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Abstract

Massive machine-type communications (mMTC) is a 5G and beyond use case, where the
network is expected to serve millions of devices per square kilometre. Typical mMTC de-
vices include smart energy meters, pressure sensors, temperature indicators, smart factory
equipment, etc. These devices sporadically transmit short packets, i.e., they transmit a
short burst of data once in a while and then largely remain inactive. In order to serve
mMTC scenarios, we need to use grant-free random access (GFRA) protocols since they
have the advantage of a low control and signalling overhead as well as non-orthogonal
use of the channel. GFRA for mMTC is a relatively new research topic and has received
immense interest in the recent past. In this thesis, we analyze several practical aspects of
irregular repetition slotted aloha (IRSA), which is a GFRA protocol for mMTC.

IRSA is a distributed GFRA protocol where users transmit multiple replicas of their
packets in randomly selected resource blocks within a frame to a base station (BS). The
BS recovers the packets using successive interference cancellation (SIC). Existing studies
have analyzed IRSA with idealized assumptions, i.e., neglecting fading, path-loss, channel
estimation errors, pilot contamination, multi-cell interference, etc. These non-idealities
can greatly reduce the performance of the system and must be accounted for in the design
and analysis of any mMTC system.

In this thesis, we first analyze channel estimation in IRSA, exploiting the sparsity
structure of IRSA transmissions, when non-orthogonal pilots are employed across users
to facilitate channel estimation at the BS. Allowing for the use of non-orthogonal pilots is
important, as the length of orthogonal pilots scales linearly with the total number of de-

vices, leading to prohibitive overhead as the number of devices increases. Next, we present
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a novel analysis of the throughput of IRSA under practical channel estimation errors, and
with the use of multiple antennas at the BS. Finally, we theoretically characterize the
asymptotic throughput of IRSA using a density evolution based analysis. Simulation re-
sults underline the importance of accounting for channel estimation errors in analyzing
IRSA, which can even lead to 70% loss in performance in severely interference-limited
regimes. We also provide novel insights on the effect of parameters such as pilot length,
SNR, number of antennas at the BS, etc, on the system throughput.

Next, we develop a novel Bayesian user activity detection (UAD) algorithm for IRSA,
which exploits both the sparsity in user activity as well as the underlying structure of
IRSA transmissions. We then derive the Cramér-Rao bound (CRB) on the mean squared
error in channel estimation. We empirically show that the channel estimates obtained as
a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the
signal to interference plus noise ratio achieved by the users, accounting for UAD, channel
estimation errors, and pilot contamination. Finally, we illustrate the impact of these
non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in
a system with 1500 users and 10% of the users being active per frame, a pilot length
of as low as 20 symbols is sufficient for accurate user activity detection. In contrast,
using classical compressed sensing approaches for UAD would require a pilot length of
about 346 symbols. Our results reveal crucial insights into dependence of UAD errors
and throughput on parameters such as the length of the pilot sequence, the number of
antennas at the BS, the number of users, and the SNR.

Then, we develop an enhanced version of IRSA that can be operated at the peak
performance even at high system loads. IRSA can be used to serve a large number of
users in mMTC while achieving a near-zero packet loss rate (PLR). However, in overloaded
mMTC scenarios, the system is interference-limited, and the PLR is close to one. We
develop a variant of IRSA in the interference limited-regime, namely Censored-IRSA
(C-IRSA), in which users with poor channel states self-censor, i.e., they refrain from
transmitting their packets. This censoring depends on a censor threshold that can be

varied depending on the number of users in the system. Firstly, we empirically and



Abstract iii

theoretically analyze the performance of C-IRSA. Next, we derive the optimal choice
of the censor threshold via a semi-analytic approach and a PLR-optimal algorithmic
approach. This choice of the threshold maximizes the throughput while achieving zero
PLR among uncensored users. Through extensive numerical simulations, we show that
C-IRSA operates at full system throughput at high system loads compared to vanilla
IRSA which has near-zero throughput.

After this, we analyze IRSA in the multi-cell (MC) and cell-free (CF) setups, ac-
counting for pilot contamination, channel estimation errors, and multi-user interference.
Via extensive simulations, we illustrate that, in practical settings, MC IRSA can have
a drastic loss of throughput, up to 70%, compared to SC IRSA. Further, MC IRSA re-
quires a significantly higher training length, in order to support the same user density and
achieve the same throughput: for example, MC IRSA may need about 4 — 5x compared
to SC IRSA. We provide insights into the effect of system parameters such as number of
antennas, pilot length, and SNR on the throughput of MC IRSA and CF IRSA. With
the proposed CF architectures, we show that we can achieve more than 14x improve-
ment in the throughput of CF IRSA compared to a massive MIMO SC setup. We also
study the densification trends in MC IRSA, where we observe an inverse behaviour in the
throughput compared to CF IRSA.

Finally, we optimize the repetition distributions in IRSA with the throughput and the
energy efficiency objectives. Via extensive numerical simulations, we study the effect of
various system parameters such as the maximum repetition factor, the average repetition
factor, the number of antennas, and the pilot length, on the repetition distributions, the
inflection load, and the peak energy efficiency. Compared to the best existing distribu-
tions, we show that our optimized distributions can achieve up to 58% increase in the
inflection load and up to 49% increase in the peak energy efficiency.

Overall, this thesis analyzes and designs the IRSA protocol under several practical non-
idealities. The developed algorithms vastly outperform state-of-the-art and can efficiently

serve mMTC applications.
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Chapter 1

Introduction

Massive machine-type communications (mMTC) is an evolving next generation use-case,
expected to serve around 10° devices per square kilometer [1]. The users in mMTC ap-
plications are sporadically active and transmit short packets to a central base station
(BS) [2]. Typical mMTC devices include smart energy meters, pressure sensors, tem-
perature indicators, smart factory equipment, etc. mMTC applications require random
access protocols that serve large numbers of users [3,4]. Distributed grant-free random
access (GFRA) protocols are appropriate for mMTC, since they incur a low control and
signaling overhead [5], as well as non-orthogonal use of the channel [6]. GFRA for mMTC
is a relatively new research topic and has received immense interest in the recent past.
Irregular repetition slotted aloha (IRSA) is a high performing distributed GFRA pro-
tocol suitable for mMTC applications. In IRSA, users transmit multiple replicas of their
packets to a base station (BS) in randomly selected resource blocks (RBs) [7]. The ac-
cess of the RBs is represented by the access pattern matrix (APM). The BS recovers the
packets using successive interference cancellation (SIC). Existing studies have analyzed
IRSA with idealized assumptions, i.e., neglecting fading, path-loss, channel estimation
errors, pilot contamination, multi-cell interference, etc. These non-idealities can greatly
reduce the performance of the system and must be accounted in the design and analysis
of any mMTC system [8]. In this thesis, we analyze IRSA under several of these practical

aspects.
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1.1 Outline of this Thesis

In this section, we briefly describe the problems addressed in this thesis. The organization
of the thesis is represented as a flow diagram in Fig. 1.1. The main problem addressed
in each chapter is highlighted in solid rectangles, whereas the main analytical technique

used in each chapter is represented in dotted rectangles.

pmezneeees, {" Sparse
i Density : : Bayesian |
: Evolution ! Learning
| Channel User Activity ‘
Estimation Detection
Chapter 3 Chapter 4
Chapter 7 Chapter 5
Optimal Repetition Chapter 6 User
Distributions - Censoring
Multi-Cell &
[—f Cell-Free f—J
| Difterential | /- r { Density |
| Evoution | Deterministi Equivalent; Cven

Figure 1.1: Organization of the Thesis.

1.1.1 Motivation: Irregular Repetition Slotted Aloha for Mas-

sive Machine-Type Communications

In the second chapter, we motivate the central problem of this thesis. We first present
an overview of challenges and standards for mMTC. We then present the working of the
IRSA protocol, and give an overview of the existing works related to IRSA and mMTC.
We conclude this chapter by presenting density evolution, which is an analysis technique

used to find the theoretical performance of IRSA.

1.1.2 Channel Estimation and Data Decoding in IRSA

In the third chapter, we consider the problem of channel estimation in IRSA. We de-

rive channel estimates in IRSA, exploiting the sparsity structure of IRSA transmissions,
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when non-orthogonal pilots are employed across users to facilitate channel estimation at
the BS. Assigning mutually orthogonal pilots to users avoids pilot contamination, but is
prohibitively expensive in mMTC, since the pilot overhead would be proportional to the
total number of users [9]. Thus, pilot contamination (PC), which reduces the accuracy
of channel estimation and makes the estimates correlated [10], is unavoidable in mMTC,
and significantly degrades the throughput of IRSA. Thus, pilot contamination has to be
accounted for while analyzing the performance of GFRA protocols for mMTC.

The contents of this chapter are published in [11,12]. We list our contributions in this

chapter below:

1. We derive channel estimates for IRSA under three schemes: the first one exploits
the sparsity in the APM to estimate the channels of the users, and the other two
assume knowledge of the APM and output minimum mean square error (MMSE)

estimates.

2. We present a novel analysis of the signal-to-interference-plus-noise-ratio (SINR) in
IRSA accounting for channel estimation errors, where estimates are acquired via
non-orthogonal pilots under the three estimation schemes. We account for multiple

antennas at the BS, fading, path loss, and pilot contamination.

3. We theoretically analyze the throughput of IRSA via density evolution (DE), when
users perform path loss inversion based power control. The analysis reveals the

asymptotic performance of the protocols as the number of users and RBs get large.

Through extensive simulations, we show that channel estimation errors lead to a significant
loss of throughput compared to the ideal scenario with perfect channel state information
(CSI) at the BS, even resulting in up to 70% loss in severely interference-limited regimes.
Our analysis also reveals an inflection load, beyond which the system becomes interference-

limited, resulting in a dramatic reduction of the throughput.
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1.1.3 User Activity Detection in IRSA

In the fourth chapter, we consider the problem of user activity detection in IRSA. Since
only a subset of users are active in any frame in mMTC [2], it is essential for the BS to
detect the set of users that are active, before proceeding to perform channel estimation
and data decoding. This process is termed user activity detection (UAD). Knowing the
subset of active users not only saves computational resources by helping the BS decide
which users it needs to decode, it is also important for channel estimation [13,14]. We
develop a novel Bayesian UAD algorithm to detect the subset of active users in IRSA,
which exploits both the sparsity in user activity as well as the underlying structure of
IRSA transmissions. Errors arising from the UAD process, namely, false positives and
false negatives, deteriorate the channel estimates computed at the BS, which in turn
affects the data decoding. Hence, it is crucial to account for these errors while analyzing
the performance of GFRA protocols.

The contents of this chapter are published in [15]. Our main contributions are:

1. We develop a novel Bayesian algorithm to detect the set of active users in IRSA.
UAD in IRSA is a joint-sparse signal recovery problem with an important twist:
different and unknown subsets of the row indices of the joint-sparse matrix partic-
ipate in different measurements. Our algorithm is an enhancement to the multiple

sparse Bayesian learning (MSBL) algorithm [16] to cater to this scenario.

2. We derive the channel estimates at the BS for users in all RBs in IRSA, acquired via
non-orthogonal pilots. We also derive the Cramér-Rao bound (CRB) on the mean
squared error (MSE) of the channels estimated by our proposed UAD algorithm. We
show that a genie-aided MMSE estimator (that has knowledge of the second-order
channel statistics and the user activities) achieves the CRB. We also empirically
show that the MSE of the channel estimates output by the proposed UAD algorithm
meets the CRB.

3. We analyze the SINR achieved by all the users in all RBs, accounting for UAD errors,

channel estimation errors, and pilot contamination. The SINR expression allows us



Chapter 1. Introduction 6

to determine the throughput of IRSA, accounting for all these non-idealities.

Our numerical experiments show that there is at least a 4-fold reduction in the number
of pilot symbols required to achieve a similar UAD performance as that of existing ap-
proaches. Our results reveal crucial insights into dependence of UAD errors and through-
put on parameters such as the length of the pilot sequence, the number of antennas at
the BS, the number of users, and the signal to noise ratio. The loss in performance due
to UAD errors can be recuperated by judiciously choosing the system parameters such
as pilot length, number of antennas, and SNR. For example, in a system with 1500 users
and 10% of the users being active per frame, a pilot length of as low as 20 symbols is suf-
ficient for accurate user activity detection. In contrast, using classical compressed sensing

approaches for UAD would require a pilot length of about 346 symbols.

1.1.4 Censored-IRSA for Interference-Limited mMTC

In the fifth chapter, we develop an enhanced version of IRSA in the interference limited
regime, namely Censored-IRSA (C-IRSA), wherein users with poor channel self-censor,
i.e., they refrain from transmitting their packets. Typically, IRSA can be used to serve a
large number of users while achieving a packet loss rate (PLR) close to zero [7]. However,
in overloaded mMTC applications, the number of users is too high, then the system is
interference limited and the PLR is close to one [17]. The censoring in C-IRSA depends
on a censor threshold that can be varied depending on the number of users in the system.
C-IRSA maintains the distributed nature of IRSA.

The contents of this chapter are published in part in a conference paper in [18], and a

journal paper is under preparation [19]. The contributions of this chapter are as follows:

1. We propose C-IRSA to tackle the interference-limitation of IRSA at high system
loads. This involves self-censoring of users, wherein users with poor CSI refrain
themselves from transmitting, which decreases the effective system load and ensures

that all the uncensored users are successfully decoded.

2. We empirically analyze the performance of C-IRSA accounting for path loss, channel
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estimation errors, MIMO, fading, and pilot contamination.

3. Using DE, we theoretically analyze the performance of C-IRSA when the users

perform power control based on the path loss between themselves and the BS.

4. We derive the optimal censor threshold in the general case: accounting for path loss,
MIMO, fading, channel estimation, and pilot contamination. We present two ap-
proaches: the first is a semi-analytic approach, whereas the second is an algorithmic
approach that is packet loss rate (PLR) optimal. Using these choices of the censor
threshold, the PLR of uncensored users can be driven close to zero at all system

loads, while maintaining the throughput of the system at its highest value.

Using extensive numerical simulations, we show that, C-IRSA operates at the full through-
put at all loads, in contrast to vanilla IRSA which has near-zero throughput as the load
is increased. In particular, at high loads, C-IRSA offers a 10x throughput improvement

over IRSA without user censoring.

1.1.5 Analysis of IRSA in Multi-Cell and Cell-Free Systems

In the sixth chapter, we analyze the performance of IRSA in the multi-cell (MC) and cell-
free (CF) setups, accounting for pilot contamination and multi-user interference. Existing
studies have analyzed IRSA in the single-cell (SC) setup, which does not extend to the
more practically relevant multi-cell (MC) setup due to the inter-cell interference. Further,
SC processing neglecting inter-cell interference is highly suboptimal when applied to MC
systems. Cell-free (CF) architectures have been proposed for expanding the coverage of
communication systems [20]. In a conventional CF system, instead of a conventional BS
at the center of a cell, several access points (APs) are used to jointly serve the users [21].
The APs are connected to a central processing unit (CPU) which is responsible for data
aggregation and network coordination [22]. mMTC has the goal of increased connectivity
and packet success rates. This is especially challenging to achieve when there are several
cell-edge users who may not be decoded in mMTC due to high path losses. Further, these

devices are expected to consume low power and have long battery lives, because of which
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they cannot transmit at high powers to compensate for the path loss. CF architectures
naturally overcome this issue due to the macro-diversity gain (MDG), which helps decode
these edge users [23]. Thus, mMTC scenarios are a natural application for using CF
architectures, and studying IRSA for mMTC in a CF setup is very relevant.

The contents of this chapter are published in [24] and a journal paper is under prepa-

ration [25]. We list our contributions in this chapter below:

1. We study IRSA in the MC setup. We derive the channel estimates and the SINR
in MC IRSA accounting for path loss, MIMO fading, intra-cell pilot contamination
(PC), and inter-cell PC.

2. We analyze IRSA in the CF setup, with all of the above non-idealities. Specifically,
we study three CF architectures for IRSA: one with local processing at each AP,
termed local-cell-free (LCF); next with fully centralized processing at the CPU,
termed centralized-cell-free (CCF); and finally, with hybrid processing at both the
APs and the CPU, termed hybrid-cell-free (HCF).

3. We provide insights into the effect of system parameters such as number of antennas,
number of APs (or BSs), pilot length, and SNR on the throughput of MC IRSA and
CF IRSA.

4. We study the effect of BS and AP densification in MC and LCF IRSA| respectively,

where we observe an inverse behaviour in the throughput compared to CCF IRSA.

To the best of our knowledge, no existing work has analyzed the effect of MC interference
or CF processing in IRSA. Through numerical simulations, we show that inter-cell PC
and inter-cell interference result in up to 70% loss in the MC throughput compared to the
SC setup. Further, MC IRSA requires a significantly higher training length (about 4 —5x
compared to SC IRSA), in order to support the same user density and achieve the same
throughput. Under the CF architecture, we can achieve more than 14x improvement
in the throughput of CCF IRSA compared to a massive MIMO SC setup at high loads.
We also study the densification trends in MC IRSA and CF IRSA: for CCF IRSA and
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HCF IRSA, densification always improves the performance; for LCF IRSA and MC IRSA,
densification does not help at loads near the inflection loads, i.e., it is better not to densify

and to operate with a massive MIMO SC setup.

1.1.6 Optimal Repetition Distributions in IRSA

In the seventh chapter, we optimize the repetition distributions in IRSA using the dif-
ferential evolution algorithm (DEA) [26], under the throughput and energy efficiency
objectives. Energy efficiency is a fundamental aspect of both cellular [27] and machine-
type communications [28]. Energy efficiency becomes even more important in mMTC
since the low-power devices deployed in mMTC scenarios are expected to be IoT devices
which last for several years [29]. These devices are expected to consume as low power as
possible while maintaining high throughput [30]. Thus, energy efficiency is a fundamental
metric of mMTC systems, and in particular, in the IRSA protocol as well. The obtained
optimal distributions can be used to operate mMTC at the peak throughputs as well as
the peak energy efficiencies.

Our contributions in this chapter are as follows:

1. Firstly, we optimize the repetition distributions of IRSA with the throughput and

the energy efficiency objectives.

2. Next, we study the effect of the optimal repetition distributions under three cases:
first case with the K-collision channel; second case with perfect CSI, MIMO, and
MRC; and third case with channel estimation errors, MIMO, pilot contamination,

and MMSE combining.

3. Via extensive numerical simulations, we study the effect of various system param-
eters such as the maximum repetition factor, the average repetition factor, the
number of antennas, the pilot length on the repetition distributions, the inflection

load, and the peak energy efficiency.

We demonstrate that the 2-regular distribution is the most energy efficient distribution

for IRSA at high number of antennas and high pilot lengths. The 2-regular distribution
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is also nearly throughput-optimal at high number of antennas. Compared to the best
existing distributions, we show that our optimized distributions can achieve up to 58%

increase in the inflection load and up to 49% increase in the peak energy efficiency.

1.1.7 Conclusion

In the last chapter, we conclude this thesis. We summarize the designs and analyses
presented in this thesis. Overall, this thesis analyzes the IRSA protocol under several
practical non-idealities. The developed algorithms vastly outperform state-of-the-art and

can efficiently serve mMTC applications. We outline some future research directions for

IRSA and mMTC.
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Chapter 2

Irregular Repetition Slotted Aloha

In this chapter, we first motivate the central problem of this thesis, i.e., massive machine
type-communications (mMTC). Firstly, we explain the challenges faced in mMTC, and the
protocols used in mMTC applications. Secondly, we discuss the working of the irregular
repetition slotted aloha (IRSA) protocol, including the structure of the access pattern
matrix, the successive interference cancellation process, and the decoding process in IRSA.
Then, we survey existing works on IRSA, and also other papers that are relevant to this
thesis. Finally, we describe the process of density evolution, which is an iterative recipe

that can be used to compute the theoretical performance of IRSA.

2.1 Massive Machine-Type Communications

The internet-of-things (IoT) is a network of physical devices that communicate and ex-
change information with each other over the internet [31]. Each IoT device contains the
embedded systems, processors, software, and hardware that can enable the automatic
working of the related IoT ecosystem, where all the devices are internet-enabled [32]. The
goal could be to have an understanding of the environment using the vast amounts of
data produced by these sensors, perhaps, via a gateway to which all the [oT devices send
data to [33]. Typical IoT applications include smart factories, smart cities, environmental

sensing applications, and healthcare [34]. One major application is in a smart factory

13



Chapter 2. Irregular Repetition Slotted Aloha 14

setting, where there are thousands of such static IoT devices (e.g., temperature sensors,
smart energy meters, pressure indicators) which collectively operate over the internet to
ensure the automated smooth running of the smart factory [35]. It is expected that the
scale of such devices will grow in the near future to perhaps millions of devices per square
kilometre. According to the expected requirements [36], in 2025, the total number of
connected devices in the world will be in billions. Communication amongst the IoT de-
vices is a challenge, especially when the number of devices is huge [37]. This application
is known as massive machine-type communications (mMTC), and this application is the
main focus of this thesis.

The three pillars of next-generation communication systems, especially 6G and beyond-
5G communication systems, are expected to be mMTC, ultra-reliable low latency com-
munications (URLLC), and enhanced mobile broadband (eMBB), according to the third
generation partnership project (3GPP) and the international telecommunication union
(ITU) [38]. mMTC is a use case expected to serve millions of IoT-type devices per square
kilometre. mMTC devices transmit short packets sporadically, i.e., they transmit data
once in a while and then largely remain inactive [37]. URLLC applications require pro-
tocols that serve users with very low latencies (up to 1ms) and very high reliability (i.e.,
with a low loss rate up to 107°) [39]. eMBB aims at serving as many cellular users as pos-
sible with higher data rates compared to existing cellular systems [40]. The above three
applications have widely varied quality of service (QoS), and thus, different protocols and
algorithms are needed to serve each application [41]. The focus of this thesis is on the

design and analysis of access protocols, specifically for mMTC applications.

2.1.1 Challenges in mMTC

One of the main challenges in mMTC is allocation of orthogonal resources to the devices
or the users for communications [37]. Conventionally, orthogonal multiple access pro-
tocols (OMA) have been used for cellular communications, wherein users are allocated
orthogonal resource blocks (RBs) for communicating with the BS. This is made possible

by assigning orthogonal resources to users in specific time resources (as in time division
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multiple access) or in specific frequency resources (as with frequency division multiple
access) [9]. Devices typically contend for resources prior to data transmission, and after
receiving an acknowledgement (ACK) of an allocated resource by the BS, they transmit
data on that resource. This is the process used for random access of the channel in current
standards [37]. However, using such protocols for mMTC is prohibitive since orthogonal
RBs cannot be preassigned for such a massive number of users [38]. Millions of users
contending and requesting for RBs lead to excessive delays in acquiring the RBs, and
consequently, high control and signalling overheads [36]. Thus, non-orthogonal use of the
channel is unavoidable in mMTC. For example, using non-orthogonal pilots results in the
phenomenon termed pilot contamination, where the channel estimates of users become
correlated since the pilots of users contaminate the channel estimates of the users [10]. In
particular, in mMTC applications, since it is not possible to assign orthogonal pilots to
all users, the resulting pilot contamination can significantly degrade the performance of
IRSA [42].

The next main challenge in mMTC is the sporadic activities of the users. Fach user
has a packet to transmit only once in a while and they largely remain inactive. Hence,
it is unknown which user would be active a priori and as a consequence, unlike OMA,
orthogonal RBs or pilot sequences cannot be assigned [38]. This challenge has led to
the development of many sparse signal recovery techniques for user activity detection in
random access applications. Compressed sensing (CS) techniques can be used to detect
devices only when a very small percent of them are active [5].

The most famous non-orthogonal access protocol is perhaps the non-orthogonal mul-
tiple access (NOMA) protocol. NOMA is a promising solution for mMTC since without
allocating any extra RBs, multiple users can share and use the same resources [43]. Power-
domain NOMA is a centralized protocol in which the BS pairs two users with disparate
received powers on the same resource block. Centralized implies that there is a cen-
tral entity, namely the BS, that coordinates the access of the channels [44]. The user
with the stronger received signal at the BS is decoded first, with the assumption that
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the other user’s signal is additive noise [45]. Once the first user is decoded, the BS per-
forms successive interference cancellation (SIC) from the received signal using the decoded
data symbols. Then, the BS attempts to decode the user with the lower received power
from the residual received signal [46]. Other variants of NOMA that are also centralized
are code-domain NOMA | delay-domain NOMA, scrambling /spreading based NOMA, and
interleaving-NOMA. These all involve a non-orthogonal collision between users in differ-
ent domains, and are all centralized [47]. Distributed protocols do not have the overhead
seen in centralized protocols, and the devices act on their own will by not requesting the
BS for a grant of resources [44]. Hence, we need to use distributed access protocols for
mMTC.

In existing cellular communications, the traditional goal is to ensure all users or devices
are connected to each other with maximal data rates, with irregular traffic from the
users [48]. Existing works in NOMA are applicable only for cellular communications and
not for mMTC, since they all only analyze NOMA when very few users are connected to
the BS [44]. Typically, these works explore the detection and decoding of users with an
objective to maximize the information theoretic capacity of the system [49]. For mMTC,
the motivation is to ensure connectivity for sporadically transmitting devices [37], whereas
for URLLC, we need to support low latencies and high reliabilities [39], which are both
different from the existing capacity maximization techniques. Further, in mMTC, the
devices transmit only a few packets, infrequently, and unpredictably [42]. Consequently,
we need to develop fresh designs and medium access control (MAC) algorithms specifically

accounting for the challenges in mMTC.

2.1.2 Standards for mMTC

Historically, IoT communications have been handled with a plethora of machine to ma-
chine (M2M) communication protocols [34]. Some famous M2M technologies are wireless
fidelity (Wi-F1i), bluetooth, zigbee, low-power wireless personal area networks (LPWAN),

and long range wide area network (LoRaWAN). IoT protocols have evolved from these
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M2M technologies. These technologies, such as LoRaWAN, can be used for mMTC specif-
ically when there are low throughput long-range applications, but not universally for all
mMTC applications [32]. Further, end-to-end establishment of a dedicated access network
is a disadvantage for such applications [33], because it would incur a large control and
signalling overhead.

3GPP has suggested adapting existing cellular protocols for the mMTC requirements,
especially for applications with high rates and coverage [31]. Long term evolution for
mMTC, which is similar to LPWAN is a standard that can serve low power devices [50].
One other popular protocol is narrow band IoT (NB-IoT), which is a LPWAN standard
applicable for low power devices with high connection density [36]. The development of
these standards for mMTC is towards improving energy efficiency and connectivity [37].
These standards use either traditional multiple access techniques or modern random access
procotols [51]. We now explain these modern random access protocols in detail in the

next section.

2.1.3 Grant-Based vs Grant-Free Protocols for mMTC

There are several protocols that have been proposed and analyzed for mMTC applications.
They are typically divided into grant-based and grant-free protocols [44]. For grant-
based protocols, the users typically request the BS for a grant of resources as depicted
in Fig. 2.1(a). The BS periodically transmits a system information broadcast after which
users select a preamble, perhaps orthogonal, and transmit it in the first phase [36]. The
BS detects the preambles and allocates orthogonal resources to subsets of paired users,
similar to the NOMA protocol. Users who have been allocated the same resource block
transmit at the same time and are received with collisions at the BS [45]. The BS decodes
the data, with perhaps multi-user detection, and then sends back an acknowledgement
(ACK) or a negative-ACK (NACK) based on whether the user was decoded correctly or
not, respectively. This is verified typically using a forward error correction code, or a
cyclic redundancy check code [47]. Conventional OMA is also grant-based.

In grant-free random access (GFRA) protocols, the initial preamble stage is completely
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Figure 2.1: Grant-Based vs Grant-Free Random Access.

skipped [52]. Users randomly select a preamble (perhaps pre-assigned) and transmit data
in a random access non-orthogonal fashion. The BS performs both device detection and
data decoding (perhaps jointly or separately) and then sends an ACK or NACK, as re-
quired. Thus, GFRA do not have the overhead of the additional phase at the beginning,
and devices can transmit as and when required, making GFRA protocols inherently dis-
tributed [53]. That is, devices act on their own will and transmit as necessary, and there
is no central entity that coordinates this transmission. These characteristics of GFRA
protocols make them a promising solution to serve mMTC devices. In particular, GFRA
protocols have the advantage of a low control and signalling overhead, which helps in
transmission of short packets [5]. The non-orthogonal use of the channel in GFRA helps
achieve the high scale of the number of users in mMTC.

Random access (RA) for mMTC is a relatively new research topic and has received

immense interest in the recent past. We now list some commonly used RA protocols for

mMTC.
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1. Coded Random Access (CRA): The CRA family of protocols is a popular set of high-
performing protocols in which users’ packets are repeated multiple times across dif-
ferent resource blocks [54]. In contention resolution diversity slotted aloha (CRDSA),
users transmit their packet replicas in two randomly chosen slots. As an extension,
in D-regular repetition slotted aloha (DRRSA), users transmit their replicas in D
slots each. Next, in Irregular Repetition Slotted Aloha (IRSA), each user transmits
a randomly chosen number of packet replicas in randomly chosen slots [7]. In coded
slotted aloha (CSA), each user encodes their packets into multiple packets and then
transmit them in randomly chosen slots. CRA has been shown to perform well at

high system loads with very low packet loss rates.

2. Sparse code multiple access (SCMA): The main design feature of SCMA is its code-
book design [55]. The raw data bits are mapped to coded bits using a channel
encoder. Then, the SCMA encoder maps the coded bits to multi-dimensional code-
words. The codewords are sparse in nature and are designed under different criteria
to mitigate the multi-user interference. Similar to CRA, the decoding can be per-
formed with message passing. SCMA also has been shown to perform well when the

system is overloaded.

3. Unsourced random access (URA): URA is a GFRA protocol where a massive number
of users transmit their messages to the BS, without a mechanism to identify the
transmitting users [56]. In URA applications, the unique identifiers of the active
users are not important and the receiver is only interested in the message content

itself. URA has been massively studied in recent times [57-59].

4. Pattern division multiple access (PDMA): The devices in PDMA map symbols to
resource elements according to a binary codebook [60]. The receiver decodes the
users with message passing and successive interference cancellation. The codebooks
are constructed to maximize the constellation constrained capacity and also the
Hamming distance. PDMA has been shown to work well when there are a lot

of users in the system [61]. A difference of CRA with PDMA is that the access
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matrix in PDMA is designed in a centralized manner to maximize the so-called
constellation-constrained capacity, which is not scalable to a massive number of

users in mMTC.

5. Others: There are several other GFRA protocols such as non-orthogonal coded ac-
cess, group orthogonal coded access, random phase multiple access, resource spread
multiple access and multi-user shared access (MUSA) [45]. The device sequences
in MUSA are low cross-correlation spreading sequences, whereas the first two use
Grassmanian sequences [62]. MUSA is similar to code division multiple access, where
low length code sequences are used [47]. The error-optimal receiver for these proto-
cols is a minimum mean squared error successive interference cancellation (MMSE-
SIC) receiver. Enhanced versions of these include the interleave grid multiple access
and interleave division multiple access protocols, in which bit-level and symbol-level

interleavers are additionally used, respectively [43].

From the above set of protocols, we now focus on the CRA family of protocols.

2.1.4 Coded Random Access Family of Protocols

The coded random access (CRA) family of protocols include contention resolution di-
versity slotted aloha (CRDSA), D-regular repetition slotted aloha (DRRSA), irregular
repetition slotted aloha (IRSA), and coded slotted aloha (CSA) [63]. These protocols
evolved as variants of the original slotted aloha protocol, in which users transmit their
packet in a randomly chosen time slot. In CRDSA, each user transmits exactly two packet
replicas in randomly chosen two slots, whereas in DRRSA, each user transmits exactly
D packet replicas in randomly chosen D slots. In IRSA the ith user samples a repetition
factor d; € {2,3,. .., dmax} and transmits packet replicas in d; randomly chosen slots [7].
Thus, CRDSA and DRRSA are special cases of IRSA in which each user uses the same
deterministic d;. CSA is a generalized version of IRSA, where the data payload of any
user is split into multiple encoded packets via linear block codes, which are preassigned.

That is, each user encodes its d packet segments across r slots [54], instead of being simply
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repeated as in IRSA. The block code rate is d/r, and the decoding of users exploits the
knowledge of the encoding code.

The CRA family of protocols, and in particular, the IRSA protocol, is the main focus
of this thesis. The common idea across the CRA family of protocols is the transmission of
multiple replicas of users’ packets over shared RBs or slots [17]. The goal is to ensure that
the BS retrieves at least one of these packets and then, using physical layer techniques
(such as successive interference cancellation, optimal combining across antennas, etc.),
the interference is cancelled across other RBs [7]. IRSA can be seen as an instance of
CSA, where users employ repetition codes. The decoding performance of CSA is superior
to TRSA, since each user encodes their packets across the multiple transmissions [54].
However, when it comes to the access of RBs, CSA still employs exactly the same strategy
as IRSA, and thus, the same analyses can be applied to CSA, CRDSA, DRRSA, and IRSA.
Thus, the designs and analyses presented in this thesis are applicable to any of the CRA
protocols as well as any other GFRA protocol that accesses the resources in a similar

fashion.

2.2  Working of Irregular Repetition Slotted Aloha

Irregular repetition slotted aloha (IRSA) is a distributed GFRA protocol that was pro-
posed as a variant of the slotted aloha protocol in [7]. Typical setup in an IRSA is an
uplink system with M users contending to transmit packets over a frame consisting of T’
RBs of equal sizes. The system load of IRSA is L = M/T. We focus on any single frame
in IRSA and elucidate the working in the single frame. Users in IRSA transmit replicas of
their packets on a randomly selected subset of the available RBs in any frame. The access
pattern matrix (APM) is made up by the indices of the RBs in which users transmit in.
The BS performs decoding across the RBs using successive interference cancellation. In
this section, we first discuss the structure of the APM, then we discuss the interference
cancellation process, and finally, we discuss the decoding process in IRSA.

Note: We use the term “resource block” (RB) and “slot” interchangeably in this thesis;

both refer to a time frequency resource which can accommodate a whole data packet.
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2.2.1 Access Pattern Matrix

In TRSA, the mth user samples its repetition factor d,, from a predefined distribution,
independently of other users. Then it chooses d,, slots from a total of T slots uniformly
at random, and transmits replicas of its packet in these d,, slots. The access of slots
in a given frame by all the users is represented by a binary APM, which is formed as
[Glim = gtm,t € [T],m € [M], where g, = 1 if the mth user has chosen to transmit in
the tth slot, and ¢;,, = 0 otherwise. Thus, the APMs in IRSA are random matrices, which
are dependent on the distributions used to generate the repetition factors. With such
a distribution-based pattern generation, users can independently sample their repetition
factors, and by extension, the APM. Since all users generate their patterns independently,
this process is scalable to a massive number of users. Further, this process is completely
distributed in nature, and is thus appropriate for mMTC. In practice, the random subset
of slots is generated using a pseudo-random number generator, whose seed completely
determines the sequence [7]. This seed can be pre-programmed at each user, and made
available to the BS.

In this thesis, we consider both the case where the APM is known at the BS, and the
case where the APM is unknown and needs to be estimated prior to decoding the users’

packets (see Chapter 3).

2.2.1.1 Impact of APM on User Activity Detection

The user activity detection (UAD) problem in massive random access usually leverage
techniques from compressed sensing (CS). CS is a set of signal processing techniques that
are used to efficiently acquire and reconstruct a signal, by finding solutions to underde-
termined linear systems [5]. Applications of CS include massive random access, image
processing, group testing, photography, and magnetic resonance imaging [64]. CS can be
efficiently solved with greedy algorithms, optimization methods, and Bayesian learning
techniques [65]. A typical problem in CS is presented in Fig. 2.2(a), where we need to
recover a sparse vector X from a system of underdetermined linear equations Y = PX.

This is known as a single measurement vector (SMV) recovery problem, since a single
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vector needs to be recovered. Once the support of X is recovered, a least-squares (LS)
problem is used to recover the entries of X. Alternately, the support and the entries of

X can be recovered jointly as well.
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Figure 2.2: Structures in typical compressed sensing vs Structure in IRSA.

For the UAD problem in conventional single-antenna random access, the entries of X
contain the product of the channels of the users and the corresponding activity coeffi-
cients [66]. The entries of X are zero if the corresponding user is inactive and non-zero
if the user is active [67]. Here, we use 7 to denote the length of the pilot sequences used
by the users, and M to denote the number of users (with 7 < M). Further, P € C™*M
contains the pilot sequences of all the users, and Y represents the received pilot signal at
the BS. Majority of the entries of X are zero since the number of active devices in mMTC
applications are less than 5%-10% of the total number of devices [47]. Thus, X is said
to be a sparse vector. For the single-antenna setup, the sparse Bayesian learning (SBL)

algorithm can be used to recover the users’ channels and their corresponding activity
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coeflicients [68,69].

When multiple antennas are used at the BS for decoding for conventional random
access, the structure is a multiple measurement vector (MMV) recovery problem as seen
in Fig. 2.2(b). Here, N represents the number of measurement vectors that need to be
recovered, and it also corresponds to the number of antennas at the BS. If any user is
inactive, the entire row corresponding to that user is all zero, whereas if any user is
active, the entire row corresponding to that user is all non-zero. Thus, X € CM**¥ is a
matrix with jointly sparse columns, i.e., a common support across all the columns. For the
multiple-antenna setup with jointly sparse columns, the multiple sparse Bayesian learning
(MSBL) algorithm can be used to detect which users are active and estimate the active
users’ channel vectors.

Due to the APM structure in IRSA, the UAD problem is not MMV as seen in
Fig. 2.2(c). This structure accounts for the repetitions across the T slots in a frame.
If a user is inactive, the corresponding row of X € CM*NT g still all zero. However, if a
user is active, the corresponding row of X is not all non-zero. It is in fact non-zero only
in chunks, where the non-zero chunk indices are indicated by the slots in which that user
has transmitted a packet replica. This structure is termed as “Row-chunk sparsity” [70].
Thus, there is a double sparsity structure induced by both the activity sparsity of the
users and the sparsity of the columns of the APM. Application of an existing MMV algo-
rithm to the row-chunk sparsity problem in IRSA will yield suboptimal performance since
majority of the chunks in any row are zero. In Chapter 4, we develop a UAD algorithm
for IRSA, specifically to solving the row-chunk sparsity CS problem induced by the APM.

Note: The UAD algorithm proposed in this thesis is also applicable to CRDSA,
DRRSA, and CSA. With CRDSA, each column of the APM, which corresponds to dif-
ferent users, have only two ones at randomly chosen locations and all other entries are
zero. With DRRSA| each column has D ones at randomly chosen locations. Similarly, in
CSA, each column of the APM has r ones and T — r zeroes, whereas in IRSA, the ith

column has d; ones and T' — d; zeroes. Thus, using any of these protocols only affects

the specific instance of the APM, and not the UAD algorithm. While the performance
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of our algorithm applied to these protocols can be different based on the instantaneous
APM, the algorithm itself can still be directly used. This is because the proposed UAD
algorithm is independent of how the APM is generated. The specific instances of the
APM could change individually, but the UAD algorithm, design and analysis does not
change. Thus, our UAD algorithm can be applied to all the procotols in the CRA family.

2.2.2 Successive Interference Cancellation

The decoding in IRSA is an iterative process involving successive interference cancellation
(SIC) [71], where the users are decoded via a combination of inter-RB and intra-RB
SIC [8]. Inter-RB SIC refers to the removal of packet replicas from a different RB than the
one the packet was decoded in, while intra-RB SIC refers to the removal of a packet from
the same RB in which the packet was decoded, in order to facilitate decoding additional
packets that may have been transmitted in that RB. Early works in IRSA used only inter-
RB SIC to decode users and assumed a collision model, wherein only singleton RBs can
be decoded [7]. Here, singleton RBs are RBs in which only a single user has transmitted,
and since there are no collisions in such RBs, users can be decoded with high probability.
The decoding proceeds in iterations, and stops when there is no singleton RB available.
Since no packets can be decoded in RBs where collisions occur, the maximum possible
throughput is one packet per RB, the same as the throughput with perfectly coordinated
multiple access. This maximum can be achieved asymptotically as the number of users
and RBs go to infinity, when the soliton distribution is used to generate the repetition
factors of the users [72].

When the BS is equipped with multiple antennas, it can potentially decode multiple
packets in a single RB [73], and thus singleton RBs are not necessary for decoding. Mul-
tiple packets can be decoded if the signal to interference plus noise ratios (SINRs) of the
packets are sufficiently high [49]. Thus, using an SINR threshold model has also been
considered for IRSA, where users can be decoded if and only if their SINR is higher than
a predetermined threshold [17]. Any user with a sufficiently high instantaneous signal to

interference plus noise ratio (SINR) can first be decoded, and the contribution of that
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user can be removed from the same RB. After the user with the highest SINR is decoded,
other users could potentially be decoded as well. After decoding users with sufficiently
high SINRs, with a combination of intra-RB and inter-RB SIC, the packet replicas of the
decoded users can be removed from all the RBs in which they have transmitted packets.
Then, all the RBs can be revisited to see if further users can be decoded from the residual
signal. This procedure is continued iteratively until no further packets can be decoded.
This yields a higher throughput compared to the collision model, and can potentially
achieve a throughput greater than one packet per RB.

2.2.3 Decoding Process in IRSA

The decoding in IRSA is an iterative process involving SIC [71], where the users are
decoded via a combination of inter-RB and intra-RB SIC [8]. SIC-based decoding can
be viewed as message passing on a bipartite graph [7], and thus IRSA, which uses SIC
decoding, can be decoded on graphs. A typical IRSA frame can be represented as a
bipartite graph, which is made up of M user nodes (one node for each user), 7" slot nodes
(one node for each slot), and the edges between them. An edge connects a user node to
an slot node if and only if that user has transmitted a packet in that corresponding slot.
For example, in Fig. 2.3, there will be an edge between user node u; and slot node s; if

and only if user u; has transmitted a packet replica in slot s;.
’ —
1 sy s3

Figure 2.3: IRSA represented as a bipartite graph.

During decoding, edges that connect to users whose SINR is above a threshold are
removed from each slot. Each decoding iteration consists of several intra-slot SIC and
inter-slot SIC steps. Once an SIC step is performed, the corresponding edge in the

bipartite graph is removed. Thus, the edge between user node u; and slot node s; is
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removed if the user u; is decoded in any of the slots in which the user has transmitted
a packet. Decoding is successful if, at the end of the SIC process, all edges in the graph
get removed. A decoding failure is declared if not all edges have been removed or no new
edge is removed from the graph in two consecutive iterations.

We now illustrate the process of decoding in IRSA via an example. In Fig. 2.4(a), we
consider an IRSA frame with 3 slots and 4 users. A packet is depicted at the intersection
of a user and a slot if that user has transmitted in that corresponding slot. Note that this
is a toy example and a realistic frame would have hundreds of slots and thousands of users.
User 1 has chosen to transmit in slots 1 and 2, and would transmit packet replicas in the
corresponding slots. Each packet replica contains the pilot symbols, the (coded) data
symbols, and the packet decoding error detection symbols, such as a cyclic redundancy
check (CRC). The equivalent bipartite graph and the ensuing decoding is presented in
Fig. 2.4(b) and Fig. 2.4(c).

During decoding, user 2 is first decoded in slot 3, and the contribution of interference
of user 2 is removed from slot 1. Slot 3 is a singleton slot, which is a slot wherein a single
user’s packet is received without collision. The corresponding edge is removed from the
bipartite graph in two stages: one edge from slot node 3 to user node 2, and then the
other edge(s) connected to user node 2, since user 2 is already decoded. Next, if capture
occurs in slot 2, i.e., if user 1’s signal is strong enough compared to user 3, then user 1
can be decoded assuming user 3’s signal is noise (see Fig. 2.8). The corresponding edge
from slot node 2 to user node 1 is removed. Next, the contribution of interference from
all the other slot(s) in which user 1 has transmitted in is removed. This corresponds to
edge removal of all edges user node 1 is connected to. Finally, users 3 and 4 are singleton
users in slots 2 and 3, respectively. They get decoded and the corresponding edges from
the graph are removed. This results in a graph in which all the edges are removed and
thus, all the users are decoded.

The decoding process as explained above exploits capture effect, and is not depen-
dent on singleton decoding. We now explain the decoding process isolated to the cases

accounting and not accounting for capture effect.
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Figure 2.4: SIC-based decoding in TRSA.
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Figure 2.6: Decoding in IRSA — With capture effect.
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Without capture effect, the decoding process can result in a residual graph with many
undecoded edges. This is depicted in Fig. 2.5. Here, there are four users transmitting
in four slots. User 1 gets decoded in slot 2 and then user 3 gets decoded in slot 1. The
residual graph contains two edges connected to each slot node. Without capture effect, the
decoding process stops here. The residual graph is known as a stopping set. In Fig. 2.6,
the decoding in IRSA is depicted with the introduction of capture effect (due to multiple
antennas, path loss, multi-packet reception capability at the receiver). The residual graph
could have user 2 having a higher SINR in slot 3 compared to user 4 in slot 3 (if not, the
decoding ends here). Then, the edge between user node 2 and slot node 3 gets removed.

Finally users 2 and 4 are decoded, and all the edges in the graph are removed.

0‘00

s
—>

s s s s s 3

Figure 2.7: Decoding in IRSA — Singleton decoding.

In Fig. 2.7, we depict the decoding of IRSA with singleton decoding. Singleton de-
coding refers to the decoding of a user’s packet in a slot, if that user were the only user
transmitting in that slot. This was typically assumed in the early works on IRSA [7],
in the collision channel. Here, decoding happens only if a slot node has one edge con-
nected to it. Note that this is not the same as in Fig. 2.5, since the decoding could still

be using a multi-user decoder that does not exploit capture effect (e.g., the 2-collision
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Figure 2.8: Capture effect can yield a throughput greater than 1.
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channel without capture effect). This decoding process continues iteratively and it ends
with 3 users decoded in 3 slots, with an inactive user node 2. Since no packets can be
decoded in slots where collisions occur, the maximum possible throughput is one packet
per slot, the same as the throughput with perfectly coordinated multiple access. In fact,
for collision channels, the optimal throughput can be made arbitrarily close to 1 packet
per RB asymptotically as the number of users and slots go to infinity, and the repetition
factors are generated according to the truncated soliton distribution [72]. This maximum
can be achieved asymptotically as the number of users and slots go to infinity.

When the BS is equipped with multiple antennas, it can potentially decode multiple
packets in a single slot, due to capture effect. In Fig. 2.8, user node 1 is first decoded in
slot node 2 and its edges are removed. Next, due to capture effect, user node 3 is decoded
in slot node 1, and its edges are removed. Then, user node 2 is decoded in slot node 1
and finally user node 4 is decoded in slot node 3. This depicts how TRSA can achieve
throughputs greater than 1 due to capture effect as seen in Fig. 2.4.

2.3 Literature Review

Existing literature in IRSA typically assume some idealizations in the physical layer. The
advantage of this is to analyze each imperfection (such as fading, path loss, pilot contam-
ination, modulation and coding scheme, and perfect SIC) and capture their individual
effects on the performance of IRSA. They can also be compared to other existing works
and can function as benchmarks when realistic assumptions are analyzed. Further, they
help us evaluate if analyzing with non-idealities is even required, and if so, how much gain
or loss we get from doing so. Very few works have analyzed IRSA with non-idealizations.

One of the main focuses of this thesis is to analyze IRSA under such non-idealities.

2.3.1 Early Works in IRSA

The TRSA protocol was initially proposed in [7], where it was studied for the collision

channel, wherein packets could only be decoded in singleton RBs. Singleton slots refer
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to RBs in which only a single packet has been received. This work also connected the
decoding in IRSA to the graph-based decoding of LDPC codes, and analyzed IRSA using
graph-based decoding. The maximum throughput of IRSA, with a collision channel, was
shown to be one packet per RB, when the Soliton distribution is used to generate the
repetition factors [72], which is achievable asymptotically when the number of RBs and
users go to infinity. Note that the slotted aloha protocol has a peak throughput of 1/e
packets per RB.

IRSA was extended to CSA in [54], where error correcting codes are used on the replicas
of the packets and the encoded packets are transmitted instead of the packet replicas. The
authors in [17] first studied IRSA with the Rayleigh fading channel (albeit only a single
antenna at the BS), and the authors in [8] studied IRSA with path loss. When the BS
is equipped with multiple antennas, it can potentially decode multiple packets in a single
slot, if the SINRs of the packets are sufficiently high, which can result in throughputs
greater than 1. Thus, using an SINR threshold model has been considered for TRSA,
where users can be decoded if and only if their SINR is higher than a predetermined
threshold [8,74]. Further, a variety of physical layer abstractions are studied in [74].

The throughput of the IRSA family of multiple access protocols is analyzed using
the density evolution (DE) approach, wherein two probability densities are obtained as
functions of each other [7]. This iterative recipe provides the asymptotic performance of
the system. We explain the working of DE in Section 2.4. The asymptotic throughput
has been obtained for IRSA via DE for the MAC channel [72], accounting for path loss [8],
for the scalar Rayleigh fading channel [17], with multiuser detectors [75], for the polarized
MIMO channel in satellite networks [76], and other variants of IRSA [77,78].

All of the above works in IRSA assume the availability of perfect channel state in-
formation (CSI) at the BS, which is difficult to achieve, especially when non-orthogonal
pilots are employed, which is inevitable in mMTC. Channel estimation errors and pilot
contamination due to non-orthogonal pilots can erase much of the gains promised by IRSA
protocols. Thus, in Chapter 3, we analyze impact of estimated CSI on the performance

of IRSA when non-orthogonal pilots are used.
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2.3.2 Recent Works in IRSA

The age-of-information metric has recently gained interest in IRSA [51,79]. TRSA has
been examined with energy harvesting [80,81], and analyzed in an information theoretic
setting [82]. Several variants of aloha have been proposed like polar slotted aloha [83],
and K-repetition [84,85]. Authors in [86] and [87] separately propose feedback mecha-
nisms for IRSA based on which decoded users cease transmissions. CSA was recently
analyzed with imperfect SIC [88]. The authors in [63,89] studied CSA with an acknowl-
edgement mechanism between frames. IRSA was analyzed with an SIC limit, i.e., a limit
on the maximum number of packets that can be recovered in each RB, in [86]. IRSA has
been analyzed for LEO satellite channels [90]. NOMA based CSA has been proposed for
mMTC [91]. Finally, a joint PHY and MAC design for CRA has been proposed [92].

2.3.3 UAD in IRSA

To the best of our knowledge, the problem of UAD in IRSA has not yet been considered
in the literature. An initial study into estimating the number of active users in IRSA
was conducted in [93], which does not identify the subset of active users. UAD has been
studied for massive random access outside the context of IRSA [13,14]. The activity ma-
trix to be estimated has jointly-sparse columns, i.e., columns that have the same sparse
support [94]. Typical UAD solutions involve compressed sensing-based solutions [53] or
a maximum aposteriori probability (MAP) detection [95]. The sparse Bayesian learn-
ing (SBL) framework has been employed to perform UAD in mMTC [96]. Faster SBL
algorithms for UAD in mMTC have also been developed [97]. Other low complexity al-
gorithms for UAD include approximate message passing [98] and orthogonal matching
pursuit [99]. These approaches, however, cannot be used in IRSA due to the structure
imposed by the APM. A naive approach would be to perform UAD on an RB-by-RB basis
and declare users inactive if they are found to be inactive in all the RBs. As we will show
in Chapter 4, this approach is inefficient and results in large error rates, especially when

non-orthogonal pilots are used.
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2.3.4 Interference Limitation in IRSA

The performance of IRSA crucially depends on the load of the system, which is the ratio
of the number of users participating in a frame to the number of slots in the frame [7]. At
low loads, the system is not interference-limited, and the packet loss rate (PLR) is near-
zero [8]. Existing works in IRSA talk about an inflection load, which is the load beyond
which the system becomes overloaded or interference-limited, resulting in a dramatic
reduction of the throughput of IRSA [86]. Beyond the inflection load, the system is
overloaded, IRSA is MUI-limited, and the PLR rapidly goes to one [8].

To the best of our knowledge, no existing work has addressed the interference limitation
in IRSA. Thus, in Chapter 5, we improve the performance of IRSA in the interference-
limited regime, by developing an enhanced version of IRSA termed as censored-IRSA

(C-IRSA).

2.3.5 Multi-Cell and Cell-Free IRSA

In practice, multiple BSs are deployed to cover a large region, and thus, inter-cell interfer-
ence is inevitable [100]. Both intra-cell interference and inter-cell interference significantly
affect the decodability of users [101]. Pilot contamination is caused by both within-cell
and out-of-cell users, termed intra-cell pilot contamination (InPC) and inter-cell pilot con-
tamination (IPC), respectively. Furthermore, MC processing (e.g., MC MMSE combining
of signals) schemes can achieve better performance compared to SC processing, since it
accounts for inter-cell interference [49].

Cell-free (CF) architectures have been proposed for expanding the coverage of com-
munication systems [20]. In a typical CF system, instead of conventional BSs deployed at
the centers of cells and serving only the users within the cell, several small access points
(APs) are used to jointly and cooperatively serve the users [21]. These APs are spread
across the entire region of interest where users have to be served. The APs are connected
to a central processing unit (CPU) which is responsible for data aggregation and network

coordination [22]. mMTC has the goal of increased connectivity and packet success rates.
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This is especially important when there are several cell-edge users who may not be de-
coded in mMTC due to high path losses. Further, these devices are expected to consume
low power and have long battery lives, because of which they cannot transmit at high
powers to compensate for the high path loss. CF architectures naturally overcome this
issue due to the macro-diversity gain (MDG), which helps decode these edge users [23].
Thus, mMTC scenarios are a natural application for using CF architectures, and studying
IRSA for mMTC in a CF setup is important.

To the best of our knowledge, no existing work has analyzed the effect of multi-
cell (MC) interference on IRSA, nor analyzed IRSA in a cell-free (CF) setup. Thus, in
Chapter 6, we account for intra-cell interference and inter-cell interference to analyze
IRSA in both the MC and CF setups. We improve upon the peak performance of IRSA

in these setups.

2.3.6 Repetition Distributions

In IRSA, the mth user samples their repetition factor d,, from a predefined probability
distribution. Existing works have used many distributions for generating the repetition
factor. The first paper on IRSA [7] has optimized the repetition distributions for IRSA
under the collision channel and proposed a few distributions which have a peak inflection
load of 0.965. The truncated soliton distribution [72] has been shown to be optimal for
IRSA under a collision channel, wherein users can be decoded only if they are received
collision-free at the BS, and can push the corresponding throughput close to unity. The

truncated soliton distribution is defined by

( 1 _
T d=2
2,21
=0 —— 3<d<k, 2.1
M=\ da-ns 2S4S 1)
0 otherwise,

\

where ¢4 is the probability that a user has a repetition factor d, ks is the maximum

value that the repetition factor can take, a, € (0,1) is a convergence parameter, and
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z=1—as/2 — 1/ks is a normalization constant. However, under different physical layer
assumptions and with more efficient techniques (both of these are integral aspects of this
thesis), we require better repetition distributions, so that the peak performance of TRSA
can be improved.

Typically, numerically optimized distributions have been obtained for IRSA (e.g., for
IRSA with the collision channel [7], and for IRSA with the pure fading channel [17]).
The differential evolution algorithm can be used to numerically obtain the throughput-
optimal distributions in IRSA [102]. The authors in [17] have optimized the repetition
distributions for IRSA with pure fading channels in the SISO case and have demonstrated
that the achievable peak inflection loads with the optimized distributions exceed unity.
The authors in [8] have shown that the soliton distribution is nearly optimal for IRSA
with path-loss-only-channels, but they also show better performing distributions. The
authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the most energy
efficient distribution for IRSA.

All of the above papers have optimized the repetition distributions of IRSA under
different assumptions. There is no guarantee that those distributions will be optimal
for IRSA in the general case, i.e., with pilot contamination, channel estimation errors,
multiple antennas, etc. Thus, in Chapter 7, we find repetition distributions that perform

better than the soliton distribution or other existing distributions in the general case.

2.4 Density Evolution

Density Evolution (DE) analysis has been applied to characterize the asymptotic perfor-
mance of message passing-based decoding on graphs for low density parity check (LDPC)
codes [103] and TRSA [7]. DE is an iterative recipe to compute the asymptotic through-
put. A typical IRSA frame can be represented as a bipartite graph, which is made up of
M user nodes (one node for each user), 7' RB nodes (one node for each RB), and the edges
between them. An edge connects a user node to an RB node if and only if that user has
transmitted a packet in that corresponding RB. DE is applicable as M and T" — oo with
L = M/T kept fixed [7]. Detailed discussion of the DE technique is found in Chapter 3.
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We present only a summary of the technique now.

2.4.1 Overview of DE

The user nodes and the RB nodes exchange failure messages along the edges in any
iteration if there is a decoding failure in that iteration. DE involves the characterization
of two decoding failure probabilities, one each from users to RBs and from RBs to users.
The probability that an edge carries a failure message from an RB node to a user node
in the ¢th iteration is denoted by p;, and the probability that an edge carries a failure
message from a user node to an RB node in the ith iteration is denoted by g;.

We now discuss the degree distributions in the bipartite graph, which we later use to
characterize the failure probabilities. The total number of packets transmitted by a user
in any frame in IRSA is referred to as the repetition factor of that user. Each user can
have different repetition factors in IRSA. The node-perspective user degree distribution is
defined as the set of probabilities {(bd}fj’;;", where ¢, represents the probability that a
user has a repetition factor d, with d,.x being the maximum number of RBs in which any
user is allowed to transmit. The total number of packets received in an RB is referred to
as the collision factor of that RB. The node-perspective RB degree distribution is defined
as the set of probabilities {1}, where ). represents the probability that an RB has a
collision factor ¢. The polynomial representations of the node-perspective user and RB
degree distributions are

o) = 3 bart, blw) =3 v, (2.2

d=2

respectively. The corresponding edge-perspective user and RB degree distributions are
defined as A(z) = Y02 N\ 29! = ¢/ (2) )¢/ (1); €(x) = oM €t = ¢/ () /¢ (1), respec-
tively, where Ay = d¢y/@'(1) represents the probability that an edge is connected to a
user with repetition factor d and & = ci)./¢'(1) represents the probability that an edge
is connected to an RB with collision factor ¢. The four degree distributions defined above

are all probability generating functions. The input load L of the system is defined as the



Chapter 2. Irregular Repetition Slotted Aloha 39

ratio of the number of users to the number of RBs, L & M/T. The average repetition
factor is d = ¢/(1) = >, dpa and the average collision factor is ¢ = /(1) = Y, ctb.,
making the load L = M/T = ¢/d. Thus, fixing the load L and the repetition distribution
¢(x) fixes the other three distributions as well.

The failure probability ¢; is calculated using the edge-perspective user degree distri-
bution as

dmax max
= " =D A = Apia). (2.3)

d=2

The failure probability p; is calculated using the edge-perspective RB degree distribution

as
—quzze qu’ -2 f(g) (2.4

where 6, denotes the probability that the reference packet gets decoded in the current
decoding iteration starting from degree r using only intra-RB SIC [8].

Thus, ¢ = A(pi—1) and p; = f(g;) are calculated alternately as functions of each
other as seen in (2.3) and (2.4). The procedure can be initialized with either gy = 1 or
po = f(1). The failure probability at the end of decoding is ps = lim; ;00 p; and (pso)? is
the probability that a packet transmitted from a user with repetition factor d does not
get decoded at the receiver. Therefore, the asymptotic packet loss rate (PLR), which is
the fraction of packets that are not decoded at the BS, is calculated as

dmax

PLR = ¢(psc) = > " dal(psc)”. (2.5)

d=2

The asymptotic throughput of the system can now be obtained from the asymptotic PLR
as T = L(1 — PLR). The iterations p; = f(A(p;—1)) converge asymptotically to ps, = 0 if
the system load L < L* [7]. Here, L* is called the inflection load of the system: for any
L > L*, the system becomes interference limited and the PLR does not converge to 0 as

L increases. Thus, for L < L*, p, = 0 and therefore the asymptotic PLR = 0, and the
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throughput equals L. For L > L*, the throughput decreases monotonically with L.

2.4.2 Application of DE

We illustrate the DE process by applying it to earlier variants of IRSA.

1. We first analyze the performance of the conventional slotted aloha protocol. This

is the simplest version of IRSA where users transmit their packet randomly in any
one slot (without any repetitions). For slotted aloha, we have the singleton de-
coding model, where we have that a packet can be decoded in a slot if it was re-
ceived without any collisions. Thus, we have that 6, = 1{r = 1} and the degree
distributions become ¢(z) = x,A\(x) = 1, and ¥(z) = exp(—L(1 — z)). Then,
the failure probabilities become ¢; = 1,p; = 1 — exp(—L) = po, the PLR be-
comes PLR = ¢(ps) = 1 — exp(—L) and thus, the throughput is 7 = Le~L.
The throughput can be maximized analytically, and thus, the peak throughput
is 7* = 1/e ~ 0.37, which occurs at L* = 1.

. We now analyze the performance of the contention resolution diversity slotted
aloha protocol, which is the next simplest version of IRSA where users transmit
replicas of their packets randomly in any two slots. We still assume the singleton
decoding model, and thus, 6, = 1{r = 1}. The user degree distributions are ¢(z) =
22, M\(z) = z, and (x) = exp(—2L(1 — z)), and thus, the failure probabilities are
¢ = pi—1,pi = 1 —exp(—2Lg;). The maximum throughput can be numerically
found to be T* = 0.55, but not in closed form, using DE. In D-regular repetition
slotted aloha, ¢(z) = 2P, \(z) = P71, and ¥ (z) = exp(—DL(1 — x)), and thus,
the failure probabilities are ¢; = p;_1,p; = 1 — exp(—DLg;). Again, the maximum

throughput has to be numerically found.

. We next analyze the performance of IRSA with singleton decoding [7], for
which we have that 6, = 1{r = 1}. With the degree distribution ¢(z) = 0.52% +
0.282°% + 0.222% [7], we have that d = 3.6, A\(z) = 0.28z + 0.232% + 0.4927, and
Y(z) = exp(—3.6L(1 — z)) = p(x). Thus, the failure probabilities are ¢; = A(p;i—1),



Chapter 2. Irregular Repetition Slotted Aloha 41

and p; = 1—exp(—3.6Lg;). Here, the PLR and the throughput can be only calculated
numerically as PLR = ¢(po,) and T = L(1 — PLR), and not in closed form. The
above distribution has shown to achieve a maximum throughput of 7* = 0.938.
Further, the soliton distribution [72] has been proven to be an optimal distribution

that pushes 7* — 1 for L — 1.

4. We now analyze the performance of IRSA with multi-packet decoding, for
which we have that 6, = 1, 1 <r < K. Under multi-packet decoding, the receiver
can decode K or fewer packets perfectly and this would result in 7* > 1 due to

multi-user decoding. This yields
o P)/inc(K7 LgQ1>

Once again, the throughput can be only calculated numerically and not in closed

form.

We use the DE process in Chapters 3, 5, and 7 to find the asymptotic performance
of IRSA. The DE process can also be used with the help of the differential evolution
algorithm to optimize the repetition distributions of IRSA, which forms the main focus

of Chapter 7.

