protocol.

Energy efficiency (EE) is a fundamental aspect of both cellular and machine-type

communications [28]. With the advent of massive MIMO communications, many works

have predicted a huge increase in the spectral efficiency (SE) [145] and promised an

exponential increase in the throughputs [27]. But this comes at the expense of an increase

in the power consumed and by extension, an adverse impact on the EE of the system under

consideration. EE becomes more valuable in mMTC since the low-power devices deployed

in mMTC scenarios are expected to be IoT devices which last for several years [29]. These

devices need to be energy efficient and consume as low power as possible while maintaining

high throughputs [30]. Thus, EE is a fundamental metric of mMTC systems, and in

particular, in the IRSA protocol as well.

For IRSA, the inflection load L∗ is the fundamental limit of the system beyond which

the system performs poorly. It indicates both the peak throughput and the peak load at
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which the system can be operated. This throughput is indicative of the packet success

rate, and it does not account for packet length, bandwidth, or other system parameters [7].

As seen in Chapter 3, the throughput can be increased via improving the pilot length τ

and the number of antennas N . This comes at the cost of lower SE and higher power

consumed at the BS, respectively. Thus, there is a trade-off between the EE and the

system throughput [146], and understanding this trade-off for IRSA is important.

7.1.1 Existing Distributions

The first paper on IRSA [7] has optimized the repetition distributions for IRSA under the

collision channel and proposed a few distributions which have a peak inflection load of

0.965. The truncated soliton distribution has been shown to be the throughput optimal

distribution for IRSA with a collision channel [72]. Recall that the truncated soliton

distribution is defined as

φd =



1− a
2z

, d = 2,

1

d(d− 1)z
, 3 ≤ d ≤ dmax,

0 otherwise,

(7.1)

where φd is the probability that a user has a repetition factor d, dmax is the maximum

value that the repetition factor can take, a ∈ (0, 1) is a convergence parameter, and

z = 1− a/2− 1/dmax is a normalization constant. The authors in [17] have optimized the

repetition distributions for IRSA with pure fading channels in the SISO case and have

demonstrated that the achievable peak inflection loads with the optimized distributions

exceed unity. The authors in [8] have shown that the soliton distribution is nearly optimal

for IRSA with path-loss-only-channels, but they also show better performing distributions.

The authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the most

energy efficient distribution for IRSA.

All of the above papers have optimized the repetition distributions of IRSA under

different assumptions. There is no guarantee that those distributions will be optimal for
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IRSA in the general case, i.e., with pilot contamination, channel estimation errors, multi-

ple antennas, etc. Thus, one of the goals of this chapter is to find repetition distributions

that perform better than the soliton distribution or other existing distributions in the

general case.

7.1.2 Contributions

We summarize the contributions of this chapter below.

1. Firstly, we optimize the repetition distributions of IRSA with the throughput and

the energy efficiency objectives.

2. Next, we study the optimal repetition distributions under three cases: first case with

the K-collision channel; second case with the fading channel under the assumption

of perfect CSI, MIMO, and MRC; and third case with the fading channel accounting

for channel estimation errors, MIMO, pilot contamination, and MMSE combining.

3. Via extensive numerical simulations, we study the effect of various system param-

eters such as the maximum repetition factor dmax, the average repetition factor d̄,

the number of antennas N , the pilot length τ on the repetition distributions, the

inflection load, and the peak energy efficiency.

We demonstrate that, in general, the 2-regular distribution is the most energy efficient

distribution for IRSA at high number of antennas and high pilot lengths. The 2-regular

distribution is nearly throughput optimal at high number of antennas. In other regimes

of interest (other than high number of antennas and high pilot lengths), we obtain varied

distributions that are not the 2-regular distribution. In fact, near the inflection loads,

we can optimize the repetition distributions to obtain higher EEs. Compared to the best

existing distributions, we show that our optimized distributions can achieve up to 58%

increase in the inflection load and up to 49% increase in the peak EE. The obtained

optimal distributions can be used to operate mMTC at the peak throughputs as well as

the peak EEs.
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Remark 1 : The results presented in this chapter are based on DEA and density evolu-

tion, which depends on the frame length T via the system load L = M/T only asymptot-

ically, i.e., with a fixed L and M,T →∞. Thus, similar to existing works, the presented

distributions are optimal for IRSA on a frame-by-frame basis where the frame has a load

L and not for a fixed T .

Remark 2 : Density evolution is applicable for IRSA without path loss. Hence, in this

chapter, we assume users perform path loss inversion. We have observed that the optimal

distributions obtained in this chapter can be applied even when users do not perform path

loss based inversion, and they perform much better than existing distributions. Thus, in

practice, the distributions presented in this chapter can be used to obtain near-optimal

performance in the general case.

Remark 3 : The distributions output by DEA are not unique, i.e., there are several

distributions that could achieve the same optimal loss rate or throughput or EE. We only

present a few optimal distributions and not all of them.

7.2 An Overview of the Differential Evolution Algo-

rithm

Genetic algorithms (GAs) are typically used for global optimization over continuous

spaces. In GAs, a population of candidates to an optimization problem is evolved to-

ward the optimal solutions. Direct search approaches like GAs are used when the cost

function is non-linear and non-differentiable. The template of GAs is as follows:

• Generate a random initial population within the parameter space.

• Evaluate the “fitness” of each individual, where the fitness is in terms of the objective

function of the optimization problem.

• Select the fittest individuals as “parents” of the next generation.

• Via “mutation” and “crossover” of the parents, obtain new individuals.
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• Replace least-fit individuals by new individuals in each generation.

Differential evolution algorithm (DEA) is a GA that has been widely used for multi-

dimensional multi-objective constrained optimization [26]. Typical applications include

signal processing, filter design, data clustering, and optimal control. The advantages of

using DEA are

• DEA is a direct search method [26]. There is no requirement of computing gradients

for the algorithm and it can handle non-differentiable functions as well.

• DEA has been shown to possess good convergence properties [147].

• The number of control parameters in DEA are only three in number and can be

easily tuned [148].

• DEA uses a vector population where the perturbation of the vectors can be done

independently of each other [149]. This makes the algorithm parallelizable.

7.2.1 DEA for Optimizing IRSA

For an IRSA system, the optimal distribution can be obtained as a solution to the opti-

mization problem defined as follows:

P1 : min
φ2,φ3,...,φdmax

L({φ2, φ3, . . . , φdmax}) (7.2)

subject to 0 ≤ φd ≤ 1, 2 ≤ d ≤ dmax, (7.3)

dmax∑
d=2

φd = 1. (7.4)

Here, L(·) is the loss function which needs to be minimized, which can be the packet loss

rate, and {φ2, φ3, . . . , φdmax} is the node-perspective user degree distribution, where φd

represents the probability a user will pick a repetition factor d. In the above problem,

we can alternatively maximize the throughput or the EE of the system as well. Note

that the above problem is a stochastic optimization problem since it is dependent on
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the distributions of the repetition factors and not the random instances of the users’

instantaneous channels or repetition factors, which are random variables.

We now setup some notation and present the DEA. Let L : RN → R be a loss function

that needs to be minimized. Let M be the number of population vectors in any generation

and N be the dimension of each vector in the population. For the optimal distribution

problem, we have that N = dmax− 1. We denote the population in the gth generation by

Pg = {xg1,x
g
2, . . . ,x

g
M}, with xgi ∈ RN . Each xgi contains non-negative entries that add up

to one. There are three steps in each generation of DEA, which are as follows:

1. Mutation step: In the first step, new mutated vectors are generated by adding the

weighted difference between two vectors. Firstly, for each vector xgi in the popula-

tion, we choose three other distinct random vectors in the population x̄g1, x̄
g
2, x̄

g
3 ∈ Pg.

Then we add a scaled difference of two of the vectors to the third and generate a

mutant vector vgi as vgi = x̄g1 + F (x̄g2 − x̄g3). Here, F is a mutant scale factor. DEA

derives its namesake from this step, where we use the differential of two vectors to

generate the mutated vector.

2. Crossover step: The entries of the mutated vector vgi are now mixed and crossed-

over with the entries of the original vector xgi , and the trial vector ugi is generated.

For each entry of ugi , with a probability Cr, the entry ugi [j] is chosen to be vgi [j]

and with a probability 1−Cr, the entry ugi [j] is chosen to be xgi [j], where Cr is the

crossover probability. Crossover is performed in order to increase the diversity of

the population vectors. We can also ensure that at least one component for the trial

vector ugi is obtained from the mutant. This can be done by mandatorily crossing

over some entry with index j = Ri, where Ri is sampled uniformly from the set of

integers {1, 2, . . . , N}.

3. Selection step: In the final step, we select the population vectors for the next gener-

ation. If the trial vector yields a lower loss function value than the original vector,

i.e., if L(ugi ) < L(xgi ), then the trial vector ugi replaces the original vector xgi in the

next generation.
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The above steps are run iteratively until some termination criteria has been reached, and

the candidate with the least loss in the final generation is output as the optimal candidate.

We present the DEA in Algorithm 11.

Remark 4: We first generate a random initial population P0 = {x0
1,x

0
2, . . . ,x

0
M}. Here

the entries of each vector x0
i is chosen uniformly at random from the entire parameter

space, i.e., x0
i [j] ∼ U [0, 1], 1 ≤ j ≤ N [148]. The parameter space [0, 1] ensures that

the entries are valid probability entries. Finally, the entries of the initial vectors can be

normalized to ensure that their sum is unity. To ensure the entries of the trial vector add

up to one, we can normalize each trial vector after the crossover step. The terminating

criteria TC(·) for DEA could be a maximum number of iterations or the standard deviation

in the loss functions across the candidates, and cε is an appropriate threshold.

Remark 5: The maximization of the throughput or EE can be performed by consid-

ering the function C = −L instead. In this case, we select the candidate vectors which

have the highest throughput or EE in the selection step.

Remark 6: The computational complexity of the algorithm is O(MNGmax), where

Gmax is the maximum number of generations that DEA is run for [26]. To make it

parallelizable, we can run DEA on each entry of the population on N parallel computers,

which results in a complexity of O(MGmax).

Remark 7: A few good rules of thumb for DEA [149] are as follows:

1. Choose the number of candidate vectors M ∈ [5N, 10N ] to ensure a wide range of

candidate vectors that can adequately sample from the entire space. If there are

vectors which are suspected to be close to the optima, they can be fed into the

initial population.

2. Choose mutation scale factor F ∈ [0, 2]. It can be initialized with F = 0.5, and if

the problem converges prematurely, then increase either M or F .

3. A large crossover probability Cr close to unity can speed up convergence. A low Cr

implies only a few parameters are changed in every iteration and a high Cr implies

a huge variation in the entries of the population vectors.
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Algorithm 11: Differential Evolution Algorithm

Input: N,M,F,Cr, cε,L(·), TC(·)

1 Initialize: P0 = {x0
1,x

0
2, . . . ,x

0
M}, g = 0

2 while TC(Pg) > cε do

3 for i = 1, 2, . . . ,M do

4 Choose three distinct vectors x̄g1, x̄
g
2, x̄

g
3 ∈ Pg

5 Mutation Step:

vgi = x̄g1 + F (x̄g2 − x̄g3)

6 Sample index for mandatory crossover Ri ∼ U{1, 2, . . . , N}

7 for j = 1, 2, . . . , N do

8 Crossover Step:

ugi [j] =

vgi [j], j = Ri or with probability Cr

xgi [j], j 6= Ri and with probability 1− Cr

9 end

10 Selection Step:

xg+1
i =

ugi , if L(ugi ) < L(xgi )

xgi , if L(ugi ) ≥ L(xgi )

11 end

12 g = g + 1

13 end

14 Output: Optimal candidate index ī = arg min1≤i≤M(L(xgi )) and Optimal

candidate xg
ī
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7.3 Throughput Maximization

The theoretical throughput of IRSA can be calculated from the density evolution (DE)

process presented in Chapter 3. For this purpose, we now quickly recap the DE process.

For this, we recall that pi is the probability that an edge carries a failure message from

an RB node to a user node in the ith iteration, and that qi is the probability that an edge

carries a failure message from a user node to an RB node in the ith iteration. The failure

probability qi is calculated using the edge-perspective user degree distribution as

qi =
∑dmax

d=2
λdq

(d)
i =

∑dmax

d=2
λdp

d−1
i−1 = λ(pi−1). (7.5)

The failure probability pi is calculated using the edge-perspective RB degree distribution

as

pi = 1− e−Ld̄qi
∞∑
r=1

θr
(Ld̄qi)

r−1

(r − 1)!
, f(qi), (7.6)

where θr denotes the probability that the reference packet gets decoded in the current

decoding iteration starting from degree r using only intra-RB SIC [8]. Thus, qi = λ(pi−1)

and pi = f(qi) are calculated alternately as functions of each other as seen in (7.5)

and (7.6). The procedure can be initialized with either q0 = 1 or p0 = f(1). The

failure probability at the end of decoding is p∞ = limi→∞ pi and (p∞)d is the probability

that a packet transmitted from a user with repetition factor d does not get decoded at

the receiver. Therefore, the asymptotic packet loss rate function (PLR(·)),1 which is the

fraction of packets that are not decoded at the BS, is calculated as

PLR({φ2, φ3, . . . , φdmax}) = φ(p∞) =
∑dmax

d=2
φd(p∞)d. (7.7)

1For the purpose of this chapter, we condense (7.5) and (7.6) into a PLR function.
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The asymptotic throughput of the system can now be obtained from the asymptotic PLR

as

Thpt({φ2, φ3, . . . , φdmax}) = L(1− PLR({φ2, φ3, . . . , φdmax})). (7.8)

The iterations pi = f(λ(pi−1)) converge asymptotically to p∞ = 0 if the system load

L < L∗ [7]. Here, L∗ is called the inflection load of the system: for any L ≥ L∗, the

system becomes interference limited and PLR(·) does not converge to 0 as L increases.