2.5 Summary

In this chapter, we first introduced the requirements for mMTC and then surveyed GFRA
protocols proposed for mMTC. We then introduced the CRA family of protocols, and
expanded on the working of the IRSA protocol and its decoding. We surveyed existing
works on IRSA and then summzrized the DE recipe to compute the throughput of IRSA.
The next chapter focuses on the analysis of IRSA with practical channel estimation, i.e.,

with non-orthogonal pilots and pilot contamination.
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Chapter 3

Channel Estimation and Data

Decoding in IRSA

3.1 Introduction

Massive machine-type communications (mMTC) is an evolving 5G use-case, expected to
serve around 10% devices per square kilometer [1]. The users in mMTC applications are
sporadically active and transmit short packets to a central base station (BS) [2]. Grant-
free random access (GFRA) protocols are appropriate in mMTC applications since they
incur a low control and signaling overhead [5,6]. Typically, in these protocols, users
transmit packets (consisting of a header containing pilot symbols followed by the data
payload) by randomly accessing resource blocks (RBs).! Since the length of orthogonal
pilots scales linearly with the number of users, the overhead of assigning orthogonal pilots
becomes prohibitively expensive. Thus, pilot contamination is inevitable due to the use
of non-orthogonal pilots, and has to be accounted for while analyzing the performance of
GFRA protocols for mMTC.

One popular GFRA protocol is irregular repetition slotted aloha (IRSA) [7,54]. Users

in IRSA transmit replicas of their packets on a randomly selected subset of the available

1We refer to the time-frequency resource as resource blocks (RBs), since each RB can accommodate
a whole data packet.
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RBs. The indices of the RBs in which they transmit make up the access pattern matrix
(APM). Existing works in IRSA assume availability of perfect channel state information
(CSI) at the BS, which is difficult to achieve, especially when non-orthogonal pilots are
employed. Channel estimation errors and pilot contamination due to non-orthogonal
pilots can erase much of the gains promised by IRSA protocols. Thus, one of the main
goals of this chapter is to understand the impact of estimated CSI on the performance of
IRSA when non-orthogonal pilots are used.

The contents of this chapter is published in a conference paper in IEEE SPAWC
in 2019 [12], for a pilot length 7 = 1, and in a full length journal paper in the IEEE

Transactions on Signal Processing in 2023 [11], for the general case.

3.1.1 The IRSA protocol

The decoding in IRSA is an iterative process involving successive interference cancellation
(SIC) [71], where the users are decoded via a combination of inter-RB and intra-RB
SIC [8]. Inter-RB SIC refers to the removal of packet replicas from a different RB than the
one the packet was decoded in, while intra-RB SIC' refers to the removal of a packet from
the same RB in which the packet was decoded, in order to facilitate decoding additional
packets that may have been transmitted in that RB. The conventional version of IRSA
used only inter-RB SIC to decode users and assumed a collision model, wherein only
singleton RBs can be decoded [7]. Here, a singleton RB refers to an RB where a single
user’s packet is received without collision. Since no packets can be decoded in RBs where
collisions occur, the maximum possible throughput is one packet per RB, the same as the
throughput with perfectly coordinated multiple access. This maximum can be achieved
asymptotically as the number of users and RBs go to infinity, when the soliton distribution
is used to generate the repetition factors of the users [72].

When the BS is equipped with multiple antennas, it can potentially decode multiple
packets in a single RB, i.e., if the signal to interference plus noise ratios (SINRs) of
the packets are sufficiently high. Thus, using an SINR threshold model has also been
considered for IRSA, where users can be decoded if and only if their SINR is higher than
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a predetermined threshold [17]. After decoding users with sufficiently high SINRs, with a
combination of intra-RB and inter-RB SIC, the packet replicas of the decoded users can be
removed from all the RBs in which they have transmitted packets. Then, all the RBs can
be revisited to see if further users can be decoded from the residual signal. This procedure
is continued iteratively until no further packets can be decoded. This yields a higher
throughput compared to the collision model, and can potentially achieve a throughput
greater than one packet per RB. Thus, a second goal of this chapter is to characterize
the performance of IRSA under estimated CSI as a function of system parameters such

as the number of antennas at the BS, the pilot length, the SINR threshold, etc.

3.1.2 Related Works

The throughput of the IRSA family of multiple access protocols is analyzed using the den-
sity evolution (DE) approach, wherein two probability densities are obtained as functions
of each other [7]. This iterative recipe provides the asymptotic performance of the sys-
tem. The asymptotic throughput has been obtained for IRSA via DE for the MAC [72],
accounting for path loss [8], for the scalar Rayleigh fading channel [17], with multiuser
detectors [75], for the polarized MIMO channel in satellite networks [76], and other en-
hanced variants of IRSA [77,78]. We have proposed an algorithm to detect the subset
of active users in IRSA [15], wherein we also study the effect of imperfect SIC on IRSA
(See Chapter 4). In contrast, we focus on the effect of channel estimation errors on the
performance of IRSA.

Thus, a theoretical analysis of the throughput of the IRSA protocol under pilot con-
tamination, accounting for the effect of channel estimation errors, path loss, fading, and
multiple antennas at the BS, is not yet available in the literature, to the best of our

knowledge.
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3.1.2.1 Pattern Division Multiple Access

A closely related protocol is pattern division multiple access (PDMA) [60], where users
replicate their packets across a subset of RBs governed by a binary APM. The non-
orthogonal channel access, the repetition of packets across multiple RBs, and the SIC-
based decoding are common to both PDMA and ITRSA based systems. Hence, the design
and analysis of IRSA can be adapted to PDMA and vice versa. A difference with PDMA is
that the APM is designed in a centralized manner to maximize the so-called constellation-
constrained capacity [60]. This method quickly becomes computationally prohibitive as
the number of users gets large in mMTC. On the other hand, for IRSA, the truncated
soliton distribution has been used both in the absence [72] and presence [8] of the so-called
capture effect, to obtain near-optimal throughput. Owing to the similarity of PDMA with
IRSA, the truncated soliton distribution [72], which offers near-optimal throughput, can
be used by users in PDMA, independently of one another.

3.1.3 Contributions

Our main contributions in this chapter are as follows:

1. We derive channel estimates for IRSA under three schemes: the first one exploits
the sparsity in the APM to estimate the channels of the users, and the other two
assume knowledge of the APM and output minimum mean square error (MMSE)

estimates. (See Theorem 3.1 in Sec. 3.3.)

2. We present a novel analysis of the SINR in IRSA accounting for channel estima-
tion errors, where estimates are acquired via non-orthogonal pilots under the three

estimation schemes. (See Theorem 3.2 in Sec. 3.4.)

3. We theoretically analyze the throughput of IRSA via DE, when users perform path
loss inversion based power control. The analysis reveals the asymptotic performance
of the protocols as the number of users and RBs get large. (See Theorem 3.3 in

Sec. 3.5.4 and also Sec. 3.5.3.)
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Through extensive simulations, we show that channel estimation errors lead to a sig-
nificant loss of throughput compared to the ideal scenario with perfect CSI at the BS,
even resulting in up to 70% loss in severely interference-limited regimes. In particular, in
mMTC applications, since it is not possible to assign orthogonal pilots to all users, the
resulting pilot contamination can significantly degrade the SINR, leading to poor perfor-
mance. On the positive side, this loss in performance can be recuperated by optimizing
system parameters such as pilot length, number of antennas, frame length, signal to noise
ratio, and SINR threshold. In particular, we show that the pilot length required to obtain
near-optimal performance is orders of magnitude lower than the pilot length needed to
assign orthogonal pilots to all users. For example, a pilot length of 7 = 12 is sufficient
to obtain optimal performance with M = 150 users, whereas the use of orthogonal pi-
lot sequences requires 7 = 150 pilot symbols. (See Fig. 3.2). This is possible because
only a small fraction of users transmit in a given RB in IRSA; exploiting this sparsity
in user access allows one to obtain accurate channel estimates even when the pilots are
non-orthogonal. (See Algorithm 1.)

Our analysis also allows us to determine the inflection load, beyond which the system
becomes interference-limited, resulting in a dramatic reduction of the throughput. The
asymptotic throughput obtained via DE serves as an upper bound for the achievable
throughput, and facilitates numerical optimization of the throughput with respect to the

system parameters.

Notation

The symbols a, a, A, [A];., [A].;, On, 1y, and Iy denote a scalar, a vector, a matrix, the
1th row of A, the jth column of A, all-zero vector of length N, all ones vector of length
N, and an identity matrix of size N x N, respectively. [a]s and [A]. s denote the elements
of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix
with diagonal entries given by a. The set of real and complex matrices of size N x M
are denoted as RYV*M and CY*M. Af(a, A) and CN(a, A) denote the real and complex

Gaussian distribution, respectively, with mean a and covariance A. [N] denotes the set
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{2, N LI FE, BT [, E[, and Eq [] denote the magnitude (or cardinality
of a set), f3 norm, transpose, conjugate, hermitian, expectation, and the expectation
conditioned on a, respectively. The superscript p is used as a descriptive superscript in
association with a symbol that is related to the pilots. All the other superscripts (or
subscripts) that have not been defined as above are indices. A non-exhaustive list of

symbols used in this chapter is presented in Table 3.1.

Table 3.1: Mathematical symbols used in this chapter.

Symbol | Quantity Symbol | Quantity
L Load Yor Threshold used to declare support
0, Success probability P Data power
T Pilot length Yth Capture threshold
T Number of RBs pr Pilot power
Te Packet length G Access pattern matrix
N Number of antennas Ny Noise variance
T Throughput A Regularization parameter
M Number of users ol Channel variance

3.2 System Model

An IRSA system is considered with M single-antenna users communicating with a central
BS equipped with N antennas. The users are assumed to be arbitrarily located within
a cell, with the BS located at the cell center. The fading is modeled as block-fading,
quasi-static and Rayleigh distributed. The time-frequency resource is divided into RBs,
and 7" RBs together constitute a frame. The RBs can be slots, subcarriers or both. In
each frame, the users contend for the channel by randomly selecting a subset of RBs, and
they transmit replicas of their packets in the selected RBs. Each packet replica comprises
of a header containing pilot symbols and payload containing data and error correction
symbols.

The access of RBs in a given frame by all the users can be represented by a binary access
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pattern matrix (APM) G € {0,1}7*M. The entries of G are denoted by g = [G|im, and
gim = 1 if the mth user transmits its packet in the ¢tth RB, and ¢, = 0 otherwise. The
mth user samples their repetition factor d,, from a preset probability distribution. They
then choose d,, RBs from a total of 7" RBs uniformly at random for transmission. We
note that, due to the distributed nature of the protocol, the M columns of G are i.i.d.,
and G is independently generated from one frame to the next.

At the BS, the received signal in the tth RB is a superposition of the packets trans-
mitted by the users that are scheduled to transmit in the same RB. In the pilot phase, if
gim = 1, the mth user transmits a 7-length pilot p,, € C” in the tth RB, with each pilot
symbol transmitted at an average power PP, and thus, E[||p,,||?] = 7PP. The pilot signal
Y? € CV*7 received at the BS using its N antennas and in the tth RB is given by

M
Y = Zmzlgtmhtmpfi + N3, (3.1)

where N? € CN*7 is the complex additive Gaussian noise at the BS with [N%],; P

CN(0,No) Vn € [N], j €[r] and t € [T], and Ny is the noise variance. Here hy,, =
[Ptmis - - - hemn] T is the uplink channel vector of the mth user in the tth RB, with hy,, i
CN(0, B02), YVt €[T], m € [M] and n € [N], where 3,, is the path loss coefficient and
o2 is the fading variance.

In the data phase, users transmit their data symbols. Considering one of the data
symbols, the mth user transmits a data symbol z,, with E[z,,] = 0 and E[|z,,|*] = P,

i.e., with transmit power P. The corresponding received data signal y, € C at the BS

in the tth RB is

M
y: = Zmzlgtmhtmxm + n;, (32)

where n; € CV is the complex additive white Gaussian noise at the BS with [n], £

CN(0,Ny), Vne[N]and t € [T].
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3.2.1 SIC-based Decoding

The received data is processed iteratively at the BS. The BS computes channel estimates
for all users in all RBs using the pilot symbols.? It uses these channel estimates to combine
the received data signal across the BS antennas and attempts to decode the user’s data
packet, treating interference from other users as noise. If it successfully decodes any user,
which can be verified via a cyclic redundancy check, it performs SIC in all RBs in which
that user has transmitted, with both inter-RB and intra-RB SIC. The BS proceeds with
the next iteration, where the channels are re-estimated for the remaining users, and this
decoding process proceeds iteratively.

That is, if the SINR of a packet in a given RB in any decoding iteration exceeds a
threshold ~¢,, then the packet can be decoded correctly [8,17]. Packet capture occurs
when a packet can be decoded correctly as per the SINR threshold model, even though
it collides with another packet, and is thus considered a good abstraction of the decoding
in the physical layer.

We now describe the performance evaluation of IRSA via the SINR threshold model.
We first compute channel estimates and SINR achieved by all users in all RBs. If we find
a user with SINR > 74, in some RB, we mark the data packet as having been decoded
successfully and remove the contribution of the user’s packet from all RBs that contain
a replica of that packet. In the next iteration, the channels are re-estimated from the
residual pilot symbols after SIC, the SINRs are recomputed in all RBs, and the decoding
of users’ packets continues. The decoding process proceeds in iterations and stops when
no additional users are decoded in two successive iterations. The system throughput 7 is
calculated as the number of correctly decoded unique packets divided by the number of

RBs.

2 As we will see, when the BS does not know the APM, the BS first detects which users have transmitted
in each RB, and computes the channel estimates for the users detected to be active in each of the RBs.
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3.3 Channel Estimation

In this section, the channel estimates for all users are derived under three schemes. The
first scheme, termed the sparsity-based estimation scheme, estimates both the APM and
the channels of the users. In contrast with this, the other schemes exploit the knowledge of
G and output MMSE estimates. Assuming the knowledge of G is not a strong assumption
and can be made possible by using pseudo-random pattern matrices generated from a seed
that is available at the BS and the users.?

Channel estimation is performed based on the received pilot signal, which contains the
pilots transmitted by all the users who have transmitted in that RB. The estimates are
recomputed in every iteration, and hence the signals and channel estimates are indexed
by the decoding iteration k. Let the set of users who have not yet been decoded in the
first k& — 1 iterations be denoted by S, and for some m € S, let SI* 2 S, \ {m}, with
S1 = [M]. The received pilot signal at the BS, in the ¢th RB, and during the kth decoding

iteration, is given by

k
YPF = Ziesk gihyp] + N7 (3.3)

We now discuss three channel estimation schemes for IRSA.

3.3.1 Sparsity-based APM and Channel Estimation

The first scheme is the sparsity-based estimation scheme in which we estimate the APM
and the channels in each decoding iteration. We consider the conjugate transpose of the
received pilot signal in the tth RB from (3.3) as ?fk 2 Yy with N, 2 NP Let

P € C™M contain the known pilots of the M users as its columns and P* = [P]. 5,. The

3This assumption is substantiated in Sec. 3.9.5.
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signal Y, can be factorized into the product of two matrices as follows:
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where Sy, = {iy, iz, ..., iy}, with M* = |S,|. Here, ZF € CM"*N contains the tth row
of the unknown APM G, and the unknown channels. The rows of Z¥ are either all-zero
or all-nonzero depending on whether the corresponding g;; = 0 or 1. This results in an
under-determined system of equations, where the columns of ZF share the same support.
This structure is called as a multiple measurement vector (MMV) recovery problem in
compressed sensing. The estimation of ZF from (3.4) can be performed using well known
MMYV recovery algorithms from compressed sensing literature to recover {g,;} in the each
of the T" RBs.

Multiple sparse Bayesian learning® (MSBL) [16] is an empirical Bayesian algorithm
that can recover ZF from linear under-determined observations ?fk. In MSBL, a Gaussian

prior is imposed on the columns of ZF as

N N
P(ZF; ) = HP([Zf]:,n;’th) = HCN(OM,” i), (3.5)
n=1 n=1

where T'y; = diag(+yx¢) and the columns of Z¥ are i.i.d. The elements of v;; € Rﬂ‘f " are un-
known hyperparameters for the undecoded users. Recovering the hyperparameters would
yield gy, since [Yi]m models the variance of the mth user’s channel in the tth RB. The hy-
perparameters are estimated by iteratively maximizing the log-likelihood log p(?fk; Yit)s
with p(Y} i 9k) = Ty PV Lo Yt)-

Stated in our notation, the overall estimation procedure is summarized in Algorithm 1.

4 Any MMV algorithm can be used to recover joint-sparse columns of Z¥, but we use MSBL due to its
high performance. MSBL also outputs a “plug-in” MMSE channel estimate which can then be used to
find a meaningful SINR expression since the estimate is uncorrelated with the estimation error [104].
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Algorithm 1: APM and Channel Estimation in ¢tth RB
Input: 7, N, NO,Sk,P,?fk,ypr,jmaX
1 Compute: M* = |S;|, P* = [P].s,

N

Initialize: ~p, = 1%

3 for j =0,1,2,..., Jmax dO

4 Compute I‘it = diag(’y,it)

5 | XIF=Ty, — T, PN L +PFTY, PHH) 1P,

o | Hpiy = Ng'SPYIY ], L<n< N

. 1 N . .
7| = N Zl([E?jl]i,i + ([l i), Vi € [MF]

8 end

L (Y™ m > Yor

o Output: §f, = LV om o€ (M), ZF = [l i . i)

0, (Y™ )m < Vpr

The MSBL algorithm converges to a saddle point or a local maximizer of the overall log-
likelihood [16]. Further, the MSBL algorithm has been empirically shown to correctly
recover the support of Z¥, provided 7 and N are large enough [16], if the signal to noise
ratio is good enough. The algorithm is run for j,,.. iterations in each of the 7' RBs. As the
iterations proceed, the hyperparameters corresponding to users with g,; = 0 converge to
zero, resulting in sparse estimates. At the end of the iterations, the estimated coefficient
gF . for the mth user in the tth RB in the kth decoding iteration is obtained by thresholding
[’y,i’f”]m at a value 7y,,. This can result in errors in estimating g;;, and the errors in APM

estimation can be described by

Fr={ie M| 951 - gu) = 1}, (3.6a)
M ={i e M| (1-gi)gu =1}, (3.6b)

where FF is the set of false positive users, and M¥ is the set of false negative users. These
errors affect decoding of other users in two ways: both kinds of users contaminate the

channel estimates of other users, and users in M} interfere with the data decoding of
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other users as well. The effect of errors in detection of users is described in detail in [15]
(See Chapter 4).

The algorithm also outputs the maximum aposteriori probability estimates of the
channels ZF in each of the T RBs. The estimate HF = Z¥ € CV*M"* of the channels of the
MP users is described in Theorem 1 and can be calculated as HF = YP*PFT,, (P PFL, +
NoIx)~", where Ty, = diag(y/"). This estimate is a “plug-in” MMSE estimate and
it contains estimates for erroneously detected users as well. An added advantage of
MSBL is that the path loss coefficient can be calculated by averaging the estimated
hyperparameters across RBs as 8 = (X7, ghlyis™)/(02 X7, g%). Thus, Algorithm 1

does not require any prior information about the APM or {3;}}, to estimate the channels.

3.3.2 MMSE Channel Estimation with Known APM

We now derive the MMSE channel estimates for all users in each RB, exploiting the
knowledge of the APM G and {$3;},. By using a common seed at the BS and the users,
the APM can be generated at the BS and thus, we can assume that the BS has knowledge
of G.° Let G; = {i € [M]|gs = 1} be the set of users who have transmitted in the ¢tth RB.
Let M} = |G;NSk| be the number of users who have transmitted in the ¢tth RB and have not
been decoded in the first & — 1 iterations, H¥ € CV *Mf denote the channel matrix which
contains the channels of the M} users, P¥ € C™*M? denote a matrix that contains the
pilot sequences of the M} users and BF £ o2diag(B;,, Bi, - - - @»Mtk) be a diagonal matrix
containing the path loss coefficients of the M} users, with G;NSy = {iy, s, . .. ,z’Mtk}. Thus,

the received signal from (3.3) can be written as Y?* = HFPH + NP where P¥ = [P]. g,ns, .

The MMSE estimate HY of HF is presented in Theorem 3.1, and can be written as

HY = YP*(PFBFPH + NoL) 'PFBY, (3.7a)

< YPPIBI(PITPIB + Nolyye) ™, (3.7h)

5This assumption is substantiated in Sec. 3.9.5.
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where (a) follows from (AB+I)"'A = A(BA+1I)~!. Here, the estimate can be calculated
via an inverse of either a 7 x 7 matrix or an MF x M} matrix as required. The MSBL
estimate converges to the MMSE estimate when the hyperparameters are estimated well

enough, as will be seen in Sec. 3.6.

3.3.3 Low Complexity MMSE with Known APM

We now describe a low complexity MMSE (LCMMSE) estimate that does not require
a matrix inversion computation. For this purpose, the received signal in (3.3) is right-

multiplied by the pilot p,, to obtain

Pk _ Pk _ T (pH NP
Yim t Pm Zieskgtz tz(pz pm) + t Pm, (38)

which is used to find an MMSE estimate of the channel hy,, of the mth user in the tth
RB. The LCMMSE channel estimate hf  is described in Theorem 3.1 and is calculated
as

ko gtmﬁm|lpm||2a}21 pk A

" NPl + S, [P Pguro T (3.9)

Similar to the MMSE estimate, the LCMMSE estimate uses the knowledge of the APM
and {;}M,. While the MMSE estimator uses the signal Y?* to compute the estimates,
and thus exploits all the information available at the BS, the LCMMSE estimator uses
only yf,];, i.e., the projection of Y7 * onto Pm, to estimate hy,,.

The channel estimates under the three schemes and their error variances are given by

the following theorem.

Table 3.2: Channel estimates and error variances under three estimation schemes.

Sparsity-based estimation with MSBL | MMSE LCMMSE

Tk PEpLT kHPET -1 Pkpkpk(PpkH PRk -1 PkpDk ;. k k
Hf | Y)"P T (PP + Nolpge) Y 'PyBi (P PyB; +N011\4'5») Y, "P; dlag(ntil,....,ntimk)

1
N()Hclfz”2+2155i ‘T§Li|2§ffgtj5jaf N()“cfi|‘2+zjesi "”}cu‘zgtJﬁJag N()HPxHZJijGS;; |PfP1“ZQUﬂJ"7§

oF o ey — o g — 02 : :
b | Bion Nolleg; 1243 es,, Ir5il?at9ti85 00 Bioy Nolle; 124X sy, Ir5ilP9tiBion Bioy Nollpil2+3cs, [P} pil?9t8i0%
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Theorem 3.1 » Channel Estimation in IRSA.

The channel estimate HY of HY in the tth RB in the kth decoding iteration, under

the three estimation schemes, namely MSBL, MMSE, and LCMMSE;, is given in
Table 3.2. Specifically, the estimate of the channel hy; of the ith user is calculated
as h¥ = [HF).;. Further, the covariance of the estimation error h% £ h¥ — hy, is
oLy, where 6f, is listed in Table 3.2, with cf; = [C}].; and r%,; £ pfcf. For MSBL,
we have Cf £ P*Dy(P*'P*Df + NoIy+)™!, where Df £ diag(dy,, df;,,- .., df; )

with d¥, = gk g,;8:02. For MMSE, we have CF & P*BF(PFHPFBF + NoLye) ™t

Proof. See Sec. 3.8.1. ]

. J

Remark: The LCMMSE estimate is composed of two components: a scaling coefficient
nF . and the post-combined received pilot signal yffl. From (3.8), we see that the received
pilot signal yff,’f1 contains pilots of other users, if pilot sequences are not orthogonal. With

orthogonal pilots, pfp,, = 0,Vi # m, the LCMMSE estimate is

ﬁk _ gtmﬁmoﬁ

mhom || Pmll? + NEpm) 3.10
tm N0+||pm||2gtm6m0'§ (gt t ||p || tP ) ( )

and 68, = GimBmiNo/(No + GimBmci||Pml|?), i-e., there is no pilot contamination, and
the LCMMSE estimate coincides with the MMSE estimate. Further, if we use a codebook
of orthogonal pilots and reuse it across all users, then the MMSE estimate coincides with
the LCMMSE estimate. As we will see in Sec. 3.6 and Sec. 3.9.6, for any choice of the
non-orthogonal pilots, MMSE estimation outperforms LCMMSE estimation.
Complezity: The MMSE scheme has a complexity of O(72M}) floating point opera-
tions (flops) since it involves inverting a 7 x 7 matrix. The MSBL scheme, with s iterations,
has a complexity of O(s72M*) flops [16]. The LCMMSE scheme has the lowest complexity

of O(MF) flops since it does not need any matrix inversion.
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3.4 SINR Analysis

In this section, the SINR of each user in all the RBs where it transmits data is derived,
accounting for pilot contamination and channel estimation errors. Let pf denote the
SINR of the mth user in the tth RB in the kth decoding iteration. Similar to (3.2), the

received data signal in the tth RB and kth decoding iteration can be written as

yi = Zieskgn‘hn‘% +ny. (3.11)

A combining vector a¥  is used to decode the mth user in the tth RB and kth decoding

iteration, and thus we obtain

ytm = afn];[Yf = at htmgtmxm htmgtmxm + at Z gtihtixi + afrgnty (312)

where flk is as defined in Theorem 3.1. From the above, we see that the signal used to
decode the mth user’s data is composed of four terms. The term 7} £ akH htmgtmwm is
the useful signal component of the mth user; the term T, £ at htmgtmxm is contributed
by the channel estimation error htm of the mth user; the term T; £ Zie sm aftihy, g,
captures the inter-user interference from the users who have also transmitted in the tth
RB and have not yet been decoded up to the kth decoding iteration; and the last term
Ty £ aFfn, is the additive noise component.

In order to compute the SINR, the power in the received signal is calculated con-
ditioned on the knowledge of the estimates [49]. Since MMSE estimates are employed,
all three estimates are uncorrelated with the channel estimation error, and thus 75 is
uncorrelated with 77. The additive noise is uncorrelated with the signal, and since the
users’ data signals are independent, 73 is uncorrelated with the other terms. Thus, all

four components in the received signal are uncorrelated and the total power is the sum of

the powers of the individual components

155 1] Z E.[| T3, (3.13)
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where z contains the channel estimates of the users. The SINR for all the users is now

presented.

Theorem 3.2 » SINR in Multi-Cell IRSA.

The signal to interference plus noise ratio (SINR) achieved by the mth user in the

tth RB in the kth decoding iteration can be written as

k

Gain;
= m ,VmeS 3.14
No/P + MUIF, + Esth, 0 S W (3:14)

k
ptm

where Gain® represents the useful signal power of the mth user, MUI¥ = represents
the multi-user interference power of other users, and Estf  represents the inter-
ference power caused due to the channel estimation errors. Under MMSE and
LCMMSE channel estimation, these can be expressed as

EHRk |2

.k |2y tm|2 k |ag,
Gaing, = gm— 55 > MUL,, = Zg“—z’
A 227 Nak

Estf, = Y gl (3.16)

1€SK

(3.15)

With the sparsity-based scheme, the SINR denominator contains an additional

term, FNU?

+, which represents the interference power caused due to false negative

users. The corresponding terms with MSBL can be expressed as

alfpk |2 al k|2
Gainf = gtmgtm% MUTF —Z | o 2| , (3.17)
lad | e *akal
ESttm thzgtzéfm FNUk Z (1— gfi)gtiﬂio-i' (3.18)
1€Sk ’LGSIT
Here, the estimates h% = [HF].; and the error variances 6% are obtained from
Theorem 3.1 for all the three schemes.
Proof. See Sec. 3.8.2. O

The SINR expression derived in Theorem 3.2 is applicable to any arbitrary receive
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combining scheme given by the matrix A¥ with af = [A¥].,,. When regularized zero

forcing (RZF) combining is used, the combining matrix is
A¥ = Hf (H{H} + L), (3.19)

where A is the regularization parameter. The SINR with RZF can be computed by
substituting the columns of the above matrix into (3.14). We now describe two popular
combining schemes, which are special cases of RZF, in which simpler expressions for the
SINR can be computed.® The expressions are written for MMSE/LCMMSE, and can be
extended to MSBL as detailed in Theorem 3.2.

3.4.1 Maximal Ratio Combining (MRC)

MRC is obtained from RZF as A\ — oo and the combining matrix becomes A¥ = HF.

E _ hE
Thus a;, = hf,

and SINR can be computed as

(3.20)

Ptm = hEHRE |2

k; ‘ m "ti
No + Xics, P9uidt; + 2iesp P

3.4.2 Zero Forcing (ZF)

The RZF combiner reduces to the ZF combiner as A — 0. The inverse of the gram-matrix
of the channel estimates exists with probability one when N > M} and H¥ has full column
rank.” Hence, we can compute the combining matrix as A¥ = HF(HFPHF)~!. Using the

above, it is easy to show that the SINR expression simplifies as [49]

Pgtm
(No + Ziesk Pguidf) [(HFHE) "

oh = (3.21)

SIn this chapter, we do not consider the MMSE combiner, which is a special case of RZF combining [49].
"We note that the condition N > M} is not hard to satisfy in IRSA. For example, with L = 2,3,4,
each RB will be occupied by 6,9, 12 users on an average, respectively, if the average repetition factor is

d = 3. Thus any N greater than, say, 16 would be sufficient to decode the users in most RBs.
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Note that the third term in the denominator of (3.20) has been suppressed with ZF
combining. However, due to pilot contamination, the term [(HFH¥)~1],.., may contain
contributions from the channels of all users. As a consequence, the gram matrix could be
ill-conditioned, and the denominator term could be large. Thus, the pilot length, which
determines the pilot contamination incurred, is crucial in comparing the performance ob-
tained by the combining schemes. The system throughput can now be calculated from the
above SINR expressions via the decoding model described in Sec. 3.2.1, and is described
in Algorithm 2 for MMSE/LCMMSE. For MSBL, the initial step in each RB instead
consists of finding M* = |S;|, and P* = [P].5,. We also estimate {g;;} and {hy} via
Algorithm 1 before finding the SINR.

Algorithm 2: Performance Evaluation of IRSA
Input: T, N7 T7 M7 N07 GJ PJ {Yf};:la {yt};:la kmax

1 Initialize: S, = [M], G, = {i € [M]|gu = 1}
2 for k=1,2,..., kpax do

3 fort=1,2,...,7T do

4 Find MF = |G, N S|, P¥ = [P.g,ns,, Y2¥, yF

5 Compute h¥, Vi € S;, via Theorem 3.1

6 Evaluate the SINR pF via Theorem 3.2

7 If pfl- > Y, remove user ¢ from Sy and perform IC in all RBs where g;; = 1
8 end

9 end

10 Output: 7 = (M —|S,...|)/T, PLR = [S,..|/M

3.4.3 SINR in the Massive MIMO Regime

Before proceeding with the analysis of the throughput, we briefly discuss the SINR in the
massive MIMO regime, which helps us in interpreting the SINR expressions. We note
that the results presented in Sec. 3.6 hold true for any N. However, when N is large, a

simpler expression for SINR with MRC can be obtained as follows.
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Lemma 1. As the number of antennas N gets large, the SINR with MRC converges

almost surely to

NSig}
Pim = = “Eim —, (3.22)
ek, (No/P + IntNC} ) + IntC,

where Sigl s the desired signal, IntNC}, represents the non-coherent interference,
and IntCE  represents the coherent interference. Each of these can be found in
Table 3.3. Here, 6F, and c¥  are obtained from Theorems 5.1 and 3.2, respectively,

for the three estimation schemes.

Proof. See Sec. 3.8.3. n

Table 3.3: Deterministic equivalent approximation to the SINR.

Sparsity-based estimation with MSBL | MMSE LCMMSE
€t Nolletall? + Xics, gubioilciypil? Nollctall? + Xics, gubioaletnpil* | Nollpmll> + Xics, gulBioalphpil?
Sigh, | Gnim(cln)’ i (€)? i B[
IntNCE,, | JhmGmOtm + Xicsy 910 GOt + Picsp 9iBion GOt + Picsp 9uiBion
Inthm N Ziesg gt,;/é’foﬂcfﬁpi\z N Ziesg gt,ﬂfaﬂ(:ﬁfpi\Q N Ziesg gtiﬁfaﬁ|p7an,;|2

Remark: IntNCE —arises due to channel estimation errors and is independent of N, while
IntCF  is due to pilot contamination and increases linearly with N. Further, since py,
is independent of the fading states of each user, it assures successful recovery of packets
with high probability if pF > ~y,. Similarly, the packet will not be decodable with
probability close to 1 if pf < ~i,. However, it turns out that in order to characterize the
throughput of IRSA, it is necessary to capture the statistics of the SINR when o} ~ v,.
The small fluctuations in pf around pf due to fading, and the resulting probability of
packet decoding error, need to be calculated accurately. Hence, the calculation of the
statistics of the SINR using (3.14) is vital to find the throughput of IRSA. We address

this in the next section.
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3.5 Theoretical Analysis of Throughput

Density Evolution (DE) analysis has been applied to characterize the asymptotic per-
formance of message passing-based decoding on graphs for low density parity check
codes [103] and IRSA [7]. In this section, the representation of IRSA decoding as a
bipartite graph is discussed first. Then the graph perspective distributions are defined,
the failure probabilities are derived, and finally, the asymptotic throughput of IRSA is
characterized. It is assumed that users perform path loss inversion-based power control.
We note that a closed form expression for the throughput cannot be derived even for the
most basic variant of IRSA due to the underlying graph structure [7].¥ Hence, we need

to resort to DE, which provides an iterative recipe to compute the throughput.
’ \
1 sy $3

Figure 3.1: IRSA represented as a bipartite graph.

SIC-based decoding can be viewed as message passing on a bipartite graph [7], and
thus IRSA, which uses SIC decoding, can be decoded on graphs. A typical IRSA frame
can be represented as a bipartite graph, which is made up of M user nodes (one node for
each user), " RB nodes (one node for each RB), and the edges between them. An edge
connects a user node to an RB node if and only if that user has transmitted a packet in
that corresponding RB. For example, in Fig. 3.1, there will be an edge between user node
u; and RB node s; if and only if user u; has transmitted a packet replica in RB s;. During
decoding, edges that connect to users whose SINR is above a threshold are removed from
each RB. Each decoding iteration consists of several intra-RB SIC and inter-RB SIC steps.
Once an SIC step is performed, the corresponding edge in the bipartite graph is removed.

Thus, the edge between user node u; and RB node s; is removed if the user u; is decoded

8This is elaborated in Sec. 3.9.3.
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in any of the RBs in which the user has transmitted a packet. Decoding is successful if,
at the end of the SIC process, all edges in the graph get removed. A decoding failure is
declared if not all edges have been removed or no new edge is removed from the graph in

two consecutive iterations.

3.5.1 Graph Perspective Degree Distributions

The total number of packets transmitted by a user in a given frame is referred to as the
repetition factor of that user. It is equal to the degree of the user node at the start of
decoding, and is the same as the number of edges connected to that user node in the
bipartite graph representation of SIC decoding. The node-perspective user degree distri-
bution is defined as the set of probabilities {gbd}fiiz‘";‘, where ¢4 represents the probability
that a user has a repetition factor d with d,., being the maximum number of RBs in
which any user is allowed to transmit. Here, ¢4 is nonzero for d > 2 since each user
transmits at least 2 packets in IRSA.

The total number of packets received in an RB is referred to as the collision factor of
that RB. It is equal to the degree of the RB node at the start of decoding, which is the
number of edges connected to that RB node. The node-perspective RB degree distribution
is defined as the set of probabilities {1}, where 1. represents the probability that an
RB has a collision factor ¢. The polynomial representations of the node-perspective user
and RB degree distributions are

o) = 3" pat, () =3 (3.23)

d=2

respectively. The corresponding edge-perspective user and RB degree distributions are
defined as A(z) = 0 N\ 2! = ¢/ () )¢/ (1); €(x) = oM €t = ¢/ (x) /¢’ (1), respec-
tively, where Ay = d¢y/¢'(1) represents the probability that an edge is connected to a
user with repetition factor d and & = ci)./¢'(1) represents the probability that an edge
is connected to an RB with collision factor c.

The input load L of the system is defined as the ratio of the number of users to the
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number of RBs, L & M/T. The average repetition factor is d = ¢'(1) = >_,d¢, and
the average collision factor is ¢ = ¢/(1) = 3. cib., making the load L = M/T = ¢/d.
Since ¢ = Ld, fixing the load and the node-perspective user degree distribution fixes
the other three degree distributions as well. The probability that a generic user, from a
total of M users, transmits within an RB is ¢/M. Since the users transmit their packets
independently of each other, 1. follows a binomial distribution. Thus, the coefficients of
the polynomials representing the node and edge-perspective RB degree distributions are

respectively given by

e () e o

and ¢, = (]\f__ll) (%)1 - %)M (3.24D)

For a fixed L = M/T, as M,T — oo, the node-perspective and edge-perspective RB

degree distributions, which are binomial, become Poisson distributed [105]:

(@) exp (—2) o) exp(—¢)

¢c = T and fc = (C> (C — 1)| (325)

We now use the degree distributions defined above to find the failure probabilities in

the next subsection.

3.5.2 Failure Probabilities

In the case of a decoding failure, failure messages are exchanged along the edges between
the user and the RB nodes. The probability that an edge carries a failure message from
an RB node to a user node in the ¢th iteration is denoted by p;. The probability that
an edge carries a failure message from a user node to an RB node in the ith iteration is

denoted by g;.
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The failure probability ¢; is calculated using the edge-perspective user degree distri-

bution as
q' _ deax)\ q(d) _ deax)\ pdil _ )\(p ) (3 26)
i d—2 day; d—2 dVi—1 i—1)- .
Here, qu) is the probability that an edge carries a failure message in the ith iteration given

that it is connected to a user node with repetition factor d. The edges carry a failure
message from a user if and only if all the other d — 1 incoming edges to that user carry
failure messages in the previous iteration, i.e., qz.(d) = pf_’ll.

The failure probability p; is calculated using the edge-perspective RB degree distribu-

tion as
po= 3" e M = 3 gl (3.27)
7 =1 Cl7q K3 =1 Cl7q .
where pl(-c) is the probability that an edge carries a failure message in the ith iteration

given that it is connected to an RB node with collision factor ¢. DE is applicable as M
and 7' — oo with L = M/T kept fixed [7]. Hence the above probability is computed as
an infinite summation.

In the SINR threshold model, decoding failure happens at an RB node if the SINR of
all users who have transmitted in that RB and have not yet been decoded is below the

SINR threshold. This constitutes a failure message from the RB node [17]. In order to
(c)

determine p, ’, any one of the c packets is considered to be a reference packet, which can
get decoded with a combination of intra-RB and inter-RB SIC. Separating the intra-RB

and inter-RB SIC, p§C> can be evaluated as

(c) ¢ c—1 r—1 c—r
=13 o (0 it -w 325

r=1

Here, 6, denotes the probability that the reference packet gets decoded in the current

decoding iteration starting from degree r using only intra-RB SIC, and (i:})qf l-gq)

denotes the probability that the collision factor of the RB node reduces from c¢ to r using
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only inter-RB SIC [8]. The evaluation of 6, is discussed in Sec. 3.5.4. Substituting for P

%

from (3.28), we obtain p; as a function of ¢;:

[e.9]

pi=1-) > &b (i: 1) g (1—aq) " (3.29)

c=1 r=1

Thus, we compute the failure probabilities p; and g; recursively from each other, as ob-

served in (3.26) and (3.29).

3.5.3 Evaluation of Throughput

We now describe the evaluation of the throughput. Substituting for £, from (3.25), we
can simplify (3.29) to

=, ()" 4

Thus, ¢; = M(p;—1) and p; = f(g;) are calculated alternately as functions of each other as
seen in (3.26) and (3.30). The procedure can be initialized with either go = 1 or py = f(1).

The failure probability at the end of decoding is p,, = lim; ,., p; and (poo)d is the
probability that a packet transmitted from a user with repetition factor d does not get
decoded at the receiver. Therefore, the asymptotic packet loss rate (PLR), which is the

fraction of packets that are not decoded at the BS, is calculated as

PLR = 6(pac) = 3" Gulpoc) . (3.31)

d=2

The asymptotic throughput of the system can now be obtained from the asymptotic PLR

as’

T = L(1 — PLR). (3.32)

9The DE process yields an iterative recipe to obtain the asymptotic throughput. While DE is an
analytical approach, it cannot be used to find a closed-form relationship between the system parameters
and the throughput.
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The iterations p; = f(A(pi—1)) converge asymptotically to p,, = 0 if the system load
L < L* [7]. Here, L* is called the inflection load of the system: for any L > L*, the
system becomes interference limited and the PLR does not converge to 0 as L increases.
Thus, for L < L*, po, = 0 and therefore the asymptotic PLR = 0, and the throughput
equals L. For L > L*, the throughput decreases monotonically with L.

The crucial step in the evaluation of the throughput lies in the computation of 6,,

which we now describe.

3.5.4 Characterization of 6,

We now describe a procedure to evaluate the success probability 6,., which is the probabil-
ity of decoding the reference packet in an RB with degree r via intra-RB SIC only. There
are 1 users whose packets have not yet been decoded in the RB. The reference packet can
get decoded in any of the intra-RB SIC steps. The packets with SINR higher than that of
the reference packet get decoded first. Further, the reference packet can only be decoded
if decoding has been successful for higher SINR packets, i.e., if they satisfied SINR > ~,
as well. Thus, 6, is the joint probability that the reference packet and the packets with
higher SINRs all get decoded.

Clazzer et al. [17] evaluate 0, as the probability “D(r)” under a Rayleigh fading
SISO channel setup with a perfect CSI assumption. The same method cannot be applied
here, since we consider MIMO Rayleigh fading and account for imperfect CSI due to
pilot contamination and channel estimation errors. In particular, in a MIMO setup, it is
possible that multiple users’ SINR simultaneously exceed the decoding threshold. Further,
their work is limited to the case where the decoding threshold =, is such that only one
user can be decoded in any decoding iteration, while we make no such assumptions.

Since 0, is evaluated based on the SINR of multiple users in a single RB, we consider
only one RB wherein r users have transmitted their packets. These users are decoded via
only intra-RB iterations since there is only a single RB under consideration. Let the set

of users who have not yet been decoded in the first £k — 1 intra-RB decoding iterations be
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denoted by S, and S = Si, \ {m}, with S; = [r].° In each intra-RB decoding iteration,
a single user with the highest SINR is decoded if their SINR > ~,.

The SINR of the mth user in the kth intra-RB decoding iteration, p¥ | is calculated as
seen before in Theorem 3.2. Specifically, when users are only decoded via intra-RB SIC

within one RB, we obtain the SINR as

pk _ \a’Zth’ZlIQ '
[k I2(No/ P + 3 ics,07) + sy lan hi [

(3.33)

Here, 0% is the error variance of the ith user in the kth intra-RB decoding iteration, h¥,
is the channel estimate of the mth user, both obtained from Theorem 3.1, and a*, is the
combining vector for the mth user.!! Let pf__ denote the SINR of the user with the
highest SINR in the kth intra-RB decoding iteration, calculated as p¥, = max,cs, pF,.
Let s be the index of the intra-RB decoding iteration in which the reference packet is

decoded, with 1 < s < r. Thus, 6, is calculated as

Or = Pr(Pmax = Vihs Prax = Ves -+ s Prax = Veb)- (3.34)

Recall that the reference packet is tagged uniformly at random from the users. With path
loss inversion based power control, users have identical channel statistics, and thus, 6, is
independent of which packet is tagged as the reference packet.

The computation of the success probability 6, is involved because there is no clear
relation between the peak SINRs across decoding iterations. Also, the channel estimates
of different users are correlated, across both the user index and the decoding iteration
index, making it difficult to use order statistics. Further, 6, is dependent on a large number
of random channel vectors, the order statistics of the peak SINRs, and the pilot sequences

of all the users. As a consequence, #, cannot be found in closed form, and needs to be

10The set Sy as defined here is a slight abuse of notation. In Sec. 3.3, the set Sy consisted of users being
decoded via both intra-RB and inter-RB iterations, whereas here, Sy consists of users being decoded via
only intra-RB iterations.

HSince the decoding process with intra-RB SIC involves only the RB in consideration, the RB index
and the APM are dropped in this section.
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empirically evaluated. However, we present three approximations to 6,, which are valid
when perfect CSI is available at the BS, i.e., there is no pilot contamination or estimation
errors. The assumptions are made for analytical tractability. These lead to interpretable
expressions for the SINR and 6., and provide upper bounds on the throughput with
estimated CSI.

Theorem 3.3 » Calculation of the Success Probability 6,.

When perfect CSI is available at the BS, and MRC is used for decoding, 6¢; is

given by
B = Finc(Na P(Tl%h)/F(N)v (3‘35)

where pg £ Po? /Ny, Dinc(s,z) = [77t*"'e~dt is the upper incomplete gamma

function, and I'(s) is the ordinary gamma function. For r > 2, the SINR with

MRC and large N can be computed as pf, = N(p; ' + Nziesygtmi)_la where t,,; =
|hZh,)2 /(|| by, ]2 he]|?). With to £ ! — N~1pg?, 0, can be calculated as
0y = 1{to > 1} + (1 — (1 — tx)™)1{0 <ty < 1}. (3.36)

Three approximations to 6, for » > 3 and large N are described below. Approxi-
mating pp .. as pi, and assuming u,, as i.i.d. Gamma distributed with shape r — 1

and rate IV, we obtain the Gamma approximation:
Gamma: 6, =1— T (r—1,Nty)/T'(r —1). (3.37)

Approximating pL = pl and u,, SN ((r = Dp, (r — 1)o%,), where puy = (N +
1)7!, and 0%, £ N(N + 1)"%(N + 2)~!, we obtain the Normal approximation:

Normal: 6, =1—-0Q (to \_/(T__ll)'uN) , (3.38)
T — 10N
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where Q(-) is the standard Normal Q-function. Finally, in the Deterministic ap-

proximation, the SINR becomes pf, = N/(py* +r — k), and 6, becomes

Deterministic: 0, = 1{r < |N/vm —py* +1]}. (3.39)

Proof. See Sec. 3.8.4. O

Remark: The above approximations provide closed form expressions for #, and are valid
when N is large [106]. The first two approximations have SINRs that are obtained by
applying the theory of deterministic equivalents to only the norms of the channels, and
yields an SINR that is affected only by the randomness in the multi-user interference
components. This is supported by the fact that the interference components converge
to their deterministic equivalents slower than the norms converge to their deterministic
equivalents [106]. The deterministic approximation follows directly from Lemma 1, where
the SINR is a deterministic quantity, and hence 6, is a binary function of r. With finite
number of antennas, due to small scale fading, the SINR of the users vary around this
approximate SINR. These variations affect the value of 6,, and are not captured by the
deterministic approximation, even though we obtain simple closed form expressions for it.
As a consequence, the throughput computed using the deterministic approximation can
be far from the actual throughput in certain regimes and close to the actual throughput

in other regimes, as will be seen in Sec. 3.6.1.

3.6 Numerical Results

In this section, the previously derived SINR analysis is used to evaluate the throughput
of IRSA with estimated channels via Monte Carlo simulations, and provide insights into
the dependence of the system performance on the various system parameters. In each
simulation, independent realizations of the user locations, the APM, and the fades expe-
rienced by the users are generated. The throughput for each simulation is calculated as

described in Sec. 3.2.1, and the effective system throughput 7 is calculated by averaging
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over the simulations.

The results in this section are for 7' = 50 RBs, N, = 10 Monte Carlo runs, A = 1072,
a = 3.76, of = 1, SINR threshold 4, = 10, MSBL threshold ~,, = 107, cell radius
Tmax = 1000m, and reference distance ro = 100m [49]. The number of users contending
for the 7" RBs is computed based on the load L as M = | LT'|. The soliton distribution [72]
with dp.c = 27 maximum repetitions is used to generate the repetition factor d,, for the
mth user, whose access pattern is formed by uniformly randomly choosing d,, RBs from
T RBs [7]. The APM is formed by stacking the pattern vectors of all the users. The
location of each user is uniformly sampled from within a cell of radius 7., centered at
the BS. The path loss coefficient is calculated as 3, = (r,,/ro)”® where r,, is the radial
distance of the mth user from the BS. The signal to noise ratio (SNR) for the mth user
is calculated as Po28,,/Ny. The received SNR of a user at the edge of the cell at the BS
is termed as the cell edge SNR, and is denoted by SNReqge. The power levels of all users
is chosen such that the signal from a user at a distance ry,, from the BS is received at
SNRegge- This ensures that all users’ signals are received at an SINR that at least SNRggge
on average, in singleton RBs. If SNReqge > Yin, i.€., it is such that the cell edge user’s
signal is decodable, then all users’ signals are decodable with high probability in singleton
RBs. The power levels of users is set to P = PP = 20 dBm [49] and Nj is chosen such that
the cell edge SNR is 10 dB, unless otherwise stated.!?> The pilot sequence for each user
is generated as p,, PSRN (0., PPI.). The effect of different pilot sequences is studied in
Sec. 3.9.6.

Fig. 3.2 shows the effect of pilot length on the system throughput at different L
under the three estimation schemes, with N = 16. MMSE scheme performs the best
and reaches the optimal throughputs of 7 = L for very low pilot lengths. MSBL scheme
achieves the optimal throughputs for L = 1,2,3 at 7 = 4,8, 12 respectively, and beyond
that, the performance is the same as that of MMSE. This shows that with a few additional

pilot symbols, we can do away with the assumption of knowing the APM and path loss

12We consider equal pilot and data power for simplicity. Via simulations, we have observed that pilot
power boosting can yield good improvement in the throughput, especially at cell edge SNRs close to 0
dB. This is elaborated in Sec. 3.9.4.
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Figure 3.2: Comparison between MMSE, MSBL, and LCMMSE schemes: Effect of 7.
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Figure 3.3: Comparison between MMSE, MSBL, and LCMMSE schemes: Effect of L.
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coefficients. LCMMSE scheme matches MMSE for L = 1 and for higher L, it needs
a lot more pilot symbols. This is because of both pilot contamination and low quality
channel estimates. In Fig. 3.3, we observe the effect of increase in L on the throughput.
At L = 1,2,3, the number of users in the system are 50,100, 150, respectively. Thus,
the use of orthogonal pilots would require 7 > 50,100, 150 for L = 1,2, 3, respectively.
Specifically, at L = 2, there are M = 100 users in the system, and employing orthogonal
pilots would require 7 > 100. But the optimal throughput of 7 = L = 2 is achieved
under all the three estimation schemes with a very low pilot length of 7 = 10, which is a
10x reduction in the pilot length. This is because only a small subset of users transmit
in any RB in IRSA. Thus, we can achieve the best performance in IRSA with far fewer
pilot symbols than using orthogonal pilots. Finally, under all the three schemes, we can
achieve T > 1, which is the maximum throughput achievable under perfectly coordinated
orthogonal access, i.e., grant-based orthogonal access. This shows the utility of using
IRSA as a GFRA protocol for mMTC, especially due to it’s high performance at medium
to high L. To summarize, the pilot length has a significant impact on the performance of
IRSA and yields near-optimal throughputs at significantly lower pilot lengths than that
required for orthogonal pilot transmission. The drop in 7 at low pilot lengths under
estimated channels underscores the importance of accounting for the effect of imperfect
CSI in analyzing the performance of IRSA.

We focus on MMSE/LCMMSE hereafter in order to avoid clutter in the plots, since
MSBL matches the performance of MMSE with slightly higher 7. In Fig. 3.4, we investi-
gate the effect of L, 7. and ~, on the achievable rate R of the system with MMSE, with
N = 16. Here, the rate is obtained as R = (1 — 7/7.)7T logy(1 + ) (bps/Hz), where 7.
is the total length of any user’s packet. Firstly, we look at the effect of changing ~;, by
fixing 7. = 100. For L = 2, v, = 20 offers a higher rate than v, = 10, provided 7 > 3.
Thus, at low loads, increasing 74, (correspondingly, selecting a higher order modulation
and coding scheme) leads to better achievable rates. In contrast, when L = 4, vy, = 10
outperforms 4, = 20, because the system is highly interference limited. Next, comparing

L = 23,4 for 7. = 100 and 7, = 10, we see that the rate improves with L, provided
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Figure 3.4: Impact of pilot length 7 on rate with MMSE.

the pilot length is large enough. Finally, decreasing 7. reduces the achievable rate, as the
relative overhead due to pilots increases. Thus, at high loads, the throughput 7 limits
the achievable rate, while at low loads, the SINR threshold ~, is the primary factor in

determining the achievable rate.

Throughput (7)
[\

Dotted Line: Orth. | |[O-L =4
Solid Line: 7 =10 ~V~L =3
Dashed Line: 7 =5 e[, = 2

1 4 8 12 16 20 24 28 32
Number of antennas (V)

Figure 3.5: Effect of number of antennas N with MMSE.

In Fig. 3.5, we investigate the effect of the number of antennas at the BS, by plotting
the throughput with MMSE channel estimation for different L and 7. Intuitively, we

expect that, to achieve the optimal throughput of L, we would require slightly more
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Figure 3.6: Effect of cell edge SNR with MMSE.

than Ld antennas at the BS, since Ld users transmit packets per RB on average. The
orthogonal pilots curve is obtained by allocating 7 = M = |LT| for each L. Under all
configurations, it is observed that increasing N has a significant impact, and the peak
throughput achieved reaches its maximum of 7 = L. Further, 7 = 10 achieves a very
similar performance as that of orthogonal pilots, and 7 = 5 performs poorly at low N
and high L. For L = 2, the throughput reaches the peak 7 = 2 for N > 8 for all three
values of 7. Similarly, for a high load of L = 3, the throughput reaches the peak, 7 = 3,
for N > 16. For L = 2,3, since the average repetition factor d = 3, each RB is occupied
by 6,9 users, respectively. Thus, a slightly higher number of antennas is sufficient to
recover all the packets, provided accurate channel estimates are available (i.e., 7 is large
enough). It is observed that at L =2, N =4 and L = 3, N = 8, improving 7 greatly
improves the throughput. Increasing the number of antennas increases the array gain
and the decoding capability of the regularized zero forcing decoder at the BS, which in
turn leads to more users getting decoded. This shows the effectiveness of the number of
antennas in improving the throughput. Also, when N = 12, the dramatic drop in the
throughput of 7 = 3.8 for 7 = 200 (orthogonal pilots) to 7 = 1.2 for 7 = 5, which is
around 70% loss in performance, shows that it is crucial to account for estimated CSI

while analyzing the performance of IRSA systems.
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Fig. 3.6 shows the impact of cell edge SNR on the packet loss rate PLR with MMSE;,
with N = 16. For SNR < —5 dB, the PLR is high, and in the noise-limited regime (=5 <
SNR < 0 dB), an increase in cell edge SNR sharply decreases the PLR. For L = 4,
7 = b, the system becomes interference-limited, and thus the performance saturates at
high SNR. This is because, at low 7, both signal and interference powers get scaled equally,
and the SINR remains roughly constant. Increasing 7 from 5 to 10 and then to orthogonal
pilots, we observe that the PLR falls from 0.5 to 1072 to 107°. The higher 7 and SNR
result in accurate channel estimates, and thus very low PLR is observed. Similarly, at
L = 2, the drop of PLR from 10717 to 1072® to 1073 for 7 = 5,10 and orthogonal
pilots emphasizes the need to account for estimated CSI when analyzing the performance
of IRSA. In summary, the overall performance can be improved by increasing the pilot
length, number of antennas, or cell edge SNR, but these need to be increased judiciously,

keeping the other parameters in mind.

(A=

2R W Wl - V-0 VeSS
a0l
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Throughput (7))
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1076 1077 10 1073 102 107! 10°
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Figure 3.7: Effect of regularization parameter and 7 with MMSE.

Fig. 3.7 shows the effect of the regularization parameter, A, on the throughput of the
system when MMSE estimation is employed, with L = 4. As X is varied from 107° to 1,
the curves go from ZF on the left to RZF in the middle and finally to MRC on the right.
For N = 4, increasing 7 from 5 to 10 to 30 only marginally improves the throughput. This

is because the system is highly interference limited, and hence channel inversion does not
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work well at low N. For 7 = 5, increasing N from 4 to 16 to 32 improves the performance
due to the interference suppression capability of RZF. Similar observations can be made
for 7 = 10 as well. MRC does not have the interference suppression capability of RZF,
and thus the performance saturates at a low value for all 7. We note that the optimal
throughput of 7 = 4 is obtained over a wide range of A, and thus precise optimization of

A is not necessary to obtain near-optimal throughputs.

10° Y N S N

._.
=)
L

Packet Loss Rate (PLR)
2

Load (L)

Figure 3.8: Impact of load on PLR with LCMMSE.

Fig. 3.8 studies the impact of L and 7 on the system packet loss rate, PLR, evaluated
with N = 16, v, = 16, and A = 1. As the pilot length 7 increases, better quality channel
estimates are obtained, and the corresponding SINR increases. In particular, the system
requires higher pilot lengths due to the use of LCMMSE estimates. The loss rates reduce
with increase in 7, and gets closer to the orthogonal loss rate. The PLR of perfectly
coordinated orthogonal access is the lowest. Similar to existing works, there is an error
floor region where the PLR is very low (up to L = 2 for orthogonal pilots) after which the
PLR increases rapidly and is called the waterfall region. Here L = 2 marks the inflection
load, where the system transitions from the error floor to the waterfall region.

In Fig. 3.9, the impact of power control on the throughput with LCMMSE is charac-
terized. For this plot, users transmit at powers that are dependent on their distances from

the BS. Specifically, the mth user, who is located at a distance r,, from the BS transmits
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Figure 3.9: Impact of power control on throughput.

at a power P(r,,/ro)* %, making & the effective path loss exponent. The cell edge SNR
is fixed to 10 dB, and the throughputs are obtained by varying & and P. When a = 0,
the signals of the users undergo pure fading, and the system achieves a peak throughput
of T = 1.52 at L = 1.6. Further, as L is increased, the throughput drops to 0. The
throughput of the system increases as & increases, until & = 2/3. The exact @ that yields
the highest throughput is dependent on other system parameters such as SNR, 7;,, and
N. As @ is increased, the channel coefficients of the users become more disparate, and
thus offer a higher degree of capture effect. Beyond & = 3, the throughput decreases as
the exponent is so high that the received signal power becomes comparable to the noise.
For higher &, the throughput saturates as L is increased since a few users are always
decoded due to path loss disparity. The channel fades and the path loss coefficients con-
tribute to the disparity amongst the channel coefficients of the users, and thus such a
system has higher throughputs than a system with only path loss [8] or only fading [17].
Thus, it is useful to consider the combined effects of fading and path loss in optimizing
the performance.

Note: We have presented only a couple of results for the empirical performance of

the LCMMSE scheme above. The detailed empirical results for the LCMMSE scheme is
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presented in Sec. 3.9.2.

3.6.1 Theoretical Validation of Throughput

Throughput (T)

1.4 1.6 1.8 2 2.2
Load (L)

Figure 3.10: Effect of T' on the throughput.

The results in this subsection are presented for 7 = 10, cell edge SNR = 10 dB,
N = 16, A = 1072, v, = 16, dpax = 8 maximum repetitions and N, = 103 Monte
Carlo runs. To reduce clutter in the plots, we present the theoretical results for the
lowest complexity (LCMMSE) channel estimation scheme. We note that the trends in
the theoretical performance of MMSE and MSBL are similar to the trends of LCMMSE.

Fig. 3.10 investigates the effect of increasing the number of RBs on the throughput.
The peak throughput increases from 7 = 1.52 at L = 1.6 for T' = 50 to 7 = 1.85 at
L = 1.85 for T = 500. Since d is fixed, each user has a larger number of RBs to choose
from as T is increased. Thus, the interference reduces, and the throughput increases until
it reaches a peak and then drops off. The success probability 6, is evaluated empirically
via 10* Monte Carlo runs, and this in turn yields the asymptotic theoretical throughput,
which is marked as “DE”. This can be achieved as M, T — oo with a fixed L. It is seen
that this asymptotic throughput increases linearly with the load until it hits a maximum
at the inflection load of the system, which occurs at L* = 2 in this case. The throughput
drops sharply beyond this load. The asymptotic throughput provides an upper bound on
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the throughput achievable with finitely many RBs for low to moderate loads. At very low
and high loads, the throughput achieved with finitely many RBs exactly matches with
the DE asymptotic throughput. A convenient operating point would be to set the system
load to, say, 90% of the inflection load, as, in this case, only finitely many RBs would
be sufficient to achieve the asymptotic throughput. Finally, it can be observed that the
throughput of the system can be increased by increasing 7', but only when the system is
operated at a load that is lower than the inflection load. Beyond the inflection load, the

system is always interference-limited and increasing 7' does not help.

Figure 3.11: Rate for different SINR thresholds.

In Fig. 3.11, the asymptotic rate of the system is plotted versus the system load for
different SINR thresholds with 7, = 100. For a fixed =, R increases until the inflection
load and then drops off to zero. It is observed that a high R can be achieved at lower
loads by choosing a high v;,, whereas, at high loads, in order to serve more users, Vi
must be kept low. The choice of the threshold 4, decides the rate of transmission, which
in turn is related to the modulation and coding scheme to be used. In summary, the
SINR threshold 7, which depends on the modulation and coding scheme employed and
determines the data rate, can be chosen based on the system parameters such as the

number of antennas, training duration, number of users/RBs, and the transmit power.
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Figure 3.12: Validation of theoretical approximations.

We now validate the approximations derived in Theorem 3.3 with the simulations ob-
tained with MRC, d.x = 27 maximum repetitions, and 7, = 10. Fig. 3.12, reveals an
inflection SNR* of 0 dB and —7 dB for L = 1, N = 16 and L = 2, N = 64 respectively,
which behaves similar to the inflection load L*. Both the normal and the gamma ap-
proximations match well with the asymptotic throughput obtained from the DE process.
This is because the deterministic approximation results in an SINR that is completely
deterministic and 6, that is a binary function of r, and consequently does not capture the
statistics of the SINRs very well. Further, the deterministic approximation results in a
throughput that acts as a step function since 6, depends binarily on N, 44, and SNR. As
we go from L =1, N = 16 to L = 2, N = 64, the approximations become closer, and both
the normal and the gamma approximations match perfectly with the asymptotic through-
put. In summary, the theoretical curves with the approximations match the simulations
when N is increased, as expected.

Fig. 3.13 examines the effect of 7" on the approximations with L = 2 and SNR = 10 dB.
With finitely many RBs, such as T" = 50, 100, 300, the throughput achieves the optimal
throughput 7 = 2 for N = 24,18,16. The asymptotic throughput obtained with DE
provide an inflection N* = 12, which matches perfectly with the normal approximation.

The gamma approximation does not match as well as the normal approximation. Here,
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Figure 3.13: Comparison of approximations with simulation.

the curves are with MRC and perfect CSI, and the presented curves are valid upper
bounds to the throughputs with estimated CSI. These can be achieved with high enough
7 as observed in Fig. 3.2, and thus the derived results provide very good approximations

to the asymptotic throughput achievable with estimated CSI.

3.7 Summary

This chapter studied the effect of estimated CSI on the throughput of IRSA, which is
a distributed medium access protocol for mMTC involving repetition of packets across
different randomly selected RBs. Decoding the users’ packets at the BS involves successive
interference cancellation. First, the channel estimates were derived under three schemes:
a sparsity-based scheme with MSBL, MMSE, and LCMMSE. The corresponding SINR of
all the users were obtained under all three schemes accounting for pilot contamination,
channel estimation errors, path loss as well as multiple antennas at the BS. It was seen
that these errors significantly reduce the peak achievable throughput, even resulting in up
to 70% loss in certain regimes. Further, a density evolution based analysis was presented
to characterize the asymptotic performance of the protocol when users perform path loss

inversion based power control. Here, several approximations to the success probability
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0, were derived and it was seen that these approximations match well as the number of
antennas at the BS becomes large. Finally, several new insights into the design of IRSA-
based systems was discussed, namely, the improvement of the system throughput, the
evaluation of the operating load beyond which the system becomes interference limited,
and the choice of the decoding threshold ~,. The results underscored the importance
of accounting for practical channel estimation in studying the throughput offered by the
IRSA protocol. Future work could involve using differential evolution techniques [26] to
obtain the optimal repetition distribution that maximizes the throughput in the finite

frame length regime. This analysis of the optimal distribution is presented in Chapter 7.

3.8 Proofs

3.8.1 Proof of Theorem 3.1: Channel Estimation
3.8.1.1 MMSE

We first vectorize the signal as
¢ A vee(YPH) = (P @ Iy)hf + 1, (3.40)

where hf £ vec(HF), n; £ vec(N?}), and ® is the Kronecker product. The MMSE

estimator is flf £E, [hﬂ, where z = y¥. The error l~1f S flf — h} is uncorrelated with z

and the estimate. The conditional statistics of a Gaussian random vector x are

E, [x] =E[x] + K, K, (z—E|[z]), (3.41)

Koz = Kax — Kuo K, Ko (3.42)

Here, Kxx, Kxx|z, and Ky, are the unconditional covariance of x, the conditional covari-

ance of x conditioned on z, and the cross-covariance of x & z respectively. From (3.41),
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the MMSE channel estimate flf can be calculated as
hy = E [hy] + E [hiy; " Ely;y "]~ (77 — E[v7). (3.43)

The terms in the above expression can be evaluated as

E [hiy"] = B{Py" @ Ly, (3.44)
E[yiy:"] = (PyBiPiT + Nol,) © Iy, (3.45)
hf = (B/P" (PI*BIP}" + ML) ™' @ Iy)yy, (3.46)

and thus, the MMSE estimate HF of HF is

H = Y (PYBIPEY 4 NoL) 'PIBY, (3.47)

< YPPEBE(PIPIBY + NoLyys) (3.48)
where (a) follows from (AB +1)7'A = A(BA +1)~".

3.8.1.2 LCMMSE

The LCMMSE estimator is fl,’fm £ E, [hy,], where z = yf,,]; is the received pilot signal.
The error h¥, 2 h¥ — hy, is uncorrelated with the signal y** and the channel estimate

h¥ . From (3.41), the LCMMSE channel estimate h% can be calculated

hf, = E[hyyhe | Elybeyhe ] b (3.49)
Gim B || Pm||P02
Ll 3Yem = MY (3.50)

- Nollpall? + Yics, [P Pnl*guBion
3.8.1.3 MSBL

In each iteration of MSBL, two steps are performed. The first step, termed the E-step,

updates the covariance X7 and mean pl " of the posterior p([ZF]. . |[Y]:m, VL)

¥/ =17 — T PM(N,IL + P, PH) 1P| (3.51)
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pll = NSISIHPEIYP e [N, (3.52)

The second step, termed the M-step, updates the hyperparameter for the ith user in the
tth RB as

s = o 35 (240 e+ i ), € (004 (359

This step estimates the variance of the channel of the ¢th user in the tth RB. Based on
the estimate gF and the true g, the set of users [M*] can be divided into four disjoint

subsets

Af = {i € [M"] | glige = 1},
Fr={ie M| g5l — gu) =1},
My ={ie[M"|(1-g5)gu =1},

Iy = {ie [M]| (1 - g)(1 - gu) = 1}.

— — — —~
(@ ot
D ot

SN— S~— N— N~—

AF is the set of true positive users, FF is the set of false positive users, M¥ is the set
of false negative users, and Z¥ is the set of true negative users. False positive and false
negative users form the errors in APM estimation. As the decoding iterations proceed,
more users get decoded, and the errors in APM estimation decrease. The MSBL channel
estimate HY = YP*PAT,, (PH¥PFT, + Nyl )~ is output in the E-step from Algorithm
1, where I'y, = diag('y,]c;“a") The false negative users’ channels do not get estimated even
though they contribute towards Y? ¥ The false positive users’ channels get estimated even
though they have not transmitted, and thus, an erroneous channel estimate is output for
those users. Since [7y]; models the variance of the ith users signal in the ¢th RB, it models

]max

giiBiok. Thus, the estimated hyperparameter [y;*]; would recover both gF and Bf Since
the path loss is same across RBs, a higher quality estimate for the path loss can be esti-

mated by averaging across RBs, and thus we obtain ¥ = (O GE [yl /(o2 S, k).
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3.8.1.4 Error variances

The conditional covariance of hy; is calculated conditioned on z = ﬁfz In MMSE, with

c; = [Cfl.; and Cf £ PyBY(P{PBf + Noly) ™", we have

Khh, = E[htzhg] = ﬁiOﬁINa (358)
Kn,.z = Ehyh] = p'cfguBio?1y, (3.59)
Koz = (Nolleail|” + 35, [P) il ge 8500 ) I (3.60)

Thus, the conditional covariance is

Kbz = Knony — Kn2 Ky, Kon,,
5,02 Nollk[1* + Zjes,i T?ti|29tjﬁjgﬁ
g -
o Nollc I + Zjesk |7ﬂfti|29tj5j0121

) Iy 2 6F 1y, (3.61)

k

A . . . ..
where %, = p¥cj; and 6}; accounts for pilot contamination. The conditional autocorrela-

tion follows as

Eu[hmhil ] = Ki,ony e + B[ By by, ]? = 6F Ty + hl hiE. (3.62)

m tm

The unconditional and conditional means of the estimation error are E[h} ] = E[hf —
hy,] = 0 and E,[h* | = E,[h% —h,,,] =h* —h% = 0. The conditional autocovariance

of the error therefore simplifies as

Kﬁfmflfm\z = Ez[flfmflfrg] = Ez[htmhgn] - flfmflfrg = 5fmIN7 (363)
and thus, 6% 1is also the variance of the estimation error. Substituting CF =

P} diag(ng,, . .- ,nfiMk ), we get the error variance for LCMMSE.
t
The MSBL estimate error is also uncorrelated with the estimate and the error variance
can be derived similar to the MMSE scheme since the MSBL estimate is a “plug-in” MMSE

estimate. Since only true positive users’ channels are estimated, the error variance is
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calculated only for the subset of true positive users (users with gFg,; = 1), and thus,
each gy is accompanied by ¢ similar to [15] (See Chapter 4). Further, since the error
variance models the true interference from other true positive users, the true path loss
coefficient accompanies §¥g,. Hence we define C¥ £ P*DF(PFHPFDF + NyI,+)~! and
D} £ diag(df, ,d: ...

variance for MSBL.

o df ), with df = gFguBi02. Substituting for C¥, we get the error

tiMk

3.8.2 Proof of Theorem 3.2: SINR Evaluation

In order to evaluate the SINR, we first calculate the power of the received signal,
which is calculated conditioned on the knowledge of the estimates z 2 vec(HF)
as B, [|gF 1] = B, 3., Ti|?]. Since noise is uncorrelated with data, E,[T1TJ] =
E,[T2T}] = E,[T5Tf] = 0. Since MMSE channel estimates are uncorrelated with their
errors [49], E,[T1T#] = 0. Computing the remaining power components requires the eval-
uation of E,[x;z;] for ¢ # j which can be calculated as E,[z;z;] = E,[2;]E,[z;] = 0. Thus,
all the four terms are uncorrelated and the power in the received signal is just a sum of
the powers of the individual components E,[|7F, 2] = Yot E,[|T;?]. We now compute
the powers of each of the components. The useful signal power is

E,[|Th|"] = Eq[lal bl gimam ] = Pgp,|afihf, > (3.64)

tm

The desired gain is written as

EJTE  |aki 2
Gainf £ 21 _ , Dtm_tml 3.65
2 = Blak, P~ % a2 (3.65)

The power of the estimation error is expressed as

E,[| T3] = Eu[Jafi by, gimm|’] = Pgi 0t llal, 1> (3.66)

tm m m
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Next, the power of the inter-user interference term T3 is

E[|T3%] = E, [

2
KH
Am ZieSg’gtihtixi ]
_ 2 kH H1 .k
=P Zz'eslgngtiatm E,[hyh;;]ag,
_ 2 JkH ( Sk Lk EHY ok
= PZiesggtiatm (05 In + hihgay

= Pziesggfi(|lafml|25§ + |a7]5€rghz]€€i|2)‘ (3.67)

Here, E,[|T3]?] + E,[|T3|?] represents the contribution of estimation errors and multi-user
interference components of the other users. Since gy is binary, its powers are dropped.
We now split the normalized version of the above into the sum of the error component

Estf and the multi-user interference MUI¥ as follows

E oA k E oA |az]‘,§HlAlz]‘,€’2
E £ 5% MUI e Ltm il .
Stim E :iGSkgm(StZ’ ULy 2 :iGSL”th ||a7lt€m||2 (3 68)
The noise power is calculated as
E,[|T4?] = E,[|af i n, ] = Nollaf, ||>. (3.69)

A meaningful SINR expression can be written out by dividing the useful signal power
from (3.65) by the sum of the interference and the noise powers (from (3.68), and (3.69))
[49]. Note that the interference component is comprised of the estimation error term
and the signal powers of other users who have also transmitted in the same RB. For
MMSE/LCMMSE, the corresponding SINR can be calculated by plugging in the channel
estimates.

In MSBL, each of T, T5, and T3 is calculated among the subset of true positive users in
the tth RB, i.e., users in AF = {i € [M*]|gkg;; = 1}. Hence, each of the powers previously
derived for MMSE is accompanied by §Xg;;. We need to account for false negative users,
i.e., users in MF = {i € [M*]|(1 — gF)gs; = 1}. These users interfere with the decoding

of other users and the SINR for such users is 0 since they will never get decoded. Such
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users’ signals are uncorrelated with the other terms, and thus, their power is

EzHTS‘z] = Ezuziesgmmfafghtigtﬂi’2]
(b)
=P ZieS;"ﬂMfgvaiafrg E[hyh{]aj,
- Pzz'es,;"m/\/lfgtziafyg(Bz‘UﬁIN)afm

= PZieSQmeg?iﬁiJI%HafmH27 (3'70)

where the conditional expectation is dropped in (b) since the BS does not have the knowl-
edge of the channel estimates of false negative users. The normalised power of the false

positive users is FNUF £ Ziesg(l — GF)grifiok.

3.8.3 Proof of Lemma 1: Deterministic Equivalent Analysis in
the Context of Massive MIMO

kHﬁf ’2

It is known that, as the number of antennas gets large, both ||h¥ || and [hfZh¥,

converge

almost surely (a.s.) to their deterministic equivalents [106]. Evaluating the deterministic

equivalents as in [106] and plugging into the SINR expression instead of the original terms,

we can find an approximation to the SINR in the high antenna regime. As N gets large,

the SINR with MRC converges almost surely (pf =% 7F ) to
Nsigp,

ek, (No/P + IntNC}, ) + IntCl )’

= (371)
where Sigl is the desired gain, IntNCF is the non-coherent interference, and IntCF,
is the coherent interference. For LCMMSE, IntNCE £ g,.6F + D iesy GrifBios,
Sigh, 2 gum@otlpall, THSCh, £ N en gaflotlopl?, and e, 2 Nollpl? +
D ies, gubioa|plipil*. For MMSE, ¢, £ Nolct,[* + > iesy gubioileinpil’, Sigy, =
Gem(€F )2, IntCk £ NZZES’T gif2otckip,|?, IntNCE £ g,,.0F + Zz‘es;y guBiog. For
MSBL, ef,, £ Nolleg, [* + Xies, gubioiletypil®s IntNCy, = Gt gundt, + Yiesp 9ibion,
Sigh, = gF.gm(er,)? and IntCl, £ N>, s gui32ot|ckp;|2. Here, 68 and cf  are ob-

tained from the previous theorems. The above expressions are obtained by replacing each
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of the terms involving flfm in the SINR with their respective deterministic equivalents.

3.8.4 Proof of Theorem 3.3: Success Probability

Let k denote the intra-RB decoding iteration. When perfect CSI is available at the BS

and the users perform path loss inversion, the SINR of the mth user in an RB is computed

as
Pl
k m
Pry = . (3.72)
NolBnl? + PYyeep WEB?
For r =1, p} = P||h,,||?/Ny, and 6, reduces to
61 = Pr(p; > vim) = Cinc(N, py " yn) /T(N), (3.73)
where pg £ Poi /Ny, Tinc(s,z) = [77t*"'e " dt is the upper incomplete gamma func-

tion and I'(s) is the ordinary gamma function. The interference is written as t,,; =
[hfh,|2/(||h,,|1%]|h]|?), where t,,; ~ Beta(a = 1,8 = N). We use 2 to denote con-
vergence in the almost surely sense. Since ||h|?/N == o2 and |h;||*/N? =% o as

N — oo [106], we can approximate the SINR as
Pt~ N(pgt + Nziesﬁtmi)*l. (3.74)

Here, we have applied the theory of deterministic equivalents to only the channel norms
and not to the interference. This is supported by the fact that the interference compo-
nents converge to their deterministic equivalents slower than the norms converge to their
deterministic equivalents [106].

For r = 2, since t1o = to1, pi = ps = N/(py' + Nt1z). Thus, pL.. = N/(py" + Nti2)
and p>, = Npg with pL. < p2. . Thus, the success probability reduces to 0, =

Pr(pLa. = ). Let to 25" — N~1py!. Hence, 6, is calculated as

0 % Pr(ppax = n) = Prtia < to)
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=1{to > 1} + (1 — (1 —t)M)1{0 < tn < 1} (3.75)

For r > 3, p need not be a monotonically increasing function of k as seen in (3.74), and
thus we cannot order the SINRs meaningfully to compute a closed form expression for 6,.
With u,, = Zie[r]\m tmi, the maximum SINR in the first intra-RB iteration is calculated
as Prax = MaXmep] N(pg '+ Nu,,)~t. Here, u,, is not independent across m and it is not
clear which u,, is the minimum. Thus, we approximate pl . as pl, and upon dropping

the other SINR terms from (3.34), 6, becomes
0, ~ Pr(pl > yu) = Pr(u; < to). (3.76)

We now discuss two approximations to u,, to evaluate 6., with the assumption that wu,,
is independent across m.

Since limy_,o Beta(a = 1,8 = N) = exp(A = N), we approximate t,,; ~ exp(N),
which is a good approximation at high N [105]. Even with this approximation, wu,, is
identically Gamma distributed across users but not independent. Thus, with the inde-
pendence assumption, u,, is i.i.d. Gamma distributed with shape parameter r—1 and rate

parameter N, i.e., u,, S Gamma(r —1, N). Thus, we obtain the Gamma approximation:
97, ~1-— FinC<T - ]_, Nto)/F(T — ].) (377)

Similarly, when we assume t,,; is Normal distributed, u,, is identically Normal distributed
across users but not independent. Let uy = (N +1)7! and 0% = N(N +1)"%(N +2)~ 1.
If we approximate t,,; ~ N (un, 0% ) and u,, is independent across m, then u,, S ((r—

Dy, (r —1)o%). Thus, we obtain the Normal approximation:

0, ~1-0Q (t“ \_/7~(T——_12VMN) , (3.78)

where Q(-) is the standard Normal Q-function.
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A simpler expression can be obtained for 6, by applying the theory of determin-
istic equivalents to not just the channel norms but also to the interference. Thus,

|hfTh,,|?/N 2% o} as N — oo [106]. Thus, the SINR becomes
P =N/(pg " +7—k), (3.79)

which is not random and is a deterministic function of N and py. This expression for

SINR follows from Lemma 1. Thus, we obtain the deterministic approximation:

0, = Pr(p; > yn) = 1{r < [N/ym —py " + 1]} (3.80)

3.9 Appendix

3.9.1 Preliminary Results

This section presents the preliminary results that were published in the conference ver-
sion [12] of this chapter. The results in this section are presented for T'= 50 RBs, N =4
antennas, Ny = 100 simulations, capture threshold vy, = 4, path loss exponent a = 3,
channel variance 02 = 1, 7,4, = 1000 m, and ry = 100 m. The soliton distribution in [72]
with parameters “N” = k; = 27 and “a” = a;, = 0.02 is used to generate the repetition
factor d,, for the mth user, whose pattern is formed by uniformly randomly choosing d,,
RBs from T" RBs. The signal power is taken to be P = 1, relative to the noise variance
set as Ny = 107*. Since the design principles and goals of other NOMA schemes such
as PD-NOMA are completely different, comparison with other non RA based NOMA
schemes has not been performed.

Fig. 3.14(a) shows the throughput, 7 (packets per RB), calculated under different
cases. All the cases have a throughput that exceeds unity (which is the throughput
of perfectly coordinated orthogonal access). As the load L = M/T increases, the peak
throughput of the system increases till it reaches a maximum. After that, it decreases since

there are too many users sharing the same resources, thereby increasing the interference
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Figure 3.14: Performance of IRSA.

power and hence decreasing SINR. It is seen that the peak occurs at 7 = 1.1 with L = 1.2
for single-length pilots, 7 = 2.13 with L = 2.2 for fully orthogonal pilots, and 7 = 2.13
with L = 2.2 for perfect CSI. Thus, using single-length pilots results in a 48% drop in peak
throughput. The significant drop in throughput under estimated channels underscores the
importance of accounting for the effect of imperfect CSI in analyzing the performance.

In Fig. 3.14(b), the throughput of IRSA with single-length pilots is plotted against
the load for different number of RBs. The peak throughput increases from 7 = 1.02 at
L=12forT=50toT =128 at L = 1.3 for T'= 200. Since the truncated soliton size
parameter k; is retained at the same value for all 7', each user has a larger number of RBs
to choose from with the same k. Hence, the interference reduces, and the throughput
increases, until it saturates. Note that, increasing T also increases the computational
complexity of decoding and hence the desired number of RBs can be set according to the
throughput requirements and the complexity constraints.

In the case of fully orthogonal pilots, MT symbols are required on average for channel
estimation, whereas for single-length pilots, T symbols are required for channel estimation.
Thus, for example, when M = 60 and 7" = 50, (M — 1)T" = 2950 extra training symbols
required for orthogonal pilot-based channel estimation compared to single-length pilots

based channel estimation.
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3.9.2 Results with LCMMSE channel estimation
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Figure 3.15: LCMMSE: Impact of L on the throughput.

This section presents the throughput results with the LCMMSE estimation scheme
presented in Sec. 3.3. Fig. 3.15 shows the system throughput, 7 (packets per RE),
evaluated for LCMMSE with different pilot lengths under estimated CSI, with N = 16,
capture threshold 4, = 16, and regularization parameter A = 1. The throughputs exceed
unity, which is the throughput of perfectly coordinated orthogonal access, for all 7 > 5.
As the load L increases, the peak throughput of the system increases till it reaches a
maximum. In the low load regime (L < 2), all the users’ packets get successfully decoded
through the SIC process, and thus the throughput increases linearly with the load. After
reaching the maximum, it decreases since there are too many users sharing the same
resources, thereby increasing the interference power and decreasing SINR. In the high load
regime (L > 3), the system becomes interference-limited. As the pilot length 7 increases,
better quality channel estimates are obtained, and the corresponding SINR increases.
The orthogonal pilots curve is obtained by allocating 7 = M = |[LT] for each L. At
L = 1.5, there are M = 75 total users that need to be served. For 7 = 50, the achievable
throughput at L = 1.5 is nearly 7 = 1.5. Thus, the throughput with orthogonal pilots
(which requires 7 = M) can be achieved with fewer pilot symbols. Further, at low T,

there is a significant drop in the throughput with the non-orthogonal pilots compared to
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orthogonal pilots (which achieves nearly the same performance as a genie-aided system
where perfect CSI is available at the BS, not shown in the figure.) This significant drop
in throughput under estimated channels underscores the importance of accounting for the

effect of imperfect CSI in analyzing the performance of IRSA.
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Figure 3.16: LCMMSE: Effect of 7 on the throughput.

Fig. 3.16 shows the effect of pilot length on the system throughput at different loads
and number of antennas. The capture threshold is set to 4, = 10 and regularization
parameter to A = 1072 for the rest of this section. At all loads, the throughput saturates
as the pilot length is increased, showing that beyond a certain pilot length, the throughput
is limited by other system parameters such as the load, transmit power, or the number
of antennas. For N = 8 and L = 3, the system throughput is low due to poor quality
channel estimates. Increasing 7 does not help since the system is already overloaded.
That is, even though a larger number of measurements are available at high 7, N = 8
is insufficient to ensure successful delivery of all users’ packets at high loads. When N
is increased to 16, the system throughput dramatically improves with 7 and approaches
T =28 at 7 = 50. For N = 16, the optimal throughput of 7 = L is achieved with
7 = 20 (with either N = 8 or 16) for L = 2, which corresponds to M = 100 users, and
with 7 = 5 for L = 1, which corresponds to M = 50 users.!> For L = 2 and N = 8§,

I3Note that, the use of orthogonal pilots would require 7 > 100 and 7 > 50 for M = 100 and M = 50,
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throughput greatly improves as 7 increases and nearly optimal throughput is obtained at
7 = 50. To summarize, the pilot length has a significant impact on the performance of
IRSA and yields near-optimal throughputs at significantly lower pilot lengths than that

required for orthogonal pilot transmission.
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Figure 3.17: LCMMSE: Effect of N on the throughput.

In Fig. 3.17, the system throughput is plotted against the number of antennas at the
BS for different system loads and pilot lengths. Under all configurations, it is observed
that increasing N has a significant impact, and the peak throughput achieved reaches its
maximum of 7 = L. For L = 1, changing either 7 or N does not have a significant impact
and the throughput remains 7 = 1 for N > 4. For L = 2, the throughput reaches the
peak 7 = 2 for N > 32. Similarly, for a high load of L = 3, the throughput reaches the
peak, 7 = 3, for N > 128. It is observed that at L =2, N =16 and L = 3, N = 32,
improving 7 greatly improves the throughput. Increasing the number of antennas increases
the array gain and the decoding capability of the regularized zero forcing decoder at the
BS, which in turn leads to more users getting decoded. In particular, the dramatic rise
in the throughput from N = 8 to 32 for a high load of L = 3 shows the effectiveness of
the number of antennas in improving the throughput.

Fig. 3.18 shows the impact of cell edge SNR on the throughput. In the noise-limited

respectively.
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Figure 3.18: LCMMSE: Impact of SNR on the throughput.

regime (SNR < 0 dB), an increase in SNR sharply increases the throughput. Beyond
an SNR of 5 dB, increasing SNR only marginally increases the throughput for all L and
7, and the system becomes interference-limited for 7 = 10. This is because, at low T,
both signal and interference powers get scaled equally, and the SINR remains roughly
constant. At 7 = 50, for L = 1 and 2, the optimal throughputs can be obtained at a cell
edge SNR = 0 dB. However, the throughput for L = 3 saturates beyond an SNR of 5 dB
and does not yield the optimal throughput of 7 = 3 due to a high load and low N. In
summary, the system throughput can be improved by increasing the pilot length, number
of antennas, and cell edge SNR, but these need to be increased judiciously, keeping the
other parameters in mind.

Fig. 3.19 shows the effect of regularization parameter A on the throughput of the
system when LCMMSE estimation is employed, with L =4 and N = 16. As \ is varied
from 107% to 10°, the curves go from ZF on the left to RZF in the middle and finally
to MRC on the right. ZF has poor performance at low 7 due to low quality channel
estimates. As 7 is increased past 60, ZF starts performing better and achieves close
to the optimal throughput of 7 = 4. RZF shows a huge improvement over both ZF
and MRC for A € (107%,1072) and achieves near-optimal throughput for 7 = 40. The

interference suppression capability of RZF helps it achieve a large improvement over both
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ZF and MRC, especially for 7 = 40. MRC does not have the interference suppression
capability of RZF, and thus the performance saturates at a low value for all 7. Similar
observations can be made on the joint effect of A and N as seen in Fig. 3.20, where
L =4 and 7 = 10. Since 7 = 10 is fixed, no significant improvement in the throughput
is seen up to N = 64. Increasing both 7 and N together yields much better throughput.
Further, since the performance of RZF remains constant over a wide range of A, it is not
important to choose its value very accurately, and any choice in this interval would result

in near-optimal throughput.

3.9.3 Difficulty of DE

This section explains the difficulty of using the density evolution (DE) process to cal-
culate closed-form theoretical expressions for the asymptotic performance of IRSA-type
protocols. The DE algorithm is iterative in nature, and only the final failure probability
Poo decides the effective throughput of the system. We can also employ the differential
evolution algorithm [26] to find the optimal degree distribution. While this provides a
numerical recipe to calculate the optimized degree distributions, it usually does not lead
to further insights into the system performance, due to the numerical nature of the DE
process.

The DE process does not yield a closed form expression for 7 or PLR not just for
IRSA with our system model, but even for the most basic variants of IRSA (such as IRSA
with a Gaussian multiple access channel (GMAC) or CRDSA).

1. For slotted ALOHA, which is the most basic variant of IRSA, users cannot be de-
coded if there are collisions. In this case, 0, = 1{r = 1}, and the failure prob-
abilities become ¢; = 1,p; = 1 — exp(—L) = ps. Here 1{-} is the indicator
function. Since each user transmits only once, the required degree distributions
are ¢p(x) = z,AN(z) = 1,¢¥(x) = exp(—L(1 — z)). Thus, the packet loss rate is
PLR = ¢(ps) = 1 — exp(—L), and the throughput can be calculated as 7 = Le(~5).
Hence, the peak throughput can be calculated by setting the derivative with respect
to L to be equal to zero, which can be found as 7* = 1/e ~ 0.37 at inflection load
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of L* =1.

2. For CRDSA, each user transmits only twice, and thus, the degree distributions are
d(x) = 2?2, A\(x) = x, and ¥(x) = exp(—2L(1 — z)). Similar to slotted ALOHA,
users cannot be decoded if there are collisions, and thus 6, = 1{r = 1}. The
failure probabilities can be found as ¢; = p;_1,p; = 1 — exp(—2Lg;), and thus,
git1 = 1 —exp(—2Lg;), and the throughput can be found as 7 = Lé(ps). In this
case, we cannot find a closed form expression for the PLR or for the throughput, and
we need to empirically find where the throughput peaks. Empirically, the inflection
load can be found to be L* = 0.5.

3. For IRSA with the GMAC, the collision model 6, = 1{r = 1} is considered. Using a
node-perspective user degree distribution ¢(z) = 0.52% 4 0.28x +0.222°8 [17] results
in d=3.6, \(r) = 0.287 + 0.2322 + 0.4927, and ¥ (x) = exp(—3.6L(1 — z)). Thus,
the failure probabilities can be found as ¢; = AM(p;_1), pi = 1 — exp(—Ldg;), and the
throughput can be found as 7 = L@(ps ). Similar to the previous case, we cannot
find a closed-form analytical expression for PLR or 7. Thus, we need to resort
to empirical means to find a relationship between the throughput and the system

parameters (such as L, ¢(x), A\(x), and d).

4. For IRSA with the GMAC and a MUD [75], the K-collision model is considered,
where 0, = 1{1 < r < K}. Here, the BS can decode K or fewer packets cor-
rectly. Thus, with any generic node-perspective user degree distribution, the failure

probability p; can be calculated as

g = cqi)"" Yine(K, Ldg
pi=1l-e ZETQ_)D!_V (F(K)q>. (3.81)

r=1

’Yinc(Ka LJQz)
Th i1 = A | —=——
performance of the system. Once again, we cannot find a closed form expression for

) is the final recursive equation that determines the

T, and we need to empirically find a relationship between the throughput and the

system parameters (such as K, L, ¢(x), A\(x), and d).
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Thus, slotted ALOHA is the only variant of IRSA for which we can obtain a closed
form expression for the throughput. As we have demonstrated above, for all of CRDSA
or IRSA with GMAC and a single-user decoder or IRSA with GMAC and a multi-user
decoder, it is not possible to find closed form expressions for the throughput or the packet
loss rate of the system. The system model we have considered in this chapter is far more
complicated than any of these: we account for path loss, fading, MIMO channel (and thus,
possibly MUD), pilot contamination, and CSI errors. Thus, since we do not have visibility
into the DE process, it is hard to obtain a closed form expression for the throughput using

DE for our system model also.

3.9.4 Pilot Power Boosting

In this section, we analyze the impact of pilot power boosting. So far, we had considered the
pilot power PP and data power P to be equal for simplicity. In pilot power boosting [107,
108], the pilot symbols are typically transmitted at a higher SNR compared to the data
symbols. In Fig. 3.21 and Fig. 3.22, we plot the throughput of IRSA for L = 2 and L = 3,
respectively. The setup for this is with MMSE channel estimation, N =8, 7 =8, T' = 50,
A = 1072, and vy = 10. In both the figures, the x-axis is the cell edge SNR, which we
consider to be equal to the data SNR, and the pilot SNR has been boosted appropriately
above the data SNR according to the legends, e.g., P¥y = Pyp + 3 dB for a 3 dB boost.
In Fig. 3.21, we observe that at very low cell edge SNR, the throughput is very low,
and the optimal throughput of 7 = 2 is achieved at a cell edge SNR of 5 dB. We observe
that at very low cell edge SNR and at SNRs that are optimal for the decoding process,
performing pilot power boosting does not improve the throughputs. This is because at
low cell edge SNR, the system is noise-limited, and the SINR does not improve much
by pilot power boosting. Pilot power boosting does not help much when the power of
the channel estimation error is lower than noise variance. Similarly, at high cell edge
SNRs, the optimal performance is already reached without any boosting. Thus, in the
intermediary SNR region, the performance marginally improves by pilot power boosting.

In this regime, increasing pilot power helps reduce the power of the channel estimation
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Figure 3.21: Pilot power boosting with L = 2.

errors and this in turn can help the packets achieve an SINR that exceeds the capture

threshold. This is also the region in which the system is just around the inflection load (as

revealed by the density evolution process), and thus, boosting pilot power helps increase

the throughput.
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Figure 3.22: Pilot power boosting with L = 3.

20

In Fig. 3.22, we observe similar trends as seen previously, with one change. Here,

unlike the previous figure, the optimal throughput of 7 = 3 is never achieved. At a load
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of L = 3 and high SNRs, the system is already too interference limited for the power
boosting to affect it. However, pilot power boosting has the same impact at high SNRs as
we observed in the previous plot. Thus, pilot power boosting does not have a significant
impact on the decodability of the packet in most regimes. It helps only at intermediary

SNRs, and hence we next focus on boosting only in this regime.
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Figure 3.23: Pilot power boosting with cell edge SNR = 0 dB.

In Fig. 3.23, we plot the throughput of IRSA with pilot power boosting, under identical
settings as the previous figures, and an intermediary cell edge SNR = 0dB. As seen in
the previous figures, operating at this cell edge SNR yields a benefit when we perform
boosting. Here, we observe that pilot power boosting from 3dB and up to 20dB drastically
improves the performance. At L = 1.8, the throughput improves from 7 = 1.15 with no
boost to 7 = 1.55 with 20 dB boost, which is a 34.78% improvement. At L = 2, the
throughput improves from 7 = 1.13 with no boost to 7 = 1.59 with 20 dB boost, which
is a 40.71% improvement. Thus, pilot power boosting can yield very good improvements,

albeit only at certain intermediate SNRs.
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3.9.5 How to generate the APM at the BS?

In this section, we describe how we can generate the APM at the BS, which justifies the
assumption that the BS knows the APM. In conventional IRSA, each packet header has a
pointer to the position of other replicas. Therefore, once a packet is successfully decoded,
the other replicas can be located and the interference of the replicas can be removed from
other REs.

In a practical system, the BS can generate the APM by using a common seed available
at the users and the BS. The assumption that the APM is known at the BS is present
in other existing works on IRSA as well. The first paper on IRSA [7] says “In practical
implementations, the overhead due to the inclusion of pointers in the header of the burst
may be reduced by adopting more efficient techniques. One may include in the header the
repetition degree for the burst together with a random seed, out of which it is possible
to reconstruct (by a pre-defined pseudo-random number generator) the positions of the
burst replicas.” The authors in [74] point out that “Each replica contains in the header
information about the location of all other related replicas. In principle, this information
can be agreed in advance through, e.g., a shared seed for a random number generator.”;
[109] mentions that “This can be achieved by some pseudo-random mechanism known
by both the transmit and receive ends.”; [110] says that “In practical implementations,
the overhead due to the inclusion of pointers in the segment header may be reduced by
adopting more efficient techniques. For fixed k, one may include in the segment header
the code index h together with a random seed, out of which it is possible to reconstruct
(by a pre-defined pseudo-random number generator) the positions of the n; segments.”
All of these existing works describe the generation of the APM at the BS via a common
pre-defined seed, either after decoding one packet or before decoding any packet. In the
former case, one column of the APM is revealed either after one packet is decoded, while
in the latter case, the APM is fully known at the BS.

We now describe how this can be implemented in practice. One of the simplest and
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widely used pseudo-random number generator (PRNG) is the linear congruential genera-

tor [111]. This generator uses the recurrence relation

X1 = (aX,, +b) mod m, (3.82)

where X is the ¢th pseudo-random number, X is called the seed, a is called the multiplier,
b is called the increment, and m is called the modulus [112]. Here, Xy > 0,m > 0,a > 0,&
b > 0 completely specify the PRNG, with Xy, a,b < m. The detailed discussion of optimal
multipliers [113] and fast parallel generation of numbers [114] is beyond the scope of this
work. Simple PRNGs such as the above can be programmed into the hardware, and the
generation of such a random number only takes about 1 — 3 clock cycles. Further, we can

compute the APM offline and store it beforehand at the BS.
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Figure 3.24: APM generation time vs. system load.

The seed to be used in the PRNG can be made of the frame index and the user 1D.
For example, the seed that is used to generate the APM coefficients for the ith user at the
BS could be generated by appending the current frame index and the user ID, as Seed
= [Current Frame Index; User ID]. For example, let there be a million users (6 decimal
digits) and a thousand frames (3 decimal digits). This would require a total of 9 decimal

digits to represent the seed. With a binary representation, a million users would need
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around 20 bits to represent the user IDs, and a thousand frames would need around 10
bits to represent the frame index: it goes from 0 to 1023 and then cycles back to 0.

Using the above specified PRNG, we report the generation time of the random numbers
required to compute the APM in Fig. 3.24. This is plotted in a log-log scale, and thus,
the generation time increases linearly with the load. This setup is with typical PRNG
settings such as m = 26 — 1, b = 11, and a = 47485 [113]. Along the x-axis, we can see
that the generation time increases linearly whenever the number of users is doubled. The
number of users at any point can be calculated as M = L x T'/p,, with p, = 0.1 (this
accounts for user activity). For L = 64, the points for 7' = 2000, 1000, 500, 200, 100, 50
correspond to M = 1.28 x 10%, 6.4 x 10°, 3.2 x 10°, 1.28 x 10°, 6.4 x 10%, and 3.2 x 10*
users, respectively. Thus, the generation time for a million users is not too much and
can be implemented with ultra-low complexity PRNGs such as the ones described above.
There are also other RNGs that run faster, e.g., the Mersenne twister RNG.

If d; is the repetition factor of the ith user, we need to generate 1+ d; random numbers
for the 7th user. That is, the first random number is needed to generate the repetition
factor d; itself from the degree distribution, and then, we need to generate d; number of
RE indices from the available T" REs, without replacement. Thus, the BS would need
to generate a total of Zi]\il(l +d;) =~ M(1 + d) random numbers at the BS on average
in every frame. For M = 10° users, we need to generate M (1 + d) random numbers.
With T" = 1000, we need 10 bits to store the above random numbers each. Thus, with
d = 3/4/5, we would need 40/50/60 Megabits to store the required RE indices in each
frame. With 1024 frames, we would need 40/50/60 Gigabits, or equivalently 5/6.25/7.5
Gigabytes. Thus, it is true that the lookup table can be large for offline generation
and storage. However, one could store partial random numbers, e.g., just the d;s and
generate the remaining random number on the fly, as required, during the run-time of the
algorithm.

Further, the BS is assumed to have enough computational power and storage for all
the signal processing that needs to be performed in every frame; it is trying to decode a

fraction of active users among millions of users and perform further processing. In such a
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setting, if the BS is computationally powerful to do everything else in the entire receiver
chain from UAD to channel estimation and data decoding, the generation and/or look-
up of the APM is not a significant overhead for the BS. Also, the scaling of the UAD
algorithm to a massive number of users is a high dimensional problem, which can be
solved using several tools involving partial matrix processing at each stage. These aspects

are beyond the scope of this thesis.

Solid :Line: KHOWI:I APM
Dot_ted Line: Est@mated APM

Throughput (7))

8
Pilot length (1)

Figure 3.25: Comparison between known and estimated APM.

The MSBL scheme also estimates the APM from the received symbols as seen in
Fig. 3.25. This estimation is done via the sparsity structure of IRSA and not by using
pointers to packet replicas stored in the packet header. Thus, the performance with the
estimated APM is a worst case scenario, and we can only perform better by using pointers
to packet replicas or knowing the APM fully. The estimated APM curves are generated
by applying MSBL on an RE-by-RE basis, and this does not need the knowledge of the
APM or the path loss coefficients. We see that the estimated APM curves achieve the
optimal throughputs (i.e., T = L) for L = 1,2,3 at 7 = 4, 8,12, up from 7 = 2, 3,6 in the
known-APM case, respectively, and beyond that, the performance is the same as that of
known-APM. This shows that with a few additional pilot symbols, we can do away with
the assumption of knowing the APM and path loss coefficients. Thus, the knowledge

of the APM is not a strong assumption on the performance of IRSA, and it entails in
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only a moderate increase in the pilot length required. Since the BS benefits due to the
performance gain of the system (as a consequence of the assumption of known APM), it is
advantageous to generate the APM at the BS and exploit this performance improvement,

even at the cost of the computational overhead involved.

3.9.6 Choice of Pilot Sequences
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Figure 3.26: Performance comparison of different pilot sequences.

In this section, we explore the effect of different pilot sequences on the throughput
of IRSA. In Fig. 3.26, we compare the throughput obtained when several orthogonal
and non-orthogonal pilot sequence sets are used, with 7' = 50, N = 16, v, = 6, and
A = 1. The non-orthogonal pilots, termed as BPSK and QPSK, contain random pilot
symbols belonging to the respective PSK constellations, and Zadoff-Chu (ZC) sequences
are generated according to [115]. ZC sequences require prime pilot length 7 [116,117], we
use 7 = 7. Mutually orthogonal pilot sequences, such as Hadamard and discrete Fourier
transform (DFT), are limited by the length of the pilot sequence 7, i.e., 7 mutually
orthogonal pilot sequences of length 7 can be generated. Thus, we perform orthogonal
pilot reuse (OPR), where each user randomly selects a pilot sequence from the available

set of 7 pilots, similar to [63] and [118].
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Random QPSK, Gaussian, and BPSK pilots have identical performance, and ZC se-
quences result in a marginally lower throughput at high loads. Similar observations are
made in [53,119]. Any choice of the non-orthogonal pilots generally yield similar through-
puts. Thus, the choice of pilots is not a major point of concern. In the 7 = L regime, the
performance of non-orthogonal pilots is better than OPR. Too much pilot reuse, which is
worse with OPR due to the smaller set of available pilots, deteriorates the performance.
The use of non-orthogonal pilots provides better diversity, since there is a richer set of

pilot sequences, leading to better performance [53].



Part 2

110



Chapter 4

User Activity Detection in IRSA

4.1 Introduction

Massive machine-type communications (mMTC) is expected to serve around a million de-
vices per square kilometer [1]. Typical mMTC devices transmit short packets to a central
base station (BS), and are sporadically active [2]. To facilitate efficient random access for
such mMTC applications, distributed grant-free random access (GFRA) protocols need
to be used, as they can serve a large number of users without incurring a large signaling
overhead [5]. Since only a subset of users are active in any frame in mMTC [2], it is
essential for the BS to detect the set of users that are active, before proceeding to per-
form channel estimation and data decoding. This process is termed user activity detection
(UAD). Furthermore, without UAD, the BS would waste valuable resources attempting
to decode a large number of users that have not transmitted any packets, i.e., users that
are inactive. Knowing the subset of active users not only saves computational resources
by helping the BS decide which users it needs to decode, it is also important for channel
estimation, as will be seen in the sequel. Errors arising from the UAD process, namely,
false positives and false negatives, deteriorate the channel estimates computed at the BS,
which in turn affects the data decoding. Hence, it is crucial to account for these errors
while analyzing the performance of GFRA protocols.

The contents of this chapter is published in a full length journal paper in the IEEE
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Transactions on Signal Processing in 2023 [15].

4.1.1 Motivation

Irregular repetition slotted aloha (IRSA) is a popular GFRA protocol in which users
transmit replicas of their packets in multiple resource blocks (RBs) in a frame [7]. Each
RB can accommodate a whole data packet. In IRSA, each user samples their repetition
factor d from a predefined distribution independently of other users and then transmits
replicas of its packet in d RBs chosen uniformly at random from the set of all RBs in the
frame [7]. The indices of the RBs in which the users transmit their packet replicas define
the access pattern matriz (APM), which we assume is known at the BS. This assumption is
explained in Sec. 4.2. Due to the structure of the APM, applying existing UAD algorithms
to IRSA can lead to suboptimal performance. In particular, it is necessary to combine the
information available in each RB in a principled manner, to accurately detect the active
users.

Typically, UAD and channel estimation is performed by the BS using pilots transmit-
ted by the users in their packet headers. If the users employ mutually orthogonal pilots,
there is no pilot contamination, making UAD and channel estimation simple. However,
the length of orthogonal pilots scales linearly with the total number of users, and hence
the pilot overhead quickly overshadows the data payload size as the number of users gets
large [6]. Thus, non-orthogonal pilots are used, and the resulting pilot contamination leads
to both UAD errors and channel estimation errors. These effects must be accounted for
while analyzing the performance of IRSA. The main goal of this chapter is to understand
the effect of system parameters such as pilot length, SNR, and the number of antennas
at the BS on the performance of IRSA, accounting for UAD errors, channel estimation

errors, and pilot contamination.

4.1.2 Working of the IRSA protocol

Early works in IRSA considered the collision model in which only singleton RBs are de-

codable. Singleton RBs are RBs in which only a single user has transmitted, and since
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there are no collisions in such RBs, users can be decoded with high probability. The de-
coding proceeds in iterations, and occurs via inter-RB successive interference cancellation
(SIC), which refers to the removal of a packet replica from all other RBs where the same
packet was transmitted. The decoding stops when there is no singleton RB available. The
throughput of IRSA under the collision model is at most one packet per RB [7], which is
achievable asymptotically with the number of RBs and users if the soliton distribution is
used to generate the repetition factors [72].

In the case where the BS is equipped with multiple antennas, multiple users could
potentially be decoded in an RB [49], and thus singleton RBs are not necessary for de-
coding. Any user with a sufficiently high instantaneous signal to interference plus noise
ratio (SINR) can first be decoded, and the contribution of that user can be removed from
the same RB. This process, termed intra-RB SIC, refers to the removal of interference of
a packet replica from the same RB within which it was decoded. After the user with the
highest SINR is decoded, other users could potentially be decoded as well. By performing
both intra-RB and inter-RB SIC, the packet replicas of different users are removed from
all RBs wherein the same user has transmitted a packet. This model, which we use in
this chapter, is termed as the SINR threshold model, and it yields a higher throughput

than the conventional singleton decoding model.

4.1.3 Existing Works in IRSA

IRSA has been studied with the SINR threshold model under scalar Rayleigh fading chan-
nels with perfect channel state information (CSI) [17] and pure path loss channels [8].
Coded slotted aloha (CSA), which is a variant of IRSA, was recently analyzed with im-
perfect SIC [88]. The authors in [63] studied CSA with an acknowledgement mechanism
between frames. IRSA was analyzed with an SIC limit, i.e., a limit on the maximum num-
ber of packets that can be recovered in each RB, in [86]. The average age of information
in IRSA in mMTC has also been studied [79]. We have previously [11,12] analyzed the
IRSA protocol accounting for channel estimation and pilot contamination, with perfect

UAD (See Chapter 3). In contrast, this chapter focuses on UAD in IRSA, and analyzes
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the impact of UAD errors on the throughput.

4.1.4 Existing Works for UAD

To the best of our knowledge, the problem of UAD in IRSA has not yet been considered
in the literature. Further, none of the existing works study the performance of IRSA
accounting for UAD errors, path loss, MIMO fading, pilot contamination, and channel
estimation errors. An initial study into estimating the number of active users in IRSA
was conducted in [93], which does not identify the subset of active users. UAD has been
studied for massive random access outside the context of IRSA [13,14]. The activity ma-
trix to be estimated has jointly-sparse columns, i.e., columns that have the same sparse
support [94]. Typical UAD solutions involve compressed sensing-based solutions [53] or
a maximum aposteriori probability (MAP) detection [95]. The sparse Bayesian learn-
ing (SBL) framework has been employed to perform UAD in mMTC [96]. Faster SBL
algorithms for UAD in mMTC have also been developed [97]. Other low complexity al-
gorithms for UAD include approximate message passing [98] and orthogonal matching
pursuit [99]. These approaches, however, cannot be used in IRSA due to the structure
imposed by the APM. A naive approach would be to perform UAD on an RB-by-RB basis
and declare users inactive if they are found to be inactive in all the RBs. As we will show,
this approach is inefficient and results in large error rates, especially when non-orthogonal

pilots are used.

4.1.5 Contributions

This chapter proposes a novel UAD algorithm for IRSA, and analyzes the throughput of

IRSA, accounting for UAD and channel estimation errors. Our main contributions are:

1. We develop a novel Bayesian algorithm to detect the set of active users in IRSA in
Sec. 4.3. UAD in IRSA is a joint-sparse signal recovery problem with a measurement
model with an important twist: different and unknown subsets of the row indices

of the joint-sparse matrix participate in different measurements. Our algorithm is
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an enhancement to the multiple sparse Bayesian learning (MSBL) algorithm [16] to

cater to this scenario.!

2. We derive the channel estimates at the BS for users in all RBs in IRSA, acquired via
non-orthogonal pilots, in Sec. 4.4. We also derive the Cramér-Rao bound (CRB)
on the mean squared error (MSE) of the channels estimated by our proposed UAD
algorithm. We show that a genie-aided minimum MSE (MMSE) estimator (that has
knowledge of the second-order statistics and the user activities) achieves the CRB.
Later, we also empirically show that the MSE of the channel estimates output by
the proposed UAD algorithm meets the CRB.

3. Next, we analyze the SINR achieved by all the users in all RBs in Sec. 4.5, accounting
for UAD errors, channel estimation errors, and pilot contamination. The SINR
expression allows us to determine the throughput of IRSA, accounting for the effect

of UAD errors.

Our numerical experiments in Sec. 4.6 show that there is at least a 4-fold reduction
in the number of pilot symbols required to achieve a similar UAD performance as that
of existing approaches. The loss in performance due to UAD errors can be recuperated
by judiciously choosing the system parameters such as pilot length, number of antennas,
and SNR. In essence, it is vital to account for both UAD and channel estimation when

analyzing the throughput of IRSA.

Notation

The symbols a, a, A, [A];., [A].;, Oy, 1y, and Iy denote a scalar, a vector, a matrix, the
ith row of A, the jth column of A, all-zero vector of length N, all ones vector of length
N, and an identity matrix of size N x N, respectively. [a]s and [A]. s denote the elements
of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix

with diagonal entries given by a, whereas blkdiag(A, B) is a block diagonal matrix with

1Our UAD algorithm can be applied to other variants of IRSA such as CSA since it entails only a
minor change in the structure of the APM.
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A and B as the diagonal blocks. A ® B is the Kronecker product of A and B, and A >~ B
denotes that A — B is positive semi-definite. [N] denotes the set {1,2,... ., N}. |- ], || -],
-1z, [, [[]%, E[-], and E, [] denote the magnitude, 5 norm, frobenius norm, transpose,
conjugate transpose, unconditional expectation, and the expectation conditioned on a,
respectively. The superscript p is used as a descriptive superscript in association with a
symbol that is related to the pilots. All the other superscripts (or subscripts) that have

not been defined as above are indices.

4.2 System Model

An TRSA system is considered with M single-antenna users communicating with a BS
equipped with N antennas. The users are assumed to be spread randomly within a cell,
with the BS located at the cell center. These users communicate with the BS over frames
consisting of T' RBs. The RBs can be slots, subcarriers or both. In every frame, a small
subset of the M users, called active users, attempt to deliver a packet each to the BS. In
a given frame, the activity coefficient of the mth user is denoted by a,,, where a,, = 1 if
the mth user is active, and a,, = 0 otherwise. Note that a,, can change from one frame
to the next, and the subset of active users (and hence a,,) is unknown at the BS. The
users transmit replicas of their packet according to the random matrix G € {0, 1}
which is called the access pattern matriz (APM). Here, gy = |Gl is the access pattern
coefficient of the mth user in the tth RB. If g4,, = 1, the mth user transmits its packet in
the tth RB provided a,, = 1, and if g, = 0, the mth user does not transmit its packet in
the tth RB even if a,, = 1. If a,, = 0, the mth user is inactive in the current frame, and
does not transmit in any RB.

At the BS, the received signal in the tth RB is a superposition of the packets trans-
mitted by the active users that have chosen to transmit in the tth RB. The packets of
the users undergo both path loss and fading. We assume that the path loss component

and the second-order statistics of the fading component are known at the BS, and that
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the fading channel remains constant for the duration of an RB.? Each packet replica com-
prises a header containing pilot symbols and a payload which includes the coded data
and cyclic redundancy check (CRC) symbols. In the pilot phase, if a,, = 1, the mth user
transmits a 7—length pilot sequence p,, € C” in each packet replica (i.e., if g, = 1).
Each pilot symbol has an average power PP, and the average power of the pilot sequence
is E[||pm||?] = 7PP. The received pilot signal Y? € CV*7 at the BS across the N antennas
in the tth RB is thus

M
Y? = Zmzlamgtmhtmpg + NE) (41)

where N} € CV*7 is the complex additive white Gaussian noise at the BS with [NF].; BV

CN(Oy, Noly),V j € [r] and t € [T], where N is the noise variance. Here, hy,, = /B Vim
is the uplink channel vector of the mth user in the tth RB, where (3, is the known path loss
coefficient and Vi, is the unknown fading vector with vi, "= CA (O, 02Iy), V ¢ € [T]
and m € [M], and channel variance o7.

In the data phase, if a,, = 1, the mth user transmits a data symbol?® z,, in each packet

replica that it transmits. The data symbol satisfies E[x,,] = 0 and E[|z,,|?] = P, where
P denotes the data power. The received data signal y, € CV, at the BS in the tth RB, is

M
Y = Zmzlamgtmhtmxm + 1y, (42)

where n;, € CV is the complex additive white Gaussian noise at the BS with n, B

CN(Oy, NoIy), ¥V t € [T].

In TRSA, if the mth user is active, it samples its repetition factor d,, from a predefined
distribution, independently of other users. Then it chooses d,, RBs from a total of 7' RBs
uniformly at random, and transmits replicas of its packet in these d,, RBs. The APM

is formed as [Glim = gim,t € [T],m € [M], where g4, = 1 if the mth user has chosen

2For simplicity of exposition, we consider i.i.d. Rayleigh fading between the users and the BS in each
RB, although it is straightforward to extend the results to the correlated fading scenario.

3To derive SINR in any given RB, only one data symbol is written out from the multiple data symbols
in each packet.
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to transmit in the tth RB, and g;,, = 0 otherwise.* This generation of repetition factors
is scalable to a large number of users and is completely distributed in nature, and is
thus appropriate for mMTC. In practice, the random subset of RBs is generated using a
pseudo-random number generator, whose seed completely determines the sequence [7].°
This seed can be pre-programmed at each user, and made available to the BS. In this
case, it is reasonable to assume that the BS has knowledge of G. Also, the APM can
be generated in an offline fashion and stored at the BS. However, it is important to note
that although the BS knows the subset of RBs in which a user would transmit its packet
replicas if it were active, the BS still does not have the knowledge of which users are

active in a given frame.

4.2.1 SIC-based Decoding in IRSA

The decoding process in IRSA proceeds as follows. The BS first detects the set of active
users (denoted by a,,). Then, it estimates the channels for all the users detected to be
active in the RBs for which ¢;,, = 1. It uses these channel estimates to combine the
received data signal across the BS antennas, and attempts to decode the user’s data
packet, treating interference from other users as noise. If it successfully decodes any
user, which can be verified via the CRC, it performs SIC in all RBs which that user has
transmitted, with both inter-RB and intra-RB SIC. The channels are re-estimated for the
remaining users, and this decoding process proceeds iteratively.

In this chapter, the decoding of any user’s packet is abstracted into an SINR threshold
model as in [8,17]. That is, the packet can be decoded correctly if and only if the SINR
of an active user’s packet in an RB is greater than a threshold denoted by 41, the packet
can be decoded correctly. The value of v, is usually chosen to be > 1 for a narrowband
system [17]; it is a parameter for the purposes of our analysis.

We now briefly describe how to evaluate the performance of IRSA under the abstract

4Note that users who are inactive in a given frame can also be virtually considered to have chosen the
RBs in which they are scheduled to transmit, even though they do not transmit in any RB.

5For example, the seed could be a function of the current frame index and the user ID, such as,
seed = [Current Frame Index; User ID]. Using simple pseudo-random number generators and with no
computational speed-up, we can generate 10° random numbers within a few ms on a mid-range laptop.
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SINR threshold-based decoding model. We first estimate the user activity coefficients
for all users over the frame. For the users detected to be active, we compute channel
estimates and SINR achieved in all RBs in which the users detected to be active have
transmitted their packets. This SINR accounts for the CSI available at the BS and errors
in the UAD process, as we will see in Sec. 4.5. If we find a user with SINR > 4, in
some RB, we mark the data packet as having been decoded successfully, and remove that
user from the set of users yet to be decoded. Also, the contribution of the user’s packet
is removed from all RBs that contain a replica of that packet. In the next iteration,
the channels are re-estimated from the residual pilot symbols after SIC, the SINRs are
recomputed in all RBs, and the decoding of users’ packets continues. The iterations stop
when no additional users are decoded in two successive iterations or if all users detected to
be active have been successfully decoded. The system throughput 7 is calculated as the
number of correctly decoded unique packets divided by the number of RBs. Note that
the throughput accounts for packet losses that occur due to users that are incorrectly
detected to be active, as well as due to failures in the SIC-based decoding process.

The rest of the chapter is organized as follows. Sec. 4.3 outlines the proposed UAD
algorithm, and Sec. 4.4 describes the channel estimation process. The detailed derivation
of the SINR accounting for both UAD errors and channel estimation errors is presented

later in Sec. 4.5.

4.3 User Activity Detection

In this section, we describe our user activity detection (UAD) algorithm. For this purpose,
we consider the conjugate transpose of the received pilot signal in the tth RB from (4.1)

as Y, 2 Y?P H, with N, £ NfH. The signal Y, can be factorized into the product of the
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product of two matrices as follows:

algtlhf{
Y, =[p1,...,Pu] : + N, . (4.3)
TXN P H TXN
an genhiyg
—_——
Xt

Here, P € C™M™ contains the known pilot sequences of the M users as its columns,
and X; € CM*N contains the tth row of the known APM G, the unknown user activity
coefficients, and the unknown channels. Note that the ¢th row of X; is nonzero only if

a; =1 and ¢g;; = 1, i.e., when the ith user is active and transmits in the tth RB.

Table 4.1: Hyperparameter notation in Algorithm 3.

Symbol | Quantity

¥ Hyperparameter vector of all M users
r Diagonal matrix with ~ as it’s diagonal entries
Y Hyperparameter vector of the M; users who would

have transmitted in the tth RB had they been active

T, Diagonal matrix with ~; as it’s diagonal entries

~7 /47 /T | Hyperparameters in the jth MSBL iteration

’yf Auxiliary variable used to store ~7

Vor Threshold used to declare support

Let G, = {i € [M] | g = 1} be the set of users who would have transmitted in the
tth RB, had they all been active in the current frame, and M; = |G;| be the number of
such users. Since the BS has knowledge of G;, it can remove the contributions of the
users who do not transmit in the tth RB. We thus obtain a column-reduced pilot matrix

P; £ [P].g, € C™*™ and a row-reduced channel matrix Z; = [X]g,. € CMV in the tth
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RB. Hence, (4.3) can be rewritten as

H
a’il htil
Y;[ = |:pi17 e 7p7;]b1,5] + N]tV7 (44)
X H TX
P ath htth
—_——
Z,
where G, = {i1,1s,...,4p,}. The above results in an under-determined system of linear

equations in the mMTC regime (since 7 < M; < M), with rows of Z, being either all zero
or all nonzero. The columns of Z; thus share a common support, i.e., they are joint-sparse.
This structure is referred to as a multiple measurement vector (MMV) recovery problem
in compressed sensing. Note that the above step reduces the dimension of the matrix to
be estimated, but does not solve the UAD problem. The support recovery of Z; from
(4.4) can be performed with well known algorithms from compressed sensing literature
to recover the activity coefficients in the each of the 7" RBs. By doing so, we would
obtain an RB-specific activity estimate for each user. However, the activity coefficient
for any user is the same across the 7' RBs, and thus we need a way to infer {a;} using
information available in all 7" RBs. One naive way to do this is to declare users to be
active in the current frame if they are detected to be active in at least ¢ RBs, where ¢’ is
a parameter that can be optimized. As we will see, this leads to very poor performance
compared to the algorithm presented in the sequel. In the following paragraph, we briefly
discuss Multiple sparse Bayesian learning (MSBL) [16], which sets the stage for presenting
our enhancement that combines the information gleaned from each RB in a principled
manner. The notation we will now use is described in Table 4.1.

MSBL is an empirical Bayesian algorithm that recovers the joint-sparse columns of Z;
from linear underdetermined measurements Y,. In MSBL, a hierarchical Gaussian prior

is imposed on the columns of Z; as

N

p(Z;ve) = Hp([zt];,n;%) = HCN(OM“ L), (4.5)

n=1
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where the columns of Z; are i.i.d. and T, = diag(y;). Here, the elements of v € RY
are unknown hyperparameters and ~, = [v]g, € R]ft picks the hyperparameters for the
users who would have transmitted in the tth RB had they been active in the current
frame. Such a hierarchical Bayesian model is known to result in sparse solutions for the
maximum likelihood estimates of -; [16,120]. Recovering the hyperparameters would
yield the users’ activities since [7y],, models the variance of the mth user’s channel. The
hyperparameters in 4, are estimated by maximizing the log-likelihood log p(Y;~,), with
p(Yiv) = HnNzlp([?t]m;'yt). Here, p([Yi].n;v:) = CN(0,,%,,) because of the linear
measurement model in (4.4), with 3., = NoI,+P,I';PF. Thus, the log-likelihood reads as

log(p(Ys; 7)) o —Nlog |5, | — (2 Y. Y,). (4.6)

This is a non-convex function of 4;, and its maximizer cannot be found in closed form.
In MSBL, expectation maximization (EM) is used to optimize the cost function itera-
tively [121].

Let j denote the iteration index in EM. In the jth MSBL iteration, the notations
~! & [y7]g, and [v/]; denote the hyperparameter vector of the users in the set denoted by
G; and the ith entry of 'yg , respectively. The EM procedure consists of two steps in each

j+1

iteration. The first step, termed the E-step, updates the covariance E{H and mean gy,

of the posterior p([ZiJul[Yi):.n,77) as [120]

S = T — TPH (NI, + P,TIP!) 1P,TY, (4.7)

pin ' =Ny 'STPIY ], n€ [N]. (4.8)

The second step, known as the M-step, updates the hyperparameter for the ith user in
the tth RB as

T = 5 305+ ), € ] (1.9)

This M-step estimates the variance of the channel of the ith user in the tth RB, and this
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hyperparameter update contains the information from the tth RB only. The above two
steps are performed for all 7" RBs. Before the next E-step, the hyperparameter updates

across the RBs must be combined.

4.3.1 The Proposed UAD Algorithm

The main novelty of our UAD algorithm lies in exploiting the access pattern coefficients
across RBs to find a single hyperparameter update, which we term as the new M-step.

For this purpose, let ’ytj tle Rﬂ‘f be an auxiliary variable for the ¢tth RB that is updated as

[’S/g +1]gt = ’yg e R% and zero otherwise. The hyperparameter update for the mth user
is obtained at the BS by combining the estimated hyperparameters for that user across

all the RBs using the knowledge of ¢, as
1« .
¥ = == e[ I, m € [M]. (4.10)
™ i=1

Here d,,, = Zthl 9um 1s the repetition factor of the mth user. Note that, in conjunction
with (4.9), this new M-step is equivalent to executing an M-step that maximizes the
overall log-likelihood, Zthl log p(Y4;7,), based on the knowledge of the APM at the BS.
Effectively, since it estimates the variance of the channel of the mth user by averaging
the estimated variances of the channels in each RB, it combines the information obtained
from all RBs in computing the hyperparameter update. By iterating between the E- and
M-steps, the EM algorithm converges to a saddle point or a local maximizer of the overall
log-likelihood [121]. Further, the EM procedure has been empirically shown to correctly
recover the support of Z;, provided 7 and N are large enough [16]. In turn, this leads to
significantly lower false positive and false negative rates in UAD, as we will empirically
show later.

The overall UAD procedure is summarized in Algorithm 3. The algorithm is run for
Jmax iterations. As the iterations proceed, the hyperparameters corresponding to inactive
users converge to zero, resulting in sparse estimates. At the end of the EM iterations, the

estimated activity coefficient a,, for the mth user is obtained by thresholding [y/==],, at
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Algorithm 3: UAD in IRSA

Input: 7, N, T, M, No, G, P, {Y 3L, {d} M, Yor, Jmax

m=1
1 Initialize: 4% = 1y,

Compute: G, = {m € [M] | gtm =1}, M; = |G|, Py = [P).g,,t € [T]

N

for 7 =0,1,2,..., jmax do
4 fort=1,2,...,7T do

w

5 Compute: 1"{ = diag([v’]g,)

>/ =17 — IPH(NI, + P, IVPH)'P,T}

pitt = NI PAY )., 1<n <N

. 1N . .
6 AR ¥ 2_:1([2§+1]i,i + [ i) 0 € [M]
7 A e =~ W e, = O,

8 end
T ~ 41
o | Iyt = 2t Iy <y
Zt:l Gtm
10 end
L, [y/mex] > Yo
11 Output: a,, = ’ , 1<m< M,

0’ [ijax]m < ’Ypr
Zy = [ ™ opy], 1<t <T
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a value v,,. The algorithm also outputs the MAP estimates of the channels X, in each of
the T' RBs with [Xt]gt’: — 7, and [Xt][M}\gh; = O(m—,)xn, and the channel estimates of
users across all RBs are stacked in X = [Xy,...,Xq].

We now discuss the complexity of our algorithm in terms of the number of floating point
operations (flops). Each MSBL iteration has O(72M) flops, if the pilot matrix is of size
7 X M [16]. In our algorithm, each iteration contains 7" RBs, where the size of the reduced
pilot matrix is 7 x M, in the tth RB. Also, the new M-step has lower complexity order
than the E-step. Thus, the overall per-iteration complexity of Algorithm 3 is O(72My),
where Mg = Zthl M, ~ dM, where d is the average repetition factor.