Thus, for L < L∗, p∞ = 0 and therefore the asymptotic PLR(·) = 0, and Thpt(·) = L. For

L ≥ L∗, the throughput decreases monotonically with L.

The throughput optimization problem now reduces as follows.

P2 : max
φ2,φ3,...,φdmax

Thpt({φ2, φ3, . . . , φdmax}) (7.9)

subject to 0 ≤ φd ≤ 1, 2 ≤ d ≤ dmax, (7.10)

dmax∑
d=2

φd = 1. (7.11)

Here, the constraints ensure that the candidate solutions are indeed probability vectors.

The optimal distribution yields the maximum throughput Tmax, which occurs at L = L∗.

Since T = L for all L∗ and T = Tmax at L = L∗, we analyze only the inflection load since

its value is exactly equal to the peak throughput.

Remark 8: Alternately, some existing works maximize the load L with a target

PLR [17]. In this case, the optimization objective in problem P1 is just simply L and

an additional target loss rate constraint is added: PLR({φ2, φ3, . . . , φdmax}) ≤ PLRtgt.

7.4 Numerical Results for Throughput Maximization

We now optimize the repetition distributions in order to maximize the throughput of

IRSA. For the results presented in this chapter, we operate the system at a load of L = L∗

in order to operate the system at the peak throughput and the reported distributions are
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optimized at the inflection load. The DEA parameters are F = 0.9, M = 10N , and

Cr = 0.9 [149]. We choose the terminating criteria TC(·) as the standard deviation of

the throughputs of all the population vectors in any generation, and terminate the DEA

generations when TC(·) < cε = 10−6 [149].

7.4.1 K-Collision Channel

Table 7.1: Throughput Optimal Distributions for IRSA with the K-Collision Channel.

K dmax φ(x) d̄ L∗

1

3 0.11x2 + 0.89x3 2.89 0.82

4 0.47x2 + 0.53x4 3.06 0.86

8 0.47x2 + 0.31x3 + 0.22x8 3.65 0.92

16 0.37x2 + 0.41x3 + 0.07x4 + 0.05x8 + 0.1x16 4.25 0.95

2

3 0.71x2 + 0.29x3 2.29 1.71

4 0.82x2 + 0.18x4 2.36 1.74

8 0.86x2 + 0.01x3 + 0.13x8 2.79 1.85

16 0.86x2 + 0.02x6 + 0.02x7 + 0.05x8 + 0.05x16 3.18 1.89

3

3 0.94x2 + 0.06x3 2.05 2.57

4 0.92x2 + 0.08x4 2.16 2.58

8 0.91x2 + 0.09x8 2.54 2.65

16 0.93x2 + 0.02x13 + 0.04x15 + 0.01x16 2.88 2.75

For the K-collision channel, up to K collisions can be decoded perfectly, i.e., θr =

1, 1 ≤ r ≤ K. We present the throughput optimal distributions for the K collision

channel in Table 7.1.

We now present numerical results for the K-Collision channel in Fig. 7.1. We compare

the optimized distributions in Table 7.1 with the truncated Soliton distribution [72], with

the appropriate maximum repetition factor as presented in the plots.

For K = 1, we have the usual collision channel. In Fig. 7.1(a), we observe that

CRDSA has the least peak performance at T = 0.55, and the optimized distribution has

the best performance with d̄ = 4.25, dmax = 16. The performance of this coincides with

the soliton distribution with almost the same average repetition factor of d̄ = 4.1572, but



Chapter 7. Optimal Repetition Distributions 336

(a) K = 1.

(b) K = 2.

(c) K = 3.

Figure 7.1: Optimized Performance for the K-Collision Channel.
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double the maximum repetition factor at dmax = 16. Similar trends are seen for lower

values of dmax. The results from [72] indicate that the truncated soliton distribution is an

unique optimal distribution for the 1-collision channel, with infinite maximum repetition

factor. But practically, with finite maximum repetition factor, we can find other optimized

distributions that perform similar to the truncated soliton distribution.

For K = 2, in Fig. 7.1(b), we see that the optimized distribution with d̄ = 3.18, dmax =

16 maximizes the throughput at L∗ ≈ 1.9. The soliton distribution with d̄ = 4.8033, dmax =

64 is no longer the optimal distribution, and in fact, it is the lowest curve, i.e., it is the

distribution that achieves the lowest peak performance with an inflection load of L∗ ≈ 1.6.

As we decrease the maximum repetition factor from dmax = 16 to 8, 4, and 3, we observe

that the peak throughputs reduce. The trends for the soliton distribution is exactly the

opposite and the peak throughputs (and the corresponding inflection laods) increase with

a decrease in dmax. This shows that directly using the soliton distribution which has been

optimized for the 1-Collision channel need not be optimal for any other channel. Fur-

ther, CRDSA achieves the lowest inflection load L∗ = 1.5, which shows that irregularly

transmitting as in IRSA is beneficial for the K-Collision channel.

For K = 3, in Fig. 7.1(b), the optimized distribution with d̄ = 2.88, dmax = 16

maximizes the throughput at L∗ ≈ 2.75. The trends from the previous plot as we decrease

the maximum repetition factor from dmax = 16 to 8, 4, and 3 are observed for K = 3

as well,. The soliton distribution again turns out to achieve the lowest inflection load

L∗ = 2.2, and here it is far lower than CRDSA as well. In fact, CRDSA performs better

than all the soliton distribution curves, and is inferior to all the numerically optimized

distributions.

7.4.2 Fading Channel with MIMO, Perfect CSI, and Maximal

Ratio Combining

In this section, we optimize the repetition distributions for the fading channel with MIMO,

perfect CSI, and MRC. The optimal distributions for the SISO case with perfect CSI is

presented in [17]. Further, for the success probability θr, we observed in Chapter 3, that
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the Normal approximation performed the best. Hence, in this section, we use the Normal

approximation to find the throughput optimal distributions.2

Table 7.2: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 2.

Parameters dmax φ(x) d̄ L∗

ρ0 = 1, γth = 1

3 0.03x2 + 0.97x3 2.97 1.78

4 0.4x2 + 0.09x3 + 0.51x4 3.1 1.85

8 0.26x2 + 0.6x3 + 0.14x8 3.37 1.9

ρ0 = 5, γth = 5

3 x3 3 0.71

4 x4 4 0.85

8 0.41x3 + 0.38x4 + 0.21x8 4.6 0.91

ρ0 = 10, γth = 10

3 x3 3 0.62

4 0.03x2 + 0.97x4 3.94 0.75

8 0.5x2 + 0.21x3 + 0.29x8 4.74 0.8

ρ0 = 10, γth = 5

3 x3 3 1.05

4 0.33x2 + 0.67x4 3.35 1.11

8 0.2x2 + 0.6x3 + 0.2x8 3.71 1.17

We present the optimal distributions for the fading channel in Table 7.2, and we

compare the effect of varying the SNR ρ0 and the capture threshold γth on the inflection

load L∗. As expected, as dmax is increased, the optimized distributions perform marginally

better. Thus, the disparity that is offered by a higher repetition factor helps improve the

performance. Increasing ρ0 = γth from 1 to 5 to 10 reduces the inflection load L∗ as

expected. This is because even though the SNR improves, the capture threshold also

increases and thus the number of users who cross the SINR threshold reduces. Further

for ρ0 = 10, with a reduction in γth from 10 to 5, L∗ improves. These observations are

also supported by the observations in Chapter 3.

We present the optimal distributions for the fading channel in Table 7.3, with similar

settings as the previous table but with N = 8 instead. The inflection loads increase from

N = 2 to N = 8 and the distributions require a higher dmax to achieve marginally higher

inflection loads. Here the inflection load has increased from L∗ = 1.9 with N = 2 to

2For the other approximations, see Sec. 7.8.1.
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Table 7.3: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 8.

Parameters dmax φ(x) d̄ L∗

ρ0 = 1, γth = 1

3 x2 2 7.36

8 0.97x2 + 0.03x8 2.14 7.38

16 0.96x2 + 0.01x14 + 0.01x15 + 0.02x16 2.55 7.53

ρ0 = 5, γth = 5

3 0.37x2 + 0.63x3 2.62 2.12

4 0.68x2 + 0.32x4 2.64 2.24

8 0.77x2 + 0.01x5 + 0.06x7 + 0.16x8 3.22 2.35

ρ0 = 10, γth = 10

3 0.11x2 + 0.89x3 2.88 1.51

8 0.54x2 + 0.24x3 + 0.22x8 3.56 1.69

16
0.52x2 + 0.16x3 + 0.18x4 + 0.02x11

+0.01x14 + 0.01x15 + 0.1x16
4.3 1.74

ρ0 = 10, γth = 5

3 0.41x2 + 0.59x3 2.59 2.21

4 0.69x2 + 0.31x4 2.62 2.29

8 0.79x2 + 0.21x8 3.21 2.45

Figure 7.2: Comparison between optimized performance and soliton performance for

N = 2, ρ0 = 1, γth = 1, for the fading channel with MIMO, MRC, and the Normal

approximation.
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Figure 7.3: Comparison between optimized performance and soliton performance for

N = 8, ρ0 = 1, γth = 1, for the fading channel with MIMO, MRC, and the Normal

approximation.

Table 7.4: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with ρ0 = 1, γth = 1, and the Normal

Approximation.

N dmax φ(x) d̄ L∗

2

3 0.03x2 + 0.97x3 2.97 1.78

4 0.4x2 + 0.09x3 + 0.51x4 3.1 1.85

8 0.26x2 + 0.6x3 + 0.14x8 3.37 1.9

4

3 0.86x2 + 0.14x3 2.14 3.94

4 0.89x2 + 0.11x4 2.22 3.97

8 0.91x2 + 0.01x6 + 0.08x8 2.5 4.11

8

3 x2 2 7.36

8 0.97x2 + 0.03x8 2.14 7.38

16 0.96x2 + 0.01x14 + 0.01x15 + 0.02x16 2.55 7.53

16

3 x2 2 13.31

16 0.98x2 + 0.01x9 + 0.01x16 2.15 13.35

24 0.97x2 + 0.01x16 + 0.01x23 + 0.01x24 2.35 13.37
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Table 7.5: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with ρ0 = 10, γth = 10, and the Normal

Approximation.

N dmax φ(x) d̄ L∗

2

3 x3 3 0.62

4 0.03x2 + 0.97x4 3.94 0.75

8 0.5x2 + 0.21x3 + 0.29x8 4.74 0.8

4

3 x3 3 1.11

4 0.27x3 + 0.73x4 3.72 1.15

8 0.11x2 + 0.72x3 + 0.17x8 3.75 1.2

8

3 0.11x2 + 0.89x3 2.88 1.51

8 0.54x2 + 0.24x3 + 0.22x8 3.56 1.69

16
0.52x2 + 0.16x3 + 0.18x4 + 0.02x11

+0.01x14 + 0.01x15 + 0.1x16
4.3 1.74

16

3 0.43x2 + 0.57x3 2.57 2.18

16
0.51x2 + 0.36x3 + 0.01x4 + 0.03x8

+0.01x11 + 0.04x13 + 0.03x15 + 0.01x16
3.67 2.42

24
0.5x2 + 0.32x3 + 0.08x5 + 0.02x11

+0.02x17 + 0.01x20 + 0.02x22 + 0.03x24
4.11 2.46
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L∗ = 7.53 with N = 8 due to array gain. The distributions themselves change a lot and

no obvious trends in the optimized distributions are observed with variations in ρ0 and

γth.

In Fig. 7.2, we compare the performance of different repetition distributions for the

fading channel with MIMO, MRC, and the Normal approximation, and with N = 2, ρ0 =

1, γth = 1. All the optimized distributions perform better than the Soliton distribution,

and CRDSA has the lowest peak performance with T = 1.15 at L = 1.5. We see that con-

sidering a realistic fading assumption on the channel allows for power disparity amongst

users which leads to all the throughputs exceeding unity. Further, with dmax = 8, the

optimized distribution performs the best, albeit with a higher d̄ when compared to the

soliton distribution. Thus, even for the fading channel, the soliton distribution is not

good enough and we can find distributions that perform better.

In Fig. 7.3, we analyze the same as the previous figure, but with N = 8, ρ0 = 1, γth = 1.

The performance highly improves compared to the previous figure due to the increase in

the diversity gain offered by the number of antennas. The soliton distribution with d̄ =

3.5394, dmax = 16 is no longer the optimal distribution, and in fact, it is the lowest curve,

i.e., it is the distribution that achieves the lowest peak performance with an inflection load

of L∗ ≈ 5.5. As we decrease the maximum repetition factor from dmax = 16 to 8, 4, and

3, we observe that the peak throughputs for the soliton distribution increases. CRDSA

also performs better than all the soliton distributions. The optimized distribution with

d̄ = 2.53, dmax = 16 achieves the highest throughput and it performs better than CRDSA.