Based on the estimated activity a; and the true activity a;, the set of all users can be

divided into four disjoint subsets

P ={ie[M]|aa =1}, (4.11a)
F={ie[M]]al-q)=1}, (4.11b)
M={ie[M]]|1-a)a =1}, (4.11c)
T={ie[M]|1-a)1—a)=1} (4.11d)

‘P is the true positive set of users, i.e., the users that are correctly detected to be active.
F is the false positive set of users, i.e., the users that are detected to be active and are
truly inactive. M is the false negative set of users, i.e., the users that are detected to be
inactive, but are actually active. Z is the true negative set of users, i.e., the users that
are correctly detected to be inactive. False positive and false negative users together form
the errors in the UAD process, and the error rates for such users are discussed in Sec.
4.6. After the active users are detected, the next task is to estimate the channels from the
active users. However, before describing channel estimation, we take a small detour to

explain why traditional compressed sensing approaches are not effective for frame-based

UAD in IRSA-based multiple access.
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4.3.2 Why One-Shot UAD Does Not Work

By stacking the received signal in (4.3) across all RBs, we can estimate the user activity
coefficients in one-shot across all RBs. We now briefly explain why this performs poorly.

The received pilot signals in all RBs can be stacked as

algllh{{l e algT1h¥1
X = ; : € CM*NT, (4.13)
(lMgth{{M Ce CLMgTMhII!M

The above structure is not an MMV recovery problem because the rows of X are not
completely all zero or all nonzero. If the ith user is inactive, then the ith row of X is all
zero. However if the ith user is active, then the ith row of X is not all nonzero. Only the
blocks of the ith row corresponding to the RBs in which the ith user has transmitted in
(i.e., where g; = 1) are all nonzero and the other blocks are all zero. Since IRSA results
in the transmission of replicas in only a small subset of the 7" RBs, only a few blocks of
the ith row are nonzero. Different blocks of each row of X corresponding to active users
have different block-sparse supports. If an MMV recovery algorithm is applied across all
RBs in one shot as in (4.13), a pilot length of 7 = Q(M, log Mﬁa) can achieve a vanishing
activity error rate as N — oo, where M, is the average number of active users in each
RB [122]. For example, with M = 1500 and M, = 150, 7 = €2(346) achieves vanishing
error rates in a massive MIMO regime. These pilot lengths are infeasible in practice, and

thus, in practical regimes of interest, one-shot UAD performs poorly.

4.4 Channel Estimation

In addition to performing UAD, Algorithm 3 also outputs an initial channel estimate
for each user that is detected to be active, as a by-product. However, as the decoding
iterations proceed, the interference cancellation can help improve the accuracy of the

channel estimates, when the channels of the remaining users are re-estimated after each
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SIC operation. We now derive MMSE channel estimates in each decoding iteration for
all the users that have been detected to be active.® MMSE channel estimation is also
required to compute meaningful expressions for the SINR, [104].

Since MMSE estimates are recomputed in every iteration, the signals and channel
estimates are indexed by the decoding iteration k. Let the set of users who have not yet
been decoded in the first & — 1 iterations be denoted by S, with SI* £ S, \ {m}, and
S; = [M]. The received pilot signal at the BS, in the tth RB during the kth decoding

iteration, is
k
Y = Zieskaigtihtipf] +NF. (4.14)

In this section, we assume perfect SIC for simplicity of analysis; we study the performance
variation under imperfect SIC in Sec. 4.6.5. This received signal is contributed from all
users who are truly active in the current frame. The BS wishes to compute channel
estimates for users who are detected to be active, i.e., for the users in A = {i € [M] | 4; =
1}, which is output by Algorithm 3. For this purpose, the received pilot signal is right
combined with the pilot p,,, Ym € ANG, NSy, to obtain the post-combining pilot signal

as

k k
ygm = Yf Pm = Zieskaigtihti(p?pm) + prm, (4.15)

which is further used for estimating the channel between the BS and the user in the ¢th

RB [49]. The MMSE channel estimate is given by the following theorem.

Theorem 4.1 » Channel Estimation in IRSA Accounting for UAD Er-

rors.

The MMSE estimate hf,, of the channel hy, is calculated from the post-combining

6Specifically, this is the LCMMSE estimator similar to the previous chapter. The MMSE estimator is
described in Sec. 4.9.1.



Chapter 4. User Activity Detection in IRSA 128

pilot signal as
hY, =0k yhe, Ym €S, (4.16)

dmgtm5m0§|lpm||2
Nollpimll® + Xics, @i91iBio3 [P Pl
hf & hf — hy, is uncorrelated with the channel hy,, and is distributed as

A . 0
where nf = Further, the estimation error

CN (Oy,0F Iy). Here, 6F  is the estimation error variance and is given by

> iesm 1P Pm|?a:a;940:0¢ + No||pm ||?
éfm _ BmO'IQI < €S} h

Ziegk |Pf{pm|2&iaigtiﬁi01% + No||PmH2

Proof. See Sec. 4.8.1. [

Remark 1: The channel estimate is composed of a scaling coefficient 1 and the post-
combining pilot signal yf:fl. n¥ is computed at the BS and is a function of the estimated
activity coefficients a;. Thus, false positive users feature in the denominator of 7% and
affect the channel estimates of other users. The BS also computes channel estimates for
these false positive users.” Since false negative users are detected to be inactive, the BS
does not account for the interference caused by them while computing nf, . From (4.15),
y,}f,]f1 contains signals from other truly active users if pilots are not orthogonal, and is thus
a function of the true activity coefficients a;. Also, false negative users contribute to yf,fl7
and thus both types of errors affect the estimates of other users.

Remark 2: In the above theorem, 6% accounts for the pilot contamination from other true
positive users. False positive users are omitted from the expression for §% because such
users do not contaminate the pilots of other users. Only true positive users contribute to
6k . When orthogonal pilots are used, pfp,, = 0, Vi # m, there is no pilot contamination,

and thus 0F, = B,,02No/(Gm@mGimBmi||Pml|* + No).

"Since false positive users will fail an error check, the BS can potentially try to identify such users
as data decoding proceeds and compute better quality channel estimates. However, we make no such
assumption, and thus, our channel estimation procedure models a worst-case scenario where false positive
users contaminate the channel estimates of other true positive users.
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4.4.1 Cramér-Rao Bound

In this subsection, we derive the Cramér-Rao bound (CRB) [123] on the mean squared

error (MSE) of the channel estimated under the hierarchical Bayesian model given by

(4.5). The signal Y; = P,Z; + N, from (4.4) is first vectorized as

y, =vec(Y)= & 7 + 1, (4.17)
~—~ ~— =~ ~—~
Ntx1 NTXNM¢ NMyx1 Ntx1

where ®, 2 (Iy ® P,), z; = vec(Z,), and 11, = vec(N,).
After stacking the received pilot signal across all RBs as ¥ = [y7,...,y¥4]7, with
z=[z,...,z+)", n=[n],...,n%", and ® = blkdiag{®, ..., ®r}, we obtain

y=®z+1n (4.18)

CNTT

Here, we wish to estimate z € CVs from an observation y € via a measure-

ment matrix ® € CNTT™*NMs with Mg = 3. M, Let J denote the NMg x N Mg
Fisher information matrix (FIM) associated with the vector z. It is easy to see that
J = blkdiag{Jy, ..., 7z}, where J; is the NM; x N M, sub-block of the FIM correspond-
ing to the tth RB. Specifically, the CRB derived in this chapter is the hybrid Cramér-Rao
bound [123], which is a bound analogous to the CRB for the estimation problem in MSBL.
Due to the block diagonal structure of the FIM, the CRB for any estimate z, of Z, is given
by

E((z, — %)% — 7,)"] = J;". (4.19)

Theorem 4.2 » CRB for Channel Estimation in IRSA.

The sub-block of the FIM associated with the channel vector z, = vec(Z;) in the
tth RB is given by

J,=Iy@ Ny (PP, + NoI'}'!) (4.20)
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where T'; = diag([7y]g,) picks the hyperparameters for the M, users in the tth RB.
Further, the CRB for any estimate [Zt]n of [Zi]., in the tth RB across the nth

antenna is given by

E[([Zt]:,n - [Zt]:,n)([zt]:,n - [Zt]:,n)H]
= No (PP, + NoT;)) ™', 1<n<N. (4.21)

Proof. See Sec. 4.8.2. O

Remark: Note that the right hand side in (4.21) is independent of the antenna index.
Also, from (4.19), the MSE of any estimate Z; of Z, in the tth RB can be bounded below
by Tr(J; ') as

BJIZ — Zil[2]) > Tr (Tv @ Ny (PP, + NoT; ) ) (4.22)

— NTr (rt — TP (NI, + P,T,PF) " PtFt) : (4.23)

where the last step is obtained by using the Woodbury matrix identity and Tr(Iy ® A) =
NTr(A). Considering the signals received across the entire frame, the effective MSE of
the estimate X of X can thus be bounded as

~ T ~
MSE =E[|X - X[[z] =) E[lIX: — X[ (4.24)
T ~
= ElllZ: — Z|3] (4.25)
T _
> NNoy o Tr (PP + NIy ) (4.26)

The channel variance can be calculated as

E(XIE] =Y BIXJ3 =3 mEZ2]) (427)
= Zj:lTr(IN X Ft) = NZZ;lTr(I‘t) (4.28)

=N dufl (4.29)
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Hence, the normalized mean squared error (NMSE) of any channel estimate X of X can

be bounded as

E[IX — X2
NMSE & ==~ 1) 4.30
EXIE (4.30)
M S )
>_ 0 NTTy (PHEP, 4 NI (4.31)
Zi\r{:ldm[’ﬂm t=1

To better understand the above expressions, we consider the case of orthogonal pilots,
i.e., PIP, = 7PPI,,, applicable when 7 > M;, Vt € [T]. In this case, the MSE is

bounded as

T M srpe 1 -1
MSE > N ) (To +[I; ]) (4.32)

t=1 i=1

- NmZ:ldm (TTPOP + ﬁ)_ =N>_ % , (4.33)

and the NMSE can be bounded as

1 o [Y]m
m=1 Am[Y|m izl L+ [Y]m——
No

The above bound is for a given set of repetition factors {d,,}, hyperparameters -, the
pilot SNR %, and is independent of the number of antennas N. As 7 — oo, the MSE
goes to zero.

We now describe an estimator that achieves the CRB.

Lemma 2. Assuming the knowledge of the true hyperparameters, the CRB is
achieved by the MMSE channel estimate:

Z, = (PP, + N,I; ") PIY,. (4.35)
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Proof. The MSBL algorithm iteratively calculates the MAP estimate. Since the
posterior p([Z]. |[Y]..n; v:) is Gaussian distributed, the MAP estimate is the same
as the mean of the distribution, which coincides with the MMSE estimate in (4.35).
Upon substituting the above estimate into the MSE expression in (4.23), it is easy

to show that the CRB is achieved. O]

Remark: The above estimator requires knowledge of I';, which in turn needs the user
activity coefficients, and is thus a genie-aided estimator. In practice, one could use the
hyperparameter estimates output by Algorithm 3 in place of I'; to obtain a “plug-in”
MMSE estimator. However, such an estimator need not achieve the CRB. Nonetheless,
as empirically shown in Sec. 4.6, the channel estimates obtained using (4.8) does achieve

the CRB. (See Figs. 4.5 and 4.6.)

4.5 SINR Analysis

In this section, the SINR of each user in all the RBs where it has transmitted data
is derived, accounting for pilot contamination, estimated user activities, and estimated
channels. Let pf denote the SINR of the mth user in the ¢tth RB in the kth decoding
iteration. Similar to (4.2), the received data signal in the tth RB and kth iteration is

Yf = Zieskaigtihtimi + 1. (4.36)

Let M} = |fl N G; N Sk| be the number of users who are detected to be active and have

transmitted in the tth RB, but have not been decoded in the first k& — 1 iterations. A
is obtained as an output of Algorithm 3. A combining matrix A¥ € CN*M? is used at
the receiver in the tth RB and kth decoding iteration. For each m € [M}], the vector

al = [AF].,, combines the received data signal as

Uim = (ALY} = a0 yy (4.37)
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Hhk

H k
Uin = Api 0 G G T — g 1} am%mxm+—g mﬁmmpaﬂnhmlgnxl

kH kH
+ Zies;ym\/t &y, Ny gz + ag, ny. (4.38)

This post-combining data signal is used to decode the mth user and is composed of
five terms as seen in (4.38). The term 7} = ak? h’“ ' AmJim T 18 the desired signal of the
mth user; the term Ty = atH hk G Gim T, 15 due to the estimation error hk of the mth
user’s channel; the term T3 £ Zie spnp atm Tha;9.:0; models the inter-user interference
from other true positive users (who have transmitted in the tth RB and have not yet been
decoded); the term T = Zie SmOM affha;g,m; is the interference from false negative
users (who have transmitted in the ¢th RB, but cannot be decoded since they are declared
to be inactive); and T5 £ a¥fn, is the additive noise.

To compute the SINR, the power of the post-combining data signal is calculated
conditioned on the channel estimates [49]. This is equivalent to computing the power of the
post-combining data signal conditioned on the post-combining pilot signal as E,[|gF, |*] =
E,[| T, +T5+T3+T4+T5|?]. Here, z contains the post-combining pilot signals of all M} users
yet to be decoded. Since noise is uncorrelated with data, 75 is uncorrelated with the other
terms. As MMSE channel estimates are uncorrelated with their estimation errors [49], T}
is uncorrelated with T5. Since the data signals of different users are independent, T35 and
T, are independent of each other and the other terms as well. Thus, all the five terms are

uncorrelated and the power in the received signal is simply the sum of the powers of the

individual components

E. |t ”] = X Eall Tl (4.39)

We now compute the SINR in the following theorem.
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Theorem 4.3 » SINR Accounting for Channel Estimation Errors and

UAD Errors.
The signal to interference plus noise ratio (SINR) achieved by the mth user in the

tth RB in the kth decoding iteration can be written as

k

Gain;
L , Vm € Sy, 4.40
Np + EstF +MUTE 4+ FNUE g (4.40)

ko _
ptm_

where Gain® represents the useful signal power of the mth user, Est? represents
the interference power caused due to estimation errors of all true positive users,
MUIF = represents the multi-user interference power of other true positive users, and
FNUF = represents the interference power caused due to the false negative users.

These can be expressed as

’afnil hy | 2 afni] hy; |2

Gainl = PlymamGim a2 MUTF = Pzz’es,’jdiaigti TR (4.41a)
EStfm = PZieSkdiaigti5§7 FNUfm = PZZES,T(l — &Z)azgtzﬁlaﬁ (441b)
Proof. See Sec. 4.8.3. m

Remark: The interference components in the SINR expression are contributed only by
truly active users, i.e., the true positive and false negative users. False positive users
do not contribute towards the received data signal. Even though they do not cause
interference, false positive users still affect data decoding of other (true positive) users
via their influence on the channel estimates, which also feature in the SINR expression.
Further, the SINR for such false positive users is zero.® In contrast, false negative users
contribute to the received pilot and data signals, affecting both the channel estimates and
data decoding of true positive users. Since the BS does not detect or decode such users,
their SINR is zero as well, and thus the system performance degrades due to such false

negative users. True negative users do not contribute to the received pilot or data signal,

8The BS computes noise-based channel estimates for false positive users. Even if the SINR for such
users happens to exceed 7y, their packets will fail an error check, and thus their SINR can be set to zero.
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and thus do not affect the decoding of other users. Thus, pf =0, Vm € FUMULZ.
The SINR expression derived in Theorem 4.3 is applicable to any chosen combining

scheme.” For example, with regularized zero forcing combining [49], AF is computed as
A} = Hi(HPTHS + ALy) 7, (4.42)

where X is the regularization parameter, and HY is an N x M} matrix containing the chan-
nel estimates of the M} users as its columns. The corresponding SINR is obtained by
substituting the columns of the above combining matrix into (4.40). The system through-
put can now be calculated from (4.40) via the decoding model described in Sec. 4.2.1. We
note that, in practice, the BS does not compute the SINR; it simply tries to decode each
user that is detected to be active, in the RBs it has chosen for transmission. However,
the decoding succeeds only if the SINR exceeds the chosen threshold. Thus, we use the
SINR threshold based abstraction to determine which packets are successfully decoded
and hence the throughput.

4.6 Numerical Results

In this section, the UAD and channel estimation performance of Algorithm 3 and the
impact of UAD errors on the throughput of IRSA are studied via Monte Carlo simulations.
In each run, independent realizations of the user activities, user locations, the APM, and
the fades experienced by the users are generated. The results in this section are for
T = 50 RBs, N, = 10°> Monte Carlo runs, jmax = 100 iterations, Yor = 1074, path loss
exponent o = 3.76, and channel variance o = 1 [49]. The pilot sequences are generated
as pm S CN (0,, PPI.) as in [6]. The users are spread uniformly at random locations
within a cell of radius rp,x = 1000 m, and the path loss is calculated as (3, = (7, /r0) ",
where r,, is the radial distance of the mth user from the BS and rq = 100 m is the

reference distance. The soliton distribution [72] with k; = 27 and as = 0.02 is used to

9The MMSE combiner is described in Sec. 4.9.1.
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generate the repetition factors.!?

The user activity coefficients are generated as a,, S Ber(p,), where p, = 0.1 is the
per-user activity probability. The system load L is defined as the average number of active
users per RB, L = Mp,/T. The number of users contending for the 7" RBs is computed
in each simulation based on the load L as M = |LT/p,]|. The SNR for the mth user is
calculated as SNR,,, = Po2f3,,/No. The received SNR of a user at the edge of the cell at
the BS is termed as the cell edge SNR. The power levels of all users is set to the same
value, P, chosen such that the signal from a user at a distance 7., from the BS is received
at the cell edge SNR. This ensures that all users’ signals are received at an SNR greater
than or equal to the cell edge SNR, in singleton RBs.!*? The power levels of users is set
to P = PP = 20 dB [49] and N, is chosen such that the cell edge SNR is 10 dB, unless

otherwise stated.!?

4.6.1 Error Rates for UAD

In this subsection, the error rates for the recovery of user activity coefficients in IRSA is
presented. The metrics used to characterize the UAD performance are false positive rate,
FPR £ %, and false negative rate, FNR £ % FPR is the fraction of inactive
users declared to be active whereas FNR is the fraction of active users declared to be
inactive.

Fig. 4.1 shows the receiver operating characteristic (ROC) plot, and compares the
performance of the proposed algorithm with existing approaches such as the maximum
likelihood (ML), non-negative least squares (NNLS), and MMV, proposed in [14]. Here,
the threshold ,, is varied to generate the curves, and the FNR is plotted versus the FPR
for N = 4 and L = 3, which corresponds to M = 1500 total users. The existing algorithms

are applied to (4.4) to detect the ith user’s activity af in the ¢tth RB and the user is declared

10The soliton distribution achieves near optimal throughputs [8]. Here, we reuse the same distribution
to generate d,,. For the optimal distributions, see Chapter 7.

UTf the cell edge SNR is such that the cell edge user’s packet is decodable, then all users’ packets are
decodable with high probability in singleton RBs.

12In cases where the cell edge SNR is varied, the noise variance Ny is varied according to the required
cell edge SNR.
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Figure 4.1: ROC of UAD: comparison with existing approaches.

active if it is detected to be active in at least ¢’ RBs, i.e., a; = 1{3.,_ at > t'}. We use
t" = 1 since it yields the lowest FNR. Note that all of these algorithms estimate users’
activities in each RB, whereas our algorithm combines the estimated hyperparameters in
a principled manner as seen in (4.10), which is then used to infer the activities, and thus
yields far fewer errors. The proposed algorithm outperforms all three approaches which
have themselves shown an improvement over other compressed sensing based algorithms
such as approximate message passing [14]. The ML approach with 7 = 40 intersects
with the proposed algorithm with 7 = 10, and at the point of intersection, Algorithm 3
offers a 4-fold reduction in the pilot length compared to the ML approach while achieving
the same UAD performance. Further, the proposed algorithm with 7 = 15 significantly
outperforms all the other approaches, and achieves a near-ideal performance.

Next, in Fig. 4.2, we plot the error rates (i.e., the FNR and FPR) of Algorithm 3
versus the pilot length for varied L with N = 16. As the load is increased from L = 1
to L = 2,3, the total number of users over the T" RBs increases from M = 500 to
M = 1000, 1500, and a longer pilot length is needed for accurate UAD. Thus, there is
a significant improvement of the error rates with the pilot length 7. This is important,

since short packets are used in mMTC, and using non-orthogonal pilots with as few as
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Figure 4.2: Impact of pilot length on error rates.
20 symbols yields very low error rates with as many as 1500 users. As noted earlier, with

classical compressed sensing approaches for UAD, one would require €2(346) pilot symbols

for accurate UAD in the same settings.
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Figure 4.3: FNR for different pilot lengths and loads.

Next, we illustrate the variation of the FNR with the number of antennas for varied L

and 7, in Fig. 4.3. The FNR is observed to increase with an increase in L. The FNR also
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reduces with an increase in N or 7 since the total number of measurements available in
the received pilot signal increases, which improves the recovery of user activities in each
RB. For 7 = 10, the FNR saturates with N for L = 2/3, whereas for 7 = 15, the FNR
saturates at high L and reduces for low to medium L. This is because the performance
of MSBL depends more critically on the number of rows 7 in the received signal than the
number of columns N [16]. Thus, at a given load, if 7 is too low, the FNR improves only
slowly with N, but if 7 is large enough, the FNR improves dramatically with N. Hence,
as the load increases, it is important to increase 7 as well. In our approach, we solve

a reduced problem in each RB as seen in (4.4), after accounting for the APM. Due to

this, in the tth RB, 7 = Q(M;p, log Mj‘f;a) = Q(—M,;p, log p,) would achieve a vanishing
error rate. This guarantee is applicable when 7 > M;p,, which is the average number of
non-zero entries to be recovered in each column of Z, in (4.4). For ks = 27, the average
repetition factor is d = 4, and thus on an average, M, = i—j = 120, 80,40 for L = 3,2,1,

and of the order 7 = 28,19, 10 pilot symbols are required, respectively, to achieve a low

error rate for Algorithm 3 as N gets large.
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Figure 4.4: Effect of cell edge SNR on error rates.

In Fig. 4.4, the error rates are plotted against the cell edge SNR for varied L and

7 = 10. For low L, the error rates first linearly reduce with SNR and then saturate at
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high SNR. The FPR for L = 1 requires longer simulations to capture the point where
it saturates with SNR. For high L, both the error rates saturate very quickly with the
SNR. As the load L is decreased, the error rates reduce since there are fewer users to be
detected. As seen earlier, for a fixed L, increasing the pilot length can decrease the rates
and the error rates reduce at the point of saturation. In the noise limited regime, i.e.,
SNR < —5 dB, the error rates are high since the Bayesian estimation process performs

poorly at such low SNRs.

4.6.2 Normalized Mean Squared Error

Pilot length (1)

Figure 4.5: Impact of pilot length on NMSE.

Fig. 4.5 shows the impact of the pilot length 7 on the normalized mean squared
error (NMSE) of the channels estimated using Algorithm 3 (the curves labeled “Emp”).
The NMSE is calculated as E[[|X — X||2]/E[||X]|%], where X is the channel matrix from
(4.13) and X is the corresponding matrix of channel estimates obtained from the UAD
algorithm. It is observed that the NMSE converges to the same value at all L as 7 is
increased to 40, and the value the NMSE converges to decreases with SNR. As 7 increases,
UAD is perfect and the effect of pilot contamination is reduced, resulting in nearly the

same NMSE at all loads. Also, at low 7, the NMSE is higher for L = 3 compared to
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L =1, since we have to estimate channels for a larger number of users — both UAD errors
and pilot contamination contribute to a worsening of performance. The normalized CRB
from (4.31) is also plotted for the system under all the configurations. It is seen that the
gap between the true NMSE and the normalized CRB reduces as 7 increases. The NMSE
is insensitive to the value of N, as both the numerator and the denominator of the NMSE

scale equally with N. Hence, we do not study the impact of N on the NMSE.
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Figure 4.6: Effect of cell edge SNR on NMSE.

Fig. 4.6 shows the impact of SNR on NMSE. The NMSE saturates with an increase
in SNR for both L at 7 = 10, since the UAD performance saturates and any increase
in SNR does not improve the quality of the channel estimates. For 7 = 20, the NMSE
linearly reduces with SNR up to 20 dB. At higher 7, the NMSE is lower since there
are more measurements available in the received pilot signal to obtain both better UAD
performance and high quality channel estimates. Further, the gap between the true NMSE
and the normalized CRB reduces with an increase in SNR for 7 = 20. Thus, the CRB,
which is achieved by the genie-aided estimator in (4.35), is also achieved by the estimates

in Algorithm 3 as 7 and SNR are increased.
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4.6.3 Throughput Accounting for UAD and Channel Estimation

The performance of IRSA can be characterized by its throughput, which is defined as
the number of packets that were successfully decoded at the BS as a fraction of the total
number of RBs.!® Note that, at a system load of L, the average throughput of the system
is upper bounded by L packets per RB, since there are, on average, LT unique packets
transmitted per frame of duration 7" RBs. In this subsection, the SINR analysis presented
in Sec. 4.5 is used to evaluate the throughput of IRSA with UAD and estimated channels.
The number of successfully decoded packets per RB for each simulation is calculated as
described in Sec. 4.2.1, and the throughput of the system is found by averaging over the

simulations.
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Figure 4.7: Effect of system load L.

Fig. 4.7 shows the system throughput, 7 (successfully decoded packets per RB), eval-
uated for different pilot lengths under UAD and estimated CSI, with threshold ~;, = 16
and regularization parameter A = 1, as a function of the load L. For 7 > 20, the through-
puts exceed unity, which is the throughput of perfectly coordinated orthogonal access.

In the moderate load regime (L < 2), the system can serve more users, and thus the

13We note that the throughput 7 of IRSA is directly related to the packet loss rate PLR and the
spectral efficiency R as T = L(1 — PLR) and R = 7T x logy(1 + Y1), respectively [7].
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throughput increases linearly with load. As the load is increased further, the system be-
comes interference limited as there are too many users sharing the same resources, thereby
decreasing the SINR and the throughput. Also, as the pilot length 7 increases, UAD per-
formance improves, better quality channel estimates are obtained, and the corresponding
SINR increases. The orthogonal pilots curve is obtained by allocating 7 = M = | LT /p,|
for each L, and this achieves nearly the same performance as the case where perfect CSI
is available at the BS. At L = 2, there are M = 1000 users that need to be served. For
7 = 80 and 400, the achievable throughputs are 7 = 1.5 and 2, respectively. At a load
of L = 1.5, the throughput obtained with 7 = 80 is identical to the one offered by the
orthogonal pilots, which would need a pilot length of 7 = M = 750. This shows one can
use significantly fewer number of pilot symbols and still achieve the same throughput as

fully orthogonal pilots, at low to medium loads.
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Figure 4.8: Impact of estimated UAD.

Fig. 4.8 quantifies the effect of UAD on the performance of IRSA, by plotting the
throughput against the system load under perfect and estimated user activities. Here,
Yn = 16 and A = 1 as in the previous figure. In both cases, the throughput increases
linearly with L till it hits a maximum and then reduces. With a pilot length 7 = 5, the gap
between estimated and perfect UAD is at its maximum of 0.7 (packets/RB) at L = 1.2.
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As the pilot length is increased, the gap reduces to a maximum of 0.1 (packets/RB) at
L =2 for 7 = 20 and a negligibly small difference for 7 = 30. This shows that for lower
pilot lengths, UAD performance has a significant effect on the throughput. For higher
pilot lengths, the UAD is nearly perfect, and, in this regime, channel estimation and data
decoding limits the performance. Thus, UAD is the easier problem in practical regimes

of interest.
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Figure 4.9: Impact of pilot length 7 on throughput.

In Fig. 4.9, we investigate the effect of pilot length on the system throughput at
different L and SNRs. The threshold is set to 4, = 10 and regularization parameter to
A = 1072 for the rest of the results. At a cell edge SNR of —5 dB, the system throughput
is very low due to poor UAD as well as poor quality channel estimates. The throughput
saturates with an increase in 7 for all loads. Even though more measurements are available
at high 7, even if the UAD process is successful and the channel estimates are accurate,
the low SNR results in data decoding failures, which limits the throughput. As the cell
edge SNR is increased to 10 dB, the system performance dramatically improves. At this
SNR, optimal throughputs of 7 = L is achieved with 7 = 10/25 for L = 1/2, respectively,
which correspond to M = 500/1000 total users and on an average Mp, = 50/100 active

users, respectively. For L = 3, the optimal throughput is obtained at 7 = 70, which is not
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depicted here. As seen previously, the UAD problem is dominant for very low 7 for these
loads, and for higher 7, channel estimation dominates the performance. To summarize,
the pilot length has a significant impact on the performance of IRSA and is instrumental

in yielding near-optimal throughputs.
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Figure 4.10: Effect of number of antennas N.

In Fig. 4.10, the system throughput is plotted against the number of antennas at the
BS for different L and 7, under both perfect and estimated UAD. The gap between the
perfect and estimated UAD throughputs for L = 2,3 and 7 = 5 increases with NV, and the
gap is the highest at N = 128. This is because the UAD performance saturates with N
for high L at low 7. Due to the combined effect of UAD errors, pilot contamination, and
interference, low pilot lengths adversely impact both the UAD performance and system
throughput. For 7 = 20, increasing N has a dramatic impact at high L, and the curves
with perfect and estimated UAD overlap completely. Nearly optimal throughputs of
T = L can be achieved with N = 16,32 antennas for L = 2,3. At 7 > 20, increasing the
number of antennas improves UAD, and increases both the array gain and the decoding
capability of the BS, leading to more users getting decoded with RZF. In particular, at
L = 3, the rise in throughput as N is increased from 8 to 32 shows the impact of the

number of antennas in improving the throughput.
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Figure 4.11: Impact of cell edge SNR.

In Fig. 4.11, we illustrate the impact of cell edge SNR on the throughput. In the noise-
limited regime (SNR < 0 dB), an increase in SNR increases the throughput. Beyond an
SNR of 0 dB, increasing SNR only marginally increases the throughput for all L and 7
and the system becomes interference-limited for 7 = 10. This is because both signal and
interference powers get scaled equally, and the SINR remains the same. At 7 = 40, for
L =1 and 2, optimal throughputs can be obtained at a cell edge SNR = 0 dB. However,
the throughput for L = 3 saturates beyond 10 to 15 dB SNR and does not yield the
optimal throughput of 7 = 3 due to high L and low 7. In summary, the throughput can
be improved by increasing the pilot length, number of antennas, and SNR judiciously:
unilaterally increasing one of the three can lead to the throughput saturating at a value

lower than T = L.

4.6.4 Choice of Pilot Sequences for UAD

For a study on the uniqueness of pilot sequences in IRSA, see Sec. 5.9.9.
In Fig. 4.12, we plot the ROC curves for UAD in IRSA for different pilot sequences,
with N =4, L = 3, and T' = 50. The non-orthogonal pilots, labeled as BPSK and QPSK,
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Figure 4.12: ROC comparison with different pilot sequences.

contain random pilot symbols belonging to the respective PSK constellations, and Zadoff-
Chu (ZC) sequences are generated according to [115]. ZC sequences require prime 7; we
use 7 = 7. With mutually orthogonal pilot sequences, such as Hadamard and discrete
Fourier transform (DFT), 7 sequences of length 7 can be generated. Thus, we perform
orthogonal pilot reuse (OPR), where each user randomly selects a pilot sequence from the
available set of 7 pilot sequences, similar to [63]. We see that all the pilot sequences have
similar UAD performance. In particular, QPSK, BPSK, and Gaussian pilot sequences
have nearly identical performance; DFT and Hadamard sequences have identical UAD
performance. Thus, the choice of pilot sequences do not significantly affect the UAD
performance. However, we observe that choosing non-orthogonal pilot sequences (with
low correlation among distinct pilot sequences) results in marginally better throughput
and nearly identical UAD performance compared to OPR.

Using OPR leads to identical pilots being chosen by many more users compared to
non-orthogonal pilots (since the pool of pilot sequences with a given 7 is much smaller
with OPR). In IRSA, the collision probability, i.e., the probability that two colliding users
have identical pilot sequences, is lower than in conventional grant-free random access since
only a small subset of users transmit in any given RB. Similar to the calculation of the

collision probability in grant-free random access [53], as an example, with L = 5, d = 4,
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7 = 20, and p, = 0.1, we have around M, = 200 average number of active users in
any RB, and the collision probability with random QPSK pilots is of the order of 1078.
Thus, using non-orthogonal pilots has the advantage of lower collision probability and

also better throughput.

4.6.5 Effect of Imperfect SIC

Performing SIC using the estimated channels and decoded data results in a residual signal

depends on the channel estimation errors of users that have already been decoded. We

elaborate on the analysis of pilot-aided and data-aided channel estimation in Sec. 4.9.2.
Under imperfect SIC, the post-combined data signal is given by

~k kH1. k kHyv k kH
Ytm = Qm htmamgtmmm —a htmamgtmwm + § :ieSmﬁP Am htiaigtixi
k

kH1y k; LH LEH
ieSl\Sk tm Tt zgtz 7 E iGS,TﬂM tm it zgtz 7 tm 1t ( )

Here, >, S\ akd flfl a;g:;x; represents the residual interference due to channel estimation
errors, and k; denotes the iteration in which the ith user was decoded. The above equation
is applicable under both LMMSE data aided channel estimation and MMSE pilot aided

channel estimation. Thus, the SINR can be expressed as

k

ons
21 Bim Ym € S;. (4.44)

SINR}, = ,
"™ Ny +Estf + ImpSICE +MUIF + FNUF,

Here, the term ImpSICfm = Pzz’esl\sk diaigtﬁf;' is the extra term that arises due to
imperfect SIC, where 52" is the power of the MMSE estimate error of the ¢th user in the
tth RB who has been decoded in the k;th decoding iteration.

Fig. 4.13 studies the effect of imperfect SIC on the performance of IRSA, with random
BPSK pilots. For this, we use the SINR in (4.44), with MMSE channel estimation. We
also assume perfect UAD here, since we wish to address the effect of imperfect SIC.
The gap between the perfect SIC and imperfect SIC curves reduce as the pilot length is
increased. The gap is negligible at 7 = 20, and is very high at 7 = 5. Thus, at higher
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Figure 4.13: Effect of imperfect SIC.

pilot lengths, the effect of imperfect SIC due to channel estimation errors can be ignored.

4.6.6 Which UAD error is more harmful?

False positives and false negatives do not equally affect the performance of IRSA. We now

analyze the impact of these UAD errors in each stage of the UAD algorithm.

1. The post-combined signals are

Yo = YD = e, ai0ihe (P pm) + NED,, (4.45)

yzlsC = Zieskaigtihtixi + 1. (4.46)

This contains terms from both true positive and false negative users, and thus, FNR

affects the received pilot and data signals.

2. The LCMMSE channel estimate is

dmgtmﬁmo-}% ||pm||2
Nol[pmll? + X ics, @ig4iBioz 1Py Pm

ht = |2yg’;, Ym € S. (4.47)

We can see that the estimated activity coefficients are present in both the numerator

and the denominator of the scaling coefficient in the LCMMSE channel estimate.
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This coefficient is contributed by both true positive and false positive users, and
thus, FPR affects the channel estimates. For the MMSE estimate, a huge FPR can
highly affect the covariance of the received signal and its inverse. Consequently, the

channel estimates can be very poor and the performance can be very poor.

3. The SINR has an extra component in the denominator, FNUY = that models the
contribution of false negative users: FNUF = Py . 5;2"(1 — a;)a; g4 3:02. A high FNR
can thus reduce the SINR, and consequently the throughput of IRSA. Poor channel

estimates due to high FPR can also reduce the SINR.

It is not immediately clear which error affects the performance the most. Both the
channel estimation and the data decoding processes are affected by both false positives
and false negatives. We thus plot the errors as a function of ~,, in Fig. 4.14(a), and the
ensuing throughput in Fig. 4.14(b). The simulation settings for this are T' = 50, d = 4,
pe = 0.1, L = 3, and the other settings are chosen similar to the manuscript. As the
pilot length 7 increases, the error rates fall, the channel estimation quality and the SINR
improves, and thus, the throughput improves to the optimal value. At varied ~,,, different
error rates have different effects on the throughput. For all the cases, we observe a huge
drop in performance when the FPR> 0.1, especially at very low 7,,. This drop is not as
pronounced when FNR> 0.1 at very high ~,,, and the FPR has a drastic effect on the
throughput.

In summary, both the UAD errors have a huge effect on the performance of IRSA.
In particular, FPR impacts channel quality and has a huge effect on the performance at

very low ~yp,.

4.7 Summary

This chapter studied the impact of UAD on the throughput of IRSA, which is a GFRA
protocol that involves repetition of packets across different RBs. A novel Bayesian al-
gorithm was proposed to detect the set of active users in IRSA, which exploited the
knowledge of the APM, and combined the hyperparameter updates across all RBs to
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Figure 4.14: Impact of UAD errors on the performance of IRSA.
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yield an improved UAD performance. Next, the channel estimates were derived account-
ing for UAD errors. A Cramér-Rao bound was then derived for the channels estimated
under the hierarchical Bayesian model used to develop the proposed algorithm. Then, the
SINR of all users was derived accounting for UAD, channel estimation errors, and pilot
contamination. The effect of these errors on the throughput was studied via extensive
simulations. Many new insights into the design of the IRSA protocol were discussed,
namely, the complexity of UAD compared to channel estimation, and the improvement of
both UAD and throughput with respect to 7, N, SNR, and L. The results underscored
the importance of accounting for UAD errors and channel estimation, in studying the
throughput offered by the IRSA protocol in mMTC. We assumed perfect RB- and frame-
level synchronization across users and the BS; future work can consider relaxing this as-
sumption. Exploiting the asynchronous nature of random access transmissions to detect
active users and estimate their channels instead of orthogonal/non-orthogonal pilots is

also an interesting direction for future work.

4.8 Proofs

4.8.1 Proof of Theorem 4.1: Channel Estimation

Since the channel coefficients are Gaussian distributed, the MMSE estimator'* is flfm =
E, [h¢,], where z contains the post-combining pilot signals for all users detected to be
active. The channel estimation error flfm = ﬁfm — hy,, is uncorrelated with the received
pilot signal and the estimate itself [49]. The conditional statistics of a Gaussian random

vector x are

E, [x] = E[x] + KyK;) (z — El2]), (4.48)

Kxx\z = Kxx - szKz_lezx- (449)

4 Specifically, this is the LCMMSE estimator from the previous chapter. The MMSE estimator is
described in Sec. 4.9.1.
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Here, Kxx, Kxx|z, and Ky, are the unconditional covariance of x, the conditional covari-
ance of x conditioned on z, and the cross-covariance of x and z, respectively. From (4.48),

the MMSE channel estimate ﬁfm can be calculated as

5 kH k kH1— k
hi, =E b, y5 | Elybnyim | 'y (4.50)
&mgtmﬁmo-l? ||pm ” 2 pk A _k _pk
= A Yim = MimYim- 4.51
(oIl + T, autruBao ) m = Tms (4.51)

The above is computed based on the users detected to be active and is thus a func-
tion of estimated activity coefficients a;. From (4.49), the conditional covariance of the
channel hy,, is calculated conditioned on z, which contains the post-combining pilot sig-
nals for users detected to be active. Also, Ky, n,, = Bmoily, Kn,z = ]E[htmypkH]

tm

= ||pm||?@mGimBmoIn. Thus, the conditional covariance is

Khtmhtm\z = Khtmhtm - KhthKz_lethm (452)

= (Bu0s = Nil1Pm | gemBmoi)In = 61, I (4.53)

Zies? [PHpm|2a;aigt:Bio2+No||pml|?

Here, 68 = 3,02 < ) represents the interference caused due

to estimation errors of other true positive users. It is a function of the pilots of the other

Yies,, [P Pm[?aiaigrifiog+Nollpml|?

true positive users only and not the pilots of false positive users. False positive users are
omitted from the above because such users do not contaminate the pilots of other users.

The conditional correlation follows from its definition as
m tm

E,[hynh? ] = Koo + Eo[hi By by ? = 68 Ty +h* ht. (4.54)

The unconditional and conditional means of the error are E[hf, ] = E[h}, —h,] = 0 and

E,[hf ] = E,[hf, — hy,] = hF, —hF = 0. The conditional covariance of the error is

— E,[hy, b/ ] —hF e = gk 1. (4.56)
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Since h¥,, ~ CN'(Oy, Bmo2ly), the estimate h% and the error h¥, are distributed as CA/
(On, nE IPmll2@mGimBmoily) and CN (O, 8k Tx) respectively. Also, MMSE estimates

are uncorrelated with their errors [49)].

4.8.2 Proof of Theorem 4.2: Cramér-Rao Bound

The FIM sub-block associated with z; in the tth RB is defined as J;, = Jy;1 + Jyo [123],
with

.k (aloggzt)) (3105219;%))}]], (457)

' (2lepislz) (Dzpiviz)” _” | .

0z; 0z;
The conditional probability of ¥, given z; is CN (®,z;, Nol, ), whereas the channel vector

JtQIE E

Z, is distributed as CN (Oyas,, Iy ® Ty). Hence, the log of the conditional probabilities

behave as

log p(z¢) o« —z{ (Iy @ T'y) 'z, (4.59)

Iy - ‘I’tth%_

N (4.60)

log p(¥,|Z:) o

Upon taking the derivative and then calculating the required expectations, it is straight-
forward to show that J;; = Iy ® ;! and J» = Iy ® (PFP,/N,). Further, the sub-blocks
of J; corresponding to different antennas are identical and equal to P#P,/Ny+T;*. The

result follows.

4.8.3 Proof of Theorem 4.3: SINR Computation

In order to compute the SINR, we first compute the power of the individual components.

The desired signal power is

E,(|T\ ] = E,[laf b, amgimenl’] = Pas,g5, ag bf,, [ (4.61)

tm m tm m



Chapter 4. User Activity Detection in IRSA 155

The powers of a; and ¢;; are dropped, since they are binary-valued. In order to account
for zero data rates for false positive users, the desired signal power is non-zero only for

true positive users and the desired gain is written as

E. [T |2 kHYk |2
Gain® £ —Z[L 1|2] = Pdmamgtm—|atmk ”’;| ) (4.62)
[Evn g, |
The power of the estimation error term is calculated as
E,[| T3] = Eal|af i 0 amimam |’] = Pas,gz,06,lak, || (4.63)

Next, the power of the first inter-user interference term is

E,[|T3]*] =E, {‘Zieggmpafghtiaigtixi

|
(@) N
= Pziesgznpafgfiafﬁ@ﬁlw + hihih)ay,

= P} espepaigii(llag,|*of + [ag hil?), (4.64)

— 2 2 kH hH] ok
=P ZieSQ’ﬂPai GiiAm Ba[hyihyj Jag,,

where (a) follows from Theorem 4.1. Here, E,[|T2|?| +E,[|T5/|?] represents the contribution
of estimation error components of all true positive users and multi-user interference com-
ponents of other true positive users. We now split the normalized version of the above into

the sum of the error component Est? and the multi-user interference MUIF = as follows

EStfm = PZieskdi@igtiéﬁa (4.65)

MUTE 2 PSS s [2im e[ 4.66
tm — iesznalalgtl ( . )

lag, 1>

The power of the second inter-user interference term is

E,[|T4*] = E, {‘ZieS;’LHMa?ﬁhtiaigtixi

]

(b)
= PZiesgnMa?ggiafrgE[htihg]afm
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_ 2 2 _kH 2 k
= Pzz'esgln/vlai g (BiogIn)ag,

= PZiesgﬂmMazzg?iﬁigﬁ”afmH2a (4.67)

where the conditional expectation is dropped in (b) since the BS does not have the knowl-
edge of the channel estimates of false negative users. The normalised power of the false

negative users is calculated as
FNUfm = Pzies;cn(l — a;)a; 94 Bi0%. (4.68)
Finally, the noise power is calculated as

E,[|T5*] = Eyllag, nd*] = Nollag,||*. (4.69)

tm

Since the five terms in the received signal in (4.38) are mutually uncorrelated, a meaningful
expression for the SINR can be obtained by dividing the useful signal power from (4.62)
by the sum of the interference and the noise powers (which follow from (4.65), (4.66),
(4.68), and (4.69)) [49,104]. The SINR can thus be calculated as in (4.40) for all the

users.

4.9 Appendix

4.9.1 MMSE Channel Estimation and MMSE Combining with
UAD

In the channel estimation process in Sec. 4.4, we use the low complexity MMSE
(LCMMSE) estimator. We now derive the MMSE estimator similar to the previous chap-
ter, accounting for the UAD process. After the UAD phase, the BS performs channel
estimation based on the received pilot signal. The received pilot and data signals are
indexed by the decoding iteration since the signals are processed in iterations. For this

purpose, we let k denote the current decoding iteration index, and Sy denote the number
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of users not yet decoded up to the kth decoding iteration, with S; = [M] and S}, = S;,\ {i}.
The received pilot signal at the BS in the tth RB in the kth decoding iteration is given
by

Yfk = Zieskaigtihtipf{ + N}, (4.70)

where the first term contains signals from users who have transmitted in the current
frame. Since the BS has detected only users in A = {i € [M]]a; = 1} to be active, it
constructs channel estimates only for these users.

We now derive the MMSE channel estimates at the BS in each RB. Let G, = {i €
[M]|g1; = 1} be the set of users who would have transmitted in the ¢tth RB had they been
active. Let MF = G, NS, N A, where MF = |MP¥|. This is the set of users who have been
detected to be active in the tth RB but have not been decoded up to the kth iteration
at the BS. Let us stack the channels of the MF users as the columns of HF e CN*M¢
let P¥ € C™M: denote a matrix that contains the pilot sequences of the MF users as its
columns, and let B¥ £ o2diag(8;,, Bs,, - - - ,ﬁthk) be a diagonal matrix that contains the
path loss coefficients of the M} users, with MF = {i}, i, ... ,thk}. Hence, the received
pilot signal from (4.70) can be written as Yfk = HfPF + NP, We now find the channel

estimates using the signal Y?*,

Theorem 4.4 » MMSE Channel Estimation in IRSA Accounting for

UAD Errors.

The minimum mean squared error (MMSE) channel estimate fI’f of HF can be

found as
HE — Y (PEBSPEY + NoL) "' PFBY, (4.71)

Specifically, the estimate of the channel hy; of the ith user at the BS is calculated

as hf = [Hf].;. Further, the estimation error hf, £ h¥ — hy is distributed as
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flf, ~ CN (Oy, 6EIy), where 0F is calculated as

5 — 02 Nolleg I +3es; [P7 ctil*a;a;9:850% (472)
i: - N 5 .
TR\ Nollek P4 2 es, [P ekiPasaig:850%

where C; = PIDj(P"PiD; + Noly)™', ¢ = |[Cf]l.;, and Df £

diag(ds, , dtiy, - - - ,dtz’Mtk ), with dy = a;a;g1: 601

Proof. The proof is similar to the proof of Theorem 3.1 in Chapter 3. O

Remarks: The MMSE channel estimate HF of HF can be written as seen in (4.71) as

H} = Y*(PIBfPH + NoL)'PIBY, (4.73a)

@ YR PEBE(PITPIBY + NoLyy) (4.73b)

where (a) follows from (AB+I)"'A = A(BA+1I)~!. Here, the estimate can be calculated

via an inverse of either a 7 x 7 matrix or an M} x MF matrix as required.

4.9.1.1 SINR Calculation

Similar to (4.70), we can find the received data signal in the ¢th RB in the kth decoding

iteration as

Yf = ZiESk a;grihy;; + ny. (4.74)

Here, we have that E[z;] = 0 and E|[|z;|*] = p;.

~k kH1. k kHy k
Ytm = AmGtmTm gy, htm — AmGtmTm Ay, htm

kH kH kH
+ Ziesznmpaigtixiatm hti + Zies;anaigtixiatm htz‘ —+ Ay, Ny (475)

We use a generic combining vector a¥ to combine the received data signal across
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antennas to obtain the post-combined data signal 7 £ aFfyk as seen in (4.75).

The term T, £ amgtmxmafﬁflfm is the desired signal of the mth user; the term

kH

FHpE is due to the estimation error h¥  of the mth user’s channel;

T2 é A JtmTma
the term T3 £ Zies;cﬂm) aigtixiafnlf h;,, models the inter-user interference from other
true positive users (who have transmitted and have not yet been decoded); the term

AL kH : : .
Ty =) spam QigHTiaLy, hy; is the interference from false negative users (who have trans-

kH
tm

mitted, but cannot be decoded since they are declared to be inactive); and T5 £ afn, is
the additive noise. Since noise is uncorrelated with the other terms and the data streams of
distinct users are uncorrelated, all the terms are uncorrelated with each other. The power
in the received signal is a sum of the powers of the terms. Based on the post-combined

data signal, we now compute the SINR.

Theorem 4.5 » SINR in IRSA Accounting for UAD Errors.

The signal to interference plus noise ratio (SINR) achieved by the mth user at the
CPU in the tth RB and the kth decoding iteration can be written as

k

Gainy
- ,Vm € Sk. 4.76
No + Estf, + MUTE +ENUL, Ok (4.76)

ko _
ptm_

Here, Gain? is the desired signal power, Est? is the power of the channel estima-
tion error, MUIF is the multi-user interference due to other true positive users, and

FNU? is the interference due to false negative users. These can be calculated as

Gainfm é pm&mamgtm|a1’€€7}n[ﬁ1’fm|2/”a1]€€m||27

k A ~ k
Est,, = Zieskpiaiaigti(stia

MUIF 2

=
~
©

> iespPitiaigelaty, hy*/llag, [1%,

FNUfm 2 Zieskpi(l - &z‘)aigtiﬁiag-

—~ o~ —~
=
N |
oo

Proof. The proof is similar to the proof of Theorem 4.2 in Sec. 4.8.3. m

The channel estimates h¥ and the error covariance 0F in the above expressions are
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obtained from Thm. 4.4. The combining vector that maximizes the SINR in (4.76) is the
MMSE combiner [49], which can be found as

A} = HiDf (dT), + HFPHDJ ) (4.81)

= (d{Ty + H/D; Hi")"'H; D}, (4.82)

where Dﬁpédiag(pil, Digy -« s piMk) contains the power coefficients of the M} users, and
t

df £ Ny + Zieskpz‘&igtibfi, where

(4.83)

e [ NOlEEI® + 3 e i B P a 908508
by = Bioy

NollE5lI? + 3o es, [Py £17a5 908500

Here, Ff £ PIE;(P/PPIE; + Nolyy)~', with ff £ [Ffl,;, and Ef =
diag(esy, €riy, - - €ni, ), where e =9, 3,0%.
t
Thus, we have derived the MMSE channel estimator similar to the previous chapter,

accounting for the UAD process.

4.9.2 Channel Estimation — Pilot Aided vs Data Aided

This section investigates the application of data aided channel estimation as opposed to
pilot aided channel estimation. It also describes the effect of imperfect SIC due to channel
estimation errors on the performance of IRSA.

First, we briefly discuss the handling of imperfect SIC in the literature. Coded slotted
aloha (CSA), which is a variant of IRSA, has been recently analyzed with imperfect
SIC [88]. Also, square-norm-based (SNB) interference subtraction and payload-aided-
based (PAB) subtraction techniques have been used to analyze the effect of imperfect SIC
in CSA [124]. The SNB scheme performs IC on the post-combined pilot signal yf,f1 using
by ||?, ie., norm-squared of the channel. This assumes perfect CSI and neglects the
cross products between channels of different users. The PAB scheme treats the decoded
data symbols as virtual pilots and re-estimates the channels of the decoded user. This

yields a significantly higher quality channel estimate compared to the one obtained via
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only the pilots. The SBS SIC technique performs well in the massive MIMO setup, and it
is outperformed by the PAB scheme, especially as the payload length increase. IRSA has
also been analyzed with an SIC limit [86], i.e., a limit on maximum number of packets
that can be recovered in each RB (which, however, is different from imperfect SIC).

We now describe a data-aided (DA) channel estimation process. Let Y& € CV*™ be
the received data signal of users, where 74 is the number of data symbols in any packet.

This can be written as

M
Ye = Zi:l a;giihyx? + N9, (4.84)

where x; € C™ is the data vector of the ith user. After the mth user is decoded, x,, is
known at the BS, and it can compute a least squares (LS) DA channel estimate similar

to [124] as follows:
by ™ = Y/ [1xn]. (4.85)

However, the LS channel estimate is not uncorrelated with the estimation error [49], and
thus, we cannot write out a meaningful SINR expression [104]. This is needed to quantify
the SINR in order to use the SINR threshold model. Thus, we do not employ the LS
channel estimate.

Since linear minimum mean squared error (LMMSE) estimates are uncorrelated with
their estimation errors, we compute LMMSE estimates using decoded data symbols as a
virtual pilot sequence. Firstly, the received data signal is right multiplied by the decoded
data packet as

Yim = YiXm = amGombom|[Xnl* + D aigibex[xm + Nixm,  (4.86)

where yP2 is the post-combined signal which is to be used for DA channel estimation.

The LMMSE channel estimate can be obtained as

hyYMSEDA _ g [y, yDAH] (| [yDAyDART]) 7!y DA (4.87)
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dmgtmﬁmgg DA
= ~ ~ Yim - 4.88
Ny + amgtmﬁmo-lz||Xm||2 + Pp Z@gm aigtiﬁiaﬁ ! ( )

For comparison, we now present the MMSE channel estimate that is obtained from

the pilot symbols, i.e., the pilot-aided MMSE estimate:

~ 2
" MMSE,PA amgtmﬁmo—h pl
i Ny +a 2 2 o alplpnp Yim (4.89)
o+ amgtmﬁmo'thmH + Zz;ém algtlﬂlah Ipm |2

We note a fundamental difference between the LMMSE DA and the MMSE PA estimates.
In the former, the data sequences of other users are unknown while calculating the channel
estimates, whereas in the latter, the pilot sequences of other users are known at the BS.
This helps the MMSE PA estimation perform much better than LMMSE DA even when

the number of data symbols is large.

10
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Figure 4.15: NMSE under different channel estimation schemes.

In Fig. 4.15, we plot the normalized mean squared error (NMSE) in channel recon-
struction for four different channel estimation schemes. Here, 74 denotes the number of
data symbols, and 7, = 7 denotes the number of pilot symbols. The DA estimates (la-
beled LS DA/LMMSE DA) are computed using purely the data symbols of the decoded
users, and these estimates do not use the pilot symbols. In contrast, the pilot aided (PA)

estimates (labeled LS/MMSE) are computed using purely the pilot symbols alone. The
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data symbols are generated as random BPSK symbols for DA estimates, whereas for PA
estimates, we use Hadamard pilots. We observe that the LS PA estimates perform poorly
whereas the MMSE PA estimates perform the best, yielding up to —36 dB NMSE. The
DA estimates remain below NMSE of —10 dB. As we increase either 7, or 74, the perfor-
mance of all the estimates improve. Thus, we can use DA estimates similar to [124], but
they yield a higher NMSE compared to MMSE estimates obtained using the pilot symbols
only, which we have used here. This shows that MMSE estimation is quite powerful, and
yields a channel estimation error that has very low variance. In turn, this results in lower
residual noise after SIC. Thus, we just use the MMSE estimates from the pilot symbols

and derive an expression for SINR, as detailed in 4.6.5.

4.9.3 Necessity of UAD in IRSA

This section details the necessity of performing UAD in IRSA. Firstly, we explain the
need for a UAD algorithm. In traditional collision-based IRSA, the BS looks for an RB
in which a single user has transmitted, i.e., an RB with no collisions [7]. That is, a user’s
packet can be decoded in an RB if and only if that user is the only one transmitting in
that RB (i.e., a singleton slot). Since the user’s packet is received without any collisions,
the synchronization sequence transmitted by the users as part of the header of the packet
itself can be used by the BS to perform accurate channel estimation and then subsequently
decode the data packet. Thus, in a collision based model, UAD is not necessary, since
decoding succeeds only in singleton slots.

In contrast, we use the SINR-threshold model for decoding in IRSA, with multiple
antennas at the BS. Here, users can be decoded even when there are collisions, provided
their SINR exceeds a threshold. This approach is more practical than the collision-based
model [74], since multiple users could potentially be simultaneously decoded when the
BS is equipped with multiple antennas. Now, even though multiple users can be decoded
based on the SINR analysis, their pilot signals still collide, and thus, the synchronization
signal (which can be viewed as a common pilot signal across the users) alone is not

sufficient to perform either activity detection or channel estimation of multiple such users.
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In this chapter, similar to [6,53], the goal of using pilot sequences is to detect active
users as well as estimate the channels of the users declared to be active. This approach
has been pursued previously in the GFRA literature, in the case where multiple antennas
are employed at the BS [6]. UAD is necessary when users’ packets collide, and we wish to
potentially recover all the packets using multiple antennas at the BS. We note that using
non-orthogonal pilots is also enough for detecting the active users in each RB, estimating
their channels, and performing decoding. We follow this viewpoint, and the protocol
is still distributed in nature [53]. The BS tries to decode the users using the channel
estimates that it computes in the pilot phase. As a consequence, without UAD, the
BS would waste valuable resources (especially in the mMTC scenario) trying to decode
users that have not even transmitted any packets, i.e., users that are inactive. Further,
the quality of the channel estimates computed at the BS would be poor while trying to
decode the users from collided packets. Knowing the subset of active users helps the BS
decide which users it needs to decode, thereby saving computational resources and also
aiding the channel estimation process. It also helps with conserving valuable resources at
the BS, since it can focus on decoding the packets of users detected to be active.

Finally, we explain the relation of our analysis to unsourced random access (URA).
In URA, introduced by Polyanskiy in [56], the base station (BS) only aims to decode the
messages transmitted by the users, and the identity of the users is not important. Initial
work on IRSA [7] and coded slotted aloha (CSA) [54] predate the idea of unsourced mul-
tiple access [56,58,59]. While it is true that TRSA can also be used as a URA protocol, it
can also be used in massive random access without requiring the access to be “unsourced”.
In this chapter, we are not specifically looking at IRSA as a URA protocol. In particular,
we do not insist that the BS be able to identify which user is transmitting, nor do we

preclude it from being able to do so.
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Chapter 5

Censored-IRSA for
Interference-Limited mMTC

5.1 Introduction

Massive machine-type communications (mMTC) is an evolving use-case in next generation
wireless technologies that is expected to serve millions of devices per square km [125].
Typical mMTC devices sporadically transmit their data to a central base station (BS),
and then sleep until the next time when they have data to transmit [3]. In order to
serve mMTC applications efficiently, we need to use distributed massive random access
protocols such as irregular repetition slotted aloha (IRSA) [7]. The performance of IRSA
depends on the load of the system, which is the ratio of the number of users participating
in a frame to the number of slots in the frame. Existing works in IRSA [7,11] talk about
an inflection load, which is the load beyond which the system becomes overloaded or
interference-limited, resulting in a dramatic reduction of the throughput of IRSA. In this
chapter, we address the issue of the poor throughput of IRSA in the overloaded regime by
proposing a distributed self-censoring protocol which allows the system to maintain the
throughput at the maximum possible value even as the load increases.

The contents of this chapter is published in part in a conference paper, for the SISO
case, in IEEE ICC in 2023 [18], and a full-length journal paper, for the MIMO case, in

166
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under preparation [19].

5.1.1 Interference Limitation in IRSA

In TRSA, each user samples a repetition factor from a predefined distribution, and then
transmits those many replicas of their packets over multiple (randomly chosen) slots in
a frame [82]. If the BS decodes a user in a slot, it uses the decoded data to perform
successive interference cancellation (SIC) in all the other slots in which the user has
transmitted a packet replica [79]. The decodability of a user in IRSA depends on its
signal to interference plus noise ratio (SINR) [17]. The SINR of the user drops if the
user has a poor channel state or there are too many collisions resulting in high multi-user
interference (MUI). At low loads, the system is not MUI-limited, and the packet loss rate
(PLR) is near-zero [86]. Beyond the inflection load, the system is overloaded, IRSA is
MUTI-limited, and the PLR rapidly goes to one [8]. In this case, allowing only users with
good channel states to transmit increases their decodability by improving their SINRs via
reducing MUL

To tackle the MUI-limitation of IRSA in overloaded mMTC, we develop a novel
censored-IRSA (C-IRSA) protocol, as follows. At the start of each frame, the BS trans-
mits a pilot signal using which the users estimate their channel state information (CSI).
Users with poor CSI self-censor, i.e., they refrain from transmitting, which reduces colli-
sions and enables successful decoding of the users with good CSI. A user has good CSI if
|v]|?> >v,where v is the fading channel of the user and v is a censor threshold that can be
chosen at the BS based on the system load and periodically broadcast to the users. Note
that this approach retains the fully distributed nature of IRSA. A high censor thresh-
old can lead to too few users participating, resulting in low throughputs, whereas a low
threshold can lead to too many collisions, again resulting in low throughput. Analyzing
the trade-off between the censor threshold and the throughput is one of the focuses of

this chapter.
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5.1.2 Related Works

IRSA was initially proposed in [7] for the collision channel, wherein packets could only be
decoded in singleton slots. Singleton slots refer to slots in which only a single packet has
been received. The maximum throughput of IRSA, with a collision channel, was shown to
be one, when the Soliton distribution is used to generate the repetition factors [72]. When
the BS is equipped with multiple antennas, it can potentially decode multiple packets in a
single slot, if the SINRs of the packets are sufficiently high, which can result in throughputs
greater than 1. Thus, an SINR threshold model has been considered for IRSA, where
users can be decoded if and only if their SINR exceeds a threshold [8,74]. IRSA has been
studied with several practical aspects such as the Rayleigh fading channel [17], with path
loss [8], and with multiple antennas and pilot contamination [11]. In particular, in mMTC
applications, since it is not possible to assign orthogonal pilots to all users, the resulting
pilot contamination can significantly degrade the performance of TRSA [42].

The age-of-information metric has recently gained interest in IRSA [51,79]. IRSA
has been examined with energy harvesting [81], and analyzed in an information theoretic
setting [82]. Several variants of aloha have been proposed like polar slotted aloha [83]
and K-repetition [84,85]. We have previously analyzed TRSA with channel estimation
errors [11], pilot contamination [12], user activity detection [15], and multi-cell deploy-
ments [24]. Density evolution has been used to characterize the asymptotic throughput of
IRSA [8,11,17]. Authors in [86] propose a feedback mechanism for IRSA based on which
decoded users cease transmissions.

However, none of the above papers address the dramatic reduction in the throughput

at high loads, which is the main focus in this chapter.

5.1.3 Contributions

The contributions of this chapter are as follows:

1. Firstly, in Sec. 5.2, we develop censored-IRSA (C-IRSA) to tackle the MUI-limitation

of IRSA at high system loads. This involves self-censoring of users, wherein users
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with poor CSI refrain from transmitting, which decreases the effective system load

and ensures that the uncensored users are all successfully decoded.

2. Secondly, in Sec. 5.3, we empirically analyze the performance of C-IRSA accounting

for path loss, channel estimation errors, MIMO fading, and pilot contamination.

3. Next, in Sec. 5.4, using density evolution (DE), we theoretically analyze the perfor-

mance of C-IRSA when the users perform path loss inversion based power control.

4. In Sec. 5.5, we derive the optimal censor threshold accounting for path loss, MIMO,
fading, channel estimation, and pilot contamination. We present two approaches:
the first is a semi-analytic approach, whereas the second is an algorithmic approach
that is PLR-optimal. Using these choices of the censor threshold, the PLR of un-
censored users can be driven close to zero at all system loads, while maintaining the

throughput of the system at its highest value.

Using extensive numerical simulations, we show that, C-IRSA operates at the full
throughput at all loads, in contrast to vanilla IRSA which has near-zero throughput as
the load is increased. In particular, at high loads, C-IRSA offers a 10x throughput

improvement over IRSA without user censoring.

Notation

The symbols a, a, A, [A];., [A].;, On, 1y, and Iy denote a scalar, a vector, a matrix, the
1th row of A, the jth column of A, all-zero vector of length N, all ones vector of length
N, and an identity matrix of size N x N, respectively. |a]s and [A]. s denote the elements
of a and the columns of A indexed by the set S, respectively. diag(a) is a diagonal matrix
with diagonal entries given by a. The set of real and complex matrices of size N x M
are denoted as R™M and CV*M. A(a,A) and CN(a, A) denote the real and complex
Gaussian distribution, respectively, with mean a and covariance A. [N] denotes the set
{6,2,..., N - - T, [FIF 1%, E[], and E, [-] denote the magnitude (or cardinality

of a set), f» norm, transpose, conjugate, hermitian, expectation, and the expectation
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conditioned on a, respectively. The superscript p is used as a descriptive superscript in
association with a symbol that is related to the pilots. All the other superscripts (or

subscripts) that have not been defined as above are indices.

5.2 System Model

We consider a typical IRSA setup where M single-antenna users want to communicate
with a BS having N antennas, over frames consisting of T slots each. These M users
are located arbitrarily within a cell centered at the BS location. mMTC applications use
similar settings as narrowband internet of things, which uses a bandwidth of 180 kHz [3].
Over this band, the channel can be assumed to be flat and Rayleigh block fading. The BS
allocates a pre-specified narrowband channel, and all the M users transmit their packets
within this band.! The system load, L, is defined as the ratio of the number of users to
the number of slots per frame, L = M/T. In any given frame, the users randomly select
a subset of the T slots, and transmit replicas of their packets in those slots. In vanilla
IRSA, when L is high, there are too many collisions in each slot, leading to a failure in
the SIC decoding process and therefore poor performance.

In C-IRSA, users censor themselves from transmitting if they have a poor channel
state. The BS computes the censor threshold, denoted by v, based on the system load L.
The BS occasionally broadcasts the threshold v to all the users. The BS also transmits
a pilot signal at the start of each frame, using which the users estimate their channel
state. The users participate in any IRSA frame if and only if the norm squared of its
fading vector exceeds the censor threshold. We refer to the users who self-censor as
inactive or censored users, and the other users as active or uncensored users. A censored
user can sleep till the next time it has data to transmit, by when its channel state would
change. In the overloaded regime, vanilla IRSA has near-zero throughput due to too many

collisions. At such high L, performing censoring only helps improve the performance of

IThe BS can distribute the load over several bands, but the problem formulation does not change as
TRSA is used in each band.

2The BS can estimate the system load from the collisions in the previous IRSA frames. We discuss
the optimal choice of v in Sec. 5.5.
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the system. Thus, we allow users who self-censor to drop their packets, and not perform
any re-transmissions in subsequent frames.

In a given frame, the access of the T slots is represented as an access pattern matriz
(APM) G € {0, 1}7>M [11]. If the mth user (if it were active) transmits its packet in the
tth slot, then g, = [Gim = 1; otherwise gy, = 0. This user transmits a symbol z,,, with

E[z,,) = 0 and E[|x,,|?] = ppm. Thus, the received data signal at the BS in the tth slot is

Yyt = Zn]\f:lamgtmhmxm + 1y, (51)

where h,,, = v/3,, V. is the uplink channel vector of the mth user, v, 1l oN Oy, c2Iy)Vm €
[M] is the uplink fading channel of the mth user (assumed independent across users
and frames), 3, is the path loss coefficient of the mth user,® a,, is the activity coeffi-
cient of the mth user (a,, = 1 if the mth user is active and a,, = 0 otherwise), and
n, A% CN(Oy, NoIy) is the complex AWGN at the BS, o2 is the fading variance, and N
is the noise variance. We define the signal to noise ratio (SNR) as py = Po? /Ny, and the
cell edge SNR as pe = Pﬁedgeaﬁ /Ny, where P denotes the transmit power of a user at the
cell edge. The cell edge SNR p, refers to the received SNR of a user placed at the edge of
the cell, if that were the only user transmitting, with Beqge denoting that user’s path loss

coefficient.

Similar to (5.1), we can write the received pilot signal at the BS in the ¢th slot as
YP =30 anGmhmpl + NE, (5.2)

where N? is the additive Gaussian noise, and p,, € C” is the pilot sequence employed
by the mth user. Here, 7 is the length of the pilot sequence and [N}, ESNAY (0, No),
VnelN|, relr]and t € [T].

Remark 1: At the start of each frame, the BS transmits a pilot signal, using which

the users estimate their channel state. The ith user participates in the frame if and

only if the norm squared of its fading-only estimate v; exceeds the threshold v. Thus,

3For a study of C-IRSA accounting for the effects of shadowing, see Sec. 5.9.8.
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we have that a; = 1{||v4||* > v},Vi € [M]. The set of active users is denoted by
A = {i € [M]|||¥:]|* > v}, and the number of active users is M, = |A|.* The active load
L, is defined as L, = M, /T.

Remark 2: We note that users self-censor based only on the fading vector v;, which
does not include path loss. This makes the censoring process fair and not dependent on
the user locations. Further, the users do not send any information to the BS, such as its
estimated CSI. The BS still needs to detect the set of active users and then estimate their

channels.

5.2.1 Decoding Process

The BS first carries out an activity detection phase based on which it knows the subset
of users that have not self-censored. The BS then processes the received pilot and data
signals iteratively. In every slot, the BS attempts to decode the users’ packets. If a user
is successfully decoded, which can be verified via a cyclic redundancy check, then the BS
performs SIC in all slots in which that user has transmitted a packet [7]. This process
repeats and the decoding proceeds in iterations until no new packets can be decoded.

In this work, the SINR threshold model: any packet is decoded correctly if and only
if its SINR is above a threshold ~y, > 1 [17,74]. With the SINR threshold model, the
performance of C-IRSA can be computed as follows. First, the SINRs achieved by all users
in all slots is computed. If there is a user with SINR > =, in some slot, that packet is
successfully decoded and its contribution is removed all other slots in which that user has
transmitted a replica [8]. We then proceed to the next decoding iteration and recompute
the SINRs for all users yet to be decoded. This process stops when no additional users
are decoded in two successive iterations. The throughput 7 is calculated as the number

of unique packets correctly decoded divided by the number of slots.

4Due to channel reciprocity, users can estimate their uplink channels using the downlink pilots. The
CSI is used only for self-censoring, and is not sent to the BS. The details of this channel estimation
process is presented in Section 5.9.3.
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5.3 Performance Analysis of C-IRSA

At the BS, the users’ packets are decoded using the SIC process as with vanilla IRSA. This
entails a user activity detection (UAD) phase, followed by a channel estimation phase, and
finally a data decoding phase. The BS first performs UAD to detect the subset of active
users in each slot. This can be performed, for example, using the UAD algorithm proposed
in [15].> For simplicity, we assume perfect UAD, i.e., the BS has perfect knowledge of
A. The results presented in this work can be easily extended to include UAD errors as
seen in Chapter 4,5 where it is shown that a short pilot sequence length used for channel

estimation at the BS is also sufficient for accurate UAD.”

5.3.1 Channel Estimation

The BS first performs channel estimation based on the received pilot signal. The received
pilot and data signals are indexed by the decoding iteration since the signals are processed
in iterations. For this purpose, we let k denote the current decoding iteration index, and
Sy, denote the set of users not yet decoded up to the kth decoding iteration, with §; = [M]
and S! = S\ {i}. The received pilot signal at the BS in the tth slot in the kth decoding

iteration is given by
Ytpk = Ziegkaigm’hipf] + N7, (5.3)

where the first term contains signals from uncensored users.

We now derive the channel estimates at the BS in each slot. Let G; = {i € [M]|gy; = 1}
be the set of users who would have transmitted in the tth slot had they been active. Let
ME S G NS, N A and MF = |MPF|. This is the set of M} active users who have

®Details of the UAD process can be found in Chapter 4.

6 Analysis including UAD errors is presented in Section 5.9.4.

"In practice, the UAD errors become negligibly small when the pilot length is chosen as 7 = kq log(L)+
ko, where ki and ko are constants. This guarantee can be derived from [122], and it ensures that low
pilot lengths are sufficient for extremely accurate UAD. We have explored the performance with tuned
k1 and ko for 7 = ky log(L) + k2, and have found that we achieve near ideal UAD. For more information,
check out the results presented in Section 5.9.5.
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transmitted in the tth slot but have not been decoded up to the kth iteration at the BS.
We stack the channels of the M¥ users as the columns of HE € CN*ME et Pk e C7M!
denote a matrix that contains the pilot sequences of the M} users as its columns, and let

2 o2diag(Bi,, Biys - - - » Bi Ik) be a diagonal matrix that contains the path loss coefficients
of the MF users, with M¥ = {iy, i, ... ,thk}. Hence, the received pilot signal from (5.3)

can be written as Y? = H¥P* 1 NP We now find the channel estimates using Y?".

Lemma 3. The minimum mean squared error (MMSE) channel estimate HF of HF

18
HY = YPV(PFBFPH + NoI,) 'PIBE. (54)

Specifically, the MMSE estimate of the channel h; of the ith user at the BS is

calculated as flfl = [IZIf],L Further, the estimation error flfl = flfz —h; is distributed

as fl)’; ~ CN Oy, 6EIy), where 8F is calculated as

(5.5)

5@2@-0}21 NOHC@HQ’*‘ZJ'GS% P; ctz’2ajgtj6jo-1%
NOHCfiH2+Ejesk \p ciil2a;9:8i0%

with Cf £ PIDy(PHPIDy + NoLy)™', cf = [Cili, and Df =
diag(dtila dtiz7 L JdtiMk)) wlth dti éa/lgtzﬁlo-ﬁ

Proof. This can be derived in a similar fashion as the proof of Theorem 3.1 in

Chapter 3. n

Remark 3: We note that the channel estimate is indexed by the slot index, since we obtain
different channel estimates in different slots. The MMSE channel estimate HY of HF can

be written as seen in (5.4) as

HY = YP*(PFBFPH + N1 )" 'PFBY, (5.6a)

< YPPIBI(PITPIB] + Nolyye) ™, (5.6b)
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where (a) follows from (AB+I)"'A = A(BA+1I)~!. Here, the estimate can be calculated
as an inverse of either a 7 x 7 matrix or an M} x M} matrix. Also, higher the value of

6% higher is the estimation error as well as pilot contamination.

5.3.2 SINR Calculation

Similar to (5.3), we can write the received data signal in the tth slot in the kth decoding

iteration as

vt = > ics, ignbhiT; + 1y (5.7)

We use a generic combining vector a¥ to combine the received data signal across
antennas to obtain the post-combined data signal g £ affyF as
p gnal Yp,, = ay, yi
k kHT K
ytm = amgtmxmatmh — AmGtmTmay, Ny,

+ Zies,ﬁlaignm%atm h; + a (5.8)

The term T} £ amgtmxmatH hk is the desired signal of the mth user; the term T, £
amgtmxmatH hk is due to the estimation error flk of the mth user’s channel; the term
T, £ ZZE sy Qi TiAp, KHh . models the inter-user interference from other active users; and
Ty = alfn, is the additive noise. Since noise is uncorrelated with the other terms and the
data streams of distinct users are uncorrelated, all the terms are uncorrelated with each
other. The power in the received signal is the sum of the powers of the terms. Based on

the post-combined data signal, we now compute the SINR.

Lemma 4. The signal to interference plus noise ratio (SINR) achieved by the mth
user at the BS in the tth slot and the kth decoding iteration in C-IRSA can be

written as

k

tm
N, +Estk + MUtk Vm € S (5.9)

Gain

k
ptm
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Here Gainf  is the desired signal power, Est s the power of the channel estimation

error, MUIF is the multi-user interference. These can be calculated as

Gainy, £ pmamgim|afiihf,|*/|laf,|?, (5.10a)
EStfm = Zieskpiaigti(sfp (5.10Db)
MUTE, = 3 csppiigulal byl /| af, . (5.10c)

Proof. This can be derived in a similar fashion as the proof of Theorem 4.3 in

Chapter 4. O

Remark 4: The channel estimates h¥; and the error covariance 0% in the above expressions
are obtained from Lemma 3. The combiner that maximizes the SINR in (5.9) is the MMSE

combiner [49], which can be found as

A} = H/D} (di1,, + HYTHIDE ) (5.11)

= (d{Iy + H/D; Hi")"'H; D}, (5.12)

where Dﬁpédiag(pil, Digs s piMk) contains the power coefficients of the MF users, and
t

df £ Ny + Zieskpz‘aigtifstki-

The empirical performance of C-IRSA can be found as detailed in Alg. 4. The decoding
is run for k., iterations, and the output is the system throughput, 7, the PLR of the
active users, PLR,, and the system PLR, PLR. We now characterize the theoretical
performance of C-IRSA and then discuss the optimal choice of the censor threshold.

5.4 Theoretical Analysis of C-IRSA

In the previous section, we described the empirical evaluation of the performance of C-
IRSA, as detailed in Alg. 4. In this section, we describe the process of density evolution
(DE) [7,11], which is used to characterize the theoretical performance of C-IRSA. DE is
applicable as M, and T'— oo with a fixed L, = M, /T [17], i.e., it yields the asymptotic
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Algorithm 4: Performance Evaluation of C-IRSA
IHPUt: T, N> T7 M7 Po, N07 kmaxv G7 P7 {Y}E)}?zlv A

1 Initialize: S, = [M], G, = {i € [M]|gu = 1}
2 for k=1,2,..., kpnax do

3 fort=1,2,...,T do

4 Find M = G NS, N A, PF = [P] v, Y

5 Obtain channel estimates HY from (5.4)

6 Evaluate the SINR pF., Vi € Sy, from (5.9)

7 If pfi > Yn, remove user ¢ from S and perform SIC in all slots where
g =1

8 end

9 end

10 Output: PLR = |S;,.|/M, T = M(1 — PLR)/T, PLR, = | AN S|/ Al.

throughput. Hence, we describe the DE process in terms of the active load, L,. We only
outline the high-level steps in the analysis here; detailed discussion of the DE process can
be found in several references [7,8,11,17]. For the DE analysis in this section, for analytical
tractability, we assume that users perform path loss inversion (PLI) based power control,
and that the BS has perfect knowledge of the CSI.

SIC decoding has been viewed as message passing on a bipartite graph [7,8], and thus,
C-IRSA can be decoded on graphs as well. The underlying bipartite graph contains the
user nodes on one side, the slot nodes on the other, and the edges between them. There
exists an edge between a user node and a slot node if and only if that user has transmitted
a packet in the slot. During decoding, an edge is removed if the user connected to it has
been decoded in any of the slots. The process of an edge removal corresponds to an SIC
operation. Decoding is successful, if all edges in the graph are removed by the end of the
decoding process. A failure is declared if not all edges are removed and no new edge is
removed from the graph in two consecutive iterations.

With every user, there is an associated repetition factor, which is the number of replicas

that user has transmitted in a given frame. With every slot, there is an associated
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collision factor, which is the number of packets that have collided in that slot. The node-
perspective user degree distribution is defined as the set of probabilities {(bd}ﬁ;", where
¢4 is the probability that a user has a repetition factor d; with minimum and maximum
repetition factors of 2 and d,.«, respectively. The edge-perspective user degree distribution
is defined as the set of probabilities {)\d}jfg, where Ay = d¢g/¢'(1) is the probability that
an edge is connected to a user with repetition factor d. The corresponding polynomial

representations of the node- and edge- perspective user degree distributions are

d(x) = S dgrt, Aa) = s Azt (5.13)

respectively. The average repetition is d = 5 2404

We now use the above degree distributions to find a pair of interdependent failure
probabilities denoted by “p;,” and “¢;” in the ¢th decoding iteration. When a decoding
failure happens, an edge passes a failure message between the user and the slot nodes.
This happens when the user connected to an edge is not decoded in the slot that is
connected to the same edge, in the current decoding iteration. We denote the probability
that an edge carries a failure message from a slot node to a user node by p;, and the
probability that an edge carries a failure message from a user node to a slot node by ¢;.

The failure probability g¢; is calculated using the edge-perspective user degree distribution

as

g = S5 Aapit = Apia)- (5.14)

Here, pf_’ll is the probability that an edge carries a failure message in the ith iteration

given that it is connected to a user node with repetition factor d. If all the other d — 1
incoming edges to that user node carry failure messages in the previous iteration, then
the edge will carry a failure message from that user node in the ith iteration. The failure
probability p; is calculated as in [11,17] as

_ o0 7. \r—1
p; =1 — ¢ Fadai ZQT% 2 f(q). (5.15)

r=1
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Here, 6, is the probability that a reference packet gets decoded in any iteration in a slot of
degree r using only intra-slot SIC' [17]. Intra-slot SIC refers to interference cancellation
within the same slot a user is decoded in, whereas inter-slot SIC refers to interference
cancellation in a different slot in which a user is decoded. The evaluation of 6., which is
the crucial step in the DE process, is described in Theorem 5.1.

In DE, ¢; = A(p;—1) and p; = f(¢;) are calculated recursively as functions of each other
using (5.14) and (5.15). The iterations are initialized with either gy = 1 or py = f(1).
At the end of the iterations, the failure probability is obtained as p, = lim;_,o p;- The
probability that a packet from a user with repetition factor d does not get decoded at all
is (pso)?. Thus, the asymptotic PLR of the active users (PLR,), which is the fraction of

packets of active users that are not decoded at the BS, can be found as

PLR, = ¢(psc) = 345 Ga(Poc) ™. (5.16)

Now, for CSI based censoring with a threshold v, the fraction of active users is denoted
by F(v). Since the channel states of users are i.i.d., we can calculate F(v) as F(v) =
Pr(||v]|> > v). The active load L, of the system is then L,= LF(v).® Since the fraction of
censored users in the system is F(v) = 1 —F(v), the effective PLR of the system (including

censored users) can be calculated as
PLR = F(v) + F(v)PLR,. (5.17)

Using the asymptotic PLR, we can now obtain the throughput 7 of the users in the system

as
T = L(1 — PLR) = L,(1 — PLR,). (5.18)

The iterations p; = f(A(pi—1)) converge to ps = 0 if the active load L, < L, asymptoti-

cally [7,11]. Here, L* is called the active inflection load of the system, and it corresponds

8Similar to [17], L, is calculated using the fraction of the average number of active users as opposed
to the instantaneous number of active users.
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to a system inflection load of L*= L’ /F(v), with a threshold v. For L, < L}, since ps, = 0,
we have PLR, = 0, PLR=F(v), and T = LF(v) = L,. For any L, > L?, PLR, does not
converge to 0, and 7 decreases monotonically with L,. Also, from (5.17), we see that
PLR>F(v), and thus, T < LF(v).

Note that in (5.15), p; depends on the active load L,, which itself is a function of the
threshold v as L, = LF(v). Consequently, the active inflection load L, the system inflec-
tion load L*, the active PLR, the system PLR, and the throughput 7 are all dependent
on v.

We now describe the evaluation of the success probability 6,.

5.4.0.1 Single Input Single Output (SISO)

The result below is applicable for C-IRSA when the BS and UEs are equipped with single

antennas.

Theorem 5.1 » Success Probability in Censored-IRSA with SISO.

For the Rayleigh block-fading channel with an SNR pg, a censor threshold v, and
an SINR threshold ~;y,, the probability that a reference packet gets decoded in a

slot of degree r using only intra-slot SIC, can be obtained as

T

exp(rv — (r — k)vhne — o (Fen — 1))
0r = Z —r—(kt1)/2 , (5.19)
k=1 T Yenk
where Y = (1 + )", and v < 25 Vin.
Proof. See Section 5.8.1. O

Remark 5: When v=0, i.e., there is no censoring, the expression for 6, matches with the

results by Clazzer et. al. [17].
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5.4.0.2 Multiple Input Multiple Output (MIMO)

Closed form expressions for the success probability 6, are difficult to compute [8,11] due
to several reasons. With MIMO, there is no clear ordering of the peak SINRs across
intra-slot SIC iterations. Further, the channel estimates of the users are correlated across
the intra-slot SIC iterations as well as across the user indices, which makes order statistics
not directly applicable. Finally, 6, is dependent on a large number of random channel
vectors, the order statistics of the peak SINRs, and the pilot sequences of the users. Thus,
we now present two approximations to #,, which are valid when perfect CSI is available
at the BS and the BS uses maximal ratio combining (MRC) to decode the users. These
lead to interpretable expressions for the SINR and 6,, and provide approximations to the

throughput with estimated CSI.

Theorem 5.2 » Success Probability in Censored-IRSA with MIMO.

When perfect CSI is available at the BS, and MRC is used for decoding users in
C-IRSA, 6, can be calculated as follows. Firstly, 6; can be exactly found as

PinC(N’ p_l’y h)/FiHC<N7 V)7 v S P_I'V h
6, = o o (5.20)

1, v > p5 Ve

where 'y (s, ) = f;o t*~te~tdt is the upper incomplete gamma function. Next, 6,

can be calculated as
Oy =1{to(v) >1}+(1—(1—t0(u))N)]l{O§t0(u) <1}. (5.21)

Here, to(v) = 73! — (H(V)po)™t, H(v) & N + vV /Sy(v), and Sy(v) & (N —
ISV (R /R, with Sy(0) £ 1.
For r > 3, two approximations to #, with large N are described below. The Gamma

approximation is

Gamma: 0, =1 —Tie(r — 1, Nto(v))/T'(r — 1). (5.22)
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With puy £ (N +1)7% and 0% £ N(N + 1)"%(N + 2)7!, we obtain the Normal

approximation

Normal: 6,=1-Q (to(l/z/—(TTl— 1>'MN) ) (5.23)

where Q(-) is the standard Normal Q-function.

Proof. See Section 5.8.2. [

Remark 6: The above approximations are derived using the theory of deterministic equiv-

alents, and they provide closed form expressions for 6,., and are valid when N is large [106].

5.5 Choice of Censor Threshold

In this section, we discuss the optimal choice of the censor threshold. Firstly, we develop
a semi-analytic approach that fixes a target load Ly based on a target threshold vig.
Next, we develop an optimization based approach to calculate the censor threshold in
Alg. 5, which computes two censor thresholds 1y and v, in the linear throughput and
MUI-limited regions of IRSA, respectively. Under both the approaches, the active PLR
of C-IRSA can be made to approach zero while maintaining the throughput of the system
at its highest. For notational convenience, this section has been written for perfect CSI,

but the results are also applicable for estimated CSI.

5.5.1 Semi-Analytic Approach to Find the Censor Threshold

In this subsection, we describe a semi-analytic approach to find the optimal censor thresh-
old for C-IRSA, under both SISO and MIMO cases. The semi-analytic approach is appli-
cable with path loss, channel estimation errors, MMSE combining, pilot contamination,
ete.

In order to find the censor threshold, we first choose a target PLR for the active

users, PLR, 4, which is a maximum permissible PLR among the active users. Let Ly be
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the target load, which is the minimum L at which the system achieves an active PLR of
PLR, tgt, With v =14g. At Lig, the active load is L, = LigF(14g), with a corresponding
throughput 7Tie. For a load L > Ly, we wish to continue to operate at the same PLR of
PLR, tst, and to keep the throughput fixed at 7is. This can be done by maintaining the

same active load L, at L and Lig. Thus, we need to choose v such that
La = LF(V) = LtgtF(Vtgt>' (524)

5.5.1.1 SISO

For the SISO case, we have that F(v)=Pr(|v|?> > v). Thus, F(z) and F(z)=1—F(x) are
the CDF and the CCDF, respectively, of the exponential distribution (of |v|* ~ exp(1))

evaluated at z. Since F(z)=exp(—z), we obtain
Vv = IOg(L/La) = 10g(L/Ltgt) -+ Vigt- (525)

The above is valid when L > Lig. When L < Lig, the threshold that maximizes the active
inflection load L} is vt = py I%h. An intuitive reason for this is that the probability of
decoding a user, if that user was the only one transmitting in a slot, is 6; = Pr(|h|* >
0o v | 2> v) =exp(v—pytvm) - 1{v < pg 'y} + 1{v > py "y}, when the threshold
is v. So if we set v > py v or v < py 'y, We are censoring more or fewer users than
required, respectively. Thus, the optimal choice of the censor threshold is given by the

function g¢(-, -) defined as

-1
Po  Tth, L < Ltgt:
v=g(L, Lig) = (5.26)

1Og(L/Ltgt) + pal’yth, L> Ltgt-

For v =po ' in, the system inflection load is L* = L* /F(py y4m). For L, < L*, the set of
functions {g(-,-)} achieve PLR, <PLR, 1 among the set of active users. In practice, we
set a low target PLR of PLR, 5~ 1072 or 107* to ensure near-zero PLR,. We summarize

the result in the theorem below.
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Theorem 5.3 » Optimal Censor Function in Censored-IRSA with SISO.

Let vige = pg 1y and Ligt be the minimum load at which the system achieves a PLR

of PLR, et using Alg. 4. Then, for any given L, the optimal choice of the censor
threshold is given by v=g(L, L), where

=il
Po Vth, L < Ly,
v=g(L, Liy) = (5.27)

log(L/Lyg) + Pal%m L > Lig.

The above choice of the censor threshold maximizes that throughput while main-

taining a maximum PLR of PLR, s, among the uncensored users.

5.5.1.2 MIMO

For the MIMO case, we have that F(v)=Pr(||v|?> > v). Thus, F(z) and F(z) £ 1 — F(z)
are the CDF and the CCDF, respectively, of the Gamma distribution (of ||v||* ~ Gamma
(rate = 1, shape = N)) evaluated at 2. Thus, we have F(z) £ exp(—z)Y 1, (z"/k!).

When the BS is equipped with multiple antennas, it can potentially decode multiple
packets in a slot, if the SINRs of the packets are sufficiently high. This is referred to as
the capture effect, and is the main difference between the SISO and MIMO cases. Packet
capture can also occur due to receive power disparity between users arising from the
differences in the distances of the users to the BS. Thus, we need to analyze the optimal
censor threshold both when we have multiple antennas at the BS as well as when users
do not perform PLI. Recall that censoring is done using only the fades, and not including
the path loss, to maintain fairness across users.

The target threshold v, maximizes the active inflection load L. For the SISO case,
Vgt = Po 1%}1 is the least v that maximizes L. In the general case, we choose 14y = pg Yven,
where p, is the cell edge SNR. Here, we choose the cell edge SNR since it ensures that a
user at the cell edge gets decoded if that were the only user transmitting. An intuitive
reason for choosing v = p 'yn is that, as before, the probability of decoding a user, if

that user were the only one transmitting in a slot, is 6; = Pr(||vi||> > po v | [[vi]* > v),
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when the threshold is v. So if we set v > p; 'y, or v < p; 'y, we are censoring more or
fewer users than required, respectively.

When L > Ly, the system contains too many users, and is MUI-limited. In this
regime, censoring enhances the throughput via a combination of improved channel states
among the active users and lower MUI. If we choose the censor threshold similar to SISO,

the choice of the threshold with MIMO is given by the function A(-,-) defined as

Vtgt, L < Lyg,
ME, Lig) 2 (5.28)

H(La Ltgt7 Vtgt)a L > Ltgt-

Here, the function H(-,-,-) is defined as

H(L, Ligs, vig)) 2 G(La/L) = G(F(vigr) Ligt/ L) (5.29)

Here x = G(y) is the inverse CCDF of the Gamma distribution (with rate 1 and shape
N), which is the z such that y = F(z). For N =1, L > Ligt, and vig, = p; 'yin, we have
v = H(L, Ligt, Vigr) = 10g(L/ Ligt) + pa *Yen, which coincides with the expression in (5.27).
In (5.28), we censor with a threshold v = 14 for L < Lyy. Censoring need not always
help reduce PLR for L < L. This can happen in two cases. In the first case, if the
system has zero PLR at a low L, then no censoring is needed since the system is already
operating optimally.? This is possible, for example, when there are multiple antennas at
the BS, due to capture effect. In the second case, the system can be power-limited when
the transmit powers of users are not high enough, and thus, the MUI component is low
to begin with at low L. Censoring does not reduce MUI significantly, and ensures that
there are fewer active users upon censoring, and thus, the throughput reduces. Hence,
we do not need to censor users in this case. Thus, we see that the censor function from
(5.28) need not always be the optimal function, and we need to account for cases where

we do not need to perform any censoring for L < L.

9In practice, PLR=0 is not feasible, but rather only a sufficiently low PLR (for example, < 1073) is
achievable. For convenience, in this chapter, we use PLR=0 to mean a sufficiently low PLR.
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We now derive a generalized censor function that maximizes the throughput of C-IRSA
at all loads. For this, we define the parameter Lg, which denotes the load up to which
users do not self-censor, with Ly < L. Lo can be computed as the system inflection
load L* corresponding to the threshold v =0." We summarize our choice of the threshold

in the theorem below.

Theorem 5.4 » Optimal Censor Function in Censored-IRSA with

MIMO.
Let Ly be the system inflection load L* corresponding to the threshold v = 0,
Vtgt = Po v be the target threshold, and Lig; be the minimum load at which
the system achieves a PLR of PLR, st With v = 144, obtained using Alg. 4. The

generalized censor function in IRSA is given by v=4(L, Lgt, Lo), where

p

0, L < Ly,
. log(L/Lo)
L, Ly, L £l oV Lo<L<L 5.30
Z( tgt 0) log(Ltgt/LO) Vigt, 0> tgts ( )
\H(La Ltgta Vtgt); L> Ltgt;

Proof. See Section 5.8.3. O

\.

Remark 7: The proposed functions are identical for L > Lys, and different for L < Lyg.
The h(-,-) function is an extension of g(-,-), and uses a fixed threshold for L < L,. However,
i(,,), which has v=0 for L < L, does not use a fixed threshold for Ly <L < L. Choosing
Lo =0 does not result in identical h(,) and i(,,). In fact, the logarithmic interpolation
in i(-,-,7) is not defined for Ly=0. Further, as we will see in Sec. 5.6, i(,-,-) maximizes the
throughput, whereas A(,-) minimizes PLR,.

Remark 8: Recall that we set v, as py 1%h with PLI, as opposed to p, Lvin without PLI.
The latter ensures that a user at the cell edge is successfully decoded if they were the only

user transmitting in a slot. With PLI, the received power of all users are the same up to

10Tn practice, Ly can be modelled as a parameter which can be fine-tuned. This choice of Lg is addressed
in Fig. 5.3. Also, we have investigated the performance of C-TIRSA with various other censor functions in
Sec. 5.9.6.
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the variations due to fading. PLI results in higher power consumption per transmission
by cell edge users compared to without PLI. Another benefit of not inverting the path loss
is the additional packet captures due to the disparity in the received power levels across
users.

Via numerical experiments, we have found that the results in Theorem 5.4 hold true
when the system model accounts for pilot contamination, MMSE combining, channel
estimation errors, and UAD errors. Thus, the semi-analytic approach described here is

applicable under any of these practical non-idealities.

5.5.2 Algorithmic Approach to Find the Censor Threshold

In the previous subsection, we presented a semi-analytic approach to find the censor
threshold, which uses Alg. 4. In this subsection, we develop an active PLR-optimal
algorithm for the same. This algorithmic approach does not require choosing either L
or L, and it optimizes the censor threshold by minimizing the active PLR at every L.
This algorithmic approach is based on the DE process. Let PLR,(v) be the function (see
(5.16)) that outputs the active PLR for the C-IRSA protocol with a censor threshold v.
Since censoring only helps reduce the active PLR, the function PLR,(») is a non-increasing
function of v. Let L*(v) denote the system inflection load with a censor threshold v. Thus,
for all L < L*(v), we have PLR,(v) = 0, and VL > L*(v), we have PLR,(r) > 0. As we
vary v € RT, the corresponding L*(v) is also a non-decreasing function on R*. Since
we can operate with any v € R, every L can be viewed as a system inflection load for
some threshold vy, i.e., L = L*(vy) for some vy. Our goal thus reduces to finding vy,
since the throughput equals L till L = L*(14) and reduces thereafter. We now develop an
optimization algorithm in order to find this threshold 1.

We term the region L < L*(v) as the linear throughput region and L > L*(v) as the
MUI-limited region of C-IRSA. In the linear throughput region, the system has either
optimal censoring or excessive self-censoring since PLR,(v) = 0 in this region. Thus, we
need to identify a threshold 14 > vy such that PLR,(v;) = 0. In the MUI-limited region,

enough users have not self-censored. Thus, we need to identify a threshold v, < 14 such
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that PLR, () > 0. The optimal value of v can be identified by performing a line search

between v and vs.

Algorithm 5: Algorithm to compute the PLR-optimal censor threshold in C-
IRSA

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: vy, vy, Ve, Vs, pe, PLR4(+)
Output: Optimal threshold v,
if PLR,(0) < p. then

‘ Output: 4, =0
end
while PLR, (1) > p. do

‘m=m+w
end
while PLR,(1») < p. do
v = max{vy — 15,0}
break if v, =0
end
Initialize: v = vy
if PLR,(v) > p. and |y — 15| > v, then
vo =v,v = (11 +1n)/2
go to Step 9
else
if PLR,(v) < p. and |v; — 1»| > v, then
n=v,v=(v1+1)/2
go to Step 9

else

Output: vy, = 11

end

end

// Output v =0 if PLR, =0

// Increase vy if PLR, > 0

// Decrease vy if PLR, =0

// Update vy and v

// Update vy and v

// Optimal solution reached
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We present the PLR-optimal approach in Alg. 5. Here, the active PLR function PLR,/(+)
can be found using the DE process as detailed in Sec. 5.4 (specifically using (5.14), (5.15),
and (5.16)). We also input tolerance parameters p. and v. for the PLR function and
the censor threshold respectively, to account for finite precision. If v = 0 is the optimal
threshold, then it is output immediately. This happens for example when L < L*(v = 0).
The rest of the algorithm proceeds when L > L*(v = 0). The thresholds v4 and v, can
be initialized with a high v; > vy and either a low vy or v, = 0. If the threshold 1, is
too low or if PLR, (1) > 0, then vy is incremented in steps of vs (14 = v + vs) to ensure
PLR,(v1) = 0. If the threshold v, is too high or if PLR,(r5) = 0, then v is decremented in
steps of vs (v = max{ry — v5,0}) to ensure PLR,(v2) > 0.

Once we have identified two thresholds 14 and v, such that PLR, (1) = 0, PLR, (1) > 0,
and v > 15, we perform a bisection search between 4 and 5. We ensure updates to 14
and vy are always maintained such that PLR,(v;) = 0, PLR,(12) > 0, and v1 > 15, i.e., we
ensure that vy is such that the system is in the linear throughput region and 1» is such
that the system is MUI-limited. Since 14 and 1, are updated in every iteration to take a

step toward each other, the algorithm is guaranteed to converge to the optimal threshold

Valgo-

5.5.2.1 Computational Complexity

The computational complexity of the algorithm depends only on the computation of the
active PLR function PLR,(-), since the other operations in the algorithm are only simple
addition operations. We recall that d,,,, is the maximum repetition factor, and 7,,.x is the
maximum number of iterations within the DE process. Let 1., be the index up to which
0, is numerically significant, i.e., #,, > 1073. Each iteration in the DE process, namely
(5.14) and (5.15), require dpax(dmax + 1)/2 — 1 and rpax(rmax + 1)/2 + 1 multiplication
operations, respectively. This amounts to a total of Npg, multiplication operations per a

single computation of PLR,(-), which can be found as

NPLRa - 0'5(dmax(dmax + 1)(imax + 1) + rmax(rmax + 1)imax + 2(dmax - 2)) (531)
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The above linearly depends on the number of iterations 7,,., the square of the maximum
repetition factor d.., and the square of the maximum number of collisions r., for the
success probability 6,. For typical system parameters with dy.x = 4 and rp.c = 10,
this amounts to a maximum of Nprg, = (141limax + 24)/2 multiplication operations in
each computation of the active PLR function PLR,(-). DE usually converges in iya, = 10
iterations, which yields a complexity of 717 multiplication operations per computation of

PLR,(-).

5.5.2.2 Choice of Algorithm Parameters

The threshold v; is initialized as a high value sufficient enough to ensure that the system
is interference-free amongst the subset of active users, whereas v, is initialized as a low
value sufficient enough to ensure that the system is MUI-limited among the active users.
For example, v; = py 'y and v5 = 0.1py ' v. The algorithm tunes these initializations
and verifies if they are indeed valid. If invalid, the thresholds are varied in steps of
Vs = pPo Yin, till they are validated. The tolerance parameters p. and v. can be chosen to
be small values such as 1073 or 1072,

Remark 9: Since the optimal thresholds discussed so far are continuous functions, any
change to the system load will change the optimal threshold only by a small quantity.
That is, if the algorithm outputs a threshold 7,5, when the load marginally changes, the
existing threshold v,,, can be used to next initialize the threshold v;. This ensures a
faster convergence. Further, the algorithm needs to be run only once at the BS for every
L, and not in every frame.

Remark 10: The DE analysis presented in this work contains closed form expressions
for 6, and thus, is an iterative recipe to compute the theoretical active PLR when perfect
CSI is available at the BS and the BS uses MRC to combine signals of users across
antennas. However, the developed algorithm can be used under any system model, as long
as we can evaluate the active PLR function PLR,(-). Thus, the algorithm itself can be used
with MMSE combining, channel estimation errors, UAD errors, pilot contamination, etc.,

when the PLR function PLR,(-) can be computed, possibly empirically. Further, the DE
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process which yields the function PLR,(-) is asymptotic in nature. Thus, for finite frame

lengths, we can operate with 5% higher v,),, which operates at a slightly lower L*(vag0)-

5.6 Numerical Results

In this section, we evaluate the empirical and theoretical performance of C-IRSA via
Monte Carlo runs, and provide insights into the dependence of the system performance
on the various parameters. In each run, we generate independent realizations of the user
locations, the APM, and the fades of the users. For the empirical results, the number of
users is computed as M = | LT]; whereas the theoretical results are dependent only on
L, as described in Sec. 5.4. The throughput for each run is calculated using Alg. 4 as
described in Sec. 5.3, and the effective throughput is averaged over the runs.

The results in this section are for 10* Monte Carlo runs, T'=50 slots, o2 =1, 7= 10,
N = 4, MMSE combining, and SINR threshold g, =30 [11]. The path loss is calculated as
Bi (dB)=—37.61og(r;/10), where r; is the distance of the ith user from the BS in meters.
The location of each user is uniformly sampled from within a cell of radius ry. =1 km
centered at the BS. The Soliton distribution [72] ¢(x)=0.6252% + 0.2523 + 0.1252" is used
to generate the repetition factors of the users [11].}! The repetition factor d; is used to
form the access vector for the ith user, by uniformly randomly choosing d; slots from T
slots without replacement [7]. The packet replicas are transmitted in these d; slots. The
power levels of all the users is set to P=0 dBm, PP=3 dBm, and Nj is chosen such that
pe=10 dB, unless otherwise stated. This ensures that all users’ signals are received at an
SINR that is at least p. on average, in singleton slots. The pilots are chosen as 7-length
vectors with random symbols belonging to the QPSK constellation, normalized to have
power 7 PP 12

We first elucidate the choice of the target load Ly using PLR, in Fig. 5.1. The PLR,

of the system increases with L for v = 0,3, and 4, and becomes 1 at high loads, since

' The repetition distribution is optimized in Chapter 7.
12For the performance of C-IRSA with other pilot sequences, see Sec. 5.9.10. We have also studied the
uniqueness of pilot sequences in IRSA and C-IRSA in Sec. 5.9.9.
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the system is MUI-limited at higher L. Vanilla IRSA is equivalent to C-IRSA with no
censoring, i.e., with v = 0. It is seen that vanilla IRSA has a high PLR, at all loads, and,
with censoring, the PLR, reduces. The curves with v="h(L, L) follow the performance
of v = p; v =3 up to a load of L = Ly, and beyond that PLR, stays constant at
every load. We first fix a PLR; g and the minimum L with which the system achieves
PLR, = PLR, g, With v = p; 'y, forms the target load. For example, PLR, o = 107" or
1072 yields Ligi =5 or 4.6.

In Fig. 5.2, we show the impact of the active load L, on 7. All the curves linearly
increase till their respective inflection points, after which they drop down since the system
in MUI-limited. The linear increase in 7T is the region in which PLR, =0 [7], i.e., when
L, <3, all active users are decoded. With N =4, the BS can potentially decode four
users per slot. However, due to the SINR threshold model, small pilot lengths, pilot
contamination, estimated CSI, etc., the number of users that can be decoded per slot is
less than 4. On the other hand, the disparity in the received powers across users can
occasionally allow the BS to decode even more than 4 users per slot. The net effect is
that up to 3 active users can be decoded in practice. At L,=2.7, v=0 achieves T =2.4,
whereas v = 2.7 achieves full throughput of 7 =L, =2.7. The throughput improves as
v is increased since users with poor channel states are self-censored. Even with a little
amount of censoring, C-IRSA performs better than IRSA. Thus, C-IRSA helps overcome
packet losses due to both poor CSI and MUI. For v >~,/pe, T very marginally increases
and the system achieves nearly the same T for v =5 and 4 as for v =3. This increase
is due to capture effect from both path loss and MIMO fading. Further, the threshold
v must be such that the system is always operated at L, < L} = 3. Also, by optimally
choosing the threshold using v = h(L, L) as described in Sec. 5.5, we can obtain the
same 7 as that obtained with v =3 at higher loads also. Note that in the MUI-limited
regime, the PLR of IRSA is non-zero, and both users with poor channel states and packets
that experience collisions cannot be decoded correctly. Censoring improves 7 on both
counts by choosing users whose packets are more likely to be decoded correctly as well as

reducing the number of collisions.
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In Fig. 5.3, we depict the impact of the developed censor functions on the throughput
of C-IRSA. Vanilla IRSA, C-IRSA with v =3, and C-IRSA with v =4 achieve a peak
performance of 7=2.5 at L=2.8, T=2.95 at L=4.6, and 7 =3 at L=7.2, respectively.
For all three curves, T increases linearly with the load up to the peak, and beyond that,
the throughput drops to zero. C-IRSA with v =4 has too many users which are self-
censoring, and we could potentially reduce v. Thus, we could choose v for every L such
that we obtain an envelope of all curves for v >3, which yields the same performance as
v=1(L, Lz =4.6, Ly=2). The throughput of C-IRSA with v=1(L, Ly, Lo) outperforms
v="h(L, L) for all L < L =4.6, and then remains constant for L > L, =4.6. Up to
L=2.8, no censoring is needed, i.e., v = 0 is sufficient. For 2.8 < L < 4.6, T is maximized
with v =14(L, Lgy =4.6, Lo =2). For all L > 4.6, T remains constant at 7 =2.95, with
both v =i(L, Ly =4.6, Ly) (with any choice of L) and v=h(L, Ly =4.6). Choosing a
high Ly =2.6 yields a censor function with a low slope (as seen in (5.30)) which censors
too few users, whereas choosing a low Ly=1 yields a censor function with a high slope
which censors too many users. Ly can be fine tuned to yield the peak performance, e.g.,
with Ly = 2. At L =38, the throughput of vanilla IRSA is 7 = 0.25, whereas C-IRSA
achieves 7 = 2.95, which is over a 10x improvement. Thus, at high L, the system can
be operated at its maximum potential in C-IRSA, compared to vanilla IRSA which has
near-zero throughput.

We illustrate the effect of the threshold v on PLR, in Fig. 5.4. For v =3, we have
PLR, =0 and thus, PLR=F(3) = 0.65 up to L =4.6. Choosing any L, < 4.6 always
yield PLR, =0 at all L since the active load will then always be maintained at L, <2.95.
We thus choose Ly = 4.6 to maximize 7, which can be obtained from our analysis as
Ligi= L% /F(p ' ym) =2.95/F(3) =4.6. Further, when L < 4.6, we see that v=i(L, Ly =
4.6, Ly) (with any choice of L) has a non-zero PLR,, whereas v="h(L, L, =4.6) achieves
PLR, = 0. Both the functions have PLR, = 0 for L > 4.6. This is the exact opposite
trend on the throughput as seen in Fig. 5.3. This shows that in order to maximize the
throughput of the system, with a small hit on the PLR,, we choose the censor threshold

as v =1(L, Lyg, Lg). In order to ensure zero PLR, with a small hit on 7, we choose the
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censor threshold as v=~"h(L, Ligy).

In Fig. 5.5, we present the system PLR corresponding to the throughput curves in
Fig. 5.3. It is observed that the lowest PLR is obtained with the v = i(-,-,-) function
with parameters L = 4.6 and Ly = 2. Tuning the value of Ly helps us achieve the
lowest system PLR. These trends are similar to the ones observed in Fig. 5.3 since the
throughput and the system PLR have a one-to-one relation (see (5.18)).

In Fig. 5.6, we vary the threshold ~y, with a fixed p. = 10. We observe that the peak
throughputs of the system increase as we decrease 7;,. This is because more users have
SINRs that cross vy,. Further, the gap between the functions i(-, -, -) and A(-, -) reduces as
we reduce Y,. In general, the less MUI-limited the system becomes at lower L, the closer
Ly and Ly become, which implies the functions i(-, -, -) and h(-,-) both yield nearly the
same performance. This can happen, e.g., with high N or high p.. In these cases, we
need not censor at low L and censor at high L using the function in (5.29).

The impact of various system parameters on the generalized censor function is pre-

sented in Sec. 5.9.7.

Solid Line: p, = 10,y = 10
Dashed Line: p, = 30, v, = 30
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Figure 5.7: Impact of threshold v on T with pZlyy, = 1.

In Fig. 5.7, we present the throughput curves for varied censor thresholds with a fixed

value of p;ly, = 1. The curves shift downwards when the parameters are changed from
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Pe = Yn = 10 to pe = yn = 30. This is because fewer users are decoded when the
threshold is increased. Further, the gap between v = h(L, Lyy) and v = i(L, Lg, Lo)
remains the same for L < L and beyond Ly, they stay the same. The performance
of v = i(L, Ly, Lo) is, however, slightly better than v = h(L, Ly ) for L < Lyg. This is
because, in this regime, not censoring at low loads is good for the system. Note that in

this plot, we choose Ly to be very close to Lyt since the gap is very small.

5.6.1 Asymptotic Results with DE

In this subsection, we evaluate the theoretical throughput of C-IRSA as discussed in
Sec. 5.4 and provide insights into the impact of various system parameters on the perfor-
mance. For this subsection, we assume that perfect CSI is available at the BS, the users
perform PLI, and the BS uses MRC for decoding users. The results are presented for
N =8 antennas, py=10 dB, SINR threshold ~y, =10 [11], and 50 maximum DE iterations.
For Alg. 5, we use the tolerance parameters p, = v, = 1072, step size vs = py 'Yen, With

initializations v, =2p, 1%h and ,=0.1p, l%h.
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Figure 5.8: Verification of the DE approximations.

In Fig. 5.8, we verify the asymptotic DE T obtained using the Normal and the Gamma

approximations with the empirical 7. For both ¥ =0 and 8, the Normal approximation



Chapter 5. Censored-IRSA for Interference-Limited mMTC 199

1.5} ‘+‘“—E.?'?“‘T—"‘—T—‘“——F““j“:ﬂ"'é
-- -[F-- -@-- --Br---1a-- "E- ---[]
S R B
= i X
D R A v=
8 EARY >< <> v=8
=05 L 1€yr=0(No Censoring)|
= B — v=h(L, Lz =1.48)
e _E v= h(L’Ltgt — 1'3)
v=h(L,Liy=1)
.. > g .
O | , ........ O ................ O )\ 2‘5
0 1 2 3 4 5 %

Figure 5.9: Theoretical performance of C-IRSA with N = 8.

1.5+ I__-‘—-—-—‘- —————————————————————— -]
Gl G
& 1 &) oo P 6
= 9 N 9 & ) ®
a - - Theo. curve with v =1y,
'fo — V=V4g0,T = 500
g F3v=1(L,Lig=1.4,Ly=1.3),T=500
=05 Ov=il,Lig=1.3,Ly=1.2),T =250 | _
H v =i, L =1,Ly=0.9),T=50
+ v=h(L,Liy=1.4),T=500
'* V:h(L7Ltgt:1.3)7T:250
X v=h(L,Ly=1),T=50
O I I 1 1 1 1
0 1 2 3 4 5 6 7

Load (L)

Figure 5.10: Empirical performance of C-IRSA with N = 8.
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results in 7 that is slightly in excess of the empirical 7, albeit the inflection loads are
approximated well. The Gamma approximation slightly underperforms compared to the
Normal approximation but it also achieves the same performance as the empirical through-
puts at high L. For both v=0 and 8, the peak empirical 7 increases with an increase in T,
and they get closer towards the asymptotic 7. The asymptotic 7 drops very quickly after
the inflection load L*. The Normal approximation yields an inflection load of L*=1.48 for
v=0, and L*=3.33 for v=8. At these inflection loads, the peak asymptotic throughputs
are 7 =1.48 and T =1.5, respectively.

Fig. 5.9 shows the theoretical performance of C-IRSA with the Normal approximation
for 0,. As v is increased from 0 to 8 to 10, there is a marginal increase in the peak
throughput. We have skipped the curve for v = 1 since it overlaps with v = 0. The
function h(L, L) follow the v=0 curve up to L= Ly and remain constant for L > Lyg.
Specifically, Lig = 1,1.3, and 1.48 achieve a peak performance of 7 =1,1.3, and 1.48
at all L > L. Thus, there is a 100% increase in the throughput compared to vanilla
IRSA. The optimized threshold obtained using Alg. 5 is labelled as 44, and it achieves
the envelope of all the curves with a fixed v. There is a very small gap between the peak
performance with L, =1.48 and the throughput with the optimized threshold. Fig. 5.10
shows the equivalent empirical performance of C-IRSA with the same parameters as in
Fig. 5.9. Here, choosing v =h(-,-) achieves the same performance as v =i(-,-,-) with Ly
very close to L. The theoretical 7 from the previous plot coincides with the empirical
T for Ly =1 and 1.3. The censor function for the theoretical curve can be obtained with
Ligt =1.48 and T =1.48, whereas for the empirical curve we have Ly =1.4 and a slightly
lower peak throughput of 7 =1.4. This is because DE curves are achieved asymptotically.
Thus, in practice, we back off from 1.48 to Lig =1.4 or 1.3. The solid curve with legend
V= U,1go Uses the threshold that is optimized asymptotically, but is applied with 7'=500,
and thus, it drops a little as L increases. Both h(:,-) or i(-,-,-) achieve nearly the same
performance as the optimized threshold and can be used in practice.

In Fig. 5.11, we show the theoretical performance with N = 2. v =0 achieves the

lowest peak 7, and both v = vy, and (L, Ly = 1.2, Ly = 0.2) achieve nearly similar
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performance. It is seen that a small change in v from 1 to 2 results in a huge shift of the
curves towards the right. Previously, in Fig. 5.9, with N = 8, increasing the threshold by
a large amount from v=0 to v =38 shifts T to the right, after which increasing by a small
amount to =10 shifts 7 by a large amount. This is an effect of channel hardening [106],
which is the phenomenon that as NV increases the norm squared of the fade converges to
a constant, i.e.,||v;||*> — No2. Since we perform fade-based censoring as ||v;||> > v, the
threshold has to be made close to No? (4 a standard deviation) to ensure a significant
impact on 7. Similar trends are observed for N = 16 as seen in Fig. 5.12.

Fig. 5.13 shows the theoretical PLR, with N = 2, whereas the PLR curves are seen
in Fig. 5.14. v = 0 achieves the highest PLR, and v =4(L, Lyz = 1.2, Ly = 0.2) achieves
PLR, = 0 beyond L =1.2. Alg. 5 yields PLR, = p. at all L, and thus the tolerance
parameter p. can be tuned by choosing a target active PLR. In practice, choosing Ly =

0.9L* or 0.8L* achieves near-zero PLR, at all L.
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Impact of Random Censoring:

The censoring of users can be done in a random fashion as opposed to CSI-based censoring.
That is, users independently participate in each frame with a probability p,, and self-
censor with probability 1 — p,. This yields an active load of L, = Lp,. For a load
L > L*, the optimal random censoring can be done by choosing p, = L*/L, which
ensures L, = L* for all L. Specifically, with optimal random censoring, we need to choose
po = min{1,0.6/L}, which operates the system at L} = 0.6 and achieves 7 = 0.45 at
all L. For random censoring, 6, is obtained by substituting for v = 0 in (5.19) and in
Theorem 5.2. Analysis for optimal random censoring is presented in Sec. 5.9.2.

The curve marked “Random” in Figs. 5.11 and 5.13 uses the above optimal random
censoring and achieves the same throughput as peak vanilla IRSA for every p, € (0, 1].
For the same active load L,, the channel states of the uncensored users with CSI-based
censoring are better than the channel states of the active users with random censoring.
The PLR, of random censoring is very high whereas CSI-based censoring yields arbitrarily
low PLR,.

In Fig. 5.15, we study the effect of active load L, on asymptotic 7. For N = 2,
increasing v from 0 to p; 'y, = 1 shows a drastic improvement and after that it shows
a negligible improvement. For N = 16, however, increasing the threshold has a very
negligible effect since the system is already well performing without censoring in the
linear throughput regime. For such a system, performing random censoring as opposed

to CSI based censoring could be beneficial.

5.7 Summary

In this work, we developed Censored-IRSA (C-IRSA), which overcame the interference
limitation of IRSA at high loads. In C-IRSA, users self-censor based on their CSI and
an adaptive threshold that is periodically broadcast by the BS. The protocol retains the
fully distributed, random access nature of IRSA. First, the MMSE channel estimates
and the SINR were derived in C-IRSA accounting for MIMO, fading, path loss, pilot
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contamination, and estimation errors. The empirical performance of C-IRSA was then
analyzed using the SINR threshold model. We analyzed the theoretical performance
of C-IRSA using DE, and derived closed-form expressions for the success probability 6,
under the Normal and Gamma approximations. We developed two semi-analytic functions
i(L, Lygt, Lo) and h(L, Lyg,), with which the system throughput was maximized and the
active PLR was minimized, respectively, when L < Ly. With both these functions, the
throughput was maximized when L > L. Next, we developed an algorithm to find the
active PLR~optimal censor threshold. With this, the active PLR can be driven close to
zero, whilst achieving the highest throughput. At high loads, C-IRSA operates at the
full capacity compared to IRSA which has near-zero throughput. Finally, we discussed
several insights into the design of C-IRSA: the choice of the target load Ly, the load Ly,
and the optimal censor function.

An interesting extension we can explore for C-IRSA is based not just on fading, but
also based on the time since a user attempted a transmission. This would involve censoring
a user with good channel state to ensure that a user with bad channel state, who has also
not transmitted for a long duration of time, can transmit its packet. This can be achieved,
for example, using proportional fairness. With this, the censoring is performed not just
based on the channel state of the user in the current frame, but also based on the average

throughput a specific user has seen in the previous C-IRSA frames.

5.8 Proofs

5.8.1 Proof of Theorem 5.1: Success Probability for SISO

We now characterize 6,, which is the probability of decoding a reference packet in a
single slot where r users have transmitted their packets. Since there is only one slot
under consideration, users are decoded via intra-slot SIC. These r packets are from r
active users who are not yet decoded. The reference packet is one of the r packets, and
it gets decoded only if the packets having a higher SINR get successfully decoded first.
Hence, they must also satisfy the SINR > ~, constraint. Thus, 6, is the probability
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that the reference packet and the packets with higher SINRs all get decoded. Since 6, is
evaluated based on the SINR of multiple active users in a slot, we consider a slot wherein
r active users have transmitted their packets, and use the active load L, (and not L) to
characterize the performance.

We denote the set of active users who have not yet been decoded in the first k—1 intra-
slot decoding iterations by Sy, and S £ S\ {m}, with S; =[r]. The SINR of the mth user
in the kth intra-slot decoding iteration, p¥ , is calculated as p¥ = |hm|2/(p0_1+zi68£1 |hi|?).
Let p* _denote the SINR of the user with the highest SINR in the kth intra-slot decoding
iteration, calculated as p¥, =max,cs, pF,. Let s be the index of the intra-slot decoding
iteration in which the reference packet is decoded, with 1 <s<r. Thus, 6, is calculated
as 0, = Pr(pl.. > Yihs Poiax = Vehs - - -5 Pooax = Yen)- Since the reference packet is tagged
uniformly at random from the users, the reference packet is equally likely to get decoded
in any decoding iteration. We denote the probability that the k£ packets with the highest
SINRs across decoding iterations all exceed the threshold vy, by 0,4 = Pr(pl .. > Yin, 02,0 >
Yehs - - - Prax = Yen). We can calculate 6, using 6,4, as 6, = (Y., _, 0,1)/r. Without loss of

generality, let the channels of the users be ordered as |hy|> > |ho|?> > ... > |h,]?. Now,

Ok = Pr( T Uil 2 Vths —7 ol = Yth,
Po +Z§:2 |hil? Po +Z:=3|hi|2
T o[ > Y| |hy)? > v, V5 € [7"]) (5.32)
7P(Y "‘Z;:kﬂ |hil> — S

The above is a conditional probability, conditioned on |h;|* > v, since we are considering

only uncensored users. Thus, 6, from (5.32) can be calculated equivalently as

O, = Pr(ts > vn(pp " + Di—oti)sta > Yen(po  +Diegli)s - -t > 7th(P61+Z::k+1ti))-

Here, t; is a random variable follows a truncated exponential distribution with the density

function f(t) = exp(v — t) - 1{r < t < 0co}. Assuming v < py 'Yin, With Fni = (14 Y,
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0,1 can be calculated as

0,1 :e”’/ e_trdtr/ e_tr‘ldtry--/ et dt,

o0 o0
X / e thdty - - - / e dty
Yen (P "+ i g1 ti) Yen (g 1ot

exp(rv — (r — k)Vymx — palm(Zf:l Vthi-1))

_ o _ (5.33)
thk
Thus, we get
r . o k = _ 15 —1
QT:ZeXp(TV (r )V ¥k — Py (Yehok ) (5.34)

_r—(k+1)/2 ’
k=1 T YVink

5.8.2 Proof of Theorem 5.2: Success Probability for MIMO

We now characterize 6,, which is the probability of decoding a reference packet in a
single slot where r users have transmitted their packets. Since there is only one slot
under consideration, users are decoded via intra-slot SIC. These r packets are from r
active users who are not yet decoded. The reference packet is one of the r packets, and
it gets decoded only if the packets having a higher SINR get successfully decoded first.
Hence, they must also satisfy the SINR > ~, constraint. Thus, 6, is the probability
that the reference packet and the packets with higher SINRs all get decoded. Since 6, is
evaluated based on the SINR of multiple active users in a slot, we consider a slot wherein
r active users have transmitted their packets, and use the active load L, (and not L) to
characterize the performance.

We now setup some notation for precisely characterizing 6,. Let k denote the intra-slot
decoding iteration. We denote the set of active users who have not yet been decoded in
the first k£ — 1 intra-slot decoding iterations by S, and S* £ S, \ {m}, with S; =[r]. With
PLI, the channel of the user is the same as the fading state, i.e., h; = v;, and hence we use
both equivalently. When perfect CSI is available at the BS and the users perform PLI,

the SINR of the mth user in the kth intra-slot decoding iteration, p¥ , is calculated as

. Pljh, || |
" Mol P+ iy PRI

(5.35)
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Let p* _denote the SINR of the user with the highest SINR in the kth intra-slot decoding
iteration, calculated as p¥, =max,cs, pF,. Let s be the index of the intra-slot decoding
iteration in which the reference packet is decoded, with 1<s<r. Thus, with a threshold

v, 0, is calculated as

97” = Pr(ﬂrlnax > Vth, prznax > Vthy - apfnax 2 Yth | ||hj||2 >V, VJ € [T]) (536)

Since the reference packet is tagged uniformly at random from the users, the reference
packet is equally likely to get decoded in any decoding iteration. The above is a conditional
probability, conditioned on ||h;||? > v, since we are considering only users who have not
censored.

For 7 =1, p} = P|hy||?/No, and 6; reduces to Pr(p; > v | ||hi]> > v). This can be

computed in closed form as

FiHC(Nv p_l’y h)/Finc(N, V), v S p_1’7 hs
= o o (5.37)

1, v > py Ve

where pg £ Pof/Ny, and Dipe(s,z) = [t "te~"dt is the upper incomplete gamma
function.

For r > 2, we resort to computing the deterministic equivalents [106] of the norms
of the channels as well as the interference components to compute approximations to
the SINR. We first find the deterministic equivalents of the norms. Let |[hy||?|jn,25s
denote the random variable ||h;||? conditioned on the event {|h;|?> > v}. We use —> to
denote convergence in the almost sure sense. Since ||hy]|> =2 No?2 [106], we can find that

10|12 250 —> H(v)oZ, where

H(v) = Tine(N + 1,0) /Tine(N,v) = N + vV /Sy (v), (5.38)

with Sy(v) & (N — DI Wk /k!) and Sy (0) £ 1.

We now find the deterministic equivalents of the interference components. Let us
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write the channel of the ith user h; as the product of the norm n; = ||h;|| and the direction
d; =h;/||h;||, i.e., h; =n;d;. Since the norm and the direction of a circularly symmetric
complex Normal random vector are independent [105], n; and d; are independent. Thus,
when we employ a censor threshold v, only the distribution of the norms of the channels
changes but the distribution of the directions of the channels remains the same. That
is, ||h;||* is Gamma distributed whereas ||h;||?||n, 2>y is truncated Gamma distributed.
Further, the distribution of d; and d;|n,|2>, remain the same. Thus, the interference
tmi = W02/ (||h,, ]| hy)|?) = |dZd;|? is Beta distributed as t,,; ~ Beta(a =1, 3 = N),
both with and without censoring.

For » > 2, the SINR with MRC and large N, can be approximated as

P = (H()po) ™" + Ciesptmi) ™ (5.39)

Here, we have applied the theory of deterministic equivalents to only the channel norms
and not to the interference, and we have an SINR that is affected only by the random-
ness in the multi-user interference components. This is supported by the fact that the
interference components converge to their deterministic equivalents slower than the norms
converge to their deterministic equivalents [106].

For r = 2, since tyy = to1, pt = ps = (H(v)po) "t +t12)~t. Thus, pt. = ((H(v)po)~t+
t1)"t and p?,. = H(v)po, with pL < p2 . Thus, the success probability reduces to
0, = Pr(pl.. > Yn)- Let to(v) = 95" — (H(v)po)~!. Hence, 65 is calculated as

02 ~ Pr(phax = Yn) = Pr(tis < to(v))

= 1{to(r) > 1} +(1— (1—to ()™ 1{0 <to(v) < 1}. (5.40)

For r > 3, p need not be a monotonically increasing function of k as seen in (5.39), and
thus we cannot order the SINRs meaningfully to compute 6, in closed-form. With w,, =
> icfr]\m tmi> the maximum SINR in the first intra-slot iteration is pp,,, = maxc( ((H(v)po) '+
U,) L. Here, u,, is not independent across m and it is not clear which u,, is the minimum.

Thus, we approximate pL_as pi, and upon dropping the other SINR terms from (5.36),
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0, becomes
0, ~ Pr(p; > yu) = Pr(uy < to(v)). (5.41)

We now discuss two approximations to u,, to evaluate #,, with the assumption that wu,,
is independent across m.