We now present the optimal distributions for the fading channel, where we study the

effect of the number of antennas on the inflection load L∗. In Table 7.4, we present the

result with ρ0 = 1, γth = 1, whereas in Table 7.5, we present the result with ρ0 = 10, γth =

10. For ρ0 = 1, γth = 1, the maximum inflection loads are L∗ = 1.9, 4.11, 7.36, and

13.37 for N = 2, 4, 8, and 16. For ρ0 = 10, γth = 10, the maximum inflection loads are

L∗ = 0.8, 1.2, 1.74, and 2.46 for N = 2, 4, 8, and 16. With an increase in the number

of antennas, the diversity gain increases for MRC, and thus, the decodability of users

improves which leads to a significant increase in the inflection load. As N is increased,
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the optimal distributions for ρ0 = 1, γth = 1 become closer to that of CRDSA. Recall

that a D-regular distribution for DRRSA is φ(x) = xD. In fact, for N = 2, the optimal

distribution is closer to 3-regular DRRSA, and when N is increased to 16, the optimal

distribution is indeed the 2-regular DRRSA, which is the same as CRDSA. This behaviour

is very different for ρ0 = 10, γth = 10, for which as N is increased, the optimal distributions

for ρ0 = 1, γth = 1 remain as irregular distributions. For ρ0 = 10, γth = 10, the optimal

distributions become less sparse compared to the distributions for ρ0 = 1, γth = 1 for each

N . Here, sparse distributions are distributions which have most entries to be zero, whereas

dense distributions are distributions which have most entries as non-zero entries. Thus, we

can summarize that for higher SNRs and higher modulation and coding schemes (MCSs)

which require a higher γth, the optimized distributions are indeed irregular in nature,

and would require us to use more dense distributions as seen for ρ0 = 10, γth = 10, and

N = 16.

7.4.3 Fading Channel with MIMO, Channel Estimation Errors,

Pilot Contamination, and MMSE Combining

In the general case, i.e., with MIMO, fading, channel estimation, pilot contamination,

and MMSE combining, we cannot compute the success probability θr in closed form as

observed in Chapter 3. Hence, we resort to empirical calculation of θr for the general

case, and then optimize the throughput of IRSA using the same.

We now present the throughput-optimized distributions for IRSA with the fading

channel, MIMO, channel estimation errors, pilot contamination, and MMSE combining

in Table 7.6 for τ = 10, ρ0 = 1, and γth = 1; in Table 7.7 for τ = 10, ρ0 = 10, and γth = 10.

For N = 2, the optimal distribution is 3-regular for dmax = 3, whereas for dmax = 4, it is

4-regular. For dmax = 8, it is more dense but with the same d̄ as the previous distribution.

As we increase N to 4, 8, and then 16, we see that the distributions become closer to a

2-regular distribution.

We now present the throughput-optimized distributions for different pilot lengths in

IRSA with the fading Channel, MIMO, channel estimation errors, pilot contamination,
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Table 7.6: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

τ = 10, ρ0 = 1, and γth = 1.

N dmax φ(x) d̄ L∗

2

3 x3 3 1.64

4 0.06x3 + 0.94x4 3.94 1.76

8 0.16x2 + 0.18x3 + 0.55x5 + 0.11x8 3.94 1.82

4

3 0.93x2 + 0.07x3 2.06 5.11

4 0.92x2 + 0.08x4 2.16 5.15

8 0.91x2 + 0.06x6 + 0.03x8 2.25 5.18

8

3 x2 2 8.1

8 0.99x2 + 0.01x8 2.1 8.15

16 0.97x2 + 0.01x14 + 0.01x15 + 0.01x16 2.2 8.18

16

3 x2 2 10.8

16 0.98x2 + 0.01x14 + 0.01x16 2.03 10.84

24 0.97x2 + 0.01x3 + 0.01x19 + 0.01x24 2.35 10.86

Figure 7.4: Impact of the pilot length on the inflection load L∗, for the fading channel

with MIMO, MMSE combining, pilot contamination, and channel estimation errors.
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Table 7.7: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

τ = 10, ρ0 = 10, and γth = 10.

N dmax φ(x) d̄ L∗

2

3 x3 3 0.89

4 0.01x2 + 0.02x3 + 0.97x4 3.97 1.01

8 0.43x3 + 0.39x4 + 0.18x8 4.3 1.05

4

3 0.6x2 + 0.4x3 2.4 2.93

4 0.85x2 + 0.02x3 + 0.13x4 2.27 3.05

8 0.89x2 + 0.02x3 + 0.09x8 2.53 3.12

8

3 0.99x2 + 0.01x3 2.01 5.7

8 0.98x2 + 0.01x5 + 0.01x8 2.06 5.74

16 0.97x2 + 0.01x6 + 0.01x10 + 0.01x16 2.21 5.78

16

3 0.97x2 + 0.03x3 2.03 7.2

16 0.97x2 + 0.01x12 + 0.01x13 + 0.01x16 2.22 7.24

24
0.96x2 + 0.01x5 + 0.01x7

+0.01x19 + 0.01x24
2.35 7.27

Figure 7.5: Impact of the number of antennas on the inflection load L∗, for the fading

channel with MIMO, MMSE combining, pilot contamination, and channel estimation

errors.
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Table 7.8: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

dmax = 8, ρ0 = 10, and γth = 10.

N τ φ(x) d̄ L∗

2

10 0.43x3 + 0.39x4 + 0.18x8 4.3 1.05

20 0.59x2 + 0.25x3 + 0.16x8 4.06 1.15

30 0.71x3 + 0.1x4 + 0.18x8 3.97 1.2

60 0.81x3 + 0.01x4 + 0.18x8 3.91 1.22

4

10 0.89x2 + 0.02x3 + 0.09x8 2.53 3.12

20 0.93x2 + 0.01x3 + 0.06x8 2.4 3.37

30 0.89x2 + 0.04x3 + 0.07x8 2.46 3.41

60 0.93x2 + 0.07x8 2.42 3.52

8

10 0.98x2 + 0.01x5 + 0.01x8 2.06 5.74

20 0.97x2 + 0.01x3 + 0.02x8 2.17 6.97

30 0.98x2 + 0.01x7 + 0.01x8 2.11 7.13

60 0.99x2 + 0.01x8 2.17 7.34

16

10 0.98x2 + 0.01x6 + 0.01x8 2.1 7.22

20 0.99x2 + 0.01x8 2.17 11.82

30 0.99x2 + 0.01x8 2.17 13.24

60 x2 2 13.86
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and MMSE combining in Table 7.8 for dmax = 8, ρ0 = 10, and γth = 10. For each N , it

is observed that the inflection loads monotonically increase with an increase in the pilot

length τ . For N = 2, the optimized distributions are varied and differ from each other

as τ is increased from 10 to 20 to 30 to 60. For a similar increase in τ , the optimized

distributions vary only slightly for N = 4 and vary negligibly for N = 8 and N = 16. This

is because the system is already performing at the peak for low pilot lengths at higher N .

Thus, optimizing the distribution does not help much here. We can also see a reduction

in d̄ with an increase in τ for N = 2 and N = 4, which shows that fewer packets could be

transmitted in order to obtain higher inflection loads.

In Fig. 7.4, we study the impact of the pilot length on the inflection load L∗. For

every N , the inflection load L∗ increases with τ . At low pilot lengths, there is a very

minute difference between the inflection loads for different N . Beyond τ = 30, we can

see a very significant increase in the inflection load. This is because the pilot lengths are

now sufficient enough to ensure that channel estimation errors reduce (i.e., the variance

of the channel estimation errors have reduced enough) and improve the inflection loads.

At τ = 10, nearly all the curves are at L∗ = 1.5. For N = 16, the inflection load highly

improves from L∗ = 1.5 at τ = 10 to L∗ = 14 at τ = 60, which is an 833.33% increase

in the inflection load. Here, even though N = 16 is enough to suppress interference, the

system is limited by the channel estimation errors.

Fig. 7.5 studies the effect of the number of antennas on the inflection load for varied

pilot lengths. As observed in the previous plot as well, for τ = 10, the inflection load L∗

stays fixed as we increase the number of antennas. This is because the system is limited

by channel estimation errors. For τ = 20, the inflection load only slightly increases from

N = 2 to N = 4, and then stays fixed. For τ = 30, the inflection load increases from

approximately L∗ = 6 to 7.5. Finally, for τ = 60, the inflection load increases from

L∗ = 7.5 for N = 2 to 14 for N = 16, which is an 86.67% increase in the inflection

load. In contrast to the perfect CSI case with MRC, where the impact of the number

of antennas was incremental on the inflection load (see Fig. 7.12), here the impact is

pretty significant. Thus, increasing both the pilot lengths and the number of antennas is
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beneficial towards obtaining higher inflection loads.

7.5 Energy Efficiency Maximization

In this section, we focus on the EE of IRSA. We first define the EE metric and then

later, obtain the corresponding optimal distributions in IRSA. In (7.8), we computed the

throughput of IRSA, Thpt({φ2, φ3, . . . , φdmax}) (packets per slot or RB), which we now use

to compute the EE of IRSA, denoted by EE({φ2, φ3, . . . , φdmax}). The spectral efficiency

SE({φ2, φ3, . . . , φdmax}) in IRSA can be computed in bps/Hz as

SE({φ2, φ3, . . . , φdmax}) = (1− τ/τc) Thpt({φ2, φ3, . . . , φdmax})× log2(1 + γth), (7.12)

where τ is the pilot length, τc is the length of the packet of any user, and γth is the

SINR decoding threshold. Using the above, the EE can be conventionally calculated in

bits/Joule as

EE({φ2, φ3, . . . , φdmax}) =
B SE({φ2, φ3, . . . , φdmax})

PC

. (7.13)

Here, B is the bandwidth, and PC is the total power consumed, which is dependent on

other factors such as circuit power at the BS. We use a well known realistic model for PC

as seen in [49,150] as

PC = PFix + PTC + PCE + PCD + PBH + PSP, (7.14)

where the terms are as follows: PFix is a fixed power required for control signaling and

includes the load-independent power of backhaul infrastructure and baseband processors,

PTC accounts for the power consumed by the transceiver chains, PCE is the power required

for for the channel estimation process, PCD accounts for the channel encoding and decod-

ing powers, PBH is the load-dependent backhaul signaling power, and PSP is the signal

processing power at the BS.

We now define the above terms specifically for IRSA. Firstly, recall that the number
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of users transmitting per slot for an IRSA system with load L and with average repetition

factor d̄ is Ld̄. The transceiver power is calculated as PTC = NPBS+Ld̄PUsers+PLO, where

PBS is the power required to run the circuit components per antenna at the BS, PUsers is the

power required at each of the single-antenna users, and PLO is the power required by the

local oscillator at each BS (for a cell-free setup with a distributed antenna array, PLO grows

with N). The channel estimation process plays a huge rule in MIMO communications and

the channel estimation power PCE is dependent on the number of multiplication operations

performed as detailed in Chapter 3. If the computational efficiency of the BS is denoted

by ηC , then the channel estimation power PCE is calculated as

PCE =
3B

τcηC
N ·


s(Ld̄τ + (Ld̄)2), MSBL Estimator,

Ld̄τ + (Ld̄)2, MMSE Estimator,

Ld̄τ + Ld̄, LCMMSE Estimator.

(7.15)

Here, s is the average number of iterations the MSBL algorithm is run for. The encod-

ing/decoding power contribution PCD is calculated from the encoding power PEnc and the

decoding power PDec as PCD = (PEnc + PDec)B SE({φ2, φ3, . . . , φdmax}) according to [49].

Unlike [49], we model the encoding/decoding power contribution not just from the frac-

tion of packets of the decoded users but from all the users. Hence, we model it as

PCD = (PEnc + PDec)B (1− τ/τc)L log2(1 + γth). The backhaul power PBH is calculated

from the backhaul traffic power PBT as PBH = PBTB SE({φ2, φ3, . . . , φdmax}). The sig-

nal processing power PSP is a sum of the transmission/reception power PSP−TR and the

combining (MMSE combining or MRC) power PSP−C. These can be calculated as

PSP−TR =
3Bτ

τcηC
Ld̄N, (7.16)

PSP−C =


3B

τcηC

(
3N(N + 1)Ld̄

2
+
N3 + 6N

3

)
, MMSE Combining,

7B

τcηC
N, MR Combining.

(7.17)

For the multi-cell and the cell-free setups, the above have to be changed as detailed in [49].
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The EE optimization problem now becomes

P3 : max
φ2,φ3,...,φdmax

EE({φ2, φ3, . . . , φdmax}) (7.18)

subject to 0 ≤ φd ≤ 1, 2 ≤ d ≤ dmax, (7.19)

dmax∑
d=2

φd = 1, (7.20)

L = Lref. (7.21)

Here, the first two constraints ensure that the candidate solutions are indeed probability

vectors. The third constraint ensures that the distributions are optimized at a reference

load of Lref. We use the DEA to numerically obtain the optimal distributions in the next

section.

Remark 9: Existing works have considered simpler models to compute the EE. The

simplest model for the EE is perhaps the ratio of the SE to the total power consumed [30].

For IRSA, this model can be written as

EE({φ2, φ3, . . . , φdmax}) =
B SE({φ2, φ3, . . . , φdmax})
PFix +NPBS + Ld̄PUsers

. (7.22)

The power consumed in the denominator of this simplistic model does not account for

the SE. Even though we use the EE model from (7.13) to optimize the distributions,

we will use the model from (7.22) in the next section purely to obtain insights into the

dependence of the EE of IRSA on the system parameters such as N , L, d̄, and τ .

Remark 10: The trivial power allocation for maximizing the EE in typical communi-

cations is to let the transmit power to be zero [30], since this minimizes the denominator

of the EE. The equivalent of this for the energy efficient distribution design would be to

use the trivial distribution φ(x) = x2 since it minimizes d̄ in the denominator of the EE.
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7.6 Numerical Results for Energy Efficiency Maxi-

mization

We now optimize the repetition distributions in order to maximize the EE of IRSA. For the

results presented in this chapter, we operate the system with a reference load of Lref = L∗

in order to operate the system at the peak throughput and the reported distributions are

optimized at the inflection load to maximize the EE. The maximum EE obtained from the

DEA is denoted by Emax and is measured in kilobits per Joule [49]. The DEA parameters

are F = 0.9, M = 10N , and Cr = 0.9 [149]. We choose the terminating criteria TC(·) as

the standard deviation of the EEs of all the population vectors in any generation, and

terminate the DEA generations when TC(·) < cε = 10−3 [149]. For the power consumption

model, we consider the following set of parameters as in [49]: τc = 100 packet length,

PFix = 10 W, PLO = 0.2 W, PBS = 0.4 W, PUsers = 0.2 W, PEnc = 0.1 W/(Gbit/s), PDec =

0.8 W/(Gbit/s), PBT = 0.25 W/(Gbit/s), and ηC = 75 Gflops/W. We use B = 100 kHz as

the bandwidth, similar to the settings used by standard IoT-type devices in NB-IoT [3].

Since we consider low bandwidths of 100 kHz compared to 20 MHz in conventional cellular

communications, the achievable spectral efficiencies (and hence energy efficiencies) are a

magnitude of order smaller in IRSA.

7.6.1 K-Collision Channel

In Table 7.9, we present the EE optimal distributions for IRSA with the K-collision

channel with varied maximum repetition factors. For K = 1, as we increase dmax (or

alternately increase d̄), the inflection load L∗ increases from 0.82 to 0.95. The peak EE

Emax increases from 23.01 to 25.34 kilobits per Joule. For K = 2, as we increase dmax,

the inflection load L∗ increases from 1.71 to 1.89, and Emax increases from 46.77 to 49.36

kilobits per Joule. For K = 3, as we increase dmax, the inflection load L∗ increases from

2.57 to 2.75, and Emax increases from 67.1 to 70.09 kilobits per Joule. We observe that

we obtain higher peak EEs for higher K which is a result of improved throughputs since

up to K collisions can be resolved simultaneously. In the above table, we observe that
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Table 7.9: Energy Efficiency Optimal Distributions for IRSA with the K-Collision

Channel.

K dmax φ(x) d̄ L∗ Emax

1

3 0.24x2 + 0.76x3 2.76 0.82 23.1

4 0.54x2 + 0.46x4 2.91 0.86 24.12

8 0.47x2 + 0.31x3 + 0.09x6 + 0.12x7 + 0.01x8 3.27 0.92 25.04

16
0.47x2 + 0.31x3 + 0.06x4 + 0.02x5 + 0.02x6

+0.05x8 + 0.04x9 + 0.01x10 + 0.01x12 + 0.01x16
3.47 0.95 25.34

2

3 0.89x2 + 0.11x3 2.11 1.71 46.77

4 0.96x2 + 0.04x4 2.08 1.74 47.81

8 0.9x2 + 0.01x5 + 0.08x7 + 0.01x8 2.49 1.85 48.78

16
0.9x2 + 0.01x4 + 0.01x5 + 0.04x7

+0.02x8 + 0.01x9 + 0.01x16
2.58 1.89 49.36

3

3 x2 2 2.57 67.1

4 0.98x2 + 0.02x4 2.04 2.58 68.81

8 0.91x2 + 0.09x8 2.54 2.65 69.21

16 0.94x2 + 0.04x12 + 0.01x14 + 0.01x16 2.66 2.75 70.09

increasing dmax increases d̄ which increases the inflection load L∗ as well as the energy

efficiency. This is because in the expression for the energy efficiency in (7.22), in this

regime, any increase in d̄ increases the SE which dominates the corresponding small

increase in the denominator.

The authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the

most energy efficient distribution for IRSA under every scenario, even under the collision

channel. In fact, for the rest of this chapter, we show that it is not universally true.

Our results above show that we can indeed obtain more efficient distributions than the

2-regular distribution. In several cases, a 2-regular distribution can be the most energy

efficient distribution (e.g., at high pilot lengths and high number of antennas), but in

general, it is not the EE optimal distribution.
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Table 7.10: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 2.

Parameters dmax φ(x) d̄ L∗ Emax

ρ0 = 1, γth = 1

3 0.07x2 + 0.93x3 2.92 1.78 12.91

4 0.25x2 + 0.49x3 + 0.26x4 3.01 1.85 12.94

8 0.32x2 + 0.56x3 + 0.12x8 3.29 1.9 13.01

ρ0 = 5, γth = 5

3 x3 3 0.71 12.4

4 x4 4 0.85 16.74

8 0.4x3 + 0.23x4 + 0.08x5 + 0.23x8 4.36 0.91 17.15

ρ0 = 10, γth = 10

3 x3 3 0.62 14.35

4 0.03x2 + 0.97x4 3.94 0.75 19.78

8 0.48x3 + 0.24x4 + 0.28x8 4.63 0.8 20.41

ρ0 = 10, γth = 5

3 x3 3 1.05 20.97

4 0.23x2 + 0.29x3 + 0.48x4 3.25 1.11 21.68

8 0.15x2 + 0.69x3 + 0.16x8 3.63 1.17 22.45

Table 7.11: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 8.

Parameters dmax φ(x) d̄ L∗ Emax

ρ0 = 1, γth = 1

3 x2 2 7.36 40.53

8 x2 2 7.36 40.53

16 0.99x2 + 0.01x16 2.14 7.42 40.94

ρ0 = 5, γth = 5

3 0.68x2 + 0.32x3 2.32 2.12 33.99

4 0.68x2 + 0.32x4 2.64 2.24 35.08

8 0.79x2 + 0.19x5 + 0.01x7 + 0.01x8 2.81 2.35 36.36

ρ0 = 10, γth = 10

3 0.46x2 + 0.54x3 2.54 1.51 32.97

8 0.56x2 + 0.22x3 + 0.02x7 + 0.2x8 3.52 1.69 35.77

16
0.5x2 + 0.32x3 + 0.02x5 + 0.05x7

+0.06x10 + 0.01x11 + 0.03x12 + 0.01x16
3.64 1.74 36.21

ρ0 = 10, γth = 5

3 0.67x2 + 0.33x3 2.33 2.21 35.48

4 0.8x2 + 0.2x8 3.2 2.29 36.14

8 0.78x2 + 0.03x3 + 0.19x8 3.17 2.45 38.17
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Table 7.12: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with ρ0 = 1, γth = 1, and the Normal

Approximation.

N dmax φ(x) d̄ L∗ Emax

2

3 0.07x2 + 0.93x3 2.92 1.78 12.91

4 0.25x2 + 0.49x3 + 0.26x4 3.01 1.85 12.94

8 0.32x2 + 0.56x3 + 0.12x8 3.29 1.9 13.01

4

3 x2 2 3.94 26.26

4 0.98x2 + 0.01x4 2.04 3.97 26.52

8 0.93x2 + 0.07x8 2.42 4.11 26.52

8

3 x2 2 7.36 40.53

8 x2 2 7.36 40.53

16 0.99x2 + 0.01x16 2.14 7.42 40.94

16

3 x2 2 13.31 54.6

16 0.99x2 + 0.01x16 2.14 13.35 54.94

24 0.98x2 + 0.01x4 + 0.01x24 2.24 13.37 55.28

7.6.2 Fading Channel with MIMO, Perfect CSI, and Maximal

Ratio Combining

In Table 7.10, we present the EE optimal distributions for the fading channel with perfect

CSI, MIMO, and MRC, with the Normal approximation and N = 2. Here, most of the EE

optimal distributions are close to the 3- or 4-regular distributions and not the 2-regular

distribution. For higher dmax, we obtain slightly denser distributions for every combination

of ρ0 and γth. An important observation is that we obtain higher EEs for ρ0 = 10, γth = 10

compared to ρ0 = 5, γth = 5, whereas the inflection loads reduce for ρ0 = 10, γth = 10

compared to ρ0 = 5, γth = 5. A similar observation is made for ρ0 = 5, γth = 5 compared

to ρ0 = 1, γth = 1, both of which have equal ρ−1
0 γth = 1. Even though the decodability

of the users, which roughly depends upon the equal ρ−1
0 γth, the EE increases because the

SE increases due to increase in γth. From ρ0 = 5, γth = 5 to ρ0 = 10, γth = 5, there is

an increase in the SNR and the corresponding inflection loads and EEs both improve. In

contrast, from ρ0 = 10, γth = 5 to ρ0 = 10, γth = 10, there is an increase in the SINR

threshold and the corresponding inflection loads and EEs both reduce. This is because
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Table 7.13: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with ρ0 = 10, γth = 10, and the Normal

Approximation.

N dmax φ(x) d̄ L∗ Emax

2

3 x3 3 0.62 14.35

4 0.03x2 + 0.97x4 3.94 0.75 19.78

8 0.48x3 + 0.24x4 + 0.28x8 4.63 0.8 20.41

4

3 0.34x2 + 0.66x3 2.66 1.11 27.63

4 0.36x2 + 0.39x3 + 0.25x4 2.88 1.15 28.7

8 0.37x2 + 0.45x3 + 0.18x8 3.53 1.25 35.52

8

3 0.46x2 + 0.54x3 2.54 1.51 32.97

8 0.56x2 + 0.22x3 + 0.02x7 + 0.2x8 3.52 1.69 35.77

16
0.5x2 + 0.32x3 + 0.02x5 + 0.05x7

+0.06x10 + 0.01x11 + 0.03x12 + 0.01x16
3.64 1.74 36.21

16

3 0.68x2 + 0.32x3 2.32 2.18 38.04

16
0.71x2 + 0.05x3 + 0.03x4 + 0.07x5

+0.04x6 + 0.02x8 + 0.06x15 + 0.02x16
3.66 2.45 41.56

24
0.74x2 + 0.06x4 + 0.1x6 + 0.03x8

+0.02x12 + 0.02x15 + 0.01x19 + 0.02x24
3.77 2.46 41.58
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γth is unilaterally increased, leading to fewer users getting decoded.

In Table 7.11 we present the EE optimal distributions for the fading channel with

perfect CSI, MIMO, and MRC, with the Normal approximation and N = 8. In contrast to

the previous table, we observe different trends. When the decodability at the BS improves

due to increase in N from 2 to 8, the increase from ρ0 = 1, γth = 1 to ρ0 = 5, γth = 5

to ρ0 = 10, γth = 10 monotonically reduces both the inflection loads as well as the peak

EEs. This is because we are now operating in the regime where the higher number of

antennas N consumes more power and the corresponding decodability does not increase

a lot to counteract the effect of N . The peak EEs have, however, increased from the

previous table since an increase in N helps the decodability of MRC and also improves

the inflection loads. Finally, for ρ0 = 1, γth = 1, the 2-regular distribution is optimal, but

for the other sets of parameters, we obtain other distributions.

For both the above tables, we observe that increasing d̄ in each configuration, in-

creases the inflection load L∗ as well as the EE. This is because in the expression for the

EE in (7.22), in this regime, any increase in d̄ increases the SE which dominates the cor-

responding small increase in the denominator. Now, increasing N here across the tables

does not decrease the EE because the corresponding increase in the inflection load is high

enough to dominate the 4-fold increase in N . This increase in N improves the decoding

capability due to array gain and interference suppression. We can also observe that the

average repetition factors of the optimal distributions at the inflection loads reduce across

the tables when we increase N , since the denominator of the EE reduces.

In Table 7.12, we present the EE optimal distributions for the fading channel with

MIMO, MRC, ρ0 = 1, and γth = 1. As we increase the number of antennas N from 2 to 4

to 8 to 16, the maximum inflection loads increase from 1.9 to 4.11 to 7.42 to 13.37, and the

maximum peak EEs increase from 13.01 to 26.52 to 40.94 to 55.28 kilobits per Joule. The

optimal distributions as N increases becomes closer to the 2-regular distribution. Further,

the inflection loads significantly increase with N . The peak EEs also significantly increase

since the decodability with MRC highly improves with N which is also sufficient enough

to overcome the extra power consumed due to higher N . The success probability θr,
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under ρ0 = 1 & γth = 1, is lower for every r for N = 2 compared to N = 8, which

yields lower decodability for N = 2 compared to N = 8. In order to compensate for the

lower decoding capability, the distribution is optimized to achieve distributions that are

variedly different from φ(x) = x2. For N = 4, 8, 16, we observe that since θr is better, the

inflection loads are higher, but the optimal distribution reduces to φ(x) = x2 since the

effect of N and d̄ dominates the SE.

In Table 7.13, we present the EE optimal distributions for the fading channel with

MIMO, MRC, ρ0 = 10, and γth = 10. As we increase the number of antennas N from 2 to

4 to 8 to 16, the maximum inflection loads increase from 0.8 to 1.25 to 1.74 to 2.46, which

is a very small increase compared to the previous table. The maximum peak EEs increase

from 20.41 to 35.52 to 36.21 to 41.58 kilobits per Joule. For N = 2 and 4, the peak EEs

were higher in the previous table, but for N = 8 and 16, the peak EEs are higher in this

table. This is because, even though the decodability stays roughly the same, the increase

in the SNR is not sufficient enough to counteract the increase in the decoding threshold,

at higher N . This is supported by a very small increase in inflection load which does not

depend on the power consumed. This is the opposite for lower N . We also observe that

the distributions are more dense compared to the previous table.