Since limy_,o Beta(a = 1,8 = N) = exp(A = N), we approximate t,,; ~ exp(N),
which is a good approximation at high N [105]. Even with this approximation, wu,, is
identically Gamma distributed across users but not independent. With the independence
assumption, u,, is i.i.d. Gamma distributed with shape r — 1 and rate N, i.e., u,, S

Gamma(r — 1, N). Thus, we obtain the Gamma approximation:
0, ~1—Ti(r —1, Nto(v))/I'(r —1). (5.42)

Similarly, when we assume t,,; is Normal distributed, u,, is identically Normal distributed
across users but not independent. Let uy = (N +1)"" and 0% = N(N +1)73(N +2)~".
If we approximate t,,; ~ N (i, 0%) and u,, is independent across m, then u,, B ((r—

1w, (r —1)o%). Thus, we obtain the Normal approximation:

0, ~1—-Q ( (5.43)

to(v) — (r — 1)MN>
vT — 10'N ’

where Q(-) is the standard Normal Q-function.

5.8.3 Proof of Theorem 5.4: Generalized Censor Function for
MIMO

In order to derive a generalized censor function, we analyze the system behaviour below

and above the target load Lig.
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5.8.3.1 L3> Ly,

The system is MUI-limited when L > L, and censoring improves the performance. This
enhancement happens via a combination of improved channel states among the active
users and lesser MUI. In this regime, similar to the SISO threshold, we can compute v by

inverting the CCDF in (5.24). For this, we define the function H(-,-,-) as

H(L, Ligi, vig) = G(La/L) = G(F(v1g) Ligs /L) (5.44)

Here # = G(y) is the inverse CCDF of the Gamma distribution (with rate 1 and shape

N), which is the z such that y = F(z).

5.8.3.2 L< Ly

Censoring need not always help improve the performance when L < Liy. We handle this
by introducing a load parameter Lg, which denotes the load up to which users do not
self-censor, with Ly < L. There are two cases when censoring is not needed. The first
case happens when PLR=0 at low L, for which no censoring is needed. This is because
the throughput is at the optimal value of 7 = L already. One instance when this can
happen is when there are multiple antennas at the BS and the BS can decode all the
users via a combination of SIC and interference-suppression due to multiple antennas.
When PLR=0 at low loads, L can be found as the system inflection load L* with v=0.

In the second case, the system can be power-limited when the transmit powers of
users are not high enough, and thus, the MUI component is low to begin with at low L.
While there are fewer active users upon censoring, the MUI does not reduce. In this case,
PLR # 0 at low L, censoring does not increase 7, and thus, we do not need to censor
users at low L. When PLR > 0 at low loads, we can still choose L as the inflection load
corresponding to v = 0, but this can be fine tuned if needed. In both the cases mentioned
above, users need not self-censor for L < L.

If we choose the censor threshold similar to SISO, the choice of the threshold with
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MIMO is given by the function A(-,-) defined as

Vtgta L < Ltg‘m
h(L, Lig) = (5.45)

H(Lu Ltgt’ Vtgt)u L> Ltgt-

Thus, we need to modify (5.45) so that v=0 for L < Ly in these two cases.

So far, we have addressed how to compute v for L > L and L < Lo. We now
discuss how to compute v for Ly < L < L. In the SISO case, L} is maximized at
Vigt = Po "ven. However, for MIMO, as the censor threshold is increased, the subset of
active users experience a higher degree of capture effect since there are fewer users. This
behaviour is prominent especially at loads very close to the inflection loads L* and L7,
and this variation in the censor threshold occurs only in a small region between L, and
Ligy.

Choosing a fixed v = w4y for Ly < L < Ly yields a censor threshold that is a
discontinuous function of L at L = Ly and L = Lg. This is not ideal, since in practice,
the throughput/PLR linearly change with L and they do not exhibit such discontinuous
behaviour. So, to make it a continuous function, in this small region, we choose v based

on a logarithmic interpolation function as

(log(L/Lo)/ 10g(Ltgt/Lo)) Vit (5.46)

We have investigated many functions in this regime (See Sec. 5.9.6), and observed that
the log-interpolation yields the best throughput. The log-interpolation with a properly

tuned Lo outperforms linear-interpolation as well as other functions.

5.9 Appendix

5.9.1 Preliminary Results

This section presents the preliminary results that were published in the conference ver-

sion [18] of this chapter, specifically for C-IRSA with SISO and perfect CSI.The results are
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presented for 10* Monte Carlo runs, SNR. pg = 10 dB, SINR threshold ~y, =10 [11]. We
use the truncated Soliton distribution [72] ¢(z)=0.6252% + 0.252°% + 0.1252* to generate
the repetition factors of the users [11]. The repetition factor d; is used to form the access
vector for the ith user, by uniformly randomly choosing d; slots from T slots without

replacement [7]. The packet replicas are transmitted in these d; slots.
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Figure 5.16: Impact of T" on the throughput.

Fig. 5.16 shows the impact of 7" on the empirical throughput with v=p; 'y, =1. The
theoretical asymptotic throughput curves for v=0,0.4, and 1, obtained via DE, are also
shown. The curves linearly increase till a peak, after which they drop quickly to zero as
the system becomes MUI-limited. The asymptotic 7 is maximized at L} =T =0.76, for
v=1. The linear increase in 7 marks the region in which PLR, =0 [7]: when L, <0.76,
all active users are decoded. Conventional IRSA corresponds to no censoring (r=0). At
L,=0.4, v=0 achieves T =0.15, whereas v =1 achieves full throughput of 7=1L,=0.4.
The asymptotic throughput dramatically improves as v is increased from 0 to 1, because
users with poor channel states are self-censored. Even with a little amount of censoring,
C-IRSA performs better than IRSA. Thus, C-IRSA helps overcome packet losses due to
both poor CSI and MUI.

We have seen that the choice of the threshold v must be such that L, < L}. In
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Figure 5.17: Choice of target load L using theoretical PLR,.

Fig. 5.17, we depict the influence of the choice of the target load, Ly, using the asymptotic
active PLR, PLR,. The PLR is close to 1 with no censoring. The PLR, of the system
increases with L for v = 0,1, and 2, and becomes 1 at high loads. The curves with
v=g(L, Lig) follow the performance of v=py 'y, =1 up to a load of L= Ly, and beyond
that PLR, stays constant at every load. Fixing a PLR, . yields the choice of Lig and
the corresponding threshold v = g(L, Liy). The asymptotic PLR increases very quickly
around the inflection load L*. In practice, however, choosing L =0.9L* or 0.8L* works

well.
In Fig. 5.18, we show the effect of the active load L, on the empirical throughput 7T,

with 7'=250. Conventional IRSA (no censoring, i.e., ¥ =0) achieves very low through-
puts since the system is highly interference limited. Similar to the previous plot, where
the theoretical throughput increased with increase in v, the empirical throughput also
increases with an increase in from v =0 to v=",/po=1. For v >/ po, the throughput
of the system stays constant with respect to the active load and the system achieves the

same throughput for v=2 as for v=1. From the plot, we also see that we should choose a

threshold v such that we always operate the system at active load of L, <L’ =0.65. Also,

by optimally choosing the threshold using v=g(L, Liy) as described in Sec. 5.5, we can
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Figure 5.18: Effect of active load L, on T.

obtain the same throughput as that obtained with »=1. Note that in the MUI-limited
regime, the PLR of IRSA is nonzero, and both users with poor channel states as well
as users who collide with many users cannot be decoded correctly. Censoring improves
the performance of the system on both counts by choosing users whose packets are more

likely to be decoded correctly as well as reducing the number of collisions.
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Figure 5.19: Impact of threshold v on T.
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So far, we have observed that both the theoretical and empirical throughputs are
maximized at v = py vy for every L,. We now study the effect of censoring and the
system load L on the empirical throughput in Fig. 5.19, with T'=250. With v =0, i.e.,
no censoring, the throughput of IRSA becomes zero at L =3. With v = py vy, =1, the
throughput of the system increases linearly with load up to 7 =0.65 at L =2, and beyond
that, the throughput drops to zero. This is also observed with v =2, which achieves a
peak throughput of 7 =0.65 at L =5. The linearity of the curve up to L =5 indicates

that too many users are self-censoring, and we could reduce v.
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Figure 5.20: Impact of threshold v on PLR,.

We present the PLR curves corresponding to the above throughput curves in Figs. 5.20
and 5.21. For v =1, we have PLR, =0 and PLR=F(1) up to L =2; for v =2, we have
PLR, =0 and PLR=F(2) up to L =5. Thus, we could choose v for every L such that
we obtain an envelope of all curves for ¥ > 1, which yields the same performance as that
of the curve marked v = g(L, Ly, = 2).** All the curves marked v = g(L, L) follow

the performance of v =1 up to L, beyond which 7 stays constant for every L. Since

13The theoretical throughputs for Figs. 5.18 and 5.19 match the above observations. Also, the results
are presented for pg 'vih = 1. The trends are similar for any other Po Yvin, and 7 is maximized at
V:po_lfyth for every L,.
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Figure 5.21: Effect of threshold v on PLR.

L* =2, choosing Ly = 3 is not preferred since the system is operating at a high PLR.
Choosing Lig =1,1.6, and 2 all yield PLR, =0 at all L since the active load L, <0.65.
We thus choose Liy = 2 to maximize 7, which can be obtained from our analysis as
Ligt = L2 /F(py ' yan) = 0.65/F(1) = 2. Since the DE curves are achieved asymptotically,
in practice, we back off from Ly by 10% to 20% to Liy = 1.8 or 1.6, to achieve zero
PLR, at all L. At high L, we see that C-IRSA with L, < L* operates with 7 = 0.65,
whereas conventional IRSA has 7 =0. Thus, the system can be operated at its maximum

potential in C-IRSA compared to vanilla IRSA which has zero throughput.

5.9.2 Impact of Random Censoring

The censoring of users can be done in a random fashion as opposed to CSI-based censoring.
That is, users independently participate in each frame with a probability p,, and self-
censor with probability 1 —p,. This yields an active load of L, = Lp,. For aload L > L*,
the optimal random censoring can be done by choosing p, = L*/L. This ensures that the
active load is L, = Lp, = L*. Thus, the active load stays constant at L* for all L. This
choice of the activity probability is applicable to any underlying PHY layer system model
(e.g., SISO with PLI, SISO without PLI, MIMO with PLI, MIMO without PLI and pilot
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contamination, etc.,) since the optimal choice depends only on the inflection load. The
inflection load itself varies based on the underlying system model parameters, but the
choice of the optimal activity probability is dependent only on the inflection load L*.

We now describe the computation of the success probability 6, under random censoring

for both SISO and MIMO.

Lemma 5. For the SISO Rayleigh block-fading channel with an SNR of py, and an
SINR threshold vy, the probability that a reference packet gets decoded in a slot of

degree r using only intra-slot SIC, with random censoring, can be obtained as

_ (o (L4 )t 1)
0, = Z r (1 + %h)rk;—k(kﬂ)n : (5'47)

k=1

Proof. In random censoring, there is no CSI threshold. Substituting for v = 0 in

(5.19), we obtain the above. O

Lemma 6. When perfect CSI is available at the BS, and MRC' is used for decoding,
with random censoring, 6, can be calculated as follows. Firstly, 6, can be exactly

found as

01 = Cinc(N, p(?l%h)/F(N% (5.48)

where pg £ Pog/No, Tinc(s,z) = [t et dt is the upper incomplete gamma

function, and T'(s) is the ordinary gamma function. For r > 2, the SINR with

MRC and large N can be computed as p&, = N(py* + sz‘es;”tmi>_la where t,; =
Wi h,)2 /(|| by, |12l |?). With to = 4" — N7l py !, 09 can be calculated as
Oy = 1{to > 1} + (1 — (1 — o)™ 1{0 < t, < 1}. (5.49)

Three approximations to 0, for r > 3 and large N are described below. Approximat-

ing pL.. as pi, and assuming u,, as i.i.d. Gamma distributed with shape r — 1 and
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rate N, we obtain the Gamma approrimation:
Gamma: 0, =1—Ty(r —1, Nty)/I'(r — 1). (5.50)

Approzimating pl,. = pb and um <& N((r — Dy, (r — 1)0%), where uy 2 (N +
1), and 03 & N(N + 1)"2(N +2)~, we obtain the Normal approzimation:

. 1 to — (’I" — 1),&1\[)
Normal: 6, =1-Q ( T Ton , (5.51)

where Q(+) is the standard Normal Q-function.

Proof. In random censoring, there is no CSI threshold. Substituting for v = 0 in

Theorem 5.2, we obtain the above. O

Let us use an arbitrary censoring scheme in which p, fraction of the users are active.
The active load L, of the system is then L, = Lp,. The effective PLR of the system

(including censored users) can be calculated as

PLR = (1 — pa) + paPLR,. (5.52)

The throughput 7 of the users in the system can now be obtained from the asymptotic
PLR as

T = L(1 — PLR) = L,(1 — PLR,). (5.53)

The iterations p; = f(A(p;—1)) converge to ps, = 0 if the active load L, < L¥, asymptoti-
cally [7,11]. Here, L is called the active inflection load of the system, and it corresponds
to a system inflection load of L* =L} /p,. For L, < L, since p,, = 0, we have PLR, = 0,
PLR=(1 —p,), and T =Lp,=L,. For any L,> L%, PLR, does not converge to 0, and T
decreases monotonically with L,. Also, from (5.52), we see that PLR> (1 — p,), and thus,
T < Lp,.
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The curve marked “Random” in Fig. 5.18 uses random censoring and achieves the
same throughput as vanilla IRSA for every p, € (0,1]. For the same active load L,,
the channel states of the uncensored users with CSI-based censoring are better than
the channel states of the active users with random censoring. With optimal random
censoring, in order to operate the system at 7Ty = 0.15 at L) = 0.6, we need to choose
po = min{1,0.6/L}. With this choice of p,, we obtain the curve marked “Random” in
Fig. 5.19, which achieves 7 = 0.15 at all L. Thus, the optimal CSI-based censoring in
C-IRSA achieves a peak throughput of 7 = 0.65 whereas optimal random censoring in
IRSA has a peak throughput of 7 = 0.15, which is a 4x improvement.

Similar trends are observed for the MIMO case, as seen with the curves marked “Ran-

dom” in Figs. 5.11 and 5.13.

5.9.3 Channel Estimation at the Users

We formalize the process of channel estimation at the users and the consequent self-
censoring. Prior to the start of each frame, let the BS transmit a set of N orthogonal
pilots {1, pa,...,pn} as N consecutive symbols across the N antennas. With & =
(@1, o, . .., D], the received downlink signal y? € C**V at the ith user across the N

symbols is
y; =h{'® +n?, (5.54)

where n? € C™*¥ is the AWGN at the sth user. The ith user can obtain the minimum

mean squared error (MMSE) estimate of its fading vector v; € CV as
Vi =V ioy (B0 @1 @ + Noly) '@yt (5.55)

The 2th user participates in the frame if and only if the norm squared of its fading estimate

V; exceeds the threshold v. Thus, we have that a; = 1{||v;|* > v}, Vi € [M].
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5.9.4 Analysis of C-IRSA Accounting for UAD Errors

In mMTC systems, users transmit data as and when they have data to transmit, and they
largely remain inactive. Due to this sporadic activity of the users, the BS needs to figure
out which users are active at any instant of time. In typical IRSA systems, the users’
activities are contributed only from the sporadic activity property in mMTC. In C-IRSA,
the users are active only when two conditions are satisfied: users have chosen to transmit
data in the current frame and they have good channel states in the current frame. The
former arises due to the sporadic activity of the users in mMTC, whereas in the latter,
the “goodness” of the channel states is measured by the property that they have a fading
channel v such that ||v]|*> > v.

In the C-IRSA protocol, the users’ packets are decoded at the BS using the SIC process
as with the conventional IRSA protocol. This entails a UAD phase, followed by a channel
estimation phase, and finally a data decoding phase. The BS first carries out an activity
detection phase based on which it knows the subset of users that have not self-censored.
The BS then processes the received pilot and data signals iteratively. In every slot, the
BS attempts to decode the users’ packets. If a user is successfully decoded, which can
be verified via a cyclic redundancy check, then the BS performs SIC in all slots in which
that user has transmitted a packet [7]. This process repeats and the decoding proceeds

in iterations until no new packets can be decoded.

5.9.4.1 UAD Phase

In the UAD phase, the BS first performs UAD (possibly, using the UAD algorithm pro-
posed in Chapter 4) to detect the subset of active users in each slot. We now setup some
notation for analyzing the performance of C-IRSA with UAD. Let the total number of
users in the system be M., and the corresponding load be the total load Ly = Mot /T.
Let the number of users in the system who wish to transmit in the current frame in
C-IRSA be M and the corresponding load be the system load L £ M/T. M denotes
the number of users who wish to transmit in the current frame, regardless of whether

they have a good or a bad channel state. M out of the M, users wish to transmit in
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the current frame due to the sporadic activity property in mMTC. Let the number of
users who have not censored themselves in the current frame in C-IRSA be M, and the
corresponding load be the active load L, £ M, /T. M, denotes the number of users who
wish to transmit in the current frame, who also have a good channel state. The censoring
is performed based on L and L, as described before.

Let the true activity coefficient of the ith user be denoted by a;, which is 1 if the ith
user is truly active in the frame and has not censored itself, and 0 otherwise. Let the set
of truly active users (users who are active in the frame and have not censored themselves)
be denoted by A = {i € [Myy]|a; = 1}. Let the estimated activity coefficient of the ith
user be denoted by a;, which is 1 if the ith user is truly active in the frame and has not
censored itself, and 0 otherwise. Let the set of users detected to be active by the UAD
algorithm be denoted by A 2 {i € [Myy]|d; = 1}. Let b; denote the sporadic activity
coefficient of the ith user. That is, if the ith user has data to transmit in the current
frame, irrespective of whether the user is censored or not, b; = 1. If the ith user does not
have data to transmit in the current frame, then b; = 0. We see that a; = 1 if and only if
bi =1 and ||V;|]? > v, ie., a; = b; - 1{||V;]|* > v}.

The errors in the UAD process are the false positives, which refer to inactive users who
have been falsely declared to be active, and the false negatives, which refer to active users
who have been missed to be declared active. We denote F as the set of false positives

and M as the set of false negatives. These can be written as

F = {i € [Mud|as(1 — @) = 1}, (5.56)
M = {i € [Miot]|(1 — @;)a; = 1} (5.57)

In contrast with the above, true positives refer to active users who have been truly declared
to be declared active, and true negatives refer to inactive users who have been truly
declared to be inactive. We denote P as the set of true positives and Z as the set of true

negatives. These are defined as

P = {i € [Min]|aia; = 1}, (5.58)
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T ={i € [Mior][(1 = a5)(1 — a;) = 1}. (5.59)

Chapter 4 presents an in-depth discussion about the algorithm and the effect of the

UAD errors (namely the false positives and the false negatives) on the performance of

IRSA.

5.9.4.2 Channel Estimation Phase

After the UAD phase, the BS performs channel estimation based on the received pilot
signal. The received pilot and data signals are indexed by the decoding iteration, since
the signals are processed in iterations. For this purpose, we let k denote the current
decoding iteration index, and Sy denote the number of users not yet decoded up to the
kth decoding iteration, with S; = [Miy] and S = Sy \ {i}. The received pilot signal at
the BS in the tth slot in the kth decoding iteration is given by

Y = Ziegkaigtihisz +N§, (5.60)

where the first term contains signals from users who have transmitted in the current frame.
Since the BS has detected only users in A = {i € [Mio]|@; = 1} to be active, it constructs
channel estimates only for the users in A. Thus, the BS could possibly construct channel
estimates for the false positive users as well, in addition to true positive users.

We now derive the MMSE channel estimates at the BS in each slot. Let G, = {i €
[Miot]|gii = 1} be the set of users who would have transmitted in the tth slot had they
been active. Let MF = G, NS, NA and M} £ |MF|. MPF is the set of users who
have been detected to be active in the tth slot but have not been decoded up to the
kth iteration at the BS (includes true positive and false positive users). Let us stack
the channels of the M} users as the columns of HF € CN*M! let PF € C™*M!' denote a
matrix that contains the pilot sequences of the MF users as its columns, and let B¥ £
otdiag(Bi,, Biys - - - ’ﬁngc) be a diagonal matrix that contains the path loss coefficients of
the M} users, with MF = {i}, i, ... yipp}- Hence, the received pilot signal from (5.60)

can be written as YP* = HFPF | NP,
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We now find the channel estimates using the signal Y? k.

Theorem 5.5 » Channel Estimation in Censored-IRSA with Activity Er-

rors.

The minimum mean squared error (MMSE) channel estimate flf of H¥ can be

found as
HE — Y (PEBSPEY + NoL) "' PFBY. (5.61)

Specifically, the estimate of the channel h; of the ith user at the BS is calculated

as h% = [HF].;. Further, the estimation error h% £ h¥ — h; is distributed as

flfl ~ CN (Oy, 6EIy), where 0F is calculated as

k(|2 oHek 124 00 B2
5k =B,02 (NOHCti” +Zje$;2 P;’ Ciil ayaygtaﬂjah> , (5.62)

(o ~
* \MNolletlP+3 es, [Pf et a;:80%

where C; = PID;(P/"PID; + Noly)', ¢ = |[Cf];, and Dj £

diag(dtm dtiza e 7dtthk )a with dy; :diaz‘gti@z‘ffﬁ-

Proof. The proof is similar to the proof of Theorem 4.1 in Chapter 4. [

Remarks: The MMSE channel estimate HF of HF can be written as seen in (5.61) as

HY = YP"(PEBFPH + NI,) 'PFBY, (5.63a)

@ YR PEBE(PITPIBY + NoLyy) ™, (5.63b)

where (a) follows from (AB+I)"'A = A(BA+1I)~!. Here, the estimate can be calculated

via an inverse of either a 7 x 7 matrix or an MF x M} matrix as required.
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5.9.4.3 Data Decoding Phase

Similar to (5.60), we can find the received data signal in the tth slot in the kth decoding

iteration as

Yf = Zieskaigtihixi + ny. (5.64)

We use a generic combining vector af  to combine the received data signal across

antennas to obtain the post-combined data signal ¢ 2 affy* as seen in (5.65).

gfm amgtmxmatHhk amgtmxmatHhk
+ Ziesgnpaigtixiafghi + ZieS}fﬂMaigt%m agih; + ag! (5.65)
Here, the term 7 £ amgtmxmatH hk is the desired signal of the mth user; the term
T, & amgtmxmakH hk is due to the estimation error flfm of the mth user’s channel,

the term T3 £ Zie smrp aigtixiaff,f h; models the inter-user interference from other true
positive users (who have not censored and have not yet been decoded); the term T, =
> espm i gti:]c,-afnlf h; is the interference from false negative users (who have not censored,
but cannot be decoded since they are declared to be inactive); and T5 = affn, is the
additive noise. Since noise is uncorrelated with the other terms and the data streams
of distinct users are uncorrelated, all the terms are uncorrelated with each other. Thus,
the power in the received signal is a sum of the powers of the terms [49]. Based on the

post-combined data signal, we now compute the signal to interference plus noise ratio

(SINR).

Theorem 5.6 » SINR Calculation in Censored-IRSA with Activity Er-

rors.

The signal to interference plus noise ratio (SINR) achieved by the mth user at the
BS in the tth slot and the kth decoding iteration in C-IRSA can be written as

k

tm
,Vm € S. 5.66
No + Esth, +MUTE, +FNUL, " (5.66)

Gain

k
ptm
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Here, Gain?  is the desired signal power, Est? is the power of the channel estima-
tion error, MUIF is the multi-user interference due to other true positive users, and

FNUF  is the interference due to false negative users. These can be calculated as

Gainlltcm é pm&mamgtm|afgﬁfm|2/”afm||2;

EStfm = Zieskpidiaigtiéfia
MUIfm = Zies;npi&iaigti‘afghfi‘z/’|ameQ>

FNUfm 2 Zieskpi(l — ;) aigriBios.

Proof. The proof is similar to the proof of Theorem 4.3 in Chapter 4. m

The channel estimates ﬁfl and the error covariance §F in the above expressions are
obtained from Theorem 5.5. The combining vector that maximizes the SINR in (5.66) is
the MMSE combiner [49], which can be found as

A} = HyD} (i Ly + HyTHD )

= (d{Ty + H;D; H;) "' H,D;

t7p’

where Dﬁpédiag(pil, Digs -+ s pthk) contains the power coefficients of the M} users, and

df £ No+ Zieskpi&igtibfm where

o (NOlIEEI X s P 202
by; = Bioy,

NollE5 1% + 3 e, 15 EE P10

Here, Ff £ PIE;(P/"PIE; + Noly)™', with ff £ [Ffl,;, and Ef =
diag(es,, €tiys - - - ,etiMk), where ey; = ;g1 507

We use the SINRt threshold model to abstract the decoding of a user’s packet: any
packet is decoded correctly if and only if its SINR is above a threshold ~gy, > 1 [17,74].
With the SINR threshold model, the performance of C-IRSA can be computed as follows.
First, the SINRs achieved by all users in all slots is computed. If there is a user with SINR
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> Y in some slot, that packet is successfully decoded and its contribution is removed all
other slots in which that user has transmitted a replica [8]. We then proceed to the next
decoding iteration and recompute the SINRs for all users yet to be decoded. This process
stops when no additional users are decoded in two successive iterations. The throughput
T is calculated as the number of unique packets correctly decoded divided by the number
of slots.

We have thus obtained channel estimates and the SINR in C-IRSA accounting for
UAD errors.

5.9.5 Numerical Results in C-IRSA Accounting for UAD Errors

In this subsection, we study the performance of our UAD algorithm from Chapter 4 ap-
plied to C-IRSA. We also analyze the impact of UAD errors on the throughput of C-IRSA
via Monte Carlo simulations. The metrics used to characterize the UAD performance are
false positive rate, FPR = %, and false negative rate, FNR £ % FPR is the
fraction of inactive users declared to be active whereas FNR is the fraction of active users
declared to be inactive. The UAD algorithm is run for j., = 100 maximum iterations.
The UAD algorithm has an activity threshold parameter 7, = 1078, which is used to
declare the estimated activities of the users.'

The results in this section are for T' = 50 slots and N, = 10* Monte Carlo runs [49].
The sporadic activities of the users are modelled as being Bernoulli distributed, i.e.,
b; £ Ber(p,), where p, = 0.1 is the per-user sporadic activity probability [53]. Since we
are evaluating the performance averaged over Monte Carlo simulations, we calculate the
system load L in each frame as the average number of users expected to be active in each
frame per slot, i.e., L = Mpa/T = Liotpa. The number of users contending for the T'
slots is computed in each simulation based on the load L as Mo, = | LT /p,]. The other

system parameters are chosen similar to the settings in Section 5.6.

14We can obtain different FNRs and FPRs by varying the activity threshold ~p,, similar to Chapter 4.
This threshold can be used to trade-off the false negatives for the false positives and vice versa as required,
similar to Chapter 4. If needed, v;,, can be tuned at each load to achieve the lowest balanced error rate,
which is the average of the FNR and the FPR.
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(b) Performance depicted with a linear y-axis.
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Before we study the UAD performance in C-IRSA, we study the effect of the censor
function v = (L, Ly, Lo) on the active users M, and the fraction of active users to the
total number of users M, /M. As the load is increased from L =1 to 2,3,...,8, the
total number of users over the T' slots increases from M, = 500 to 1000, 1500, ..., 4000.
In Fig. 5.22(a), we plot the active users as a function of the load L. For each of the curves,
when L < Ly, all the users are active, i.e., M, = M = LT /p,. This is because we do not
censor when L < Lg. For each of the curves, when Ly < L < L, we see that M, starts
increasing and it hits a peak value at L = Ly. This is because we start censoring when
Ly < L < Ly, and thus, M, < M = LT/p,. Beyond L > Ly, the main idea of the
censor function v = i(L, Ly, Lo) is to maintain a fixed number of active users. Thus, we
see a constant M, for every L > L. In Fig. 5.22(b), we plot the ratio of active users to
the total number of users as a function of the load L. In the previous figure, we saw the
trends of the number of active users M, as the load L is varied. Here, we observe that
all the curves trend downwards as the load increases. Thus, as L is increased beyond Ly,
using the censor function v = (L, Ly, L) monotonically reduces M, /M, and keeps M,
fixed.

The performance of compressed sensing algorithms such as orthogonal matching pur-
suit [99], approximate message passing [98], sparse Bayesian learning (SBL) [68, 69, 120],
multiple sparse Bayesian learning (MSBL) [16], and our algorithm as well depends not
just on the number of sparse entries but also on the fraction of the number of non-zero
entries to the total number of entries [122]. Specifically, the result is as follows: If a
multiple measurement vector recovery algorithm (such as ours) is applied, a pilot length
of 7 = Q(M, log(M;/M,)) can achieve a vanishing activity error rate as N — oo [122].1°
Thus, the error rates that we expect to see for C-IRSA must adhere to the above result.

In Fig. 5.23(a), we plot the UAD error rates in C-IRSA versus the load L under the
generalized censor function v = (L, Ly, = 4.6, Ly = 2). With a pilot length of 7 = 10,
the FNR drops below an error rate of 107% at L = 4.2. In contrast with this, the FNR

15The Q(-) notation provides a best case guarantee as opposed to the O(-) notation which provides a
worst case guarantee. The formal definition of (+) is Q(g(n)) = {f(n)|3c,np > 0 such that 0 < ¢g(n) <
f(n)¥n > ng}.
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drops below 1074 for 7 = 20 at L = 3.2 and for 7 = 10 at L = 2.9. This demonstrates
the efficacy of increasing the pilot length in improving the UAD performance. The FPR
for 7 = 10 crosses 10™* at L = 5.2, beyond which the FPR becomes unity. Similarly,
the FPR for 7 = 20 crosses 107 at L = 6.8, beyond which the FPR becomes unity.
The FPR for 7 = 30 is zero for the depicted range of L, and does not show up in the
plot since the y-axis is on a logarithmic scale. However, we can see that FPR is zero as
plotted in Fig. 5.23(b), where the y-axis is on a linear scale. The FPR for 7 = 30 will
cross 10~* at some high load beyond L = 8. Thus, we observe that increasing the pilot
length decreases both the FPRs and the FNRs, and hence the pilot length highly affects
the UAD performance of C-IRSA.

We see that the FPR is zero at low to moderate loads and becomes unity at high
loads. This is because a pilot length of 7 = 10 is insufficient at such high loads, and the
UAD performance suffers as a consequence. At this high load, the result we previously
saw dictates that 7 = Q(M, log(M,/M,)) can achieve a vanishing activity error rate as
N — oo [122]. Since we use the censor function v = i(L, Ly = 4.6, Ly = 2), we start
censoring users at Ly = 2 and we wish to continue the same number of active users beyond
Ligt = 4.6. Since M, is fixed for all L > Ly, and M, is increasing, a pilot length of
7 = 10 becomes insufficient at L = 5.2, and a pilot length of 7 = 20 becomes insufficient
at L = 6.8, whereas a pilot length of 7 = 30 is sufficient for 0 < L < 8. FPR becomes
non-zero since M, is increasing, which requires higher 7 to achieve near-zero error rates.
Further, the FNR is fairly constant upto Ly = 2 (since we do not censor), and then drops
beyond Ly = 2. This is because we are in the regime where the pilot length is sufficient
and the percentage of active users starts dropping. Also, the activity threshold is high
enough to ensure that no user is missed. This comes at the cost of high FPR at higher
loads.

We compare the performance of estimated UAD and perfect UAD in C-IRSA in
Fig. 5.24(a). For 7 = 10, we see that with estimated UAD, the throughput drops to
near-zero beyond L = 5.2. For 7 = 20, we see that with estimated UAD, the throughput

drops to near-zero beyond L = 7.2. These are the same loads at which we observed the
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FPR becomes unity in Fig. 5.23(a). For 7 = 30, we see that the performance of estimated
UAD is the same when we assume perfect UAD. The low FNRs observed in Fig. 5.23(a)
do not have a significant impact on the throughput. In fact, we have observed that to
have a significant impact on the throughput, the error rates need to be higher than 0.1.
But we have observed in Fig. 5.23(b), that only the FPRs for 7 = 10 and 20 are higher
than 0.1 and consequently, the corresponding throughputs are near-zero. Otherwise, all
the error rates are indeed very low and thus, the throughput results presented before are
indeed valid given the fact that we choose an appropriate pilot length.

When we keep the ratio M, /M, fixed, 7 = Q(M,) pilot symbols are sufficient. But
in IRSA and C-IRSA, the number of collisions in each slot is far fewer than M,, and as
a result very low pilot lengths are sufficient for accurate UAD. In fact, we had observed
earlier that a pilot length of 7 = 10 was indeed sufficient for peak channel estimation per-
formance, and increasing 7 beyond 10 did not have a significant impact on the throughput
(See Chapter 4). The UAD problem is easier to solve when compared to channel estima-
tion (See Chapter 4), and thus, any pilot length that is sufficient for channel estimation
is indeed sufficient for accurate UAD. In practice, the optimal pilot length must be calcu-
lated for every L, and this optimal pilot length not only provides good UAD performance
but also good channel estimation.

A simple solution to achieve very accurate UAD is to perhaps consider a fixed pilot
length of 7 = 30 or even higher. While this keeps the throughput at the peak as seen
in Fig. 5.24(a), it also leads to low spectral efficiencies (SEs) at low loads. At low loads,
such a high pilot length is excessive and fewer symbols are used for data, and thus, lower
SEs are achieved. Thus, we must consider variable pilot lengths as opposed to fixed pilot
lengths as above. In Fig. 5.24(b), we plot the performance of C-IRSA with estimated UAD
under different variable choices for the pilot length. In all of the cases plotted in the figure,
we round up the choice of the pilot lengths to the nearest integer with the ceil function
to ensure integer valued pilot lengths. That is, the legend of 7 = 10L, 7 = 10log(L + 1),
and 7 = 10log(L) + 13 are actually implemented as 7 = [10L], 7 = [10log(L + 1)], and
7 = [10log(L) + 13]. We first analyze the case when the pilot length varies linearly with
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the load, i.e., when 7 = ki L, where k; is a constant. If we choose 7 = 10L or 7 = 12L,
we see that the throughput is maximized and it achieves the best performance of the
system. But this leads to excessive pilot lengths of 7 = 40/80 or 7 = 48/96 at L = 4/8,
respectively, for 7 = 10L or 7 = 12L. This is again excessive for both UAD and channel
estimation, and leads to low SEs.

The recovery guarantee of 7 = Q(M, log(Me/M,)) can help us calculate the pilot
lengths that are required for accurate UAD. The guarantee 7 = Q(M, log(M;ot/M,)) can
be rewritten in terms of the load as 7 = Q(M, log( LT /M,)) = Q(M, log(LT/(p.M,))).*
When M, is fixed, this guarantee becomes 7 = Q(log(Lkz)), where ks is a constant. Thus,
we explore the case when the pilot length is varied as a logarithmic function of the load L
as T = k3 log(L), where k3 is a constant. To ensure that the pilot length does not become
negative for L < 1, we can choose the pilot length alternatively as 7 = kylog(L + 1),
where ky is a constant. In Fig. 5.24(b), we plot the performance with 7 = 10log(L + 1),
7 = 12log(L + 1), and 7 = 15log(L + 1). While 7 = 15log(L + 1) maintains the
performance at the peak, 7 = 10log(L + 1) and 7 = 12log(L + 1) do not maintain the
peak performance beyond L = 6.2 and L = 7.4, respectively. This is because these curves
have FPR= 1 beyond L = 6.2 and L = 7.4, and thus, their throughput becomes near-zero.

When M, is fixed, since the recovery guarantee was 7 = Q(log(Lks)), where ko is
a constant, we can alternately choose the pilot length as 7 = kslog(L) + kg, where kj
and kg are constants. In accordance with this, in Fig. 5.24(b), we plot the performance
with 7 = 10log(L) + 13, 7 = 12log(L) + 11, and 7 = 15log(L) + 9. The throughputs
corresponding to all three of these choices coincide with each other. All the choices of ks
and kg in these functions are fine tuned to ensure that the UAD error rates are near-zero.

In fact, since the recovery guarantee is asymptotic, there exists a choice of pilot length

T = kslog(L) + k¢ with minimal ks and kg such that UAD is extremely accurate at all

16Tn order to vary the total number of users Mo, = LT /p,, we can alternately vary T or the activity
probability p,, instead of varying L. In this case, the recovery guarantees become 7 = Q(log(T)) or
7 = Q(—log(pa)), respectively. In either case, the load L is fixed, and the complexity of the compressed
sensing recovery problem is fixed as My, increases. We have considered the more difficult problem
which deals with increasing L, which involves a higher complexity of the compressed sensing recovery
problem [67].
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L [122]. This choice needs to be found in practice, and can be fine tuned as we observed
above. For upto loads of L = 8, 7 = 30 or 7 = 10log(L) + 13 is sufficient. This implies
that we can indeed assume perfect UAD upto such pilot lengths. Further, we do not need
very large pilot lengths for accurate UAD. The generalized censor function also does not

depend on the pilot length.

5.9.6 Other Censor Functions

We now investigate the performance with various other censor functions defined as

(
L4 L < Lig,
hi(L, Ligy) = (5.67)

\H(L, Ltgta V= 4), L 2 Ltgta

.

2, L < L,
ho(L, Lig) 2 & (5.68)
\H(L, Ltgt; V= 2), L 2 LtgtJ
)
A 0, L < Ltgt7
ha(L, Lig) 2 (5.69)

kH(L’ Ltgta UV = O), L Z Ltgt'

The functions hq(-,-), ha(-,+), and hs(:,-) are obtained from the h(:,-) function, when the
target threshold is chosen as a fixed value as v = 4, 2, and 0, respectively. We have also

explored other variants of the generalized censor function defined as

;

0, L < Lo,
7:1 (L7 Ltgt> LO) é Vtgta LO S L < Ltgt7 (570)

\H([% Ltgta Vtgt)7 L> Ltgt7

;

0, L < Ly,

. L—L
ZQ(L7 Ltgt7 LO) £ (Lt—lolg) Vgt Ly<L< Ltgta (5-71)
gt

\H(Iﬁ Ltgt> Vtgt)? L= Ltgt'
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Here, i1 (-, -, ) is obtained from A(-, -) if we do not censor below Lg and is(-, -, -) is obtained
from i(-, -, -) if we perform linear interpolation instead of logarithmic interpolation.

In Fig. 5.25, we evaluate the performance of C-IRSA with varied censor functions
defined as above. Firstly, in Fig. 5.25(a), we compare the performance between i(-,-,-),
h(-,-), h1(-,-), ho(:,-), and hs(-,-). i(L, Lig = 4.6, Ly = 2) performs the best and achieves
the highest throughput at every L. When L < Ly, censoring is not always needed.
If we censor with v = 14,, we achieve the performance with h(L, Ly = 4.6). The
performance of h(L, Ly = 4.6) coincides with the performance of i(L, Ly = 4.6, Ly =
2) when L > L. hi(-,-), ha(:,-), and hs(-,-) operate with different 14, compared to
h(-,-). Their performances coincide with their respective 144 of 4, 2, and 0 upto the
respective Lig, and beyond Lyg their performance remains fixed at the same throughput
achieved at L = Lig. hi(-,-) performs poorly when L < Ly, since it operates with a
very high vy,. The performance of ho(L, Lty = 3.6) is very close to the performance of
i(L, Ligy = 4.6, Ly = 2), both above and below L = 3.6. h3(L, Ly, = 2.8) performs good
upto L < Ly, and beyond that it performs poorly w.r.t. i(L, Ly, = 4.6, Ly = 2).

In summary, this figure validates the reason why we should not censor at low loads.
At low loads, v = 0 performs the best and hence, there is no requirement of censoring
users with a high 144. At high loads, a high 14, can help. We can extract more juice out
of the system by crossing the gap between hs(L, Ly = 2.8) and i(L, Ly = 4.6, Ly = 2).
This is why we need to resort to censoring between Ly < L < L. The generalized censor
function takes care of all of this within one continuous function.

We now study various functions and see which performs the best when Ly < L < Lyg
in Fig. 5.25(b). The first variant of A(-,-) is the i1 (-, -, ) function, which is a discontinuous
function which blindly sets v = 0 below a chosen Ly and maintains v = 144 between
Ly < L < Lyg. i1(L, Ly = 4.6, Ly = 2.6) sees an abrupt drop in the throughput at
L = 2.6 because of this discontinuity. 4;(L, Ly = 4.6, Ly = 3.2) follows the performance
of v =0 up to L = 3.2 and then follows the performance of h(:,-). Both perform poorly
when Ly < L < Lty compared to i(L, Ly = 4.6,Lo = 2). We need to obtain better

censor thresholds in this region.
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In order to make the throughput slowly continuously vary with the load, we resort to
interpolation. We see that linear interpolation performs very well, and nearly achieves the
best performance. Specifically, i2(L, Ligy = 4.6, Ly = 2.6) and (L, Lig = 4.6, Ly = 2.8)
nearly achieve the performance of i(L, Lig = 4.6, Ly = 2). However, we could never reach
the peak performance of i(L, Ly, = 4.6, Ly = 2) no matter how much L, was fine tuned.
When L < Ly is close to Ly = 4.6, we see that i5(L, Lig, = 4.6, Ly = 2.6) just starts
achieving the best performance of i(L, Ly = 4.6, Ly = 2). This suggests that we need to
choose a higher censoring threshold when L just exceeds Lg. This can be achieved, for
example, if we choose a logarithmic interpolation function as seen in the SISO case. This
is precisely the reason why we choose the logarithmic interpolation, and as seen in the
figure, it achieves the peak performance. The logarithmic interpolation approach closely
approximates the algorithmic approach presented in the paper, which is PLR,-optimal.
This validates our choice of the logarithmic interpolation.

Finally, in Fig. 5.25(c), we fine-tune Ly with the logarithmic interpolation. With
Lo =1 or 2.6, the performance is not at the peak. The system is censoring too much with
Lo = 2.6 and too less with Ly = 1. We can fine-tune Lg, and see with which value of Ly,

the system performs the best. In this case, Ly = 2 performs the best.

5.9.7 Impact of System Parameters on the Generalized Censor

Function

We now plot the generalized censor function as a function of the various system parame-
ters. In Fig. 5.26(a), we plot the generalized censor function as a function of the system
load L. Each of the curves have a logarithmic interpolation for Ly < L < Ly as described
in the previous comment. The censor function is a monotonically non-decreasing function
of L. As we increase the system load, as expected, the censor function increases to censor
more users. The curves shift downwards as p; 7y, decreases from 2.5 to 2 to 1 to 0.5.
This is because a decrease in target threshold monotonically decreases the optimal censor
function via the H(-,-,-) function. In the Ly < L < L region, increasing L decreases

the slope of the censoring function and hence reduces the value of the generalized censor
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Figure 5.26: Impact of system parameters on the generalized censor function ¢(L, Lygt, Lo)
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function.

Fig. 5.26(b) studies the impact of the number of antennas N on the generalized cen-
sor function. The censor function is a monotonically non-decreasing function of 74, for
L > L. This is because an increase in N monotonically decreases (non-increases) the
optimal censor function via the H(:,-,-) function. We also observe that at high N, the
optimal censoring function tends to concentrate near N. Channel hardening [106] is the
phenomenon that as IV increases the norm squared of the fade converges to a constant,
i.e.,||vi||* = NoZ. Since we perform fade-based censoring as ||v;||> > v, the threshold has
to be made close to No? (4 a standard deviation) to ensure a significant impact on 7.
The effect of channel hardening gets more pronounced at higher N as seen in Fig. 5.26(b).

In Fig. 5.27(a), we study the impact of the SINR threshold 74, on the generalized censor
function. The censor function is a monotonically non-decreasing function of ~,. This is
because an increase in the SINR threshold ~4, monotonically increases (non-decreases)
the optimal censor function via the H(-, -, -) function. As we increase the SINR threshold
Yin, fewer users cross the SINR threshold, and as a consequence more users are censored
to ensure the remaining users who have good channel states cross the SINR decoding
threshold. Fig. 5.27(b) studies the impact of the cell edge SNR p. on the generalized
censor function. The censor function is a monotonically non-increasing function of p..
This is because an increase in the SNR p, monotonically decreases (non-increases) the
optimal censor function via the H(-, -, ) function. In both of these plots, changing N
changes the slope of the optimal censoring function. At low SNRs, we need to censor
users with a very high threshold to ensure only users with better channel states have

good decodability and hence get decoded.

5.9.8 C-IRSA accounting for Shadowing

So far, we have accounted for only the path loss coefficient in the system model and not the
shadowing component, since we model the large scale fading coefficient (LSFC) as 3, (dB)
= —37.6log;y(r;/r0), where rq represents the reference distance. The parameter 3,,, which

represents the LSFC, can model the contribution of both path loss as well as shadowing.
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It is quite prevalent to model the LSFC, in typical communication systems, as 3, (dB)
= —37.6log,,(r;/7r0) + Shad., where Shad. represents the shadowing component [21]. In
C-IRSA, users estimate their small scale fading coefficient (SSFC) and perform censoring
based on the estimated fading coefficient. Similar to estimating their SSFCs, the users
can estimate their LSFCs every once in a while. Since LSFCs change very slowly with
time [126], they need not be estimated every frame like the SSFCs, but can be estimated
irregularly, say every 50 or every 100 frames.

Multiple techniques have been used in existing works to estimate the shadow powers.
A Kalman-filter-based shadow power estimation and prediction algorithm is developed
in [127] for the Rayleigh-lognormal scenario. A sequential Bayesian method has been
proposed for dynamic estimation and prediction of shadow powers from instantaneous
signal powers in composite fading-shadowing wireless communication channels [128]. Fur-
ther, [128] also reviews 10 other papers which perform very accurate shadow power esti-
mation. Existing works show that it can be estimated over time by averaging over the
beacon signals at the start of multiple frames. A few works do this via moving window
based averaging, and it captures the effect of both shadowing and path loss [129]. Path
loss estimation based on distances is terrain and frequency dependent [130,131]. LSFC
estimation can be incorporated into the protocol as well.

We now present the performance of C-IRSA accounting for shadowing as well as path
loss in Fig. 5.28. Here, we model the LSFC as f; (dB) = —37.6log;y(r;/70) + Shad,
where Shad ~ N (0, 03,,4) is a standard log-normal shadowing component, with shadowing
variance 03,4 The censoring is still performed based only on the SSFC and not the
LSFC, as earlier. The users can estimate their LSFCs under any of the previous mentioned
techniques. We choose the censor thresholds as v=i(L, Lz =4.6, Ly=2). In Fig. 5.28, we
compare the performance of C-IRSA without accounting for shadowing (with ¢3,,, = 0)
with the performance accounting for shadowing (with non-zero o3,,,). We observe that
02,4 = 9 is nearly coincidental with o3,,, = 0, and both achieve a peak throughput of

T = 2.93.' With a realistic value of 02, ; = 16 [49], we observe that the peak throughput

1"We have excluded the curves with O’%had =1, aghad = 2, and aghad = 4, since they are nearly
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Figure 5.28: Performance of C-IRSA with shadowing.

only slightly drops to 7 = 2.87, which is a very small performance reduction when we
account for shadowing. When o3, is higher, few users experience deep fades, and the
performance drops as expected. Similar to conventional communication systems, if users
experience deep fades, then the users can change their frequency of operation and transmit

in a different frequency band.

5.9.9 Uniqueness of Pilot Sequences

In IRSA, in each slot, there are Ld packet collisions on an average in every frame [7]. Even
if we were to do UAD on a slot by slot basis, we would need only Ld unique pilot sequences
in each slot on an average. For example, if we use an average repetition factor of d = 3,
then in each slot, there would be 3L packet collisions on an average; with L = 2,4, 8, this
would be 6, 12, and 24 packet collisions in each slot. If we employ QPSK pilots, with a
pilot sequence length of [log,(Ld)], we could potentially “pre-assign” unique sequences.

Let the pilot sequence used by the mth user be p,, € C". If we use a QPSK constel-
lation to generate the pilot sequences, then the entries of p,, lie in {(&1 % 5)/v/2}. Let

coincidental with o2, 4 = 0.
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Pry ; denote the probability that any 2 colliding users in a slot have picked an identical

pilot sequence of length 7. We study this probability under different scenarios.

1. For a conventional mMTC system, M users transmit concurrently in the same time
slot, and the BS needs to detect which subset of the [M] users are active. In this case,
the probability that any 2 users out of the M users pick identical pilot sequences of
length 7 is calculated as [53]

M-1 k
1—J] (1—Z), M <47,

PI'Q’T = k=1

1, M > 47,

(5.72)

The above implies that if the number of users M is greater than 47, then it is not
possible to assign unique pilot sequences to all the M users, and there are at least
2 users who have identical pilot sequences. For example, with M = 1000 users, we
need a low pilot length of 7 = [log,(M)] = 5 symbols to ensure that unique pilot

sequences are picked by the users, in the conventional mMTC setup.

2. In IRSA, the number of users transmitting in a specific slot is much lower than the
total number of users in a conventional mMTC setup. If the length of the frame is
T slots, the number of users is M, with the load being L = M /T, and the average
repetition factor of the users is d, then the number of users transmitting in any slot
is Ld on an average [7,8]. For an arbitrarily large M, the number of packet collisions
in any slot is instantaneously close to Ld relative to M. For ease of calculation, let
us consider that Ld, or more precisely [Ld], users are indeed colliding in any slot.
In this case, in IRSA, the probability that any 2 users out of the [Ld] users pick

identical pilot sequences of length 7 is calculated as

[Ld]-1 k _
1— ]I (1_47)7 [Ld] <47,

Pr277— = k=1

1 [Ld] > 4.

(5.73)
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For a frame with load L = 3 and average repetition factor d = 2, 3, and 4, the num-
ber of users colliding in each slot are Ld = 6, 9, and 12, on an average, respectively.
Hence a pilot length of 7 = [log,(Ld)] = 2, 2, and 2, respectively, is theoretically
sufficient for the pilot sequences of two colliding users to not be identical in any
slot. For an average repetition factor d = 4, with load L = 3, 10, 30, 100, and
1000, the number of users colliding in each slot are Ld = 12, 40, 120, 400, and
4000, on an average, respectively. For this, we only need pilot sequences of length
7 = [logs(Ld)] = 2, 3, 4, 5, and 6, respectively, to ensure any two users do not
pick the same pilot sequence in any time slot. This is applicable for any M such
that L = M/T is fixed to the above values. This implies that we can choose an
arbitrarily high M (and correspondingly a high 7' = LM) to ensure no two users
pick the same pilot sequences in IRSA with as low a pilot length as less than 10

symbols.

3. In C-IRSA, with a censor threshold v, the effective active load of the system in
any frame is L, = LF(v). The repetition factor generation is same in both TRSA
and C-IRSA. This implies that LF(v)d users collide in each slot on an average in
C-IRSA, compared to Ld users on an average in IRSA. In this case, the probability
that any 2 users out of the [LF(v)d] users pick identical pilot sequences of length

T 1s calculated as

(5.74)

1 [LF(v)d] > 47.
Since F(v) < 1, the number of users colliding in each slot in C-IRSA is always lesser
than in IRSA, i.e., LF(v)d < Ld. For a frame with load L = 3, N = 4 antennas,
average repetition factor d = 2, and a censor threshold of ¥ = 0, 1, 2, 3, and 4,
the number of users colliding in each slot are [LF(v)d] = 6, 6, 6, 4, and 3, on an
average, respectively. Hence, a pilot length of 7 = [log,(LF(v)d)] =2,2,2, 1 and 1,

respectively, is theoretically sufficient for the pilot sequences of two colliding users to
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not be identical in any slot. For an average repetition factor d = 4, N = 4 antennas,
and a censor threshold of v = 3, with load L = 3, 10, 30, 100, and 1000, the number
of users colliding in each slot are [ LF(v)d] = 8, 26, 78, 259, and 2589, on an average,
respectively. Here we only need pilot sequences of length 7 = [log,(Ld)] = 2, 3, 4,
5, and 6, respectively, to ensure any two users do not pick the same pilot sequence in
any time slot. This is applicable for any M such that L = M /T is fixed to the above
values. This implies that we can choose an arbitrarily high M (and correspondingly

a high T'= LM) to ensure no two users pick the same pilot sequences in C-IRSA
with as low a pilot length as less than 10 symbols.

4. When users use random Gaussian pilots, the pilot sequences are almost surely
unique. This is true for any mMTC system, IRSA system or C-IRSA system.
Since the pilot symbols in a Gaussian pilot sequence have an infinite support, the

probability that two users pick identical pilot sequences is almost surely zero, i.e.,

Pry ; = Probability that any 2 users pick the same sequence = 0. (5.75)

5.9.10 Impact of Different Pilot Sequences

So far, we have only talked about the uniqueness of the pilot sequences. In practice, the
UAD performance depends not just on the uniqueness of the pilot sequences, but also
depends on other properties of the pilots. We have demonstrated in Chapter 4, that the
length of the pilot sequence is the most critical factor in deciding the UAD performance
of the protocol. The number of antennas is the next critical factor. There are other
properties such as low cross correlation [117] or low mutual coherence [116] among the
pilots, that can be used to design sequences that are as “orthogonal” as possible [119], and
thereby achieve the best possible performance. Examples of sequences with low mutual
coherence are Zadoff-Chu sequences [117] or orthogonal pilot reuse [63,118], where users
reuse the pilots amongst a pool of orthogonal sequences. We now study the performance
of IRSA and C-IRSA with these pilot sequences.

In 5.29, we plot the throughput of C-IRSA for different choices of the pilot sequences.
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Figure 5.29: Throughput of C-IRSA with different pilot sequences.

The non-orthogonal pilots, labeled as BPSK and QPSK, contain random pilot symbols
belonging to the respective PSK constellations, and Zadoff-Chu (ZC) sequences are gen-
erated according to [115]. ZC sequences require prime 7; we use 7 = 7. We plot the
performance using random BPSK pilots of length 7 = 10, ZC pilots of length 7 = 11, and
Gaussian pilots of length 7 = 10 as described earlier. The curves for v = 0 are nearly
identical across the varied choice of the pilots; the curves for v = i(L, Ly, = 4.6, Ly = 2)
are nearly identical across the varied choice of the pilots. The throughput of C-IRSA
remains at its highest beyond the inflection load for each of the curves. These figures
indicate that as long as we choose such low coherence pilots, the specific choice of the
pilots is not that integral to the performance of the UAD algorithm or to the performance

of the protocol itself.
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Chapter 6

Analysis of IRSA in Multi-Cell and
Cell-Free Systems

6.1 Introduction

Massive machine-type communications (mMTC) require random access protocols that
serve a massive numbers of users [3,4]. One such protocol is irregular repetition slotted
aloha (IRSA), a successive interference cancellation (SIC) aided protocol, in which users
transmit multiple packet replicas in randomly chosen resource blocks (RBs) [7]. Channel
estimation in IRSA is accomplished using training or pilot sequences transmitted by the
users at the start of their packets. Assigning mutually orthogonal pilots to users avoids
pilot contamination, but is prohibitive in mMTC, since the pilot overhead would be pro-
portional to the total number of users [9]. Thus, pilot contamination (PC), which reduces
the accuracy of channel estimation and makes the estimates correlated [10], is unavoid-
able in mMTC, and significantly degrades the throughput of IRSA. PC is caused by both
within-cell and out-of-cell users, termed intra-cell PC and inter-cell PC, respectively. The
goal of this chapter is to analyze the performance of IRSA, accounting for both intra-cell
PC and inter-cell PC.

Cell-free (CF) architectures have been proposed for expanding the coverage of com-

munication systems [20]. In a typical CF system, instead of conventional BSs deployed at
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the centers of cells and serving only the users within the cell, several access points (APs)
are used to jointly and cooperatively serve the users [21]. These APs are spread across
the entire region of interest where users have to be served [132]. The APs are connected
to a central processing unit (CPU) which is responsible for data aggregation and network
coordination [22]. mMTC has the goal of increased connectivity and packet success rates.
This is especially challenging to achieve when there are several cell-edge users who may
not be decoded in mMTC due to high path losses. Further, these devices are expected to
consume low power and have long battery lives, because of which they cannot transmit
at high powers to compensate for the path loss. CF architectures naturally overcome
this issue by exploiting the macro-diversity gain (MDG), which helps decode these edge
users [23]. Thus, mMTC scenarios are a natural application for using CF architectures,
and studying IRSA for mMTC in a CF setup is another key goal of this chapter.

Since the received signal power at the BS decays rapidly with the propagation distance,
the users that are close to an AP (i.e., in the cell center) will experience a higher signal-
to-noise ratio (SNR) than those that are close to the cell-edge. Further, the users at
the cell edge are also affected by interference from neighbouring BSs, thus, the signal-
to-interference-plus-noise ratio (SINR) can be substantially lower than the SNR at these
locations. Thus, there is a huge disparity in the throughputs achieved by the cell edge
users compared to the users located closer towards the cell center. This issue of path
loss is still present in a massive MIMO (mMIMO) system, wherein the BSs are equipped
with a massive number of antennas that aid interference suppression. Cell-edge users still
face the same issue of high path loss, and especially in mMTC, they cannot transmit at
higher powers to compensate for the path loss in order to increase the battery life. This is
another reason why we study CF systems for mMTC, which help in decoding these users
who would otherwise not be decoded in conventional small cell systems.

The contents of this chapter are published in part for the multi-cell setup in a con-
ference paper in IEEE SPAWC in 2022 [24], and a journal paper for the cell-free setup is

under preparation [25].
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6.1.1 Existing Works in IRSA

Initial studies on IRSA focused on MAC [7] and path loss channels [8]. IRSA has been
analyzed in a single-cell (SC) setup, accounting for intra-cell PC, estimation errors, path
loss, and MIMO fading [11,12]. Multi-user interference from users within the same cell is
termed intra-cell interference and from users across cells is termed inter-cell interference.
In the SC setup, only intra-cell interference affects the decoding of users since users do not
face inter-cell interference. In practice, multiple BSs are deployed to cover a large region,
and thus inter-cell interference is inevitable [100]. Furthermore, MC processing (e.g., MC
MMSE combining of signals) schemes can achieve better performance compared to SC

processing, since it accounts for inter-cell interference [49].

6.1.2 Existing Works in CF mMIMO

Analysis of CF mMIMO systems is a topic that has recently received intense research
attention. We review only the existing works that are relevant to this chapter.

In CF systems, the APs are connected to the CPU via a fronthaul link [20]. As opposed
to a conventional massive MIMO system, where a single BS has a large number of antennas
to serve users, a CF system has multiple APs that are geographically spread with fewer
antennas per AP [116]. Collocated mMIMO architectures, where all service antennas are
located in a compact area, have the advantage of low backhaul requirements. In contrast,
in distributed mMIMO systems, the antennas are spread out over a large area. The CPU
is connected to the core network via backhaul links, whereas the fronthaul links between
the APs and the CPUs is used for sharing received signals, CSI, and phase reference
signals [132]. Further, CF systems have smaller variations in the SNR compared to SC
massive MIMO systems, and have an advantage of joint processing at the CPU [21].

Scalability is an important aspect of CF mMIMO systems [133]. Scalability here
is defined as the ability to add more APs and users to the system without having to
increase the capabilities of existing APs [134]. Cellular systems achieve scalability via a
small cell approach. Different levels of receiver cooperation levels have been studied in

CF systems [133].
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Densification is another topic of interest in small cell networks [135]. Interference-
limitation of communication systems due to path loss is typically handled by using the
divide-and-conquer approach, where the network is split up into small cells [22]. This
reduces the effect of path loss and improves the performance. Existing works have con-
sidered varied schemes in CF systems and compared it with small cell networks [22]. In
conventional cellular architectures, for a given spatial antenna density, a single cell mas-
sive MIMO system usually performs poorly compared with the small cell setup due to a
high degree of path loss. For the same spacial antenna density, CF architectures achieve a
huge gain in performance as described previously due to cooperative processing. In gen-
eral, densifying always helps improve the performance of the system, but it is not clear if

this relation still holds for IRSA in MC or CF mMTC systems.

6.1.3 Existing Works in GFRA for CF Systems

Very few works have analyzed GFRA protocols for the CF setup. Most of the existing
works are for UAD in CF setups. Authors in [136] have proposed UAD algorithms for
GFRA in a CF mMIMO setup. Distributed algorithms for UAD in CF mMIMO have
been recently proposed [137]. CF systems have shown to have a better UAD performance
compared to collocated MIMO [138]. Authors in [139] have explored cooperative and
non-cooperative ML and MAP detection of users. Approximate message passing has
been used to jointly detect the users and estimate their channels in a CF IoT setup [140].
A strongest-user collision resolution protocol has been proposed for CF ToT [141].

None of the above works analyze IRSA in the MC or CF setup, which forms the main

novelty of our work.

6.1.4 Contributions

The main contributions in this chapter are as follows:

1. We first analyse IRSA in the MC setup. We derive the channel estimates and
the SINR in MC IRSA accounting for path loss, MIMO fading, intra-cell pilot

contamination (PC), and inter-cell PC.
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2. We next analyze IRSA in the CF setup, with all of the above non-idealities. Specif-
ically, we study three CF schemes for IRSA: one with local processing at each AP,
termed local-cell-free (LCF); next with fully centralized processing at the CPU,
termed centralized-cell-free (CCF); and finally, with hybrid processing at both the
APs and the CPU, termed hybrid-cell-free (HCF). These schemes have different
levels of partial signal processing at the APs and the CPU.

3. We provide insights into the effect of system parameters such as number of antennas,
number of APs (or BSs), pilot length, and SNR on the throughput of MC IRSA and
CF IRSA. We study the effect of BS and AP densification in MC and LCF IRSA,
respectively, where we observe an inverse behaviour in the throughput compared to
CCF and HCF IRSA. Specifically, densification improves the performance of CCF
and HCF IRSA, whereas the performance of MC and LCF IRSA deteriorate.

To the best of our knowledge, no existing work has analyzed the effect of MC interference
or CF processing in IRSA. Through numerical simulations, we show that inter-cell PC
and inter-cell interference result in up to 70% loss in the MC throughput compared to the
SC setup. Further, MC IRSA requires a significantly higher training length (about 4 —5x
compared to SC TRSA), in order to support the same user density and achieve the same
throughput. Under the CF architecture, we show that we can achieve more than 14x
improvement in the throughput or around 9x reduction in the pilot length of CCF IRSA
compared to a massive MIMO SC setup at high loads. We also study the densification
trends in MC IRSA and CF IRSA: for CCF IRSA and HCF IRSA, densification always
improves the performance; for LCF IRSA and MC IRSA, densification does not help at
loads near the inflection loads, i.e., it is better not to densify and to operate with a massive

MIMO SC setup.

Structure of this Chapter

We now study IRSA in the multi-cell setup in Section 6.2. The goal of this section is to

contrast it with the SC setup and discuss the shortcomings of ignoring inter-cell effects.
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Thus, we analyze the performance of the cell at the center of a multi-cell setup, as seen in
Fig. 6.1. Hence, the notation for the MC setup will be established on a per-cell basis, and
the notation for the necessary signals would be associated with an index denoting the cell
to which the user belongs to as well as the cell whose BS has received the corresponding
signal. Later, we study IRSA in the cell-free setup under three different schemes in
Section 6.3. The goal of this section is to contrast CF with small cell systems and massive
MIMO single cell systems. For an apt comparison among them, we keep a fixed spatial
antenna density across all the configurations; also, we evaluate the network throughput,
i.e., the performance of the entire system, as seen in Fig. 6.2. Further, there is no cell
boundary, and thus, the notation for each signal is associated with the receiver AP index

and no index for the association of a user with an AP is present.