In both the above tables, for each N , we observe that increasing d̄, increases the

inflection load L∗ as well as the EE. This is because in the expression for the EE in (7.22),

in this regime, any increase in d̄ increases the SE which dominates the corresponding small

increase in the denominator. Increasing the number of antennas N has a higher effect on

increasing the SE rather than the denominator of the EE, and thus, the EE improves. In

Table 7.13, due to a higher γth = 10, the inflection loads and the EE do not significantly

increase with N as it increased for γth = 1. However, we observe that the distributions

become more dense with increase in N to compensate for the lower decodability due to

higher γth. We also note that, in this regime, a good increase in d̄ improves the SE

and thus, even though the denominator of the EE reduces, the overall effect of the SE

dominates the system and hence the EE improves.
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7.6.3 Fading Channel with MIMO, Channel Estimation Errors,

Pilot Contamination, and MMSE Combining

Table 7.14: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

τ = 10, ρ0 = 1, and γth = 1.

N dmax φ(x) d̄ L∗ Emax

2

3 x3 3 1.64 9.91

4 0.07x2 + 0.11x3 + 0.82x4 3.75 1.76 11.96

8 0.01x2 + 0.32x3 + 0.64x4 + 0.03x8 3.78 1.82 12.74

4

3 x2 2 5.11 33.12

4 x2 2 5.11 33.12

8 0.99x2 + 0.01x8 2.06 5.18 33.37

8

3 x2 2 8.1 43.81

8 x2 2 8.1 43.81

16 0.99x2 + 0.01x16 2.14 8.18 43.92

16

3 x2 2 10.8 46.46

16 x2 2 10.8 46.46

24 0.97x2 + 0.01x3 + 0.01x19 + 0.01x24 2.4 10.86 46.83

In Table 7.14 we present the EE optimal distributions for the fading channel with

MIMO, MMSE combining, pilot contamination, and channel estimation errors, with τ =

10, ρ0 = 1, and γth = 1. It can be seen that the 2-regular distribution is optimal or

nearly optimal for N ≥ 4 and distributions with higher d̄ are optimal for N = 2. In

Table 7.15 we present the EE optimal distributions for the fading channel with MIMO,

MMSE combining, pilot contamination, and channel estimation errors, with τ = 10, ρ0 =

10, and γth = 10. It can be seen that the 2-regular distribution is optimal or nearly

optimal for N ≥ 8 and distributions with higher d̄ are optimal for N = 2 and 4. In

both the tables, the inflection loads highly increase with the number of antennas due

to improved suppression of interfering users due to MMSE combining. The performance

improvement is drastic since MMSE combining is better than MRC, at the cost of higher

complexity. This improvement is also seen in the EEs: MMSE combining consumes higher

power compared to MRC.
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(a) τc = 100.

(b) τc = 200.

Figure 7.6: Effect of the pilot length on the peak energy efficiency Emax with varied τc,

for the fading channel with MIMO, MMSE combining, pilot contamination, and channel

estimation errors.
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Table 7.15: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

τ = 10, ρ0 = 10, and γth = 10.

N dmax φ(x) d̄ L∗ Emax

2

3 x3 3 0.89 20.02

4 x4 4 1.01 25.76

8 0.4x3 + 0.45x4 + 0.15x8 4.2 1.05 26.08

4

3 x2 2 2.98 71.31

4 0.98x2 + 0.02x4 2.04 3.05 71.61

8 0.94x2 + 0.06x8 2.36 3.12 72.73

8

3 x2 2 5.7 113.18

8 x2 2 5.7 113.18

16 0.99x2 + 0.01x16 2.14 5.78 113.45

16

3 x2 2 7.2 115.75

16 x2 2 7.2 115.75

24 0.98x2 + 0.01x18 + 0.01x24 2.38 7.27 116.06

The huge increase in EE is because of high SE improvement due to MMSE combining,

but the effect on the distribution is different. In both the tables, we observe that with

low L∗ (e.g., with N = 2 and N = 4), increasing dmax to 8 optimizes the distribution

to a variedly different distribution and also increases the EEs. This is not observed with

high L∗ (e.g., with N = 8 and N = 16), where the distributions only slightly vary. This

is because the extra power consumed due to higher number of replicas and operating at

higher L is not dominant enough to improve the SE but would actually reduce d̄ in the

denominator of the EE in (7.22). The peak EEs are much higher with MMSE combining

than MRC due to improved interference suppression. When going from ρ0 = 1, γth = 1

to ρ0 = 10, γth = 10, the peak EEs reduce for MRC as we saw earlier. Unlike what

was observed with MRC, for MMSE combining, the peak EEs improve when going from

ρ0 = 1, γth = 1 to ρ0 = 10, γth = 10. For MRC, the effect of improved decodability is

eclipsed by the higher amount of power consumed due to higher N . However, for MMSE

combining, the amount of power consumed due to more computations and high N is
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Table 7.16: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

dmax = 8, ρ0 = 10, and γth = 10.

N τ φ(x) d̄ L∗
Emax for

τc = 100

Emax for

τc = 200

2

10 0.4x3 + 0.45x4 + 0.15x8 4.2 1.05 26.08 27.53

20 0.41x3 + 0.5x4 + 0.09x8 3.95 1.15 25.73 28.76

30 0.52x3 + 0.38x4 + 0.1x8 3.88 1.2 22.59 27.43

60 0.64x3 + 0.26x4 + 0.1x8 3.76 1.22 13.48 23.35

4

10 0.94x2 + 0.06x8 2.36 3.12 72.73 76.77

20 0.96x2 + 0.04x8 2.24 3.37 69.69 78.39

30 0.97x2 + 0.03x8 2.18 3.41 61.88 79.56

60 0.96x2 + 0.04x8 2.24 3.52 36.21 63.14

8

10 x2 2 5.7 113.18 120

20 x2 2 6.97 118.87 134.05

30 x2 2 7.13 106.48 129.89

60 x2 2 7.34 61.89 108.85

16

10 x2 2 7.22 115.75 122.47

20 x2 2 11.82 153.16 172.31

30 x2 2 13.24 146.07 177.48

60 x2 2 13.86 86.31 151.05
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eclipsed by the decodability of MMSE. Thus, MRC and MMSE combining have different

trends in the peak EEs.

In Table 7.16, we present the EE optimal distributions for IRSA in the general case,

when the pilot length is varied. For N = 2, the 2-regular distribution is not optimal

whereas for N = 4, it is nearly optimal, and for N = 8 and 16, it is optimal. As the

pilot length is increased for N = 2 and 4, the average repetition factor of the optimized

distribution reduces whereas the inflection loads increase. The inflection loads increase due

to improved channel estimation. For N = 4, the inflection load increases only marginally

with an increase in τ , since the system is limited by decodability even if the channel

estimates vastly improve. For N = 16, the inflection load increases significantly with an

increase in τ , since the system is not limited by decodability. Here, the channel estimates

vastly improve and thus, the inflection loads highly increase. At low N , the success

probability θr is lower for every r compared to higher N (e.g., with N = 8), which yields

lower decodability for N = 2 compared to N = 8. In order to compensate for the lower

decoding capability, the distribution is optimized to obtain distributions that are different

from φ(x) = x2. At high N , the system already performs very well to obtain high L∗,

and thus the optimal distribution would just result in the minimizer of the denominator

of the EE, which is the 2-regular distribution. We also present the peak EEs for varied

τc. The optimal distributions do not change when we change τc, but the trends in the EE

are different, as we will see next.

In Fig. 7.6, we study the impact of the pilot length τ and the number of antennas

N on the peak EE of IRSA. The EE is dependent on the packet length τc, via both the

SE and the power consumed. For τc = 100, τ = 60 achieves the lowest peak EE since a

majority of the time is spent in channel estimation. This effect is not indicative in either

the throughput or the inflection loads since their definitions do not include τc. Here,

τc = 10, 20 achieves the highest peak EE for N = 2/4 and N = 8/16, respectively. For

τc = 200 and N ≤ 8, τ = 60 achieves the lowest peak EE since a majority of the time

is spent in channel estimation. For τc = 200 and N = 16, τ = 10 achieves the lowest

peak EE since channel estimates are not good enough to decode users. This inverse
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trend is due to increase in τc. EE improves due to both increase in SE due to higher L∗

and lower d̄, but this happens only in the regime where the pilot length is not too high

enough to eclipse the length of the data symbols. In both the subfigures, the peak EEs

monotonically increase with an increase in N . As discussed earlier, this is due to the

dominant effect of the throughput over the power consumed due to higher N . Unlike the

trends in the inflection loads seen with the throughput optimal distributions previously,

where the inflection loads monotonically increase with τ , here, it is not the case. This is

because of the pre-log factor (1−τ/τc) within the SE used to compute the EE. Thus, there

is a specific pilot length at which the EE is maximized at which IRSA can be operated at

the peak EE.

7.6.4 Comparison with Existing Distributions

We now compare the optimized distributions presented in this chapter with existing dis-

tributions [7], [17], and the soliton distribution in [72] (with a = 0 in (7.1)), in Table 7.17.

For this, we consider only the general case, i.e., IRSA with MIMO, MMSE combining,

channel estimation errors, and pilot contamination. For comparison, we present the peak

performance with the 2-regular distribution, i.e., with CRDSA. CRDSA achieves an in-

flection load of L∗ = 0.55 and peak EE of Emax = 14.92 kilobits per Joule for N = 2 and

an inflection load of L∗ = 2.98 and peak EE of Emax = 71.31 kilobits per Joule for N = 2.

A high peak EE is obtained due to lower d̄ which dominates the denominator of the EE.

For each dmax, we compare our optimized distribution with the soliton distribution (see

(7.1)) and also with other existing distributions (when available). We observe that for

every dmax, our optimized distributions perform better than existing ones. The only ex-

ception is dmax = 3, N = 4, for which the 2-regular distribution is indeed optimal. Hence,

our optimized distributions perform either same as or better than existing distributions.

For N = 2 and dmax = 3, our optimized distribution is the 3-regular distribution,

which achieves a 51% increase in the inflection load and a 25% increase in the peak EE

compared to the Soliton distribution which achieves an inflection load of 0.59. For N = 2

and dmax = 4, our optimized distribution is the 4-regular distribution, which achieves: a
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Table 7.17: Comparison of our energy efficiency optimized distributions with existing

distributions under MIMO, MMSE combining, channel estimation errors, and pilot

contamination, with τ = 10, ρ0 = 10, and γth = 10.

N dmax φ(x) d̄ L∗ % Imp. Emax % Imp.

2

2 2-regular: x2 2 0.55 - 14.92 -

3
Our: x3 3 0.89 - 20.02 -

Soliton 2.25 0.59 51 15.97 25

4

Our: x4 4 1.01 - 25.76 -

[17]: 0.66x2 + 0.16x3 + 0.18x4 2.52 0.64 58 17.24 49

[7]: 0.5102x2 + 0.4898x4 2.49 0.63 60 17.08 51

Soliton 2.44 0.62 63 16.87 53

8

Our: 0.4x3 + 0.45x4 + 0.15x8 4.2 1.05 - 26.08 -

[7]: 0.5x2 + 0.28x3 + 0.22x8 3.6 0.8 31 21.2 23

Soliton 2.96 0.71 48 19.09 37

16

Our: 0.16x3 + 0.78x4 + 0.03x15 + 0.03x16 4.53 1.06 - 26.4 -

Soliton 3.54 0.78 36 20.56 28

[17]: 0.59x2 + 0.27x3 + 0.02x5 + 0.12x16 4.01 0.73 45 19.22 37

4

2 2-regular: x2 2 2.98 - 71.31 -

3
Our: x2 2 2.98 - 71.31 -

Soliton 2.25 2.96 0.7 70.11 1.7

4

Our: 0.98x2 + 0.02x4 2.04 3.05 - 71.61 -

Soliton 2.44 2.91 4.8 68.46 4.6

[17]: 0.66x2 + 0.16x3 + 0.18x4 2.52 2.89 5.5 67.82 5.6

[7]: 0.5102x2 + 0.4898x4 2.49 2.84 7.4 67.09 6.7

8

Our: 0.94x2 + 0.06x8 2.36 3.12 - 72.73 -

Soliton 2.96 2.75 13 63.71 14

[7]: 0.5x2 + 0.28x3 + 0.22x8 3.6 2.51 24 57.4 27

16

Our: 0.93x2 + 0.03x9 + 0.03x10 + 0.01x16 2.59 3.15 - 73.2 -

Soliton 3.54 2.57 23 58.72 25

[17]: 0.59x2 + 0.27x3 + 0.02x5 + 0.12x16 4.01 2.54 24 57.11 28
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58% increase in L∗ and a 49% increase in Emax compared to the distribution in [17]. For

N = 2 and dmax = 8, our optimized distribution achieves a 31% increase in the inflection

load and a 23% increase in the peak EE compared to the best existing distribution. For

N = 2 and dmax = 16, our optimized distribution achieves a 36% increase in the inflection

load and a 28% increase in the peak EE compared to the best existing distribution.

For N = 4, the percentage improvements in the inflection loads are as low as 0.7% at

dmax = 2 and as high as 23% at dmax = 16 compared to the best existing distributions; the

percentage improvements in the peak EEs are as low as 1.7% at dmax = 2 and as high as

25% at dmax = 16 compared to the best existing distributions. For higher N , as we have

seen before, the optimal distributions become closer to the 2-regular distribution. While

the percentage improvement in both the inflection load and the peak EE may reduce for

higher N , the optimized distributions presented in this chapter always perform better

than or the same as the best existing distributions. Finally, to improve the peak EE, we

can increase dmax (and consequently d̄) as observed in Table 7.17. This is because the

improved throughput in the numerator of the EE dominates d̄ in the denominator of the

EE.

7.6.5 Variation of the Optimal Distributions with Load

So far we have optimized the repetition distributions of IRSA only at the inflection load,

i.e., for L = L∗, and reported the distributions that maximize the throughput or the EE

at the inflection point only. In this section, we now optimize the repetition distributions

for each L and report the performance achieved by the optimal distributions at each L.

We perform this by setting Lref = L in (7.21), and optimizing the distribution for every

L, possibly even beyond the inflection load. Beyond the inflection load, even though the

throughput of T = L is not achievable, we still assume it is indeed the reference load

and optimize the distribution. As we will see, we indeed obtain suboptimal throughputs

beyond L∗ as a reason, and thus, the main regime of interest for the results presented

in this section is L ≤ L∗. Since reporting the optimized distributions at each L for each

of the configurations is laborious, we only present the average repetition factors of the
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optimized distributions at each load.

(a) EE achieved by the optimal distribution

with K = 1.

(b) Average repetition factor of the optimal

distribution with K = 1.

(c) EE achieved by the optimal distribution

with K = 2.

(d) Average repetition factor of the optimal

distribution with K = 2.

Figure 7.7: Variation of the EE with L, for the K-collision channel.

In Fig. 7.7, we present the variation of the EEs of the K-collision channel achieved by

the distributions optimized for each L. For K = 1, the inflection load occurs at L∗ = 0.8,

0.85, 0.9, and 0.9 for dmax = 3, 4, 8, and 16. For K = 2, the inflection load occurs at

L∗ = 1.7, 1.8, and 1.85 for dmax = 3, 8, and 16. In each of the cases, up to L∗, the energy

efficiency increases monotonically with L, hits a peak and then starts dropping, similar

to the trends in throughput observed in Chapter 3. All the distributions at low loads are

φ(x) = x2, since it is the only distribution with d̄ = 2. At the inflection loads, the peak

EE and the optimal distributions for the above were presented before in Table 7.9. The
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(a) EE achieved by the optimal distribution

for N = 2.

(b) Average repetition factor of the optimal

distribution for N = 2.

(c) EE achieved by the optimal distribution

for N = 4.

(d) Average repetition factor of the optimal

distribution for N = 4.

(e) EE achieved by the optimal distribution

for N = 8.

(f) Average repetition factor of the optimal

distribution for N = 8.

Figure 7.8: Variation of the EE with L, for the fading channel with MIMO, MRC, and

the Normal approximation with ρ0 = 1, γth = 1.
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(a) EE achieved by the optimal distribution

for N = 2.

(b) Average repetition factor of the optimal

distribution for N = 2.

(c) EE achieved by the optimal distribution

for N = 4.

(d) Average repetition factor of the optimal

distribution for N = 4.

(e) EE achieved by the optimal distribution

for N = 8.

(f) Average repetition factor of the optimal

distribution for N = 8.

Figure 7.9: Variation of the EE with L, for the fading channel with MIMO, MMSE

combining, pilot contamination, and channel estimation errors, with τ = 10, ρ0 = 10, and

γth = 10.
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(a) EE achieved by the optimal distribution.

(b) Average repetition factor of the optimal distri-

bution.

Figure 7.10: Variation of the EE with L, for the fading channel with MIMO, MMSE

combining, pilot contamination, and channel estimation errors, with N = 4, ρ0 = 10 and

γth = 10.
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optimal distributions exhibit an interesting trend as described below. At loads much less

than L∗, the distributions remain the same for every dmax (all are φ(x) = x2). At loads

near the inflection load (0.5 < L < 0.8 for K = 1, and 1.65 < L < 1.8 for K = 2), the

distributions are not the 2-regular distributions anymore; they are optimized with higher

d̄ to obtain higher SEs near the inflection load. For a few of the plotted configurations,

the optimized distributions at very low and very high L are the 2-regular distributions.

At loads beyond the inflection load, the SE is poor, and thus, the d̄ of the optimal

distribution starts dropping to increase EE. Thus, we infer that optimizing the repetition

distributions near the inflection load helps in improving the inflection load as well as the

energy efficiency of the system.

At these low loads of 0.7 < L < 1 for K = 1 (and 1.6 < L < 2 for K = 2) increasing

dmax improves the SE which dominates the small increase in L and d̄ in the denominator

of the EE in (7.22). In fact, we see that for K = 2, the rate of increase of the EE is lower

than the rate of increase of the EE for K = 1. Since K = 2 can achieve higher L∗ than

K = 1, any corresponding increase in L for K = 2 results in a correspondingly smaller

increase in the EE due to higher load of operation. Increasing dmax significantly improves

L∗ and the EE initially (i.e., from dmax = 3 to dmax = 4 to dmax = 8) and then only

marginally (to dmax = 16). As we saw before, from dmax = 3 to dmax = 8 increases the SE

significantly but increasing it to dmax = 16 does not warrant the increase in d̄ to increase

the EE. For example, with K = 1, increasing d̄ to 4.2 at L = 0.95 does not increase the

EE; in fact there is a small drop in the EE from L = 0.9 to L = 0.95 with a huge increase

in d̄ from 3.4 to 4.2. Hence, beyond L∗, both EE and d̄ starts reducing.

In Fig. 7.8, we present the variation of the EEs of the fading channel (with MIMO,

MRC, and the Normal approximation with ρ0 = 1, γth = 1) achieved by the distributions

optimized for each L. For N = 2, the inflection load occurs at L∗ = 1.8, 1.85, 1.9, and

1.95 for dmax = 3, 4, 8, and 16. For N = 4, the inflection load occurs at L∗ = 3.95, 4.1,

and 4.25 for dmax = 4, 8, and 16. For N = 8, the inflection load occurs at L∗ = 7.35, 7.35,

and 7.5 for dmax = 3, 8, and 16. At the inflection loads, the peak EE and the optimal

distributions for the above were presented before in Table 7.12. Previously we observed
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that the energy efficiency increases monotonically with L up to L∗, hits a peak and then

starts dropping. The same is true here for N = 2, but is not true for N = 4 or N = 8.

For N = 4 and N = 8, the EEs remain roughly equal with increase in L up to L∗: for

N = 4, the EEs remain the same; for N = 8, the EEs dip only slightly; for L > L∗, the

EEs drop with L as before. This behaviour is because the system is now in the regime

where any increase in L would dominate the denominator of the EE rather than the SE.

For N = 4 and N = 8, the huge increase in d̄ has roughly the same impact as the increase

in SE, and thus, the EEs do not change significantly. In fact, we see that for N = 8, the

rate of increase of the EE is lower than the rate of increase of the EE for N = 4, which

is lower than the rate of increase of the EE for N = 2. Since N = 8 can achieve higher

L∗ than N = 4, any corresponding increase in L for N = 8 results in a correspondingly

smaller increase in the EE due to higher load of operation. Further, for N = 2, we observe

that the optimal distributions for L < 1.8 under all the configurations are close to the

3-regular distribution (φ(x) = x3): for dmax = 3, it is exactly the 3-regular distribution

and for higher dmax it is still close to the 3-regular distribution.

Beyond L = 1.8, d̄ drops down to 2 to achieve higher EE, i.e., the 2-regular distribution

is obtained. For higher dmax, near the inflection loads, the SE increases as d̄ increases,

and thus we obtain higher EEs for all N . Increasing dmax significantly improves L∗ and

the EE initially (i.e., from dmax = 3 to dmax = 4 to dmax = 8) and then only marginally (to

dmax = 16). For N = 8, this change is invisible from dmax = 3 to dmax = 8, but is visible

with dmax = 16. For N = 4 and N = 8, all the distributions at low loads are φ(x) = x2,

since it is the only distribution with d̄ = 2. At loads much less than L∗, the distributions

remain the same for every dmax (all are φ(x) = x2). At loads near the inflection load

(3.95 < L < 4.3 for N = 4, and 7.35 < L < 7.5 for N = 8), the distributions are

not the 2-regular distributions; they are optimized with higher d̄ to obtain higher SEs

near the inflection load. At loads beyond the inflection load, the SE is poor, and thus,

the d̄ of the optimal distribution starts dropping to increase EE. Thus, for the above

configurations, we infer that optimizing the repetition distributions near the inflection

load helps in achieving a higher inflection load, but the energy efficiency of the system
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remains roughly the same.

In Fig. 7.9, we present the variation of the EEs of the fading channel (with MIMO,

MMSE combining, pilot contamination, and channel estimation errors, with τ = 10,

ρ0 = 10, and γth = 10) achieved by the distributions optimized for each L. For N = 2,

the inflection load occurs at L∗ = 0.9, 1, 1.05, and 1.05 for dmax = 3, 4, 8, and 16. For

N = 4, the inflection load occurs at L∗ = 2.95, 3, 3.1, and 3.2 for dmax = 3, 4, 8, and 16.

For N = 8, the inflection load occurs at L∗ = 5.7, 5.75, and 5.8 for dmax = 8, 12, and

16. At the inflection loads, the peak EE and the optimal distributions for the above were

presented before in Table 7.15. Similar to the results with MRC, the energy efficiency

increases monotonically with L up to L∗, hits a peak and then starts dropping for N = 2,

for N = 4 the EE very marginally improves with L, and for N = 8 the EEs remain

roughly equal with increase in L up to L∗. This is because the system is once again in

the regime where any increase in L would dominate the denominator of the EE rather

than the SE. For N = 8, the increase in d̄ has roughly the same impact as the increase in

SE, and thus, the EEs do not change significantly. Similar to before, the rate of increase

of the EEs with respect to L is lower for higher N . Since we can achieve higher L∗ with

higher N , any corresponding increase in L for a higher N results in a correspondingly

smaller increase in the EE due to higher load of operation.

For N = 2, unlike before, we observe that the optimal distributions for L < 1 under

all the configurations are different from each other. In order to compensate for the lower

decoding capability, the distribution is optimized to achieve distributions that are variedly

different from φ(x) = x2. For dmax = 3, it is φ(x) = x3; for dmax = 4, it is φ(x) = x4;

and for dmax = 8, 16 it is a distribution with higher average repetition factor of d̄ = 4.5.

Beyond L = 1, for dmax = 3/4, d̄ drops down close to 2 to achieve higher EE, i.e., close

to the 2-regular distribution. For dmax = 8, 16, d̄ remains roughly the same, and increases

till L = 1.1 and then drops down, respectively. For higher dmax, near the inflection loads,

the SE increases as d̄ increases, and thus we obtain higher EEs for all N . For N = 2,

increasing dmax significantly improves L∗ and the EE initially (i.e., from dmax = 3 to 4

to 8) and then only marginally (to dmax = 16). Similar trends are observed for N = 4
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and N = 8, but the rate of improvement of the EE reduces. For N = 4 and N = 8,

all the distributions at low loads are φ(x) = x2, since it is the only distribution with

d̄ = 2. At loads much less than L∗, the distributions remain the same for every dmax

(all are φ(x) = x2). At loads near the inflection load (2.95 < L < 3.2 for N = 4, and

5.7 < L < 5.8 for N = 8), the distributions are not the 2-regular distributions anymore;

they are optimized with higher d̄ to obtain higher SEs near the inflection load. For L > L∗,

the SE is poor, and thus, the d̄ of the optimal distribution starts dropping to increase EE.

Thus, similar to the previous case, for the above configurations, we infer that optimizing

the repetition distributions near the inflection load helps in achieving a higher inflection

load, but the EE of the system remains roughly the same.

In Fig. 7.10, we study the effect of the pilot length τ on the variation of the optimal EE

distributions for each L, for the fading channel with N = 4 antennas, MMSE combining,

pilot contamination, and channel estimation errors (with ρ0 = 10 and γth = 10). For

τ = 10, the inflection load occurs at L∗ = 3, 3.1, and 3.2 for dmax = 4, 8, and 16. For

τ = 20, the inflection load occurs at L∗ = 3.25, 3.35, and 3.45 for dmax = 4, 8, and 16.

For τ = 30, the inflection load occurs at L∗ = 3.3, 3.4, and 3.5 for dmax = 4, 8, and 16.

Each set of curves for a specific τ follow the same observations about the EE as what we

have seen earlier in this section; hence, we now talk only about the effect of variation in

τ . With increase in τ , we observe that the EE curves and the average repetition factor

curves both shift rightward; the peak EE and the peak d̄ reduces. Increasing in τ improves

the quality of the channel estimates, leading to higher throughputs and inflection loads.

However, the change in the inflection loads is not high enough to justify using a higher

pilot length. The SE reduces due to the pre-log factor (1− τ/τc) and thus, the peak EE

reduces with increase in τ as seen in (7.22).

We observe that with loads near L∗ (for each τ), increasing dmax from 4 to 8 or 16

optimizes the distribution to a variedly different distribution. For higher dmax, near the

inflection loads (3 < L < 3.2 for τ = 10, 3.25 < L < 3.4 for τ = 20, and 3.3 < L < 3.5

for τ = 30), the SE increases as d̄ increases, and thus we obtain higher EEs for all τ . For

each τ , all the distributions at loads much lower than L∗ are φ(x) = x2, since it is the
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only distribution with d̄ = 2. At loads much less than L∗, the distributions remain the

same for every dmax (all are φ(x) = x2). For L > L∗, the SE is poor, and thus, the d̄

of the optimal distribution starts dropping to increase EE as L increases. We note that

these trends are for N = 4 and τc = 100, and under these parameters τ = 10 performs

the best as observed earlier in Table 7.16. For different N and τc, any other τ may be the

maximizer of the EE.