Notation

The symbols a, a, A, [A];., [A].;, On, 1y, and Iy denote a scalar, a vector, a matrix, the
ith row of A, the jth column of A, all-zero vector of length N, all ones vector of length
N, and an identity matrix of size N x N, respectively. [a]s and [A]. s denote the elements
of a and the columns of A indexed by the set S respectively. diag(a) is a diagonal matrix
with diagonal entries given by a. The set of real and complex matrices of size N x M
are denoted as RYV*M and CV*M. A/(a, A) and CN(a, A) denote the real and complex
Gaussian distribution, respectively, with mean a and covariance A. [N] denotes the set
{2, N L L IS ) [, EL], and Ea ] denote the magnitude (or cardinality
of a set), f5 norm, transpose, conjugate, hermitian, expectation, and the expectation
conditioned on a, respectively. The superscript p is used as a descriptive superscript in
association with a symbol that is related to the pilots. All the other superscripts (or

subscripts) that have not been defined as above are indices.

6.2 Multi-Cell IRSA
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6.2.1 System Model

We consider an uplink MC system with @) cells, where each cell has an N-antenna BS
located at its center as seen in Fig. 6.1. We refer to the BS at the center of the gth cell as
the qth BS. Every cell has M single antenna users arbitrarily deployed within the cell who
wish to communicate with their own BS.! The time-frequency resource is divided into T’
RBs. These T' RBs are common to all the cells, and thus, a total of QM users contend over
the T' RBs. Each user randomly accesses a subset of the available RBs according to the
IRSA protocol, and transmits packet replicas in the chosen RBs. Each replica comprises
of a header containing pilot symbols for channel estimation, and a payload containing

data and decoding error detection symbols.
0 N\ND 00 O

M users
per cell

et

~ Base Station [ ‘

0/ 0o O
Figure 6.1: A typical uplink MC system with @) cells.

The access of the RBs by the users can be represented by an access pattern matrix
G =[Gy, Gy,...,Gg| € {0,1}T*@M Here G; € {0,1}7M represents the access pattern
matrix of the users in the jth cell, and g;;; = [G;]s is the access coefficient such that ¢;;; =

1 if the ¢th user in the jth cell transmits in the ¢th RB, and ¢, = 0 otherwise. The ¢th user

!For apt comparison with SC IRSA, we consider M users per cell in the MC setup, which will later
help us compare the performance of an IRSA system with M users with and without inter-cell effects.
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in the jth cell samples its repetition factor d;; from a preset probability distribution. It
then chooses d;; RBs from the 7" RBs uniformly at random for transmission. The access
pattern matrix is known at the BS, which is made possible by using pseudo-random
matrices generated from a seed that is available at the BS and the users [11]. This can
be done in an offline fashion.

The received signal at any BS in the tth RB is a superposition of the packets trans-
mitted by the users who choose to transmit in the tth RB, across all cells. In the pilot
phase, the ¢th user in the jth cell transmits a pilot p;; € C” in all the RBs that it has
chosen to transmit in, where 7 denotes the length of the pilot sequence. The received

pilot signal at the gth BS in the ¢th RB, denoted by Y}, € CV*7, is

Q M
Yi, = Zj:1 Zizlgmh?jipﬁ +Ni, (6.1)

where qu € CN*7 is the additive complex white Gaussian noise at the gth BS with
[NY, Jrr HECN(0,Ny) Vo € [N], r € [r] and t € [T], and N is the noise variance.

Here, hfji € C¥ is the uplink channel vector between the ith user in the jth cell and the

qth BS on the tth RB. The fading is modeled as block-fading, quasi-static and Rayleigh
distributed. The uplink channel is distributed as h; SN (On, Blo0ly), YVt e [T], i €
[M] and j € [Q], where o} is the fading variance, and f; is the path loss coefficient
between the ith user in the jth cell and the qth BS.

In the data phase, the received data signal at the qgth BS in the tth RB is denoted by

v, € CV and is given by

Q M
Yiqg = ijl Zizlgtﬁhgjﬂjz’ + Ny, (6.2)

where z;; is a data symbol with E[z;;] = 0 and E[|z;;|*] = pj;, i.e., with transmit power

pji, and ny, € CV is the complex additive white Gaussian noise at the BS, with [ny,], B

CN(0,Ny), Vne[N]and t € [T].
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6.2.1.1 Decoding Process in MC IRSA

The decoding of a packet is abstracted into an signal to interference plus noise ratio
(SINR) threshold model. Here, if the SINR of a packet in a given RB in any decoding
iteration exceeds a threshold 74y, then the packet can be decoded correctly [8,15].

We now describe the performance evaluation of IRSA via the SINR threshold model.
In each cell, the BS computes channel estimates and the SINRs of all users in all RBs. If
it finds a user with SINR > =4, in some RB, it marks that user’s packet as decoded, and
performs SIC from all RBs in which the same user has transmitted a replica. This process
of estimation and decoding is carried out iteratively. Decoding stops when no more users
are decoded in two successive iterations. The throughput is calculated as the number of

correctly decoded packets divided by the number of RBs.

Power Control

To ensure fairness among users within each cell, each user performs path loss inversion
with respect to the BS in its own cell [142]. That is, the ith user in the jth cell transmits
its symbol z;; at a power p;;, i.e., E[|lz;|*] = pji, according to p;; = P/ﬁji, where P is
a design parameter. The same power control policy is used in the pilot phase where the
transmit power of the ¢th user in the jth cell is p?i = PP/Bgi, and PP > P is a design
parameter, with ||p;||?

with the pilot SNR being PPo2/Ny and the data SNR being py = PoZ/Ny. This ensures

= 7pj;.- This ensures a uniform SNR at the BS across all users,

the power disparity between cell edge users and users located near the BS is reduced, thus

ensuring fairness [142].

6.2.2 Channel Estimation

Channel estimation is performed based on the received pilot signal in each cell. The
signals and the channel estimates are indexed by the decoding iteration k, since they are
recomputed in every decoding iteration of the SIC-based decoder. We denote the set of
users in the jth cell who have not yet been decoded up to the kth decoding iteration by
Sij. For some m € Sy;, let St £ Sp; \ {m}, with S;; = [M]. Let the set of all cell indices
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be denoted by @ = {1,2,...,Q}, and let Q7 = Q\ {¢}. The received pilot signal at the
gth BS in the tth RB in the kth decoding iteration is given by

Pk _ q H q H P
Ytq - Z’ieskqgtqihtqipqi + ZjeQ‘l Z’Leshgt]lht-ﬂp]l + th7 (63)

where the first term contains signals from users within the gth cell who have not yet been
decoded up to the kth decoding iteration, i.e., Vi € Si,. The second term contains signals
from all users outside the gth cell, i.e., from every i € &;;,Vj € Q9. We note that there is
no coordination among BSs, and thus, all the users outside the gth cell do not get decoded
by the ¢th BS, and they permanently interfere with the decoding of users in other cells,
across all the decoding iterations.

Let G, 2 {ic S14l9t4i = 1} denote the set of users within the gth cell who have
transmitted in the tth RB, with M, = |Gy,|. We denote the set of users in the gth cell
who have transmitted on the ¢th RB but have not yet been decoded up to the kth decoding
iteration by M £ Gy, N Siy, With M £ M. Let H{, £ [h], . h{, ... hi,] contain
the uplink channels between all the users in the jth cell and the gth BS in the tth RB, with
H?f £ [H ]:7M35 and Hfjk = [Hl].g,.Vj € Qv Let P; £ [pj1,pj2. .- ., Pju] contain the

q
pilots of all users within the jth cell, with ng £ [P, g and ng £ [Pjl.g,,Vj € Q.

M

Let B! £ odiag(sY, By, ..., %)) contain the path loss coefficients between the users

within the jth cell and the gth BS, with Bf) £ [BY], g and B{' £ [BY.g,,Vj € Q.
” q

Thus, the received pilot signal from (6.3) can be written as

k & LA kpgkH kpgkH
Y =HIPH + NP = HEPE + Zjégqﬂgj P/ 4 NP

tq»

S LAY gk gk qk qk qk Nx Ik : rak A qk
where Hjj = [Hi Hi, ... . Hi | Hi,,... . H{j] € C%ua, with My' = Mg +

tq
Dk A gk pak qk qk qk x M3*
Y icor My, and PE 2 [P PH P PE L PE] e COMEL We de-
=gk k k k k k 3% s nrak .
fine Bf, = [B} ,Bf,....B} .B} ., ....Bjj] € CYa*Ma to derive the chan-

nel estimates. Let C* £ Pquff(PffPqugf + NOIM;?’“)_% be split as C{* =
q

gk ak qk qk qk gk A gk
[th ) Ctl Yt th—17 th+17 LR CtQ]? and Ctji - [Ctj ]Hi'
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Lemma 7. The minimum mean squared error (MMSE) channel estimate IilféC of

P_I?(f in the tth RB in the kth decoding iteration at the qth BS can be calculated as

“rak _ ~Phkpk Rk DEHDE Hak -1
Hi, =Y, P, B, (P, P;Bi + NOIng’“) . (6.4)
Further, the estimation error ﬁ?ﬁ = hgﬁ — hi;; is distributed as fl?ﬁ
CN (O, (5fﬁIN), where 53;2 is calculated as
qk |12 H .9k |2 2
No”ctji“ + Zneslij ‘pqnctji’ gtqnﬁgnah
H ~dk |2 q ;2
5qk g 2 +Zlegq ZneSlj |plnctji| gtlnﬁlnah
L= 1.0
tji ji’h
qk 1|2 H .9k |2 2
NOHCtji“ + ZnESkj |pqnctji| thNBgno-h
H .qk |2 q .2
+ ZleQ‘l Znesu |plnCtji‘ Gtin By, T,
Proof. See Sec. 6.6.1. [
: : ryak (yak  _ Pk (pk RIkpRH
Remark 1: The estimate Hj; can also be calculated as Hj, = Y3 (P;B{/Pi" +

NOIT)_115’17‘/‘1,]:3)?;C , (a 7 x 7 inverse.) Lemma 7 is applicable for any choice of (possibly
non-orthogonal) pilots. We now discuss the case where pilots are reused by users within

and across cells.

6.2.2.1 Pilot Reuse

Channel estimation is done based on a pilot codebook {¢;}7_; of 7 orthogonal pilots [142],
with each ¢; € C7, such that ¢ ¢p; = 0,Vi # j, and ||¢;||*> = 7PP. Here PP is the pilot
power, and the pilot codebook is the same across all cells. Each user uses a pilot from
this codebook, and thus, many users share the same pilot sequence, possibly, both within
the cell and out of the cell, leading to pilot contamination. Since 7 < M, both intra-cell
PC and inter-cell PC occur.

Let P;; denote the set of users that reuse the pilot of the ith user in the jth cell.

With this codebook, the channel estimate is distributed as flgﬁ ~ CN(Oy, g,%-’ZIN), where
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2 _4
TPPg %0
k tjiji “n .
thjz' = J , and the estima-

q 2 q 2
(NO + Zne&wﬂpﬁ TPpgtqnﬁan'h + ZZEQQ ZnESUﬂ'PM TPpgtlnﬁan-h>

: : : qk _ pq 2 qk
tion error variance is calculated as d;; = 5,0 — ;-

6.2.3 Data Decoding in MC IRSA

Let pj,,, denote the SINR of the mth user in the gth cell at the gth BS in the tth RB in
the kth decoding iteration. Similar to (6.2), the received data signal at the gth BS in the
tth RB in the kth decoding iteration is given by

k
Yia = Zz‘eskqgtqihgqixqi * Zjegq Ziesugtﬁh?jixﬁ + Ny (6.5)

We use a generic combining vector afqm € C¥ to obtain the post-combined data signal

~k _ okH (kK
ytqm - atqmytq as

~k _ kH Aqk kH qu? LE q
Ytgm = thmﬂfqmatthtqm - gtquqmatthtqm + e gtqixqiatthtqi
kq
E E kH 1.q kH
jeQ iesljgt” J19gmtji tgmItq; ( )
where h{ is as defined in Lemma 7. This combined signal, used to decode the mth user

in the gth cell, is composed of five terms. The first term gtquqmafﬁlflqk is the useful

tqm

signal component of the mth user; the term gtquqmaf;fnflffm arises due to the estimation
kH hq

tymg; Tepresents the intra-cell interference from the

WA e
error hy,.; the term » sy GraiTqid

users within the qth cell who have transmitted in the tth RB and have not yet been

decoded up to the kth decoding iteration; the term » . o, D ic s, Gijijiags i, models

tji
the inter-cell interference from users outside the gth cell; and the last term af;;[nntq is the

additive noise. We now present the SINR for all the users.

Theorem 6.1 » SINR in Multi-Cell IRSA.

The signal to interference plus noise ratio (SINR) achieved by the mth user within

the gth cell at the qth BS in the ¢tth RB and the kth decoding iteration can be
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written as
Gain”
I e Vm e S 6.7
fr— 3 k .
Pram = Ny + InCIf,, + Esty  + ICIF B 6.7)
where

k kH ﬁqk

Gaintqm < pqmgtqm’atqm tqm|2/||afqu2’

gk
InCIfqm = Zieslz’;pqigthafg%hgqi|2/||azl€€qm||27

ko4 i O i 03E
Estiym = ZiESkqpngtq'L(Stqi + Zjegq Ziesljpjzgtyz5tji7

gk
ICIfqm é Zjqu Ziesljpjigtjilaﬁ]l;[nhgji|2/||a£§qm”2'

. 2 aik . B o .
The channel estimates h{;; and the error variances J7j; in the above expressions are

obtained from Lemma 7.

Proof. See Sec. 6.6.2. O

Remark 2: The SINR derived in Theorem 6.1 holds for any choice of the combining vector
afqm, the pilots, and the power control policy. The first Mtqqk columns of the combining
matrix qu € CV*M is used at the gth BS to decode the M;{f users within the g¢th
cell who have not yet been decoded up to the kth decoding iteration in the ¢th RB. The
SINR in (6.7) is maximized by multi-cell MMSE combining [49], under which the optimal
combining matrix can be evaluated as

Af, = Hi Dy (7 Lo + HY HE D)

— (ef Ly + HIDI HIT) - THEDE

tq,pl tq,pl>

— k k .
where efq = N()+Zi€8kqpqigtqi53qi+2jegq ZieSljpjigtji(ngh Djp1 2 diag(pj1, pj2, - - - Pjmr)

contains the power coefficients of the users within the jth cell, D‘tl]]f ot £ [Djpilig,. Vi €
gk A BYLAE-N qk qk qk qk gk
Qq’ th,pl - [DQ:Pl];,Mgé“? and th7p1 - [th,p17 Dtl,pl? s 7th—17p17 th+1,p17 te 7DtQ,p1] €

CMi <M We note that the above MC processing outperforms the application of SC
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processing applied to the MC setup [49].

Algorithm 6: Performance Evaluation of MC IRSA in the ¢th cell
Input: 7, N, T, M, No, {G; }] 17{PJ}] LAY o AVt Fmax
Initialize: Sy, = [M], G;; = {i € [M]|gji = 1}, S, = {}

2 for k=1,2,..., knax do

3 fort=1,2,...,T do

[uy

4 Find My’ = (G 0 Sigl, Ply = [Pyl guurisey: {PH = Pil-g Viva: Yoy v,
5 Compute htﬂ, Vi € Spq via Lemma 7
6 Evaluate the SINR pf;, Vi € Sp¢ via Theorem 6.1
7 If pfqi > Yin, remove user ¢ from Sy, and perform IC in all RBs where
Gigi = 1
8 Add user i to set of decoded users: S, = S, U {i}
9 end
10 end

11 Output: Set of users decoded in the gth cell: S,

We now evaluate the performance of MC IRSA in the gth cell using Algorithm 6. The
algorithm is run till no more users are decoded in two successive iterations (or up to a
maximum of Ky, iterations). The algorithm outputs Sq, which is the set of users decoded
in the gth cell, i.e., at the gth BS. Thus, the packet loss rate (PLR) at the ¢gth BS can be
computed as PLR, £ (1 —|S,|/M), and the throughput at the gth BS can be computed
as T, £ M(1 —PLR,)/T.

6.2.3.1 Deterministic Equivalent of the SINR

We now present simple and interpretable expressions for the SINR in the massive MIMO

(large N) regime, and with maximal ratio combining (MRC), i.e., af,, = hgfm [49].

[ Lemma 8. As the number of antennas N gets large, the SINR with maximal ratio ]
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combining converges almost surely to

Sigh
ﬁfqm = Tk gtim P (6'8)
€tgm(No + IntNCE, ) + IntCf,,

k

tym TEPTESENLS the mon-coherent interfer-

where Sigffqm 15 the desired signal, IntNC

k

tqym TEpTESENLS the coherent interference. These can be evaluated as

ence, and IntC

k k
k N0‘|ngm||2 + Zneskj ’pgzcgqmpgtqnﬁgno_}%

thm = ’
H gk |2 2
+ Zlegq Zneslj ‘plncgqm| gtlnﬁlqno-h

Slgfqm = Npqmgtqm(efqm)27

qk 2
pqmgtqmétqm + Zneskj pqngtqnﬁgnah

.

IntNC},,, = o ,
+ ZlEQ‘I Znéslj plngtlnﬁlnah
H .qk |2 2 4
k EnESkj |pqnctqm‘ pqngtqnﬁgno-h
Intthm =N . ,
H .49 2 q2 _4
+ ZZGQ‘] Zneslj |plnctqm| plngtlnﬁln Oy
Proof. See Sec. 6.6.3. B

Remark 3: IntNCk

errors, intra-cell interference, and inter-cell interference. IntC

tm TEDTesents the non-coherent interference that arises due to estimation
k

t;m 15 the coherent interfer-

ence that arises due to intra-cell PC and inter-cell PC. The former does not scale with the

number of antennas N, whereas the latter scales linearly with N. Both inter-cell PC and

inter-cell interference degrade the performance of the system [100], and thus it is vital to

account for both while analyzing the performance of IRSA.

6.3 Cell-Free IRSA

The term cell-free is used to imply that no cell boundaries exist between the users and

the APs. Depending on the specific scheme used, the decoding of users can happen

separately at each AP or by a subset of the APs or jointly at the CPU. With distributed

processing, decoding happens separately at each AP, and any user can be decoded by any
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AP if received at a strong enough power. With coordinated processing, decoding happens
at the CPU, and the CPU jointly serves the users within the network, and there is no
assignment of users to cells. In this work, as opposed to a network-centric CF architecture,
where the APs are allocated disjoint sets of users to serve, we adopt the user-centric CF

architecture, where each user could be decoded by multiple APs.?

6.3.1 System Model

We consider a system with M users who are located arbitrarily across the network.? In
order to serve these users, () APs are arbitrarily placed across the network, wherein each
AP is equipped with N antennas. This amounts to a total QN number of antennas across
the entire network.? As seen in Fig. 6.2, the APs are connected via fronthaul links to
the CPU, which facilitates the AP coordination. The users contend to communicate with
the @@ APs across T time-frequency RBs. Each user samples their repetition factor d;
from a predefined distribution and transmits packet replicas in d; RBs chosen uniformly
at random from the T" RBs. The access of the RBs is governed by G, which is termed the
access pattern matrix (APM). Here, g,; £ [G]u = 1 if the ith user transmits their packet
on the tth RB, and 0 otherwise. By using a common seed at the AP and the users, the
APM can be generated at the AP and thus, we can assume that the AP has knowledge
of G.
The APs receive pilot and data signals as superposition of the signals from all the
users. The received pilot signal at the qgth AP in the tth RB, denoted by qu is
qu = Zij\ilgt’ihgipﬁ + N}, (6.9)

tq»

2In practice, clustering needs to be implemented to ensure subsets of APs jointly decode any user.
This also reduces the complexity of decoding at the APs. However, to establish a baseline for CF IRSA,
we do not perform any clustering in this chapter, and we leave it for future work.

3For apt comparison with IRSA with small cells and IRSA in the massive MIMO setup, where the goal
is to study the effect on the entire system, we consider M users to be located across the entire network
in the CF setup.

4One major deviation of the CF architecture considered in this chapter is the relation between Q, M,
and N. Typical CF mMIMO architectures are for ultra-dense networks where the typical assumption
QN > M, whereas in our work, we make no such assumption.
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Figure 6.2: A typical uplink CF system with ) APs.

where hf, € CV is the N-length channel vector between the ith user and the gth AP on the
tth RB, p; € C7 is the 7-length pilot signal of the ith user, and foq € CV*7 is the complex
additive white Gaussian noise at the gth AP in the tth RB. Here, [N} ],,, S CN(0, Ny)
V' n € [N], r € [r] and t € [T], where Ny is the noise variance. The fading is modeled
as block-fading, quasi-static and Rayleigh distributed: hf. SN (On, BlolIy), ¥V t €
[T], i € [M], where o} is the fading variance, and 3 is the path loss coefficient between
the ith user and the qth AP.

We now write out the data signal corresponding to a single transmitted symbol. The

received data signal in the data phase at the ¢th AP in the ¢tth RB, denoted by y,,, is

Yig = ity guhfa; + nyg, (6.10)

where z; is the data symbol of the ith user with E[z;] = 0 and E[|z;]?] = p;, i.e., with
transmit power p;, and ny, € CV is the complex additive white Gaussian noise at the gth

AP, with [0y, =S CN(0, Ny), ¥ n € [N] and t € [T].
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6.3.1.1 SINR Threshold Model

Similar to the MC and SC setups, we now use the signal to interference plus noise ratio
(SINR) threshold model to abstract the decoding of users’ packets. Here, if the SINR
of a packet in a given RB in any decoding iteration exceeds a threshold ~;,, then the
packet can be decoded correctly [8,15]. Depending on the specific CF architecture under
consideration, the decoding process may vary. In the next subsection, we describe the

decoding process for each scheme separately.

6.3.2 Local-Processing in Cell-Free IRSA: LCF TRSA

The notation introduced earlier is now used to analyze IRSA in the cell-free scenario with
local AP processing as depicted in Fig. 6.3. We use the acronym LCF IRSA to denote the
above: Local Cell-Free processing in IRSA. In LCF, each AP performs channel estimation
and data decoding for as many users as possible. Then, the APs forward only the data
symbols of the successfully decoded users to the CPU on the fronthaul links. The CPU is
not responsible for decoding any user. LCF resembles a multi-cell setup but without cell

boundaries; LCF is similar to a cooperative MIMO setup [143].
Fronthaul carries No decoding
decoded signals done at CPU
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Figure 6.3: Setup of LCF IRSA.

The access pattern structure of IRSA adds a layer to the decoding of users in LCF
IRSA. In SC IRSA, we saw that users in singleton slots could be decoded even if they
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were far away from the BS and two collided users who were both near to the BS need not
be decodable due to low SINR. In MC IRSA, users closer towards the cell edge could not
be decoded due to inter-cell interference from adjacent cell’s edge users. In LCF TRSA,
these cell boundaries are removed. In slots where multiple users collide, users may not be
decodable at one AP, but they could be decodable at a different AP (either in a singleton
slot or after other users have been decoded). Thus, we allow each AP to decode as many
users as possible, even possibly users which are geographically located far away.

LCF IRSA is somewhat similar to a network-centric implementation of coordinated
multi-point [21], in which multiple BSs coordinate to decode users. In LCF IRSA, however,
there is no coordination or any data exchange amongst the APs. Note that LCF IRSA
somewhat resembles Level I receiver cooperation that is considered in many existing
works [21,133]. A major difference is that each user is decoded only by the nearest AP in
Level 1 CF systems, whereas in CCF IRSA, due to the access pattern structure of IRSA,

users can get decoded at far away APs as well.

6.3.2.1 Decoding Process in LCF IRSA

We now describe the decoding process in LCF IRSA. Firstly, each AP computes the
channel estimates and the SINRs of all users in all RBs. If an AP successfully decodes
a user in some RB, it performs SIC from all the RBs in which that user has transmitted
packets in. This decoding is abstracted into the SINR model as seen before: if the AP
finds a user with SINR > 74, in some RB, it marks that user’s packet as decoded. This
process of estimation and data decoding is carried out iteratively. Decoding stops when
no more users are decoded in two successive iterations. The throughput of the network
is calculated as the total number of correctly decoded unique packets across all the APs
divided by the number of RBs. The above definition includes “unique” since users packets
could be decoded at multiple APs.

It is possible that some users near to one AP could be decoded at other APs, but we
do not consider any inter-AP coordination in LCF IRSA, and thus, the same users could

get decoded at multiple APs (depending on the decodability of the users). In order to
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reduce complexity, we can allocate the users to each AP via clustering. Here, the ¢th
AP attempts to decode only A,, which is the set of users allocated to the gth AP. The
notation defined previously is still applicable, we simply initialize the decoding process

with Slq = .Aq.

6.3.2.2 Performance Analysis of LCF IRSA

In this subsection, we evaluate the performance of LCF IRSA. Channel estimation is per-
formed based on the received pilot signal at each AP. Since the data signals are processed
iteratively for each user, the received pilot and data signals are indexed by the decoding
iteration. Let k£ denote the current decoding iteration index, and Sy, denote the set of
users not yet decoded up to the kth decoding iteration at the gth AP, with &, = [M]
and S, = Sy, \ {i}. The received pilot signal at the gth AP in the ¢th RB in the kth

decoding iteration is given by
k
Yy, = Yies, gubiip!l + Np,, (6.11)

where the first term contains signals from users who have not yet been decoded up to the
kth decoding iteration at the ¢th AP, i.e., Vi € Sy,. Similarly, we can find the received
data signal at the gth AP in the tth RB in the kth decoding iteration as

qu - Zieskqgtihgﬂ'i + Ty (6.12)

Let G, = {i € [M]|gss = 1} be the set of users who have transmitted in the ¢th RB.
Let M/, £ |G; N Syl be the number of users who have transmitted in the tth RB and have
not been decoded in the first £ — 1 iterations at the gth AP. Let us stack the channels of

the M users as the columns of the matrix Hf, € CV “Miy and let P, € C™Mi denote

a matrix that contains the pilot sequences of the M/ users as its columns. Let Bf, =

opdiag(By, 6L, . .. ,ﬁka ) be a diagonal matrix that contains the path loss coefficients of
tq
the Mt"; users, with G; N Sp, = {i1, 42, .. v }. Hence, the received pilot signal from
q

(6.11) can be written as Yf(f = quPffI + Nf,. The estimate of qu from the above is
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presented in Theorem 6.2.

Let pfqm denote the SINR of the mth user in the tth RB in the kth decoding iteration
at the gth AP. Using a combining vector agi, the gth AP obtains the post-combined data
signal 2% as git £ aganyfq, where yy, is from (6.12). Thus, we obtain the post-combined
data signal as

~qk _ _qkH{ qk qkHy gk qkH q qkH
Utm = Q. My GemTm — &y Ny Gim T + &y, ZieS;ﬂ grihyw; + ag, Ny (6.13)
q

Here the first term on the RHS, a?leflgfngtmxm, denotes the useful signal component
and it contains the channel estimate h?® of the mth user; the second term a*“h?* ;.. zn

. gk
contains h?

17 the estimation error of the mth user; the third term agﬁleie s grihf.x; is the

multi-user interference faced by the mth user due to the other users in the entire network
who have not yet been decoded up to the kth decoding iteration at the gth AP; and the
fourth term agf@Hntq is the additive noise component. We need to compute the SINR from
the above post-combined data signal. For this purpose, let CI* £ P; B} (PP B, +
NOIqu)_l, and ¢ £ [CI".;.

We now present the channel estimates of the users and the SINR achieved by the users

at the qgth AP in LCF IRSA in the following theorem.

Theorem 6.2 » Performance Analysis of LCF TRSA.

The minimum mean squared error (MMSE) channel estimate ﬂfq of Hf, in the tth

RB in the kth decoding iteration at the qth AP can be calculated as
Hf, = Y5, (P}, B} Pi + NoL.) "' P} By, (6.14)

Specifically, the estimate of the channel h; of the ith user to the gth AP is calculated

as h?* = [I:Ifq]l Further, the estimation error h’ £ h% — h% is distributed as
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h% ~ CN(0y, 6% 1y), where 6% is calculated as

k k
NOHCgi ||2 + Znes;q PnHng' |29tnﬁg‘7§

e B :
Nolleg; |12 + Zneskq IpZ i 12gmBros

8%F = Blo? (6.15)
The signal to interference plus noise ratio (SINR) achieved by the mth user at the

qth AP in the tth RB and the kth decoding iteration can be written as

k Gainiy, VmeS (6.16)
= Vm € Sk, .
Plam =N, + Estk,, + MUTE ha

where
. kH{ qk k
Galnfqm £ pmgtm’agm h:f]mP/Hagml‘Q?
EStfqm é Zieskqpigtiégik7
KH{ gk k
MUIfqm = ZzGSﬂplgtAagm h?z |2/||agm||2
Proof. See Sec. 6.6.4. n

Remark 4: The MMSE channel estimate ﬂfq of qu can be computed as

H}, = Y5 (P} B P + NoL.)~'P}BY, (6.17a)
< YIPL B (PLIPLBY, + NoLyy, ), (6.17h)

where (a) follows from (AB+1I)"*A = A(BA+1I)~!. Here, the estimate can be calculated
via an inverse of either a 7 x 7 matrix or an M} x M, matrix as required.

Remark 5: The results derived in Theorem 6.2 holds for any choice of the combining vector
afqm, the pilots {p,.}, and the power control policy {p,,}. The combining vector that
maximizes the SINR in (6.7) is the MMSE combiner, which can be found as aZ¥ = [AF ] m,

where

A k R R b
qu = quDgpl (ellfchMtkq + qu}IquDg,pl)7 ! (618&)
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= (ef Iy + HE DY HEH)~'HE DI (6.18b)

q

where fo;l 2 diag(pi,, Diys - - - » Piy ) contains the power coefficients of the Mt"é users, and

q
E A . sak
Ctqg = No + ZieSkqugtzéti .

Algorithm 7: Performance Evaluation of LCF IRSA at the ¢th AP
Input: T, N7 T7 M7 NOa Ga Pa {qu 31:17 {ytq}zzla kmax

Initialize: Sy, = [M], G; = {i € [M]|gn = 1}, S, = {}
2 for k=1,2,..., kpnax do
3 fort=1,2,...,T do

Ju—

4 Find M} = (G, N Sigl, PE = [Pl.ginse,, Yoo V5
5 Compute h¥¥, Vi € S, via Theorem 6.2
6 Evaluate the SINR pf;, Vi € Sj¢ via Theorem 6.2
7 If pfqi > i, remove user ¢ from Sy, and perform IC in all RBs where
gri =1
8 Add user i to set of decoded users: S, = S, U {i}
9 end
10 end

11 Output: Set of users decoded at the gth AP: S,

We now evaluate the performance of LCF IRSA at the gth AP using Algorithm 7.
The algorithm is run till no more users are decoded in two successive iterations (or up
to a maximum of kp,y iterations). The algorithm outputs S,, which is the set of users
decoded at the qgth AP. To compute the set of users decoded at all the APs, we construct
the set S £ Uqulgq. Thus, the packet loss rate (PLR) of the network can be computed
as PLR £ (1 — |S|/M), and the throughput can be computed as 7 £ M (1 — PLR)/T.

6.3.3 Centralized-Processing in Cell-Free IRSA: CCF IRSA

We now analyze IRSA in the cell-free scenario with fully centralized CPU processing as

depicted in Fig. 6.4. We use the acronym CCF IRSA to denote the above: Centralized



Chapter 6. Analysis of IRSA in Multi-Cell and Cell-Free Systems 272

Cell-Free processing in IRSA. In CCF TRSA, each AP blindly forwards its received signals
to the CPU, on the fronthaul, which is responsible for performing data decoding. The gth
AP forwards the received pilot {Y7,,t € [T} from (6.9) and the received data {y,, t € [T}
from (6.10) to the CPU, which attempts to decode users who are transmitting their data
packets in an IRSA fashion. Note that CCF IRSA resembles Level 4 receiver cooperation

that is considered in many existing works [21,133].
APs blindly forward Fronthaul carries
the received signals received signals

Fronthaul

______________

Figure 6.4: Setup of CCF IRSA.

In the previous subsection, we saw that the access pattern structure of IRSA adds a
layer to the decoding of users in LCF IRSA. For CCF IRSA, the gain is primarily because
the effect of path loss is not pronounced. The access pattern structure affects the decoding
of CCF IRSA in the exact same way as SC IRSA: in singleton slots, users can be decoded
even if they are far away and in slots with collisions, users need not be decodable even if
they are nearby.

One major difference between the SC architecture and the CCF architecture is the
presence of a virtual distributed antenna array (DAA) in the system. The CCF archi-
tecture can be viewed as a single cell mMIMO system with the CPU as the BS and the
N antennas of each of the () APs together acting as a virtual DAA with QN antennas.
In a conventional mMIMO SC setup, the users signals are affected by higher path loss

since the QN antennas are collocated at the BS. Further, the antenna array gain and



Chapter 6. Analysis of IRSA in Multi-Cell and Cell-Free Systems 273

interference suppression capability of a SC mMIMO setup with QN antennas helps the
BS decode more users. Compared to the SC mMIMO setup, the DAA setup in CCF
performs better. This is because each user is closer to the nearest AP,and thus, the effect
of path loss is not as pronounced. Since the distributed antenna setup in CCF contains
QN antennas, the array gain and interference suppression capabilities carry over from the
SC mMIMO setup. Thus, CCF is expected to perform better than a SC mMIMO setup,

as we will observe in 6.4.2.

6.3.3.1 Decoding Process in CCF IRSA

We now describe the performance evaluation of CCF IRSA via the SINR threshold model.
Each AP forwards the received pilot and data signals from all RBs to the CPU. The CPU
computes the channel estimates of all the users and the corresponding SINR in all RBs.
If the CPU successfully decodes a user in some RB, it performs SIC from all the RBs in
which that user has transmitted packets in. This decoding is abstracted into the SINR
model as seen before: if the CPU finds a user with SINR > 74, in some RB, it marks
that user’s packet as decoded. This process of channel estimation and data decoding is
carried out iteratively at the CPU. Decoding stops when no more users are decoded in two
successive iterations. The throughput of the network is calculated as the total number of

correctly decoded packets divided by the number of RBs.

6.3.3.2 Performance Analysis of CCF IRSA

In this subsection, we evaluate the performance of CCF IRSA. In the channel estimation
phase, the CPU computes channel estimates of all the users to the gth AP similar to
(6.14) and then finally combines them to obtain an effective CPU channel estimate. Let k
denote the current CPU decoding iteration index, and S denote the set of users not yet
decoded at the CPU after k — 1 decoding iterations, with S; = [M], and S} £ S\ {i}. At
the CPU, the received pilot signal sent by the gth AP in the tth RB in the kth decoding
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iteration is given by
k
¥ =Y guhlip! + NP, (6.19)

where the first term contains signals from users who have not yet been decoded up to the
kth decoding iteration at the CPU, i.e., Vi € S;. Note that in the above, unlike (6.11),
we have dropped the AP index for the set of undecoded users.

We recall that G, = {i € [M]|g,; = 1} is the set of users who have transmitted in
the tth RB. Let M¥ £ G, N S, and M} £ | MPF| be the number of users yet to be
decoded, P¥ contain as its columns the pilots of the M} users yet to be decoded, and
B}, £ opdiag(B8L, 8L, . .. ,ﬁfo) contain the path loss coefficients of the M} users to the
qth AP, with MF 2 {i1 iy, ... cipp}- Let us stack the channels of the M} users to the
qth AP as the columns of the matrix Hy, € CV “ME and let P € C™M! denote a matrix
that contains the pilot sequences of the MF users as its columns. The channel of the
ith user in the tth slot to the CPU can be computed by stacking the user-AP channels
as hy; = [h}F h2F . h@"H ¢ CONV*! The CPU channel estimation error is found as
flfl £ ﬁfz — hy;. The estimate of hy; is presented in Theorem 6.3.

Let pf . denote the SINR of the mth user in the tth RB in the kth decoding iteration
at the CPU. The received data signal can be stacked as y; = [y{],y{3,...,yip). Similar
to (6.19), in the kth decoding iteration at the CPU, the stacked received data signal in

the tth RB at the CPU can be expressed as

yi = > ics, GrihuiTi + g, (6.20)

A .. .
where n; = [nfl nf ... ,nt%]H . The CPU uses a combining vector af to combine the

received data signal. Thus, we obtain the post-combined data signal as 7 =2 akfy*

which is expanded as

~k _ _kHy.k kHy1 k kH kH
Yim = Xm htmgtmxm — Q4 htmgtmxm + A Zieggngtihtixi =+ Ay Ny (621)
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The first term on the RHS, aFZ ﬁfmgtmxm, denotes the useful signal component and it
contains the CPU channel estimate flfm of the mth user; the second term af!! ﬂfmgtmxm

contains h*

¥ . the CPU estimation error of the mth user; the third term aff>". sp gt

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU; and the fourth

kH

term ay,

n; is the additive noise component. We need to compute the SINR from the above
post-combined data signal. For this purpose, let C#* éPfoq (Pi"P;B}, + NOIMtk)*l, and
k k
ci; = [C].i-
We now present the channel estimates of the users’ channels h;; and the SINR achieved

by the users at the CPU in CCF IRSA in the following theorem.

Theorem 6.3 » Performance Analysis of CCF IRSA.

The minimum mean squared error (MMSE) channel estimate ﬂfq of HJ, in the tth

RB in the kth decoding iteration to the gth AP can be calculated as
Hf, = Y5 (PiB; P + ML) "' PIBY,. (6.22)

Specifically, the CPU estimate of the channel hi. of the ith user to the gth AP is
calculated as h?% = [ﬂfq], For the ith user in the tth RB in the kth decoding
iteration, the effective () N-length CPU channel estimate is found as

hf; = [y B, WM e coM, (6.23)

<y Iy

Further, the estimation error h? £ h% —h? is distributed as h%* ~ CA(Oy, 6%y ),

% o
where 07" is calculated as

k k
N0||ng‘ ||2 + Zneslgq PnHng‘ |29tnﬁg‘7§

B B :
Nolleg; |12 + Zneskq IpZ i 12gmBros

gk __ g 2
5ti_ih

(6.24)
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The covariance of the channel estimation error at the CPU is
AF 2 blkdiag(0F Iy, 6%y, ..., 62" y). (6.25)

The SINR achieved by the mth user at the CPU in the tth RB and the kth decoding

iteration can be written as

k

Gainy
e ,Vm € Sy, 6.26
No +Esth, +mMuth "=k (6:26)

ko _
ptm_

where
Gainl’fm £ pmgtm|af£hfm|2/||afm||2,
EStfm £ Ziegkpigtiangfiafm/||a1]£€m||2;
MUTy, £ 3 icspmbigulain hil?/llaf, 1>
Proof. See Sec. 6.6.5. O

Remark 6: The MMSE channel estimate ﬂfq in (6.22) can be computed as

Hf, = YI, (PyBf P + No1.) Py B}, (6.27a)
< YPPIBY (PETPIBY, + NoLyy: )™, (6.27b)

where (a) follows from (AB +1I)7'A = A(BA +1I)"! [144]. Here, the estimate can be
calculated via an inverse of either a 7 x 7 matrix or an MF x M} matrix as required.

Remark 7: The results derived in Theorem 6.3 holds for any choice of the combining
vector af  the pilots {p,,}, and the power control policy {p,}. The channel estimates

h¥ are stacked into the matrix HF € COV*M! The combining vector that maximizes the

SINR in (6.26) is the MMSE combiner, which can be found as af,, = [AF].,,,, where

AF = (LF + ﬂfoyplﬂfH)—lﬂngpl, (6.28)
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where LF £ > ies Pigudl + Nolgy, and Dﬁplédiag(pil,piQ, .-+ Di,,,) contains the power
t
coefficients of the MF users. Using the Woodbury identity [144], the combiner matrix can

also be found via an MF x M} inverse as
AF = S (g — (GE)'Df 5D, (620

where J¥£blkdiag(jfiIn, jhIn. - ., jiIn), GF £ I +DF L HITIFHIDE . jk £ 1/(No+

e .
Zieskpz'gti5tq¢ ), and Df,pgé diag(\/Piys /Pizs - - -+ , /piMf)-

Algorithm 8: Performance Evaluation of CCF IRSA at the CPU
Input: T, N7 T7 M7 NOa Ga Pa {qu}tzl,Q,‘..,T;qzl,Q ..... Q> {ytq}tzl,Q,...,T;qzl,Z ..... Q> kmax
1 Initialize: S; = [M], G, = {i € [M]|g; = 1}, S = {}

2 Compute received signal at the CPU y; = [y/],y/3,.. ., ¥/5)
3 for k=1,2,..., kyn. do

4 fort=1,2,...,T do

5 Find M} = |G, N Sil, P} = [P.gins, {Y5 Yot ¥

6 Compute local estimates flff, Vi e S, Vg€ {1,2,...,Q} via (6.22)

7 Stack local estimates to obtain CPU estimate

hy = [ n2EH | h@MH v e S, as in Theorem 6.3

8 Evaluate the SINR pF., Vi € S), via Theorem 6.3

9 If pF. > 74, remove user 7 from Sy, and perform IC in all RBs where g;; = 1
10 Add user i to set of decoded users: S = S U {i}

11 end
12 end

13 Output: Set of users decoded at the CPU: S

We now evaluate the performance of CCF IRSA at the CPU using Algorithm 8. The
algorithm is run till no more users are decoded in two successive iterations (or up to a
maximum of k. iterations). The algorithm outputs S, which is the set of users decoded
at the CPU. Thus, the PLR of the network can be computed as PLR £ (1 — |S|/M), and
the throughput can be computed as 7 = M (1 — PLR)/T.
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6.3.4 Hybrid-Processing in Cell-Free IRSA: HCF IRSA

We now analyze IRSA in the cell-free scenario with hybrid processing as depicted in
Fig. 6.5. We use the acronym HCF IRSA to denote the above: Hybrid Cell-Free processing
in IRSA. In HCF IRSA, there are two phases: the first phase is at the APs and the second
phase is at the CPU. In the first phase, each AP tries to decode as many users as possible
similar to LCF IRSA. Once any AP cannot decode any more users in two successive
iterations, it forwards the residual pilot and data signals alongside a list of users it has
already decoded to the CPU on the fronthaul. In the second phase, the CPU attempts
to decode users using the combined signal made up of the residual signals from all APs.
This exploits the distributed array gain and can achieve a much better performance when
compared with LCF IRSA. Further, compared to CCF IRSA, HCF IRSA reduces the load
on the CPU by offloading the decoding tasks to the APs. Of course, this depends on the

regime (load, pilot length, SNR) in which we are operating as we will see in Sec. 6.4.4.
Fronthaul carries
residual signals

CPU .

Fronthaul

Figure 6.5: Setup of HCF IRSA.

Note that HCF IRSA does not resemble any existing receiver cooperation levels that
are considered in existing works [21,133]. Receiver cooperation designs similar to Level
2 and Level 3 can be considered for CF IRSA in future work. For example, in Level 3
receiver cooperation for CF, the APs send not the original received signal but the local

estimates obtained from the post-combined signals.
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6.3.4.1 Decoding Process in HCF IRSA

We now describe the performance evaluation of HCF IRSA via the SINR threshold model.
HCF IRSA has two phases: phase 1 at the APs and phase 2 at the CPU. In phase 1, the
decoding is similar to the decoding process of LCF IRSA: each AP iteratively computes
the channel estimates and the SINRs of all users in all RBs, decodes users (using the SINR
threshold model) and performs SIC. Decoding stops when no more users are decoded in
two successive iterations. The APs forward the residual pilot and data signals to the CPU
via the fronthaul links, alongside a list of users already decoded. This marks the end of
the first phase.

In phase 2, the CPU uses the residual signals to decode the set of users not decoded at
any AP. The process is similar to the decoding process of CCF IRSA: the CPU iteratively
computes the channel estimates of all the users yet to be decoded at any AP and the
corresponding SINR in all RBs, decodes users (using the SINR threshold model) and
performs SIC. Decoding stops when no more users are decoded in two successive iterations.
The throughput of the network is calculated as the total number of correctly decoded
packets (at both the APs as well as the CPU) divided by the number of RBs.

6.3.4.2 Performance Analysis of HCF IRSA

In this subsection, we evaluate the performance of HCF IRSA.

Phase 1: In Phase 1, as discussed earlier, the APs decode as many users as possible
similar to LCF IRSA. This has been discussed in Sec. 6.3.2.2. The same can be repeated
here as well, and we skip the details. At the end of Algorithm 7, we obtain the set S,
which is the set of decoded users at the qth AP at the end of the gth AP’s decoding

process in phase 1.

Phase 2: The set of users that have been decoded across the entire network is given by
S=SUSU---U SQ. We now denote U, as the set of users in the network not decoded
up to the kth CPU decoding iteration, with ¢, = [M]\ S and U} = U, \ {i}. U, contains
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only the signals of the users who need to be decoded at the CPU since they have not been
decoded at any of the APs.

Let the decoding at the gth AP stop at a decoding iteration kg, i.e., it cannot decode
any more users. Thus, the residual received pilot and data signals sent from the gth AP

are denoted by Zf; = Yf; “ and Z%q = yfg. These can be expressed at the CPU as

1
Ziy = e 9Py + Y ies\5,960Epi + Ni, (6.30)

Zig = D ser 9T T e s, 9hiTi + Ny, (6.31)

where S is the set of users who have been decoded at the APs in phase 1, and S\ S, is
the set of users who have been decoded at all the other APs in phase 1 except for the
gth AP. These components are still present in the residual signal of the gth AP since IC
is not performed for all the other users at the gth AP. Thus, qu = Y e 3\&, gihipH and
dy, £ Zie 3\S, grihl.x; are the interference components due to users decoded at all APs
other than the gth AP.

At the CPU, the processed residual pilot signal from the gth AP in the kth CPU

decoding iteration is given by
k
qu = Zieukgtihgisz + qu + qu- (6.32)

We now need to derive the channel estimates at the CPU in phase 2, which are computed
based on Zf: . Based on the notation setup above, Uy, U (S \ S,) is the set of users who
have not yet been decoded up to the kth iteration at the CPU in phase 2 and also the
users who have been decoded at all the APs except for the gth AP in phase 1. Thus,
Z/_{tlf; 2G,NUU(S\ Sq) is the set of such users who have transmitted in the tth RB and
Uk = |Uf] is the number of users who are yet to be decoded at the CPU up to the kth
CPU decoding iteration plus users who transmitted in the tth RB but were not decoded

at the ¢th AP. Note that we account for the pilot contamination due to users decoded at

the APs in phase 1 as well.’

5Similar to the single-cell estimators ignoring inter-cell pilot contamination, we can also ignore the
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Let Pfq contain as its columns the pilots of the Ut’f; users, and qu =
ordiag(8l, 6L, ..., ﬁfﬁk) contain the path loss coefficients of the Uf users, with Uf =

{iy, i, ... 7iUtlcq}. The st(tllbset of the users who are yet to be decoded at the CPU up to the
kth CPU decoding iteration is G; NU,, for whom the channel estimate matrix is obtained
as I:Ifq = [Iflfq]:,gmuk, with UF £ |G, NUy|. Finally, the channel estimate of the channel
h% of the ith user to the gth AP is calculated as h% = [ﬂfq]z The channel of the ith
user in the tth slot to the CPU can be computed by stacking the user-AP channels as
hy = [0 027 h@"H ¢ CONX! Thus, the CPU channel estimation error is given
by h¥ £ h¥ — h,;. The estimate of hy; is presented in Theorem 6.4.

Let pf, denote the SINR of the mth user in the tth RB in the kth decoding iteration
at the CPU. The received data signal can be stacked as z; = [z{], 23, ..., 2z{,]. Similar to

(6.20), in the kth decoding iteration at the CPU, the stacked received data signal in the
tth RB at the CPU can be expressed as

z; = > icuy Jriheri + di + 1y (6.33)

where dy £ [dff,df3,...,d/5]7, and n, £ [nf], nf, ... ,n/5]7. The CPU uses a combining

vector af = to combine the received data signal. Thus, we obtain the post-combined data

signal as zF = a®z" which is expanded as
sk _ kH{E kHY k kH kH kH
Zim = g Dy Gem T — Ay Ny G T + A5, Zieb{gﬁgtihtiwi + ag, dy + ag, ny. (6.34)

The first term on the RHS, aFZ ﬁfmgtmwm, denotes the useful signal component and it
contains the CPU channel estimate flfm of the mth user; the second term afZ ﬂfmgtmxm

contains h*

i, the CPU estimation error of the mth user; the third term afgzieuzngtihtixi

is the multi-user interference faced by the mth user due to the other users in the network
who have not yet been decoded up to the kth decoding iteration at the CPU (and who
have also not been decoded at any AP in phase 1); the fourth term a¥”d, is due to the

interference from users already decoded at all the APs in phase 1; and the fifth term

same and perform low complexity channel estimation. For more details, see Sec. 6.7.2.
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kH
tm

post-combined data signal. For this purpose, let C{* £ P} Bf (PX/Pk BE + NOIqu)_l,

q
and ¢l £ [CI"].,.

)

a’’n, is the additive noise component. We need to compute the SINR from the above

We now present the channel estimates of the users’ channels hy; and the SINR achieved

by the users at the CPU in HCF IRSA in the following theorem.

Theorem 6.4 » Performance Analysis of HCF IRSA.

The minimum mean squared error (MMSE) channel estimate ﬁfq of H in the tth

RB in the kth CPU decoding iteration to the gth AP at the CPU
~ e P
qu = ZE‘] (Pqufqufl + NOIT) 1P,]5€foq- (635)

The subset of the users who are yet to be decoded at the CPU up to the kth CPU
decoding iteration is G; N Uy, for whom the channel estimate matrix is obtained as
flfq = [Iflfq];,gtnuk. Finally, the channel estimate of the channel h; of the ith user to
the gth AP is calculated as h%* £ [ICIZ?]Z For the ¢th user in the ¢tth RB in the kth

)

CPU decoding iteration, the effective Q N-length CPU channel estimate is found as
hf, = [hif", b, . R e CON (6.36)

Further, the estimation error h? £ h% —h? is distributed as h%* ~ CA/(Oy, 6%y,

% o
where 6;12- is calculated as

k k
5% = 32 Nollegi 1> + Zneafq\{i} bty [P gmBion (6.37)
i — M0 . .
' *\ Nolleff (|2 + > neup, PH L PgunBion
The covariance of the channel estimation error at the CPU is
AF 2 blkdiag(8F Ly, 62Ty, ..., 62" y). (6.38)

The SINR achieved by the mth user at the CPU in the tth RB and the kth decoding
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iteration can be written as

k

tm
m € U, 6.39
Np + EstF +MUTF 4+ Deck k (6:39)

Gain

k _
ptm -
where

Gain, £ ppngu|aihl 2/||af, |12,

Es‘tfm £ Zieukpigtiafnle?ia?m/HallfcmH27
A

MUIfm = Zieu;"pigti|afn1{hfi‘2/”afm||2>

Decy, < ay, Sa,aty/ [ag*

Here, Xg, £ blkdiag(JtlIN, dioly, . .. ,JtQIN), with cth £ Zieg\gqpigtiﬁgaﬁ.

Proof. See Sec. 6.6.6. []

Remark 8: The channel estimates IfIfq for the users in Z/_{t";] in (6.35) can be computed as

HE = Z8(PF BEPEM 4 NoL,) ' PE B (6.40a)
< ZEFPE Bl (PLTPL B, + Noly: ) ™, (6.40b)

where (a) follows from (AB +I)"'A = A(BA +1I)~! [144]. Here, the estimate can be
calculated via an inverse of either a 7 x 7 matrix or an Ut’f] X Ut’ﬁ] matrix as required.

Remark 9: The results derived in Theorem 6.4 holds for any choice of the combining
vector af | the pilots {p,,}, and the power control policy {p,}. The channel estimates
h¥ are stacked into the matrix Hf € C2NV*Uf | The combining vector that maximizes the

SINR in (6.39) is the MMSE combiner, which can be found as af, = [AF]. ., where
A} = (L + HyDy, Hi) ' HY D),

where LF £ ¥4, + > i Piguf + Nolgy, and D}, 2diag(p;, , piy, - - - ’piutk) contains the
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Algorithm 9: Performance Evaluation of Phase 1 of HCF IRSA at the APs

IHPUt: T, N7 Ta M7 NOa Gv Pa {qu}t:LQ,...,T;q:LQ ..... Q> {ytq}tZI,Q,...7T;q:172 ..... Q> kmax

1 forg=1,2,...,Q do

2

3

4

10

11

12

Initialize: Sy, = [M], G, = {i € [M]|gs = 1}, S, = {}

for k=1,2,..., knax do

fort=1,2,...,7 do

Find M} = (G, N Sigl. P = [Pl.ginsy, Yoo V5,

Compute h¥, Vi e Skq via Theorem 6.2

Evaluate the SINR pf;, Vi € Si¢ via Theorem 6.2

If pfqi > i, remove user ¢ from Sy, and perform IC in all RBs where
g =1

Add user i to set of decoded users: S, =S, U {i}

end

end
Output: Set of users decoded at the gth AP S, residual pilot signal

1 A k. . . A
Zy, = Y™, and residual data signal z;, = ypma

13 end
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Algorithm 10: Performance Evaluation of Phase 2 of HCF IRSA at the CPU

1

2

3

4

5

6

10

11

12

13

14

Input: T, N7 T7 M7 NOa Ga Pa {qul}tzl,Z,...,T;qzlﬂ ..... Q> {Z%q}tzl,Q,...,T;qzl,Z ..... Q> kmax
Compute set of users decoded at all the APs S =S US, U---U SQ

Compute residual received data signal at the CPU z; = [z}{, 2y, ..., 2]

Initialize: U; = [M]\'S, G, = {i € [M]|gs =1}, U = {}
for k=1,2,..., kpa do
fort=1,2,...,7T do
Find Uf, = G, NU,U(S\ S,), Up = [Uf],
P} = [Pl 25 Vg € {1,2,...,Q}, and 7}
Compute local estimates fl?f, Vi € Uy, Vq € {1,2,...,Q} via (6.35)
Stack local estimates to obtain CPU estimate
hy, = [ 2 @M H v e U, as in Theorem 6.4
Evaluate the SINR pf,, Vi € Uy via Theorem 6.4
If pfl- > Yn, remove user ¢ from U and perform IC in all RBs where g; = 1

Add user i to set of decoded users: U = U U {i}

end

end

Output: Set of users decoded at the CPU: U/
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power coefficients of the UF users. Alternately, using the Woodbury identity [144], the

combiner matrix can also be found via a U x UF inverse as
k _ TRFTRk k\—17y%  FIEH TRETF\ Dk
At - Jt Ht Dt,pQ(IQN - (Gt> Dt,p2Ht Jth)Dt,p27

where JF2 blkdiag(j5In, jbIn, ..., jloIn), GF £ 1 +DF ,HMIFHIDE . gk £ 1/(No+
dig + Zieukpigti(sgik)? and Dy, = diag(\/Di; s v/Diz - - - \/ZTUtk)

We now evaluate the performance of HCF IRSA at the APs using Algorithm 9 and
at the CPU using Algorithm 10. Algorithm 9 is run similar to LCF IRSA. Algorithm 10
at the CPU is run till no more users are decoded in two successive iterations (or up to a
maximum of k., iterations). The algorithm outputs S, which is the set of users decoded
at all the APs in phase 1, and U, which is the set of users decoded at the CPU, in phase
2. Thus, the PLR of the network can be computed as PLR = (1 — |SUU|/M), and the
throughput can be computed as 7 = M(1 — PLR)/T.

6.4 Numerical Results

6.4.1 MC IRSA

In this section, we evaluate the throughput of MC IRSA via Monte Carlo simulations and
provide insights into the impact of various system parameters on the performance of the
system. In each simulation, we generate independent realizations of the user locations,
the access pattern matrix, and the channels. The throughput in each run is calculated as
described in Sec. 6.2.1.1, and the effective system throughput is calculated by averaging
over the runs. We consider a set of () = 9 square cells, stacked in a 3 x 3 grid, and report
the performance of the center cell [10]. Each cell has M users spread uniformly at random
across an area of 250 x 250 m?, with the BS at the center [49].6

The results in this section are for T'= 50 RBs, N, = 10> Monte Carlo runs, o = 1,

5Due to path loss inversion, the area of the cell does not significantly affect the throughput, but affects
the area spectral efficiency, which we do not analyze here.
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SINR threshold 7, = 10. The number of users contending for the 7" RBs in each cell is
computed based on the load L as M = [LT]. The path loss is calculated as 3, (dB)
= —37.6log,(dj;/10m), where dj; is the distance of the ith user in the jth cell from the
gth BS [49]. The pilot sequences are chosen as the columns of the 7 x 7 discrete Fourier
transform matrix normalized to have column norm v/7P?. The soliton distribution [72]
with dmax = 8 maximum repetitions is used to generate the repetition factor dj;, for the
1th user in the jth cell, whose access vector is formed by uniformly randomly choosing
dj; RBs from T RBs without replacement [7].” The access pattern matrix is formed by
stacking the access vectors of all the users. The power level is set to P = PP = 10 dBm [49]

and Ny is chosen such that the data and pilot SNR are 10 dB, unless otherwise stated.

'y

{9 SC: N = 8,7 =10
>MC: N = 32, vy, = 10
-{}MC: N =16,vy, =6
[ SC: N =4,vy, =10
MC: N = 16, vy, = 10
-‘ﬁnMC: N=8v,=6 i
BMC: N =8,v, =10

w

V]
T

Center Cell’s Throughput (7¢)

(=]

Figure 6.6: MC IRSA: Effect of load L with 7 = M.

In Fig. 6.6, we show the effect of the load L on the center cell’s throughput 7. All
the curves increase linearly till a peak, which is the desired region of operation, and then
drop quickly to zero as the system becomes interference limited. All the users’ packets
are successfully decoded in the linear region of increase, and at high L, beyond the peak,
the throughputs drop to zero. For N = 8,4, = 10, we see a 70% drop in the peak
throughput from 7o =4 at L = 4 for SC to T¢ = 1.2 at L = 1.2 for MC. This is because
users face a high degree of inter-cell interference in the MC setup, unlike the SC setup,

especially at high L. In the SC setup, the peak throughput reduces from 7o = 4 for

"The soliton distribution has been shown to achieve 96% of the throughput that can be achieved with
the optimal repetition distribution [8]. For the optimal repetition distribution, see Chapter 7.
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o IS

Center Cell’s Throughput (7¢)
Do

Figure 6.8: MC IRSA: Effect of number of antennas V.

w >

Center Cell’s Throughput (7¢)
no

Pilot length (7)

~\ o O
Solid Line: SNR = 10 dB 1
Dashed Line: SNR = —5 dB '
! NS
N
Si-i s
< L=3 I
1
ti=2 .
=HL=1 iy
I,I ’
1y /l
= 1 ‘ /E E]
" ,/ .
u, .
ll,”
v,
64 128

Number of antennas (V)

Solid Line: L =4
Dashed Line: L =3
Dotted Line: L =2
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N =8to 7o =3at L =3 for N =4. This trend is similar to the MC setup for which the
peak throughputs are 7o = 4,2.6,1.2 for N = 32,16, 8, respectively. This is because the
system’s interference suppression ability with MMSE combining reduces as we decrease
N [49]. This holds true with 4, = 6 also, which corresponds to a lower SINR threshold,
and consequently higher 7¢. To summarize, at high L, there is a high degree of inter-cell
interference which SC processing does not account for, resulting in a substantial drop in
performance.

Fig. 6.7 studies the impact of the pilot length 7. The performance of SC TRSA at all
L is optimal (note that the throughput is upper bounded by L) for 7 > 10. In MC IRSA,
nearly optimal throughputs are achieved for L = 1,2,3 at 7 = 10, 30,40, respectively.
The throughput for L = 4 does not improve much with 7. At high L, the impact of
inter-cell interference is severe, as expected. Increasing 7 implies that each cell has a
higher number of orthogonal pilots, and hence can help in reducing intra-cell PC, but the
system is still impacted by inter-cell PC and inter-cell interference. Thus, we see that
MC IRSA requires significantly higher 7 (at least 4 — 5x) to overcome inter-cell PC and
inter-cell interference to achieve the same performance as that of SC IRSA.

In Fig. 6.8, we study the effect of N for L = 1,2, 3,4, with SNR = 10, —5dB and 7 =
M. Nearly optimal throughputs for L = 1,2, 3,4 can be achieved with N = 8,16, 32, 32
for SNR = 10dB, and with N = 64 for SNR = —5dB. The system performance improves
because of the array gain and higher interference suppression ability at high N. This aids
in reducing not only intra-cell interference, but also inter-cell interference. However, as
discussed in Remark 3, the SINRs of the users have a coherent interference component
that scales with V. Thus, while an increase in N helps reducing intra-cell interference and
inter-cell interference, and improves the system performance, it does not reduce intra-cell
PC and inter-cell PC. Similar observations about N can be made where we study the
impact of SNR in Fig. 6.9. At very low SNR, the system is noise limited, and increasing
N does not help increase the throughput, which is at zero. For N = 16, the throughput is
always zero and nearly zero for L = 4 and L = 3, respectively. Optimal throughputs are

obtained at higher SNRs for N = 32 and 64. Since boosting transmit powers of the users
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scales both the signal and interference components equally, the SINR does not increase,
and therefore the system performance saturates with SNR. To summarize, increasing 7,
N, and the SNR can judiciously help reduce the impact of intra-cell PC and inter-cell

PC, as well as intra-cell interference and inter-cell interference.

6.4.2 CCF IRSA

So far we have studied the performance of the central cell in MC IRSA via the center cell’s
throughput. We now study the performance of the network in CF IRSA via the system
throughput. In this section, we evaluate the performance of CCF IRSA via Monte Carlo
simulations and then, we provide insights into the impact of varied system parameters on
the performance of the system. In each simulation, we generate independent realizations
of the user locations, the access pattern matrix, and the channels. The throughput in
each run is calculated as described in Sec. 6.3.3.2, and the effective system throughput
is calculated by averaging over the runs. The results in this section are for 7' = 50 RBs,
N, = 10® Monte Carlo runs, o2 = 1, SINR threshold vy, = 10, plane size d, = 1km, and
7 = 10 symbols [48]. The number of users contending for the 7' RBs is computed based
on the load L as M = |LT]. The pilot sequences are chosen as 7-length pilot sequences
made up of random QPSK symbols, normalized to have column norm +/7PP. The soliton
distribution [72] with dy.x = 4 maximum repetitions is used to generate the repetition
factor d;, for the ¢th user, the access vector is formed by uniformly randomly choosing
d; RBs from T' RBs without replacement [7]. The access pattern matrix is formed by
stacking the access vectors of all the users.

To generate the AP locations and make a fair comparison with SC IRSA, we divide
the plane of size d, x d, into a total of @) virtual square cells of size d. x d, with d, =
d,/+/Q [116]. We place the APs at the locations where the BSs would have been placed
in a multi-cell setup, i.e., the centre of each cell, and then remove the cell boundaries
to make up the CF system [21]. The path loss at the gth AP is calculated as ! (dB)
= —37.6log,y(d?/10m) + Shad., where d! is the distance of the ith user from the gth AP,
and Shad. ~ N (0, 16) is the log-normal shadowing component [21]. The received SNR at
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the center of the plane of a user situated at the edge of the plane is termed as the edge
SNR, and is denoted by p.. The power levels of all users is chosen such that the signal
from a user at the edge of the plane, i.e., at a distance d,,/ V2 from the center of the plane,
is received at p.. This ensures that all users’ signals are received at an SINR that at least
pe on average, in singleton RBs. The power level is set such that p, = 10dB [49], unless
otherwise stated. We consider typical communication settings over a 100kHz bandwidth
with a noise figure of 7dB in the receiver hardware and calculate the noise power Ny based
on this, according to standard models [49]. The pilot power PP is chosen to be twice the
data power P [49].