7.7 Summary

In this chapter, we optimized the repetition distributions of IRSA using the differential

evolution genetic algorithm. Firstly, we optimized the repetition distributions of IRSA

with the throughput objective. Next, we found the EE optimal repetition distributions.

We studied the effect of the optimal distributions φ(x) on the inflection load L∗ under

three cases: first case with the K-collision channel; second case with perfect CSI, MIMO,

and MRC; and third case with channel estimation errors, MIMO, pilot contamination,

and MMSE combining. We studied the impact of the maximum repetition factor dmax,

the average repetition factor d̄, the number of antennas N , the pilot length τ on the

repetition distributions, the inflection load, and also the peak EE Emax. The throughput

optimal distributions were close to the 2-regular distribution at high number of antennas.

The 2-regular distribution was also the most energy efficient distribution for IRSA at high

number of antennas and high pilot lengths. However, it was not optimal in the general

case with fewer number of antennas or lower pilot lengths. Compared to the best existing

distributions, we showed that our optimized distributions can achieve up to 58% increase

in the inflection load and up to 49% increase in the peak EE. The optimal distributions

for EE were generally more sparse whereas the optimal distributions for throughput were

more dense. The obtained optimal distributions can be used to operate mMTC at the

peak throughputs as well as the peak EEs. Future work could include finding the optimal

pilot length that maximizes the peak EE.
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7.8 Appendix

7.8.1 Other Results

We recall from Chapter 3 that when perfect CSI is available at the BS, and MRC is used

for decoding, θ1 is given by

θ1 = Γinc(N, ρ
−1
0 γth)/Γ(N), (7.23)

where ρ0 is the SNR, Γinc(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete gamma function,

and Γ(s) is the ordinary gamma function. For r ≥ 2, with t0 , γ−1
th − (Nρ0)−1, θ2 can be

calculated as

θ2 = 1{t0 ≥ 1}+ (1− (1− t0)N)1{0 ≤ t0 ≤ 1}. (7.24)

For r ≥ 3, the Gamma approximation is:

Gamma: θr = 1− Γinc(r − 1, Nt0)/Γ(r − 1), (7.25)

whereas the Normal approximation is

Normal: θr = 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (7.26)

and the Deterministic approximation is

Deterministic: θr = 1{r ≤ bN/γth − ρ−1
0 + 1c}. (7.27)

With these approximations, we now optimize the performance of IRSA.

In Table 7.18, we present the throughput optimal distributions for the fading channel,

and we compare the effect of the approximations on the inflection load L∗. The Gamma

and the Normal approximations have similar optimized distributions as well as average

repetition factors, but the Normal approximation has higher inflection loads. Further,
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Table 7.18: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with ρ0 = 1, γth = 1, and N = 2.

Approximation dmax φ(x) d̄ L∗

Gamma

3 0.05x2 + 0.95x3 2.95 1.69

4 0.39x2 + 0.14x3 + 0.47x4 3.08 1.75

8 0.28x2 + 0.6x3 + 0.12x8 3.33 1.78

Normal

3 0.03x2 + 0.97x3 2.97 1.78

4 0.4x2 + 0.09x3 + 0.51x4 3.1 1.85

8 0.26x2 + 0.6x3 + 0.14x8 3.37 1.9

Deterministic

3 0.71x2 + 0.29x3 2.29 1.71

4 0.82x2 + 0.18x4 2.36 1.74

8 0.86x2 + 0.02x3 + 0.12x8 2.75 1.84

the Deterministic approximation yields similar inflection loads but very different repeti-

tion distributions. This is because the Deterministic approximation is not as good an

approximation to θr as compared to the other two approximations. Also, we have seen in

Chapter 3 that the Normal approximation approximates the inflection load better than

the Gamma approximation.

Figure 7.11: Effect of dmax on the inflection load L∗, for the fading channel with MIMO,

MRC, and the Normal approximation.
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In Fig. 7.11, we study the effect of dmax on the inflection load L∗, for the fading chan-

nel with MIMO, MRC, and the Normal approximation. The inflection loads marginally

increase with increase in dmax as observed previously. Further, the performance with

N = 8 is more than 2× that with N = 2. The effect of the SNR and the threshold on

the inflection load is pretty similar to the previous observations. There is, however, a

saturation in the inflection load at high dmax, which shows that the throughput does not

keep increasing with dmax. The marginal increase in the inflection load, at times, need

not warrant a significant increase in dmax.

We plot the inflection load versus the number of antennas in Fig. 7.12 for Table 7.4

and Table 7.5. In both the subfigures, the inflection load L∗ increases with the number

of antennas. This is because the diversity gain increases with the number of antennas for

MRC, and thus, the SINRs of the users improve which leads to an increase in the inflection

load. Fig. 7.12(a) shows that increasing dmax and trading off a higher d̄ for a higher L∗

is not highly useful. The inflection load increases only margnally and the reduction in

EE due to higher d̄ is not helpful. In contrast, in Fig. 7.12(b) we see that increasing

dmax and trading off a higher d̄ for a higher L∗ is indeed useful, albeit only compared to

the previous figure. In applications where it is necessary to have higher throughputs and

higher inflection loads, increasing dmax is indeed beneficial. The inflection load for every

N reduces with an increase in ρ0 and γth when the two subfigures are compared.

In Fig. 7.13, we study the effect of the number of antennas on the inflection load for

the general case (fading channel with MIMO, MMSE combining, pilot contamination, and

channel estimation errors). This is based on Table 7.6 and Table 7.7. As we observed

in the perfect CSI case with MIMO, the gap between the inflection loads for varied dmax

is very small. In both the subfigures, the inflection load L∗ increases with the number

of antennas. This is because the interference suppression capability increases with the

number of antennas for MMSE, and thus, the SINRs of the users improve which leads to

an increase in the inflection load.

In Fig. 7.14, we plot the peak EEs as a function of the number of antennas for both

ρ0 = 1, γth = 1 and ρ0 = 10, γth = 10 from Table 7.12 and Table 7.13. The maximum
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(a) ρ0 = 1, γth = 1.

(b) ρ0 = 10, γth = 10.

Figure 7.12: Effect of the number of antennas on the inflection load L∗, for the fading

channel with MIMO, MRC, and the Normal approximation.
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(a) ρ0 = 1, γth = 1.

(b) ρ0 = 10, γth = 10.

Figure 7.13: Effect of the number of antennas on the inflection load L∗, for the fading

channel with MIMO, MMSE combining, pilot contamination, channel estimation errors,

and τ = 10.
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(a) ρ0 = 1, γth = 1.

(b) ρ0 = 10, γth = 10.

Figure 7.14: Effect of the number of antennas on the peak energy efficiency Emax, for the

fading channel with MIMO, MRC, and the Normal approximation.
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peak EEs increase from 20.41 to 35.52 to 36.21 to 41.58 kilobits per Joule.

(a) ρ0 = 1, γth = 1.

(b) ρ0 = 10, γth = 10.

Figure 7.15: Effect of the number of antennas on the peak energy efficiency Emax, for the

fading channel with MIMO, MMSE combining, pilot contamination, channel estimation

errors, and τ = 10.

In Fig. 7.15, we plot the peak EEs as a function of the number of antennas. The EEs

in both the subfigures marginally improve with an increase in dmax. The peak EEs are

much higher with MMSE combining than MRC due to improved interference suppression.

When going from ρ0 = 1, γth = 1 to ρ0 = 10, γth = 10, the peak EEs reduce for MRC
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(see Fig. 7.14). Unlike what was observed with MRC, in Fig. 7.15, for MMSE combining,

the peak EEs improve when going from ρ0 = 1, γth = 1 to ρ0 = 10, γth = 10. For MRC,

the effect of improved decodability is eclipsed by the higher amount of power consumed

due to higher N . However, for MMSE combining, the amount of power consumed due

to more computations and high N is eclipsed by the decodability of MMSE. Thus, MRC

and MMSE combining have different trends in the peak EEs.

In Fig. 7.16, we study the effect of the number of antennas N on the peak EE of IRSA.

The EE is dependent on the packet length τc, via both the SE and the power consumed.

For τc = 100, τ = 60 achieves the lowest peak EE since a majority of the time is spent in

channel estimation. This effect is not indicative in either the throughput or the inflection

loads since their definitions do not include τc. Here, τc = 20 achieves the highest peak

EE across all N . For τc = 200 and N ≤ 8, τ = 60 achieves the lowest peak EE since a

majority of the time is spent in channel estimation. For τc = 200 and N = 16, τ = 10

achieves the lowest peak EE since channel estimates are not good enough to decode users.

This inverse trend is due to increase in τc. EE improves due to both increase in SE due

to higher L∗ and lower d̄, but this happens only in the regime where the pilot length is

not too high enough to eclipse the length of the data symbols.
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(a) τc = 100.

(b) τc = 200.

Figure 7.16: Effect of the number of antennas on the peak energy efficiency Emax with

varied packet lengths, for the fading channel with MIMO, MMSE combining, pilot con-

tamination, channel estimation errors, and τ = 10.





Chapter 8

Conclusion

In this thesis, we studied and analyzed the IRSA random access protocol for mMTC

applications. We firstly investigated the performance of IRSA accounting for multiple

antennas, channel estimation errors, and pilot contamination. We also studied the theo-

retical performance of IRSA via density evolution. We next developed a UAD algorithm

based on sparse Bayesian learning to detect the subset of active users in IRSA. We also

analyzed the Cramér-Rao bound on the channel estimation errors in IRSA. After this, we

developed an enhanced version of IRSA termed as censored-IRSA, which performs at the

peak throughput for overloaded mMTC applications. We then investigated IRSA in the

multi-cell and cell-free setups accounting for inter-cell effects and a distributed antenna

array setup, respectively. We studied the effects of densification in IRSA systems and the

advantages of cell-free IRSA systems. Finally, we found the optimal repetition distribu-

tions for IRSA using the differential evolution algorithm for both the throughput and the

energy efficiency objectives. We summarize the main contributions of this thesis below.

8.1 Summary of the Thesis

In Chapter 3, we studied the effect of estimated CSI on the throughput of IRSA. We

first derived the channel estimates in IRSA with the MSBL algorithm, then we derived

the MMSE channel estimates, and finally the low complexity MMSE channel estimates.

385
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We then analyzed the performance of IRSA under all three channel estimation schemes

accounting for pilot contamination, channel estimation errors, path loss, and multiple

antennas at the BS. The peak achievable throughput significantly reduced: in certain

regimes, it resulted in up to 70% loss. We then presented a density evolution based analysis

which can be used to compute the asymptotic performance of IRSA, when users perform

path loss inversion based power control. This analysis included the derivation of three

approximations to the success probability θr, and we observed that these approximations

match well as the number of antennas at the BS becomes large. Finally, we discussed

several new insights into the design of IRSA-based systems: the improvement of the

system throughput, the evaluation of the operating load beyond which the system becomes

interference limited, and the choice of the decoding threshold γth. The results underscored

the importance of accounting for practical channel estimation in studying the throughput

offered by the IRSA protocol.

In Chapter 4, we studied the impact of UAD on the throughput of IRSA. We first

proposed a novel Bayesian algorithm to detect the set of active users in IRSA, which

exploited the knowledge of the APM, and combined the hyperparameter updates across

all RBs to yield an improved UAD performance. We then derived the channel estimates

in IRSA accounting for UAD errors. We next derived the Cramér-Rao bound for the

channels estimated under the hierarchical Bayesian model used to develop the proposed

algorithm. After that, we derived the SINR of all the users accounting for UAD, channel

estimation errors, and pilot contamination, and then studied the effect of these errors on

the throughput via extensive simulations. We finally discussed many new insights into

the design of the IRSA protocol: the complexity of UAD compared to channel estimation,

and the improvement of both UAD and throughput with respect to τ , N , SNR, and L.

In Chapter 5, we developed Censored-IRSA (C-IRSA), which overcame the interfer-

ence limitation of IRSA at high loads. In C-IRSA, users self-censor depending on their

CSI based on an adaptive threshold that is periodically broadcast by the BS, and the

protocol retains the fully distributed, random access nature of IRSA. Firstly, we derived

the MMSE channel estimates and the SINR in C-IRSA accounting for multiple antennas
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the BS, fading, path loss, MMSE combining, pilot contamination, and channel estimation

errors. We then analyzed the empirical performance of C-IRSA with the SINR threshold

model. We next characterized the asymptotic performance of C-IRSA using DE, and also

derived closed-form for the success probability θr, under the Normal and the Gamma

approximations. We also developed two semi-analytic censor functions i(L,Ltgt, L0) and

h(L,Ltgt), with which the system throughput was maximized and the active PLR was

minimized, respectively. After this, we developed an algorithm to find the active PLR-

optimal censor threshold. With this, the PLR of the active users can be driven close to

zero, whilst achieving the highest throughput. At high loads, C-IRSA operates at the

full capacity compared to IRSA which has near-zero throughputs. Finally, we discussed

several insights into the design of C-IRSA: the choice of the target load Ltgt, the load L0,

and the optimal censor function.

In Chapter 6, we first studied the effect of MC interference, namely inter-cell PC and

inter-cell interference, on the performance of IRSA. Firstly, the channel estimates and

the SINR in MC IRSA were derived, accounting for path loss, MIMO fading, intra-cell

PC, and intra-cell interference. It was seen that MC IRSA had a significant degradation

in performance compared to SC IRSA, even resulting in up to 70% loss of throughput

in certain regimes. Recuperating this loss requires at least 4 − 5× larger pilot length

in MC IRSA to yield the same performance as that of SC IRSA. We then analyzed

IRSA in the CF setup, accounting for path loss, MIMO fading, and channel estimation

errors. Specifically, we studied three CF schemes for IRSA: LCF IRSA, CCF IRSA, and

HCF IRSA. We provided insights into the effect of system parameters such as number of

antennas, pilot length, and SNR on the throughput of MC and CF IRSA. We showed that

we can achieve more than 14× improvement in the throughput of CCF IRSA compared

to a massive MIMO SC setup at high loads. We also studied the densification trends

in MC IRSA and LCF IRSA, where we observe an inverse behaviour in the throughput

compared to CCF IRSA and HCF IRSA. For CCF IRSA and HCF IRSA, densification

always improves the performance. For LCF IRSA and MC IRSA, densification does not

help at loads near the inflection loads: it is better to not densify and to operate with a
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massive MIMO SC setup.

In Chapter 7, we optimized the repetition distributions of IRSA using the differential

evolution genetic algorithm. Firstly, we optimized the repetition distributions of IRSA

with the throughput and the energy efficiency objectives. We studied the effect of the

optimal distributions φ(x) on the inflection load L∗ under three cases: first case with

the K-collision channel; second case with perfect CSI, MIMO, and MRC; and third case

with channel estimation errors, MIMO, pilot contamination, and MMSE combining. We

studied the impact of the maximum repetition factor dmax, the average repetition factor d̄,

the number of antennas N , the pilot length τ on the repetition distributions, the inflection

load, and also the peak energy efficiency Emax. The throughput optimal distributions were

close to the 2-regular distribution at high number of antennas. The 2-regular distribution

was also the most energy efficient distribution for IRSA at high number of antennas and

high pilot lengths. However, it is not optimal in the general case with lower number of

antennas or lower pilot lengths. Compared to the best existing distributions, we showed

that our optimized distributions can achieve up to 58% increase in the inflection load and

up to 49% increase in the peak energy efficiency. The optimal distributions for energy

efficiency were generally more sparse whereas the optimal distributions for throughput

were more dense. The obtained optimal distributions can be used to operate mMTC at

the peak throughputs and the peak energy efficiencies.

8.2 Future Work

We list a few interesting research directions which can be pursued as future work.

1. Asynchronism: The asynchronism in random access transmissions can be exploited

to identify which users are active and estimate their channels. In this case, users’

pilot sequences could be thought of as slightly delayed versions of a common syn-

chronization signal. A database of the time shifted pilots available at BS itself

can be used to detect the users and estimate their channels. Exploiting the asyn-

chronous nature of random access transmissions to detect active users and estimate
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their channels instead of orthogonal/non-orthogonal pilots (as seen in Chapter 4) is

an interesting direction for future work.

2. Fairness in C-IRSA: In Chapter 5, we observed that C-IRSA is fair for users since

censoring is performed based only on the small scale fading states of the users. If

a user is shadowed for a long duration of time, then the user can transmit in a

different frequency band. However, if there is a scarcity of bands, then that user

will never be able to send its data to the BS. Accounting for a proportional fairness

mechanism for users with poor CSI can help with this. Another way to incorporate

this is to use multiple thresholds instead of a single threshold. Further, accounting

for load estimation errors, and also a scheme in which the repetition distribution

itself is CSI dependent can improve the performance of C-IRSA.

3. Pilot design for MC IRSA: In Chapter 3, we have seen that employing QPSK

pilots with pilot reuse improved the throughput of IRSA (in Chapter 3, the UAD

performance improved as well). Existing works show that the pilot sequences can be

designed in order to reduce PC [119]. This is especially important in the multi-cell

setup where inter-cell pilot contamination bogs down the performance of IRSA (see

Chapter 6). Designing the pilot sequence sets intelligently can help us overcome the

poor performance of MC IRSA at low pilot lengths.

4. Clustering for CF IRSA: In CF IRSA, only the APs that are associated to any user

can try to decode the user instead of all the APs attempting to decode every user

(see Chapter 6). This reduces the complexity of decoding at each AP, and thus,

user-AP clustering is an interesting direction for future work.

5. Pilot length: The spectral and energy efficiencies of IRSA are maximized by a

moderate pilot length. Low pilot lengths would yield poor throughputs, whereas

high pilot lengths would leave only a small fraction of the packet for data symbol

transmission and would also consume higher power. This was observed in Chapter 3

and Chapter 7. Finding the optimal pilot length can help us operate the system at

the maximum energy efficiency or throughput, depending on the metric of interest.
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6. Quantization and synchronization errors: We assumed full-resolution quantization,

and also perfect RB- and frame- level synchronization across users and the BS in

this thesis (see Chapter 3). Future work can consider relaxing this assumption, and

analyze IRSA with synchronization and quantization errors.

7. Age of information: The age-of-information is a metric that can be used to evaluate

the latency of decoding the users’ packets. This is especially important in massive

random access since it can help us terminate users’ transmissions especially if they

are old packets containing “stale” information. Few recent works in IRSA [51, 79]

have considered this metric with simplistic system models. Analyzing this metric

in the general case can be an interesting direction for research.

8. Machine learning: Machine learning techniques can be used to improve the perfor-

mance of IRSA for mMTC. When the scale of the problem increases to a million

users in mMTC, deep unfolding techniques from machine learning can be leveraged

with our algorithm in Chapter 4 to perform UAD. Further, learning techniques can

be incorporated to improve the multi-user decoding for mMTC.
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access for massive MIMO systems,” IEEE Transactions on Wireless Communica-

tions, vol. 17, no. 12, pp. 8035–8046, 2018.

[119] A. Chowdhury, P. Sasmal, and C. R. Murthy, “Comparison of orthogonal vs. union

of subspace based pilots for multi-cell massive MIMO systems,” in 2020 IEEE 21st

International Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), 2020, pp. 1–5.



BIBLIOGRAPHY 406

[120] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Jour-

nal of machine learning research, vol. 1, no. Jun, pp. 211–244, 2001.

[121] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” Journal of the Royal Statistical Society: Series

B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[122] G. Tang and A. Nehorai, “Performance analysis for sparse support recovery,” IEEE

Transactions on Information Theory, vol. 56, no. 3, pp. 1383–1399, 2010.

[123] R. Prasad and C. R. Murthy, “Cramér-Rao-type bounds for sparse Bayesian learn-

ing,” IEEE Transactions on Signal Processing, vol. 61, no. 3, pp. 622–632, 2013.

[124] L. Valentini, A. Faedi, M. Chiani, and E. Paolini, “Impact of interference sub-

traction on grant-free multiple access with massive MIMO,” in ICC 2022 - IEEE

International Conference on Communications, 2022, pp. 1318–1323.

[125] M. Mohammadkarimi, O. A. Dobre, and M. Z. Win, “Massive uncoordinated multi-

ple access for beyond 5G,” IEEE Transactions on Wireless Communications, vol. 21,

no. 5, pp. 2969–2986, 2022.

[126] A. Algans, K. Pedersen, and P. Mogensen, “Experimental analysis of the joint

statistical properties of azimuth spread, delay spread, and shadow fading,” IEEE

Journal on Selected Areas in Communications, vol. 20, no. 3, pp. 523–531, 2002.

[127] T. Jiang, N. Sidiropoulos, and G. Giannakis, “Kalman filtering for power estima-

tion in mobile communications,” IEEE Transactions on Wireless Communications,

vol. 2, no. 1, pp. 151–161, 2003.

[128] A. Dogandzic and B. Zhang, “Dynamic shadow-power estimation for wireless com-

munications,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2942–

2948, 2005.



BIBLIOGRAPHY 407

[129] J. Reig and L. Rubio, “Estimation of the composite fast fading and shadowing

distribution using the log-moments in wireless communications,” IEEE Transactions

on Wireless Communications, vol. 12, no. 8, pp. 3672–3681, 2013.

[130] Y. Hu and G. Leus, “Self-estimation of path-loss exponent in wireless networks

and applications,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp.

5091–5102, 2015.

[131] N. Salman, A. H. Kemp, and M. Ghogho, “Low complexity joint estimation of

location and path-loss exponent,” IEEE Wireless Communications Letters, vol. 1,

no. 4, pp. 364–367, 2012.

[132] A. Chowdhury, R. Chopra, and C. R. Murthy, “Can dynamic TDD enabled half-

duplex cell-free massive MIMO outperform full-duplex cellular massive MIMO?”

IEEE Transactions on Communications, vol. 70, no. 7, pp. 4867–4883, 2022.

[133] E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with

MMSE processing and centralized implementation,” IEEE Transactions on Wireless

Communications, vol. 19, no. 1, pp. 77–90, 2020.

[134] ——, “Scalable cell-free massive MIMO systems,” IEEE Transactions on Commu-

nications, vol. 68, no. 7, pp. 4247–4261, 2020.

[135] K. Hosseini, J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO and small

cells: How to densify heterogeneous networks,” in 2013 IEEE International Con-

ference on Communications (ICC), 2013, pp. 5442–5447.

[136] U. K. Ganesan, E. Björnson, and E. G. Larsson, “Clustering-based activity de-

tection algorithms for grant-free random access in cell-free massive MIMO,” IEEE

Transactions on Communications, vol. 69, no. 11, pp. 7520–7530, 2021.

[137] Y. Li, Q. Lin, Y.-F. Liu, B. Ai, and Y.-C. Wu, “Asynchronous activity detection for

cell-free massive MIMO: From centralized to distributed algorithms,” IEEE Trans-

actions on Wireless Communications, vol. 22, no. 4, pp. 2477–2492, 2023.



BIBLIOGRAPHY 408

[138] H. Wang, J. Wang, and J. Fang, “Grant-free massive connectivity in massive

MIMO systems: Collocated versus cell-free,” IEEE Wireless Communications Let-

ters, vol. 10, no. 3, pp. 634–638, 2021.

[139] D. Jiang and Y. Cui, “ML and MAP device activity detections for grant-free massive

access in multi-cell networks,” IEEE Transactions on Wireless Communications,

vol. 21, no. 6, pp. 3893–3908, 2022.

[140] X. Wang, A. Ashikhmin, Z. Dong, and C. Zhai, “Two-stage channel estimation

approach for cell-free IoT with massive random access,” IEEE Journal on Selected

Areas in Communications, vol. 40, no. 5, pp. 1428–1440, 2022.

[141] V. Croisfelt, T. Abrão, and J. C. Marinello, “User-centric perspective in random

access cell-free aided by spatial separability,” IEEE Internet of Things Journal,

vol. 9, no. 17, pp. 16 562–16 576, 2022.

[142] F. Mirhosseini, A. Tadaion, and S. M. Razavizadeh, “Spectral efficiency of dense

multicell massive MIMO networks in spatially correlated channels,” IEEE Transac-

tions on Vehicular Technology, vol. 70, no. 2, pp. 1307–1316, 2021.

[143] Z. Chen, F. Sohrabi, and W. Yu, “Multi-cell sparse activity detection for massive

random access: Massive MIMO versus cooperative MIMO,” IEEE Transactions on

Wireless Communications, vol. 18, no. 8, pp. 4060–4074, 2019.

[144] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[145] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview

of massive MIMO: Benefits and challenges,” IEEE Journal of Selected Topics in

Signal Processing, vol. 8, no. 5, pp. 742–758, 2014.

[146] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-

efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans-

actions on Wireless Communications, vol. 14, no. 6, pp. 3059–3075, 2015.



BIBLIOGRAPHY 409

[147] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-

art,” IEEE transactions on evolutionary computation, vol. 15, no. 1, pp. 4–31, 2010.

[148] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm

with strategy adaptation for global numerical optimization,” IEEE Transactions on

Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009.

[149] D. Zaharie, “Critical values for the control parameters of differential evolution al-

gorithms,” in Proc. of MENDEL 2002, 8th Int. Conf. on Soft Computing, 2002, pp.

62–67.

[150] A. Pizzo, D. Verenzuela, L. Sanguinetti, and E. Björnson, “Network deployment for

maximal energy efficiency in uplink with multislope path loss,” IEEE Transactions

on Green Communications and Networking, vol. 2, no. 3, pp. 735–750, 2018.

[151] B. Wang, L. Dai, Y. Zhang, T. Mir, and J. Li, “Dynamic compressive sensing-based

multi-user detection for uplink grant-free NOMA,” IEEE Communications Letters,

vol. 20, no. 11, pp. 2320–2323, 2016.

[152] S. Haghighatshoar and G. Caire, “Multiple measurement vectors problem: A de-

coupling property and its applications,” arXiv preprint arXiv:1810.13421, 2018.

[153] S. S. Thoota and C. R. Murthy, “Massive MIMO-OFDM systems with low resolution

ADCs: Cramér-Rao bound, sparse channel estimation, and soft symbol decoding,”

IEEE Transactions on Signal Processing, vol. 70, pp. 4835–4850, 2022.

[154] B. Li, J. Zheng, and Y. Gao, “Compressed sensing based multiuser detection of

grant-free NOMA with dynamic user activity,” IEEE Communications Letters,

vol. 26, no. 1, pp. 143–147, 2022.

[155] D. Gore and A. Paulraj, “MIMO antenna subset selection with space-time coding,”

IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2580–2588, 2002.



BIBLIOGRAPHY 410

[156] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fad-

ing wireless channels with outage-probability specifications,” IEEE Transactions

on Wireless Communications, vol. 1, no. 1, pp. 46–55, 2002.
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