In Fig. 6.10, we study the effect of the system load L on the performance of CCF
IRSA. In Fig. 6.10(a), we plot the throughput for a fixed QN = 32 and varying @ in
order to study the effects of densification on CCF IRSA (and the PLR in Fig. 6.10(b)).
Here densification refers to increase in the number of cells with the same fixed network
size, thereby having smaller cells in order to combat fading. The throughput under each
configuration initially increases linearly with the load L since more users are decoded as
and when they are added to the system. Once they hit a peak at the inflection load L*
for the corresponding configuration, the throughput starts dropping due to interference
limitation. The throughput at high L beyond the inflection load saturates at a constant
value since users close to the BS always get decoded due to high received powers. In the
linear throughput regime, i.e., when L < L*, the corresponding PLR is zero and becomes
a non-zero value and close to unity at high load beyond L*. We observe peak throughputs
of T =12, 16, 19, 23, 26, and 29 for (Q,N) = (1,32), (2,16), (4,8), (8,4), (16,2), and
(32,1). The inflection load of IRSA increases from L* = 12 for SC IRSA to L* = 29 for
CCF IRSA, which is a 142% increase in the load. Specifically, at a load of L = 29, SC
IRSA with a mMIMO setup achieves a throughput of 7 = 2 packets per RB and CCF
IRSA achieves a throughput of 7 = 29 packets per RB, which is over a 14x improvement
in the throughput. This is because CCF IRSA exploits the MDG offered due to the
distributed nature of the antennas. As we increase ) (keeping QN fixed), even though
the N at each AP reduces, since we perform CPU only processing in CCF IRSA, the
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distances between the users and the nearest AP reduces. Users are closer to the decoders
in CCF IRSA and as such, the effect of path loss is compensated by the MDG. Thus,
CCF IRSA outperforms SC IRSA due to the MDG of CF mMIMO systems.
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In Fig. 6.11, we study the impact of @ on the throughput of CCF IRSA for QN = 128
and QN = 64. The curves in the previous figure were for QN = 32. Here we study it
for higher QN and higher L. We observe that all the curves improve with an increase

in ) and achieve the optimal throughputs. With QN = 128, the optimal throughput of
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T = L are achieved at () = 2, 2, 4, 8, and 16 for L = 16, 24, 32, 40, and 48, respectively.
With QN = 64, the optimal throughput of 7 = L are achieved at Q = 2, 4, 8, 16, and
64 for L = 16, 24, 32, 40, and 48, respectively. For L = 32, with () = 8, having N = 8
antennas per AP yields a low throughput of 7 & 10, whereas having N = 16 antennas
per AP yields the optimal throughput of 7 = L = 32. Similar observations can be made
for L = 48 with () = 16. This shows the behaviour of doubling the antennas per AP close
to the inflection load in CCF IRSA. The observation about densification in CF systems
is in agreement with existing works [22]. CCF IRSA yields optimal peak throughputs of
T = L for every L. Comparing this with SC IRSA, we obtain improvements of 1.6x,
6x, 8x, 10x, and 12x in the throughput for L = 16,24, 32,40, and 48. Thus, for higher
QN, we achieve even higher gains in both the throughputs at high loads as well as higher
inflection loads.

In Fig. 6.12 and Fig. 6.13, we study the effect of the pilot length on the performance
of CCF IRSA with QN = 32 and QN = 64 respectively. As observed before, densifi-
cation highly improves the performance of CCF IRSA. In both the figures, we observe
that all the curves improve with an increase in @), but only a few achieve the optimal
throughputs. Majority of the configurations in both figures perform poorly at 7 = 5, but

the performance of all of them improve significantly with an increase in 7. For QN = 32
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and L = 32, we observe that the peak throughput is achieved at 7 = 15 for CCF IRSA
whereas SC TRSA achieves a throughput of 4, which is a 8x improvement in the per-
formance due to MDG in CCF IRSA. We also observe that the curves for L = 40 with
QN = 32 never achieve the optimal throughputs, which is because L = 40 is always
beyond the inflection load for QN = 32 (and L = 32 and 16 are well below the inflection
load). When we increase QN from 32 to 64, we see that the optimal throughputs can
be achieved. The increase in the antennas helps improve interference suppression. At
7 =5, CCF IRSA achieves more than a 10x improvement in the throughput for L = 40.
Also, for L = 40, CCF IRSA achieves the optimal throughput with just 7 = 5, whereas
SC mMIMO achieves the same with 7 = 45, which is a 9x reduction in the pilot length.
Further, we observe that for a few configurations, the performance is poor at for a wide
range of 7, but at high 7, we achieve the optimal performance: with ¢) = 8 N = 8 and
L = 56,48, with Q = 1, N = 64 and L = 40,32, with Q =4, N = 8 and L = 32. For low
L, the optimal throughputs are achieved by lower pilot lengths. This demonstrates the
impact of the length of the pilot sequences in improving the performance of the system.

Finally, in Fig. 6.14, we study the impact of the edge SNR on the performance of the
system for varied loads. As observed before, densification highly improves the performance
of CCF IRSA. All the curves initially marginally improve with the SNR at very low SNRs
(< —40dB), significantly improve at moderate SNRs (between —40dB and —20dB), and
then saturate at high SNRs (> —20dB). This saturation occurs at the peak optimal
performance for ) = 64, N = 1 at all loads, and at low values for ) = 1, N = 64 at all
loads. With () = 8, N = 8, we observe that L. = 32 and 16 achieve the peak throughputs
at 0dB and —10dB SNRs, whereas the performance of L = 48 saturates near 7 = 7. This
is because L = 48 is higher than the inflection load for the corresponding configuration.
This plot also shows that devices could transmit with lower powers in CCF IRSA and still
be decodable at the CPU compared to SC IRSA which does not even achieve the optimal
throughputs for these high loads.

In summary, CCF IRSA massively improves upon the performance of SC IRSA, mainly
due to the MDG of CF mMIMO systems. A fully densified network operates with the
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best performance and can even achieve the peak optimal throughputs up to L = 56 for
QN = 64 and even beyond. The inflection load massively improves with densification,

pilot length, and the edge SNR.

6.4.3 LCF IRSA

In this section, we study the impact of system parameters on the performance of LCF
IRSA. The system parameters are identical to the previous subsection. Existing works
handle interference-limitation of communication systems by using the divide-and-conquer
approach, where the network is split up into small cells [22]. This reduces the effect of
path loss and improves the performance. This is the exact behaviour we observed with
CCF IRSA, and what we will also next observe in HCF TRSA. However, this behaviour
is not observed in either MC or LCF TRSA systems as we will see below.

We first study the effect of densification on the performance of LCF IRSA in Fig. 6.15,
keeping the antenna density QN fixed and 7 = 10. In Figs. 6.15(a), 6.15(b), 6.15(c), we
study the effect of the edge SNR on LCF IRSA with L = 4, 14, and 16, respectively. As
observed in SC IRSA, improving the edge SNR of the system improves the performance
up to the point where the system either performs optimally or where the performance
saturates. L = 4 is well below the inflection load L*, and thus, the performance is
optimal at high SNR. At low L < L*, the system performance is dominated by the
path loss, and thus, the performance improves with densification. L = 16 is beyond the
inflection load L*, and thus, the performance saturates at high SNR. At high L > L*, the
system’s performance is already saturated, and thus, densifying helps only decode a few
more users, thereby improving the performance only slightly. At both low load of L = 4
and high load L = 16, densification helps improve the performance unilaterally across all
edge SNRs, i.e., SC IRSA performs the poorest and densification in LCF ITRSA improves
the performance for every SNR. L = 14 is close to the inflection load L*, and thus, the
performance is optimal at high SNR under certain configurations and the performance
saturates at a suboptimal value under other configurations. For SNR < —10dB, any

densification only improves the throughput. In this noise-limited regime, densifying the
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network pushes users closer to APs, thereby increasing the throughput. However, an
inverse trend is observed for SNR > —10dB. In this regime, it is better to operate the
system as a SC mMIMO system with 64 antennas rather than a small cell setup with 64
cells with 1 antenna each.

We observe similar trends for MC IRSA in Fig. 6.16, for which the simulation settings
are identical to that of the previous figure. Here we compute the system throughput
of MC IRSA and do not perform any path loss inversion. For a low load of L = 4,
we observe that () = 2, N = 32 performs the best, and it performs slightly better than
Q = 1, N = 64, which is SC IRSA. All the other configurations, as the system is made
more dense with smaller cells, perform poorly. Specifically for MC IRSA, even when the
cells are made small, there are users out-of-cell who could be decoded at a different cell’s
BS, but will not be decoded. However, in LCF IRSA, these users get decoded as well
since there are no cell boundaries. Other than this, the MC setup performs similar to the
LCF setup, and the trends are similar: this is because LCF IRSA is similar to MC IRSA
when each AP is replaced by a BS and the cell boundaries are removed, enabling each AP
to decode users in singleton slots even from adjacent cells. For L = 14, @ = 1, N = 64
performs the best at edge SNR > 0dB, whereas for edge SNR < 0dB, Q = 2, N = 32
performs the best. This trend is similar to LCF IRSA. For L = 16, Q = 2, N = 32
performs the best, ) = 4, N = 16 is the next best configuration, ) = 1, N = 64 is the
next best configuration, and the other configurations perform poorly. Similar to what was
observed in LCF IRSA, for L = 4 and L = 16, both of which are not near to the inflection
load, densification helps improve the performance of MC IRSA; albeit this happens only
initially, and the most dense network performs very poorly. For L = 14, using a SC
mMIMO system would help us even achieve the optimal throughput at high SNR.

Even though the dense network in MC or LCF IRSA has many small cells which can
help overcome the effect of path loss, the system is now operating with fewer antennas,
with which the system has a lower interference suppression ability. Thus, both MC and
LCF IRSA perform poor with higher densification. This observation about densification

in MC systems is different when compared with the observations in existing works [22].
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This is because the main metric of interest in usual cellular communications is the spectral
efficiency (SE) or sum-rate-type metrics and the main metric of interest in our work is
the packet throughput of the system, i.e., the connectivity of the system. The SE metric
does not talk about the connectivity of the system and captures the achievable rate of the
system. It only measures the number of bits that can be successfully decoded. The metric
we consider is captures “outage” events where packets transmitted at a given (fixed) rate
are successfully decoded. Thus, in systems where the connectivity or outage is the main
metric of interest, densification need not always help improve the performance of the
system. Thus, in MC and LCF systems, densification helps improve the performance of
IRSA at loads below or higher than the inflection load; at loads close to the inflection
load, an SC mMIMO system performs better than MC and LCF systems.
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Figure 6.17: MC IRSA vs LCF IRSA.

In Fig. 6.17, we compare MC IRSA and LCF IRSA with identical parameter settings.
With @ = 4, N = 4, LCF IRSA achieves an inflection load of L* = 4.7, whereas MC
IRSA achieves an inflection load of L* = 2.6. With Q = 2, N = 8, LCF IRSA is still in
the linear throughput regime, whereas MC IRSA achieves an inflection load of L* = 5.
Further, we still observe the same densification trends as before for both MC and LCF
IRSA: densification does not help in improving the throughput. Also, by removing the

cell boundaries and allowing the BSs or APs to decode as many users as possible, the
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performance of the system improves.
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In Fig. 6.18, we study the effect of the pilot length 7 on the performance of LCF IRSA
for L = 8,16, and 24. Under all the configurations, the throughput either increases or
saturates with the pilot length 7. For L = 8, the throughput is optimal when densifying
from @ =1, N =64 to Q = 8, N = 8, and suboptimal otherwise, for 7 > 10. For L = 16,
the throughput is optimal when densifying from Q = 1, N = 64 to ) = 4, N = 16, and
suboptimal otherwise, for 7 > 25. For L = 24, the throughput is optimal when densifying
from Q = 1,N = 64 to Q = 2, N = 32, and suboptimal otherwise, for 7 > 35. These
observations are in agreement with the previous results, and they show that densifying
is not always the solution to improve the performance of communication systems. The
inflection pilot lengths for the SC IRSA setup in each of the figures are 7* = 10, 20, and 30,
i.e., for all 7 < 7%, the throughput is poor and for all 7 > 7%, the throughput is optimal.
In fact in each of the figures here, this inflection pilot length demarcates the regions when
densification helps: for 7 < 7*, densifying unilaterally improves the system throughput;
for 7 > 7, densifying unilaterally reduces the system throughput. Similar to what we
observed in Chapter 3, we can identify these inflection loads, inflection pilot lengths,
inflection SNRs, and inflection number of antennas under any system configuration, and

then use it to operate the system in the required regimes of interest.
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Figure 6.19: LCF IRSA: Effect of Q.

In Fig. 6.19, we study the impact of increasing the antenna density QN on the per-
formance of LCF IRSA. For this, we plot the throughput versus the number of APs @)
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and keep the number of antennas per AP N fixed. All of the curves improve with den-
sification and reach optimal throughputs of 7 = L with high enough @ (N =4, L = 32
is nearly optimal at () = 128). These trends match the densification strategy in existing
works, albeit we are increasing the antenna density, making the comparison unfair from
an energy efficiency/power consumed perspective. L = 8 achieves the optimal throughput
with N =4, 8, 32 antennas at Q = 16, 2, and 1 AP(s), respectively. L = 16 achieves the
optimal throughput with N = 4, 8, 32 antennas at () = 64, 32, and 4 APs, respectively.
L = 32 achieves the optimal throughput with N = 4, 8, 32 antennas at () > 128, ) = 128,
and 32 APs, respectively. Thus, increasing the antenna density can help overcome the

limitations of LCF IRSA.

6.4.4 HCF IRSA

In this section, we study the impact of system parameters on the performance of HCF
IRSA. The system parameters are identical to the previous subsection. In Fig. 6.20, we
study the impact of densification on the performance of HCF IRSA for edge SNR p, =
—10dB and —30dB, and antenna density QN = 64 and 128. For QN = 64, p. = —10dB,
the peak performances are achieved for all L with densification; for p. = —30dB, the
peak performances are nearly obtained with densification only for L = 16, 24, and 32. For
QN = 64, po = —10dB, the optimal throughputs with L = 16, 24, 32, 40, and 48 are
achieved at Q = 2, 4, 8, 32, and 64 APs. Thus, for QN = 64, p, = —10dB, HCF IRSA
performs 4x, 6x, 8x, 10x, and 12x for L = 16, 24, 32, 40, and 48, compared to SC IRSA.
We see similar trends for QN = 128. For QN = 128, p, = —30dB, with densification, the
system performs optimally at high @ for all loads, whereas for QN = 64, p. = —30dB, it
did not. Thus, at low SNRs, increasing the antenna density (by doubling the number of
antennas) helps improve the throughput.

In Fig. 6.21, we study the impact of SNR on the performance of HCF IRSA. Here,
we compare only the fully densified HCF IRSA (with @ = 128 N = 1) with mMIMO SC
IRSA (with @ = 1, N = 128). HCF IRSA achieves an inflection SNR of p! = —30dB, i.e.,

for p. < p%, the system performs poorly and for p. > pZ, the system performs optimally.
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SC IRSA achieves the optimal performance beyond 0dB only for L = 8 and L = 16; for
L = 24 and L = 32 the system throughput saturates at very low values. In fact, the
trends in HCF are similar to the trends in CCF IRSA, as we will see next.
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Figure 6.22: CCF vs LCF vs HCF vs SC IRSA.

In Fig. 6.22, we compare all the schemes presented in this chapter for L = 24 and
L = 328 TFirstly, we observe that HCF performs closely to CCF IRSA in both the
subfigures. The gap between CCF and HCF increases from L = 24 to L = 32, which
indicates that the interference from decoded users in HCF IRSA increases with the load

L? For L = 24, with 7 < 20, SC IRSA performs the poorest and CCF IRSA with

8We have already compared MC and LCF IRSA previously, and thus, we skip MC IRSA in this plot.
9We note that for lower L, CCF and HCF perform identically. We have not included the plots for the
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Q = 32, N = 1 performs the best; HCF is very close to CCF and LCF performs poorly.
For L = 24, with 7 > 20, SC IRSA performs better than LCF IRSA and also achieves
the optimal throughput at 7 = 30, same as CCF and HCF IRSA. For L = 32, with
7 < 35, SC IRSA performs the poorest and CCF IRSA with @) = 32, N = 1 performs
the best; HCF is very close to CCF and LCF performs poorly at all 7. For L = 32,
with 7 > 35, SC IRSA performs better than LCF IRSA and also achieves the optimal
throughput at 7 = 50, same as CCF and HCF IRSA. In both figures, it is evident that
densification helps improve the performance of CCF IRSA and HCF IRSA, but not LCF
IRSA, which performs the poorest at all pilot lengths. Thus, depending on the regime
of interest, SC IRSA performs better than LCF IRSA. Further, the CCF scheme has the

best performance amongst the proposed schemes.

6.5 Summary

In this chapter, we first studied the effect of MC interference, namely inter-cell PC and
inter-cell interference, on the performance of IRSA. Firstly, we derived the channel esti-
mates and the SINR in MC IRSA, accounting for path loss, MIMO fading, intra-cell PC,
and intra-cell interference. We saw that MC IRSA had a significant degradation in per-
formance compared to SC IRSA, even resulting in up to 70% loss of throughput in certain
regimes. Recuperating this loss requires at least 4 —5x larger pilot length in MC IRSA to
yield the same performance as that of SC IRSA. Increasing 7, N, and SNR helped improve
the performance of MC IRSA. These results underscore the importance of accounting for
multiuser interference in analyzing IRSA in multi-cell settings. Future work could include
design of optimal pilot sequences to reduce PC and density evolution [7] to obtain the
asymptotic throughput.

We then analyzed IRSA in the CF setup, accounting for path loss, MIMO fading,
and channel estimation errors. Specifically, we studied three CF schemes for IRSA: LCF
IRSA, CCF IRSA, and HCF IRSA, which have different levels of partial signal processing

same.
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at the APs and the CPU. We provided insights into the effect of system parameters such
as number of antennas, number of APs, pilot length, and SNR on the performance of all
three schemes in CF IRSA. We showed that we can achieve more than 14x improvement
in the throughput or a 9x reduction in the pilot length of CCF IRSA compared to a
massive MIMO SC setup at high loads. We also studied the BS and AP densification
trends in MC IRSA and LCF IRSA, respectively, where we observe an inverse behaviour
in the throughput compared to CCF IRSA and HCF IRSA. For CCF IRSA and HCF
IRSA, densification always improves the performance. For LCF IRSA and MC IRSA,
densification does not help at loads near the inflection loads: it is better to not densify
and to operate with a massive MIMO SC setup. Future work could include calculating
the load on the CPU and involve user-AP clustering to reduce the decoding complexity.

We can also design optimal distributions for the MC and CF setups.

6.6 Proofs

6.6.1 Proof of Lemma 7: Channel Estimation

The minimum mean squared error (MMSE) channel estimate IfI,f:’éC of the channel matrix

FI?; in the tth RB in the kth decoding iteration at the gth BS can be calculated as
HY = Y5 PLB (PLPE B + Nol o) ™" (6.41)

6.6.1.1 Channel estimation

The received signal is first vectorized as
i £ vee(YE) = (Pl ® Iy)hf, + 1, (6.42)

where hf, = Vec(ﬂ%€ ), Ny = vec(N},), and ® is the Kronecker product. The MMSE esti-
mate is hf, £ E,[hf], where z = ¥ . The estimation error hf £ hf —hf is uncorrelated

with the estimate and with z. The conditional statistics of a Gaussian random vector x
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are

E, [x] = E[x] + KoK;! (2~ El2)), (6.43)

Kxx\z = Kxx - szKz_lezx- (644)

Here, Kxx, Kxxjz, and Ky, are the unconditional covariance of x, the conditional covari-
ance of x conditioned on z, and the cross-covariance of x & z respectively. From (6.43),

the MMSE estimate ﬁfq of the channel can be evaluated as
hj, = E[hy,] + E iy E,y,' 1 (7 — E[V)).
The terms in the above expression can be calculated as

E [by,y7,"] = By P, @ Ly,
E[¥i,yiy'] = Py ByPL + NoLo) @ Ly,

by, = (B Py (P B P + NoL) ™ @ Ly)yl,,
and thus, the MMSE estimate fl%f of P_I?(f is
HIF = Y2 (Pl BIPIHY + NI, 'Pk B (6.45)
©YIPL BI (PEPE B + Nol ) ™, (6.46)
where (a) follows from (AB+1I)"'A = A(BA +1)".

6.6.1.2 Error variance

The conditional covariance of h?. is calculated conditioned on the knowledge of

tji
— Tk ~gk A pk Rk pEkHPE RIE -1 : ~ak
z = hi, Let CI" = P;B{(P., P;Bl + NOIMtqqk> be split as C}" =
gk ak qk qk qk ak A 1ak
[Cy, Clis -+, Cly1, Clyyrs - - Clgl, and ¢f; = [Cf].;. Thus, we can evaluate

Kpo pe = E[h? h?7] = Borly,

tji i tji=tyi
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_ q VwakHy _ _H_qk q 2
thjiz = E[htjz‘htji | = pjictjigtjiﬂjiUhINv

k k
NOHngiHQ + Zneskj Ipﬁleji\QgtqnﬁgnUﬁ

K,,=
k

Iyn.

Thus, the conditional covariance is

_ . -1 A cqk
thjihgji|z - thjihgji thjiZKzz thgji = 6tjiIN7

k.
where 6/;; is calculated as

qk (12
k  ng 2 NOHCtjiH +Znes,§j
tji = P5i%n

H gk |2 2 H .qk |2 2
pqncgjil gtqnﬂgno-h + ZleQ‘l Zneslj |plncgji| gtlnﬁlqno-h

k k k
N0||ngi||2 + Zneskj |pﬁcgji|29tqnﬁgnalz1 + Zlegq Zneslj |P%ngi|29ﬂnﬁfnaﬁ

The conditional autocorrelation follows as

|E,[h

tii

E,[h? h?] = Kyt n? |z + Eq[hf

H _ gk " gk {.qkH
tiittji tii tji ] - 5tjiIN +htjih :

tii

| = B[R} -

The unconditional and conditional means of the estimation error are E[flqk i

tji
hi;] = 0 and E, [fl?ﬁ] =E, [fl?ﬁ —hi;] = ﬁf]kz — ﬁfﬁ = 0. The conditional autocovariance

of the error therefore simplifies as

Kpo o, = Eo[fp 0] = B, (b hi] — b hi = 67Ty,

e hlk tjitlegi tjithegi

and thus, 6/ is also the variance of the estimation error.

6.6.2 Proof of Theorem 6.1: SINR Computation

In order to calculate the SINR, we first evaluate the power of the received signal, which
is calculated conditioned on the knowledge of the channel estimates z = Vec(IiIf;";C ) as
Eal| G |?] = Eql| 52, Ti|?]. Since noise is uncorrelated with data, E,[T)T4] = E,[T,T]
= E,[T5TH] = E,[T,TH] = 0. Since MMSE estimates are uncorrelated with their errors

[49], E,[T1T] = 0. Finding the other components requires E,[x ;2] for ¢ # | which can
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be found as E,[x ;x| = E,[z;;]E,[z;)] = 0. Thus, all the five terms are uncorrelated and
the power in the received signal is just a sum of the powers of the individual components
E[| 55, [*] = 3201 E,[|Ti]?]. We now compute the powers of each of the components. The

useful signal power is

. gk L. gk
EZ[|T1|2] = EZ[|af;7€1hgqmgtquqm|2] = pqmg?qm|af¢£[nhgqm|2'

The desired gain is written as

N A [ty g |

Gain = PgmJt
lafg > T (lag,, 1>

(6.47)

tqm

The power of the estimation error is expressed as
2 kH 7.k 2 2 cqk ok [|2
EZHT2| ] = Ez[latthgqmgtquqm| ] = pqmgtqmagquatqu :
Next, the power of the intra-cell interference term T3 is

E.[|T5|*] = E,[laj, icsp JtailgiTail”]
H
= Zz’es,g; pqig?qiaz"ﬁlEz [h?qi hng‘ ]afqm

kH ( 5ql§

_ 2 gk ygkHN _k
- ZieSg’;pqigtqiatqm tquN + h; :h )atqm

tqi T tqe

k " gk
= Zieslz';pqigt?qi(||afqm||25:f]qi + |a1’€€q}TInhgqi|2)'

Then, the power of the inter-cell interference term T} is

E,[|T[*] = EZHafq’Zl jEQT Ziesljgtjihgjﬂjim
H
= Zjegq Zz’esupﬂggjia?ngz [hgjihgjz’ ]afqm
k " gk 1 qkH
= Z]EQ‘Z Zi€$1jpjigt2jiaf£1(6gji]:]v + hgjlhgj’t )allfcqm

k gk
= Z]‘egq Ziesljpjigfji(||a1’€€qm||25z]ji + |a1]€€q}'r{1h?jz|2>

Let Pige = E,[|To)?] +E,[|T5|?] +E,[|T4|?] represent the joint contribution of estimation
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errors and multi-user interference components of the other users (both within the gth
cell and outside the gth cell). Since gj; is binary, its powers are dropped. We now split

Pine/||af,,, |I? into the sum of the estimation error component Esty,,,, intra-cell interference

InCIj,, and inter-cell interference ICI}, . as follows
Estt =% a0 3 e S G110
tqm — ieSkqqugtql tqi jEQY ieSljp]thﬂ tjio
ko _ kH 14k |2 ko2
InCItqm - Zieslg;pqigtqi|atthtqi| /Hatqu )

gk
ICIllfcqm = Zjegq Ziesljpﬁgtﬁ|af£nhgji|2/||afqm||2'

The noise power is calculated as
E,[|T5°) = Eqf|agnil’] = Nollag,.|I* (6.48)

A meaningful SINR expression can be written out by dividing the useful gain from (6.47)
by the sum of the interference and the noise powers (from Pi,, and (6.48)) [49]. Note
that the interference component is comprised of the estimation error term and the signal
powers of other users who have also transmitted in the same RB (from both in-cell and
out-of-cell users). SINR can thus be evaluated as in (6.7) for all users. The SINR can be

calculated by plugging in the channel estimates as detailed in Theorem 6.1.

6.6.3 Proof of Lemma 8: Massive MIMO Equivalent

lflqu lflqk

As the number of antennas gets large, both ||hZ* tqm Niji

tqm”2

and | | converge almost surely
(a.s.) to their deterministic equivalents [106]. Evaluating the deterministic equivalents as
in [106] and plugging into the SINR expression in place of the original terms, we can find
an approximation to the SINR in the high antenna regime. As N gets large, the SINR

with maximal ratio combining converges almost surely (pf,,, = pr,) to

S S1gigm
am ek (No + IntNC},, ) + IntCf,,’
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where Slgtqm is the desired signal, IntNCF  represents the non-coherent interference, and

tqgm

IntC,’fqm represents the coherent interference. These can be evaluated as
2 H ak
oo NOHthmH +Zn€8k ’pqn tqm| gtqnﬁgno.h
tam 2 q 2
+ ZlGQq ZnESU |plnctqm| gtlnﬁlnah
-k ko2
Slgtqm - Npqmgtqm(etqm> )
qk 2
k pqmgtqmétqm + anskv pqngtqnﬁgnah
IntNC;,,, = i ’
q 2
+ Zlegq Zneslj PinGtin B, 00
H gk |2 2 4
k ZTLESh |pqnctqm| pqngtqnﬁgno-h
IntCyy, = NV 7 . ,
Haak |2 a2 _4
+ ZZEQ‘I Zneslj |plnctqm| plngtlnﬁln Oy
Here, 5fqm and c?fm are obtained from Lemma 7 and Theorem 6.1, respectively, for the

three estimation schemes. The above expressions are obtained by setting afqm = h?fm [49]

and replacing each of the terms involving h‘t]ﬁ in (6.7) with their respective deterministic

equivalents.

6.6.4 Proof of Theorem 6.2: LCF IRSA
6.6.4.1 Channel Estimation

Let k denote the current decoding iteration index, and Sy, denote the set of users not yet
decoded up to the kth decoding iteration at the gth AP, with S, = [M] and S}, £ S, \{i}.
As seen before, the received pilot signal at the gth AP in the tth RB in the kth decoding

iteration is
k
Y =Y ics, bl + N, (6.49)

where the first term contains signals from users who have not yet been decoded up to the
kth decoding iteration at the gth AP, i.e., Vi € Si,.

We now derive the MMSE channel estimates at the gth AP in each RB. Let G, = {i €
[M]|ge; = 1} be the set of users who have transmitted in the tth RB. Let M} = |G; N Sy,
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be the number of users who have transmitted in the ¢th RB and have not been decoded in

the first k& — 1 iterations at the gth AP. Let us stack the channels of the M, users as the

columns of the matrix Hf, € CN*ME | and let P, € C™Mi denote a matrix that contains

the pilot sequences of the M}, users as its columns. Let Bf, £ o2diag(sY, 52, . .. ,ﬁfoq)
be a diagonal matrix that contains the path loss coefficients of the Mtkq users, with G, N
Skq = {1,172, ... ,thkq}. Hence, the received pilot signal from (6.49) can be written as
k
Y:, = quPff + NG,
The MMSE channel estimate I:Ifq of qu can be computed similar to Chapter 3 (see

Section 3.8.1) as

HE = YRF(PEBE PR 4 NoL)'PE BE | (6.50a)
@ yPpE BE (PEIPEBE + NoTpg )™, (6.50b)

where (a) follows from (AB+I)"'A = A(BA+1I)~!. Here, the estimate can be calculated
via an inverse of either a 7 X 7 matrix or an Mt’f; X Mt]f] matrix as required. Specifically,
the estimate of the channel hY, of the ith user at the gth AP is calculated as h%¥ = [ﬂfq]z

Let C{* 2P} BE (PEIPE Bl + NoLp)~", and ¢/ £ [CI*].;. Further, the estimation

error h?" £ h% — h? is distributed as h%* ~ CA/(Oy, 6% 1Iy), where 6% is calculated as

k k
N0|’C§z‘ ”2 + Znes,iq chgz‘ \2gmﬁgaﬁ

B B :
Nollei || + Zneskq Iplct 2gmbBron

6 = Big? (6.51)

6.6.4.2 Data Decoding

Similar to (6.49), we can find the received data signal at the gth AP in the ¢th RB in the

kth decoding iteration as

qu - Zz‘eskqgtihgﬂi T 1y (6.52)

Let p},,, denote the SINR of the mth user in the ¢th RB in the kth decoding iteration at

the gth AP. Using a combining vector agf@, the gth AP obtains the post-combined data
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signal 1% as §IF = agleyfq, where yf, is from (6.52). Thus, we obtain

~qk qkH7{ qk qkHy gk qkH qkH
ytm at’m h gtmwm atm h gtmxm + a Zlesm gtzhtle + a l’ltq. (653)

Here the first term on the RHS, aquhtmgtmxm, denotes the useful signal component and

it contains the channel estimate h? of the mth user; the second term aquhtmgtmxm

qkH

contains h?® . the estimation error of the mth user; the third term aj,,

tm> iesy guih;w; is
the multi-user interference faced by the mth user due to the other users in the entire
network who have not yet been decoded up to the kth decoding iteration at the qth AP;
and the fourth term afanntq is the additive noise component.

In order to evaluate the SINR, we first calculate the power of the received signal,
which is calculated conditioned on the knowledge of the estimates. Similar to Chapter 3,
all the four terms are uncorrelated and the power in the received signal is just a sum of
the powers of the individual components. A meaningful SINR expression can be written
out by dividing the useful signal power from by the sum of the interference and the noise
powers [49]. Thus, the signal to interference plus noise ratio (SINR) achieved by the mth
user at the ¢gth AP in the tth RB and the kth decoding iteration can be calculated similar

to Chapter 3 (see Section 3.8.2) and can be written as

Gain®
k tqm
,Vm € S, 6.54
Ptgm = Ny —|—ESttqm+MUItqm " a ( )
where
Gainf,, £ pugunlaim hiv|?/|lafk|?,

A

k k
ESttqm = ZieSk plgtlégz 5
MUIF

kH{.qk |2
tam = Dicsp Pigulad b2/ ||ad >

6.6.5 Proof of Theorem 6.3: CCF IRSA
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6.6.5.1 Channel Estimation

In the channel estimation phase, the CPU computes channel estimates flff of all the users
similar to (6.17a) and then finally obtains an effective CPU channel estimate.

Let Si denote the set of users not yet decoded at the CPU after k — 1 decoding
iterations, with S; = [M], and S{ £ S\ {i}. At the CPU, the received pilot signal of the

gth AP in the kth decoding iteration is given by
Yl = Dics, Juhiipll + Nj,. (6.55)

The channel estimates can be obtained similar to LCF IRSA as

HY, = YZ(PEBE P + NoL) 'PiBY, (6.56a)
(@) _
= Y PIBY (PYPBY, + Nolyy) (6.56b)
Here, Mf = G, N S, and M} = |MPF| is the number of users yet to be de-
coded, P¥ contains as its columns the pilots of the MF users yet to be decoded, and
B}, £ oidiag(87, FI ,ﬁfm) contains the path loss coefficients of the M} users, with
t
ME = {iy iy, ... 7'th/Yc}. Here, the estimate can be calculated via an inverse of either

a 7 X T matrix or an MF x MF matrix as required: (a) follows from (AB + I)!A =
A(BA +1)7! [144]. Specifically, the CPU estimate of the channel hf, of the ith user to
the gth AP is calculated as hil = [HE] ;.

For the ith user, the effective channel and the channel estimate at the CPU is found

by stacking the channels and the channel estimates as

hy; = (b w2 n@TH e cON (6.57)

by, = (b R R e o, (6.58)

Combining the channel estimates as above helps in exploiting the distributed array gain
due to the inherent locations of the APs.

Let C{* £ P}Bl (PFH/PIBE + Nol)~', and ¢/ £ [CI].;. The estimation error
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h? 2 h?% _ h' is distributed as h% ~ CN(Oy,d%1y), where 6% can be calculated

similar to LCF IRSA as

5qk ﬁq 9 N0||C:t]zk||2 + Znes,g pgcgf|29tnﬁgah (6 59)
i — PO : :
t P \Wollel |2 + X e, [P S PgimBio?

The channel estimation error at the CPU is given by flfl S ﬁfl —
hy;. If C = blkdiag(A,B) and E[ABY] = 0, then covariance(C) =

blkdiag(covariance(A ),covariance(B)) [105,144]. Thus, the covariance of the estimation

error at the CPU is A¥ 2 blkdiag(6F Ly, 02 Iy, ..., 62 1y).

6.6.5.2 Data Decoding

Let pf . denote the SINR of the mth user in the tth RB in the kth decoding iteration at
the CPU. The received data signal can be stacked as y; = [yd y ... ,y%]. Similar to
(6.55), in the kth decoding iteration at the CPU, the received data signal can be expressed

as

Yf = Zz‘eskgtihtixi + 1, (6.60)
H H H

A o . .
where n; = [ny],n, ... ,ntQ]H . The CPU uses a combining vector af to combine the

received data signal. Thus, we obtain the post-combined data signal as jF = aflyF

which is expanded as
gfm = afghfmgtmxm - afnl;lﬁfmgtmxm + afrgz:z’esglgtihtixi + afrgnt~ (6.61)
The first term on the RHS, af! flfmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate h¥ = of the mth user; the second term a¥7h¥ g, .z

contains h*

¥ 2o the CPU estimation error of the mth user; the third term aj>". sp Juheit;

is the multi-user interference faced by the mth user due to the other users in the network

who have not yet been decoded up to the kth decoding iteration at the CPU; and the

kH

fourth term aj,

n; is the additive noise component. We need to compute the SINR from
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the above post-combined data signal. All the terms in the above equation are pairwise
uncorrelated. The structure of (6.61) resembles the structure of the post-combined signal
in Chapter 3, but with ) N-length signals instead of N-length signals. We can derive the
SINR similar to Chapter 3. The SINR achieved by the mth user at the CPU in the tth
RB and the kth decoding iteration can thus be calculated as

k

tm
,Vm € S, 6.62
Np + Estk, +MUTE, g (6.62)

Gain

k _
ptm -
where

Gainy, £ pngulafihl 2/||af, |12,

EStfm £ Zieskpigtianggafm/HafmH2’

6.6.6 Proof of Theorem 6.4: HCF IRSA
6.6.6.1 Channel Estimation

In the channel estimation process in phase 2 of HCF IRSA, the CPU computes channel
estimates flglk of all the users similar to (6.27a) and then finally obtains an effective CPU
channel estimate.

Let S, denote the set of decoded users at the gth AP at the end of the APs decoding
process in the first phase. The set of users that have been decoded across the entire
network is given by S = S US, U -+- U Sg. We now denote Uy, as the set of users not
decoded up to the kth CPU decoding iteration, with U, = [M]\ S and U} = Uy \ {i}. Uy
contains only the signals of the users who need to be decoded at the CPU since they have
not been decoded at any of the APs.

At the CPU, the processed residual pilot signal from the gth AP in the kth CPU

decoding iteration is given by

thf = e, 9Pl + D, + Ni,. (6.63)
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We now need to derive the channel estimates at the CPU in phase 2, which are computed
based on Zf; . Based on the notation setup in Sec. 6.3.4.2, the channel estimates can be

obtained similar to CCF IRSA (6.23) as

Hf, = Z}, (PyBE P + NoIL,)~'Py By (6.64a)
@) LpkHk Bk (DEHBE T _
= Z§, P By, (P, Pi,By, + Noly )™, (6.64D)

Here, the estimate can be calculated via an inverse of either a 7 x 7 matrix or an (7[2 X Ut]f;
matrix as required: (a) follows from (AB +1I)"'A = A(BA +1I)"! [144]. The subset of
the users who are yet to be decoded at the CPU up to the kth CPU decoding iteration is
G, NUj, for whom the channel estimate matrix is obtained as HY, = [Iflfq]:,gmuk. Finally,
the channel estimate of the channel hf, of the ith user to the gth AP is calculated as
h? — [Iﬁlfq]Z For the ith user, the effective channel and the channel estimate at the CPU
is found by stacking the channels and the channel estimates as

h, = b Wi hgTT e eV, (6.65)

hf, = [y w2 M e covt, (6.66)

Combining the channel estimates as above helps in exploiting the distributed array gain
due to the inherent locations of the APs.
~qk & Bk Rk (DEHDE T _ k ~qk o
Let CI" £ P} B (Pi7P} By, + Nolgy ) 1 and ¢/ £ [C{"].;. The estimation error

h? 2 h?% — h? is distributed as h?* ~ CN(Oy,0%Iy), where 6% can be calculated

similar to CCF IRSA as

k k
¢ 2 (NOHCZ‘ I + Zneafq\{i} p;/cf; |2gmﬁfbaﬁ)

53ik:ﬁiah ak 2 H.ak|2 q 2
Nolleg I + 2 e, 17 Cii' 129 Bros

The channel estimation error at the CPU is given by h¥ £ h¥ —h,,. If C = blkdiag(A, B)
and E[AB¥] = 0, then covariance(C) = blkdiag(covariance(A),covariance(B)) [105,
A

144]. Thus, the covariance of the estimation error at the CPU is A =
blkdiag(8F Iy, 02 Iy, ..., 62" Ty).
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6.6.6.2 Data Decoding

Let pf . denote the SINR of the mth user in the tth RB in the kth decoding iteration at

the CPU. The received data signal can be stacked as z; = [z, 2, ... ,z%]. Similar to

(6.63), in the kth decoding iteration at the CPU, the received data signal can be expressed

as

2} = Y i gheimi + dy + 1y (6.67)

where d; £ [dff,df3,..., 4517, and ny £ [nf], nf, ... ,nfj]7. The CPU uses a combining

vector af  to combine the received data signal. Thus, we obtain the post-combined data

k kH _k

signal as 2, = ay,, z; which is expanded as

tm

me = at htmgtmxm htmgtmasm + atszeumgtzhtza:Z +aflld, + alfl! (6.68)

The first term on the RHS, afZ htmgtmxm, denotes the useful signal component and it

contains the CPU channel estimate hf of the mth user; the second term af!! htmgtm:cm

contains h* _ the CPU estimation error of the mth user; the third term atm Zz‘eu,gn grihyix;

tms
is the multi-user interference faced by the mth user due to the other users in the network
who have not yet been decoded up to the kth decoding iteration at the CPU (and who
have also not been decoded at any AP in phase 1); the fourth term a¥?d; is due to the
interference from users already decoded at all the APs in phase 1; and the fifth term
alfn, is the additive noise component. We need to compute the SINR from the above
post-combined data signal. All the terms in the above equation are pairwise uncorrelated.
The structure of (6.68) resembles the structure of the post-combined signal in Chapter 3,
but with Q) N-length signals instead of N-length signals. We can derive the SINR similar
to Chapter 3. For this, the covariance of the interference due to decoded users in phase

1 reduces to Xq, = blkdiag(dyIy, dwly, ..., digly), where dy, = Zieg\gqpigﬁﬁfaﬁ. The
SINR achieved by the mth user at the CPU in the tth RB and the kth CPU decoding
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iteration can thus be calculated as

k

tm
m € Uy, 6.69
No + Est}, + MUTF +Deck '~ (6.69)

Gain

k _
ptm -
where

k

Gainf,, £ pugun|afy hf,[*/||af, ||,

b 2 e pualll Akl a7

MUIfm = Zzeuﬂplgtl‘afrghfz|2/”a§m||27

Est

Decy, = ay, Ya,ay/[ag,, *

6.7 Appendix

6.7.1 HCF IRSA with SIC

There can be an additional SIC phase at the CPU to cancel out the interference of decoded
users from the residual signal of each of the @) APs at the CPU. Let the decoding at the
gth AP stop at a decoding iteration kg, i.e., it cannot decode any more users. Thus, the
residual received pilot and data signals at the qgth AP are Yf; ? and yf;. The additional
SIC phase follows as

1 k

Zi, =Y, - Zieg\gqgtih?isz ; (6.70)
k

Z%q =Yg — Zz’eS\ngtihgﬂu (6.71)

where the processed residual pilot and data signals are denoted by Zgll and z,}q, respectively.

6.7.2 Channel estimation ignoring PC from decoded users

In the channel estimation process described previously, we can ignore the contamination
due to decoded users, similar to the single-cell MMSE channel estimator that ignores the

pilot contamination due to pilots from other cells. Then, the effective channel estimate
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for all the users becomes

HY = Z2F(PYBL P + NoL)'Pi Bl (6.72a)
< ZEPLBY (PIPIBY, + Nolyy) ™ (6.72h)

Here, UF = G, N Uy, and U} = |UF| is the number of users yet to be decoded, P}

contains as its columns the pilots of the U} users yet to be decoded, and qu =
opdiag(8f,BL,..., 8] ) contains the path loss coefficients of the U} users, with U} =
Ut

{iy, i, ... 7Z.U;c}. Specifically, the estimate of the channel hy, of the ith user to the ¢gth AP
is calculated as hff = [HE].,.
Let C{* £ P}B (PIPIBY, + Nolyx)~!, and c/¥ £ [CI*].;. The estimation error

he £ hf — hY is distributed as h% ~ CA(Oy, 0% Ty ), where 6% is calculated as

(6.73)

k k
5 — 3152 (NOHCgi I”+ Zneu,g P, cf; |2gtnﬁz0}%>
l Z NOHC?@ ||2 + Zneuk |p7’}LIcgz |2gtnﬁg0-}%

The effective channel estimate at the CPU for the ¢th user is formed by stacking the

channel estimates as
-k C 1kH 1.2kH " QkH1H Nx1
h¥ = [WfFA n2H | @R ¢ ceNxT (6.74)

Thus, the channel estimation error at the CPU is given by flfz = flf; — hy;, where hy; =
[hIF n2H . h@")H e CONXL The covariance of the estimation error at the CPU is
Ak 2 blkdiag(6F Iy, 62y, ..., 09%y).

The channel estimates h% are stacked into the matrix H¥ € CR¥*UF | The combining
vector that maximizes the SINR in (6.39) is the MMSE combiner, which can be found as
al = [AF].,., where

A% = (L + HID ") FiD)

t,pl?

where LF £ > icu PiguAl; + Nolgw, and Df , =diag(pi, Py, - - - ,Pi,,,) contains the power
t
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coefficients of the UF users. Alternately, using the Woodbury identity [144], the combiner

matrix can also be found via a UF x UF inverse as
k _ TRFTRk k\—17y%  FIEH TRETF\ Dk
At - Jt Ht Dt,pQ(IQN - (Gt> Dt,p2Ht Jth)Dt,p27

where JF2 blkdiag(j5In, jbIn, ..., jloIn), GF £ 1 +DF ,HMIFHIDE . gk £ 1/(No+

t,p2?
k :
Zieukpigti(sgi )7 and Dfiné dlag(\/pi17 \/Pigyees \ /piUg“)'
In this case, Dect . the extra interference due to decoded users, does not arise in

(6.39). The rest of the SINR-based decoding process continues as usual.
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Chapter 7

Optimal Repetition Distributions

7.1 Introduction

In this chapter, we optimize the repetition distributions in IRSA via the Differential Evo-
lution algorithm (DEA). The objective here is to optimize the IRSA system by aptly
choosing the repetition distribution under the system constraints, by solving an optimiza-
tion problem. We use DEA to obtain the throughput optimal and the energy efficiency
optimal repetition distributions for the IRSA protocol.

Energy efficiency (EE) is a fundamental aspect of both cellular and machine-type
communications [28]. With the advent of massive MIMO communications, many works
have predicted a huge increase in the spectral efficiency (SE) [145] and promised an
exponential increase in the throughputs [27]. But this comes at the expense of an increase
in the power consumed and by extension, an adverse impact on the EE of the system under
consideration. EE becomes more valuable in mMTC since the low-power devices deployed
in mMTC scenarios are expected to be IoT devices which last for several years [29]. These
devices need to be energy efficient and consume as low power as possible while maintaining
high throughputs [30]. Thus, EE is a fundamental metric of mMTC systems, and in
particular, in the IRSA protocol as well.

For IRSA, the inflection load L* is the fundamental limit of the system beyond which

the system performs poorly. It indicates both the peak throughput and the peak load at
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which the system can be operated. This throughput is indicative of the packet success
rate, and it does not account for packet length, bandwidth, or other system parameters [7].
As seen in Chapter 3, the throughput can be increased via improving the pilot length 7
and the number of antennas N. This comes at the cost of lower SE and higher power
consumed at the BS, respectively. Thus, there is a trade-off between the EE and the
system throughput [146], and understanding this trade-off for IRSA is important.

7.1.1 Existing Distributions

The first paper on IRSA [7] has optimized the repetition distributions for IRSA under the
collision channel and proposed a few distributions which have a peak inflection load of
0.965. The truncated soliton distribution has been shown to be the throughput optimal
distribution for IRSA with a collision channel [72]. Recall that the truncated soliton

distribution is defined as

(
1—
5 d=2
221
- =7 o~ <d< dmax’ 7.1
Y= qa—n. 354 (7.1)
0 otherwise,

\

where ¢4 is the probability that a user has a repetition factor d, dy.x is the maximum
value that the repetition factor can take, a € (0,1) is a convergence parameter, and
z=1—a/2—1/dpax is a normalization constant. The authors in [17] have optimized the
repetition distributions for IRSA with pure fading channels in the SISO case and have
demonstrated that the achievable peak inflection loads with the optimized distributions
exceed unity. The authors in [8] have shown that the soliton distribution is nearly optimal
for IRSA with path-loss-only-channels, but they also show better performing distributions.
The authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the most
energy efficient distribution for IRSA.

All of the above papers have optimized the repetition distributions of IRSA under

different assumptions. There is no guarantee that those distributions will be optimal for
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IRSA in the general case, i.e., with pilot contamination, channel estimation errors, multi-
ple antennas, etc. Thus, one of the goals of this chapter is to find repetition distributions
that perform better than the soliton distribution or other existing distributions in the

general case.

7.1.2 Contributions

We summarize the contributions of this chapter below.

1. Firstly, we optimize the repetition distributions of IRSA with the throughput and

the energy efficiency objectives.

2. Next, we study the optimal repetition distributions under three cases: first case with
the K-collision channel; second case with the fading channel under the assumption
of perfect CSI, MIMO, and MRC; and third case with the fading channel accounting

for channel estimation errors, MIMO, pilot contamination, and MMSE combining.

3. Via extensive numerical simulations, we study the effect of various system param-
eters such as the maximum repetition factor dmax, the average repetition factor d,
the number of antennas N, the pilot length 7 on the repetition distributions, the

inflection load, and the peak energy efficiency.

We demonstrate that, in general, the 2-regular distribution is the most energy efficient
distribution for IRSA at high number of antennas and high pilot lengths. The 2-regular
distribution is nearly throughput optimal at high number of antennas. In other regimes
of interest (other than high number of antennas and high pilot lengths), we obtain varied
distributions that are not the 2-regular distribution. In fact, near the inflection loads,
we can optimize the repetition distributions to obtain higher EEs. Compared to the best
existing distributions, we show that our optimized distributions can achieve up to 58%
increase in the inflection load and up to 49% increase in the peak EE. The obtained
optimal distributions can be used to operate mMTC at the peak throughputs as well as
the peak EEs.
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Remark 1: The results presented in this chapter are based on DEA and density evolu-
tion, which depends on the frame length 7" via the system load L = M /T only asymptot-
ically, i.e., with a fixed L and M, T — oo. Thus, similar to existing works, the presented
distributions are optimal for IRSA on a frame-by-frame basis where the frame has a load
L and not for a fixed T

Remark 2: Density evolution is applicable for IRSA without path loss. Hence, in this
chapter, we assume users perform path loss inversion. We have observed that the optimal
distributions obtained in this chapter can be applied even when users do not perform path
loss based inversion, and they perform much better than existing distributions. Thus, in
practice, the distributions presented in this chapter can be used to obtain near-optimal
performance in the general case.

Remark 3: The distributions output by DEA are not unique, i.e., there are several
distributions that could achieve the same optimal loss rate or throughput or EE. We only

present a few optimal distributions and not all of them.

7.2 An Overview of the Differential Evolution Algo-
rithm

Genetic algorithms (GAs) are typically used for global optimization over continuous
spaces. In GAs, a population of candidates to an optimization problem is evolved to-
ward the optimal solutions. Direct search approaches like GAs are used when the cost

function is non-linear and non-differentiable. The template of GAs is as follows:

Generate a random initial population within the parameter space.

Evaluate the “fitness” of each individual, where the fitness is in terms of the objective

function of the optimization problem.

Select the fittest individuals as “parents” of the next generation.

Via “mutation” and “crossover” of the parents, obtain new individuals.
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e Replace least-fit individuals by new individuals in each generation.

Differential evolution algorithm (DEA) is a GA that has been widely used for multi-
dimensional multi-objective constrained optimization [26]. Typical applications include
signal processing, filter design, data clustering, and optimal control. The advantages of

using DEA are

e DEA is a direct search method [26]. There is no requirement of computing gradients

for the algorithm and it can handle non-differentiable functions as well.
e DEA has been shown to possess good convergence properties [147].

e The number of control parameters in DEA are only three in number and can be

easily tuned [148].

e DEA uses a vector population where the perturbation of the vectors can be done

independently of each other [149]. This makes the algorithm parallelizable.

7.2.1 DEA for Optimizing IRSA

For an IRSA system, the optimal distribution can be obtained as a solution to the opti-

mization problem defined as follows:

P, : min L({2, 03, ., Odnar}) (7.2)
D2,03, - Pdimax
subject to 0< g <1, 2<d<dpay, (7.3)
dnlax
> da=1 (7.4)
d=2

Here, L() is the loss function which needs to be minimized, which can be the packet loss
rate, and {¢o, @3, ..., dq,.. } is the node-perspective user degree distribution, where ¢4
represents the probability a user will pick a repetition factor d. In the above problem,
we can alternatively maximize the throughput or the EE of the system as well. Note

that the above problem is a stochastic optimization problem since it is dependent on
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the distributions of the repetition factors and not the random instances of the users’
instantaneous channels or repetition factors, which are random variables.

We now setup some notation and present the DEA. Let £ : RY — R be a loss function
that needs to be minimized. Let M be the number of population vectors in any generation
and N be the dimension of each vector in the population. For the optimal distribution
problem, we have that N = d,.x — 1. We denote the population in the gth generation by
P9 = {x9,x5,...,x%,}, with x/ € RN. Each x/ contains non-negative entries that add up

to one. There are three steps in each generation of DEA, which are as follows:

1. Mutation step: In the first step, new mutated vectors are generated by adding the
weighted difference between two vectors. Firstly, for each vector x{ in the popula-
tion, we choose three other distinct random vectors in the population X9, %3, X3 € P9.
Then we add a scaled difference of two of the vectors to the third and generate a
mutant vector v¥ as v{ = x{ + F(xJ — xJ). Here, F' is a mutant scale factor. DEA
derives its namesake from this step, where we use the differential of two vectors to

generate the mutated vector.

2. Crossover step: The entries of the mutated vector v are now mixed and crossed-
over with the entries of the original vector x/, and the trial vector uf is generated.
For each entry of uf, with a probability C,, the entry uf[j] is chosen to be v{[j]
and with a probability 1 — C,., the entry u?[j] is chosen to be x/[j], where C, is the
crossover probability. Crossover is performed in order to increase the diversity of
the population vectors. We can also ensure that at least one component for the trial
vector uf is obtained from the mutant. This can be done by mandatorily crossing
over some entry with index j = R;, where R; is sampled uniformly from the set of

integers {1,2,..., N}.

3. Selection step: In the final step, we select the population vectors for the next gener-
ation. If the trial vector yields a lower loss function value than the original vector,
Le., if L(u?) < L(x?), then the trial vector uf replaces the original vector x? in the

next generation.
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The above steps are run iteratively until some termination criteria has been reached, and
the candidate with the least loss in the final generation is output as the optimal candidate.
We present the DEA in Algorithm 11.

Remark 4: We first generate a random initial population P = {x9,x9,...,x9,}. Here

0

the entries of each vector x; is chosen uniformly at random from the entire parameter
space, i.e., x?[j] ~ U[0,1], 1 < j < N [148]. The parameter space [0,1] ensures that
the entries are valid probability entries. Finally, the entries of the initial vectors can be
normalized to ensure that their sum is unity. To ensure the entries of the trial vector add
up to one, we can normalize each trial vector after the crossover step. The terminating
criteria TC(-) for DEA could be a maximum number of iterations or the standard deviation
in the loss functions across the candidates, and c. is an appropriate threshold.

Remark 5: The maximization of the throughput or EE can be performed by consid-
ering the function C = —L instead. In this case, we select the candidate vectors which
have the highest throughput or EE in the selection step.

Remark 6: The computational complexity of the algorithm is O(M NG ,.x), where
Gmax 18 the maximum number of generations that DEA is run for [26]. To make it
parallelizable, we can run DEA on each entry of the population on N parallel computers,

which results in a complexity of O(M G yax)-
Remark 7: A few good rules of thumb for DEA [149] are as follows:

1. Choose the number of candidate vectors M € [5N,10N] to ensure a wide range of
candidate vectors that can adequately sample from the entire space. If there are
vectors which are suspected to be close to the optima, they can be fed into the

initial population.

2. Choose mutation scale factor F' € [0,2]. It can be initialized with F' = 0.5, and if

the problem converges prematurely, then increase either M or F.

3. A large crossover probability C). close to unity can speed up convergence. A low C,
implies only a few parameters are changed in every iteration and a high C, implies

a huge variation in the entries of the population vectors.
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Algorithm 11: Differential Evolution Algorithm

1

N

10

11

12

13

14

IHPUt: N7 Ma F7 OT7CE7£(')7TC<')
Initialize: P° = {x9,x3,...,x%,}, g =0

while TC(P?) > ¢. do

fori=1,2,.... M do
Choose three distinct vectors x{, X3, x5 € P9
Mutation Step:
vi = X{ + F(x; — x3)
Sample index for mandatory crossover R; ~U{1,2,..., N}
for j=1,2,...,N do
Crossover Step:
' v{[j], j = R; or with probability C,
uf[j] =
x?[j], Jj # Ri and with probability 1 — C,
end
Selection Step:
o ul, if L(uf) < L(x7)
x{, if L(u) > L(x7)
end
g=g-+1
end

Output: Optimal candidate index i = argmin, ;- ,,(£(x{)) and Optimal

candidate Xg




Chapter 7. Optimal Repetition Distributions 333

7.3 Throughput Maximization

The theoretical throughput of IRSA can be calculated from the density evolution (DE)
process presented in Chapter 3. For this purpose, we now quickly recap the DE process.
For this, we recall that p; is the probability that an edge carries a failure message from
an RB node to a user node in the ¢th iteration, and that ¢; is the probability that an edge
carries a failure message from a user node to an RB node in the ¢th iteration. The failure
probability ¢; is calculated using the edge-perspective user degree distribution as

dmax dmax
= " =D A = Api). (7.5)

d=2

The failure probability p; is calculated using the edge-perspective RB degree distribution

as

P = deqZZG er% 5 2 fq), (7.6)
where 6, denotes the probability that the reference packet gets decoded in the current
decoding iteration starting from degree r using only intra-RB SIC [8]. Thus, ¢; = A(pi—1)
and p; = f(gq;) are calculated alternately as functions of each other as seen in (7.5)
and (7.6). The procedure can be initialized with either ¢ = 1 or py = f(1). The
failure probability at the end of decoding is ps, = lim;_, p; and (poo)d is the probability
that a packet transmitted from a user with repetition factor d does not get decoded at
the receiver. Therefore, the asymptotic packet loss rate function (PLR(-)),! which is the

fraction of packets that are not decoded at the BS, is calculated as

PLR({02. 05 - D) = D0 = 3 Ga(po)’. (7.7)

'For the purpose of this chapter, we condense (7.5) and (7.6) into a PLR function.
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The asymptotic throughput of the system can now be obtained from the asymptotic PLR

as

Thpt({¢2, @3, - - -, P }) = L(1 — PLR({2, B3, - - -, Do }))- (7.8)

The iterations p; = f(A(pi—1)) converge asymptotically to p,, = 0 if the system load
L < L* [7]. Here, L* is called the inflection load of the system: for any L > L*, the
system becomes interference limited and PLR(:) does not converge to 0 as L increases.
Thus, for L < L*, po, = 0 and therefore the asymptotic PLR(-) = 0, and Thpt(-) = L. For
L > L*, the throughput decreases monotonically with L.

The throughput optimization problem now reduces as follows.

]P)Q : max Thpt({¢27 ¢3a s 7¢drnax}) (79)
¢27¢37"'7¢dmax
subject to 0<¢s<1, 2<d=< dyax, (7.10)
dmax

> da=1. (7.11)

Here, the constraints ensure that the candidate solutions are indeed probability vectors.
The optimal distribution yields the maximum throughput 7.,.., which occurs at L = L*.
Since 7 = L for all L* and T = Thac at L = L*, we analyze only the inflection load since
its value is exactly equal to the peak throughput.

Remark 8: Alternately, some existing works maximize the load L with a target
PLR [17]. In this case, the optimization objective in problem Py is just simply L and
an additional target loss rate constraint is added: PLR({¢2, @3, . .., Pdpae }) < PLRygt.

7.4 Numerical Results for Throughput Maximization

We now optimize the repetition distributions in order to maximize the throughput of
IRSA. For the results presented in this chapter, we operate the system at a load of L = L*

in order to operate the system at the peak throughput and the reported distributions are
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optimized at the inflection load. The DEA parameters are F' = 0.9, M = 10N, and
C, = 0.9 [149]. We choose the terminating criteria TC(-) as the standard deviation of
the throughputs of all the population vectors in any generation, and terminate the DEA

generations when TC(-) < ¢. = 107° [149].

7.4.1 K-Collision Channel

Table 7.1: Throughput Optimal Distributions for IRSA with the K-Collision Channel.

K | diax o(x) d | L*
3 0.112% + 0.8923 2.89 | 0.82
4 0.472% 4 0.53z* 3.06 | 0.86
! 8 0.47x% + 0.312% + 0.222° 3.65 | 0.92
16 | 0.3722 +0.412% + 0.072* + 0.052% + 0.12'6 | 4.25 | 0.95
3 0.712% + 0.292° 2.29 | 1.71
4 0.822% + 0.18z* 2.36 | 1.74
? 8 0.862% + 0.012% + 0.132° 2.79 | 1.85
16 | 0.862% + 0.022% + 0.0227 + 0.052% + 0.052' | 3.18 | 1.89
3 0.942% + 0.0623 2.05 | 2.57
4 0.9222 4 0.08z* 2.16 | 2.58
’ 8 0.912% + 0.0928 2.54 | 2.65
16 0.93z? + 0.02z'* + 0.04z'% + 0.012'¢ 2.88 | 2.75

For the K-collision channel, up to K collisions can be decoded perfectly, i.e., 6, =
1, 1 < r < K. We present the throughput optimal distributions for the K collision
channel in Table 7.1.

We now present numerical results for the K-Collision channel in Fig. 7.1. We compare
the optimized distributions in Table 7.1 with the truncated Soliton distribution [72], with
the appropriate maximum repetition factor as presented in the plots.

For K = 1, we have the usual collision channel. In Fig. 7.1(a), we observe that
CRDSA has the least peak performance at 7 = 0.55, and the optimized distribution has
the best performance with d = 4.25, dpmax = 16. The performance of this coincides with

the soliton distribution with almost the same average repetition factor of d = 4.1572, but
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Figure 7.1:
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double the maximum repetition factor at d., = 16. Similar trends are seen for lower
values of dyay. The results from [72] indicate that the truncated soliton distribution is an
unique optimal distribution for the 1-collision channel, with infinite maximum repetition
factor. But practically, with finite maximum repetition factor, we can find other optimized
distributions that perform similar to the truncated soliton distribution.

For K = 2, in Fig. 7.1(b), we see that the optimized distribution with d = 3.18, dyax =
16 maximizes the throughput at L* ~ 1.9. The soliton distribution with d = 4.8033, dmax =
64 is no longer the optimal distribution, and in fact, it is the lowest curve, i.e., it is the
distribution that achieves the lowest peak performance with an inflection load of L* ~ 1.6.
As we decrease the maximum repetition factor from d,.. = 16 to 8,4, and 3, we observe
that the peak throughputs reduce. The trends for the soliton distribution is exactly the
opposite and the peak throughputs (and the corresponding inflection laods) increase with
a decrease in dy.x. This shows that directly using the soliton distribution which has been
optimized for the 1-Collision channel need not be optimal for any other channel. Fur-
ther, CRDSA achieves the lowest inflection load L* = 1.5, which shows that irregularly
transmitting as in IRSA is beneficial for the K-Collision channel.

For K = 3, in Fig. 7.1(b), the optimized distribution with d = 2.88, dpax = 16
maximizes the throughput at L* ~ 2.75. The trends from the previous plot as we decrease
the maximum repetition factor from d,.. = 16 to 8,4, and 3 are observed for K = 3
as well,. The soliton distribution again turns out to achieve the lowest inflection load
L* = 2.2, and here it is far lower than CRDSA as well. In fact, CRDSA performs better
than all the soliton distribution curves, and is inferior to all the numerically optimized

distributions.

7.4.2 Fading Channel with MIMO, Perfect CSI, and Maximal

Ratio Combining

In this section, we optimize the repetition distributions for the fading channel with MIMO,
perfect CSI, and MRC. The optimal distributions for the SISO case with perfect CSI is

presented in [17]. Further, for the success probability 6,, we observed in Chapter 3, that
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the Normal approximation performed the best. Hence, in this section, we use the Normal

approximation to find the throughput optimal distributions.?

Table 7.2: Throughput Optimal Distributions for IRSA with the Fading Channel,
MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 2.

Parameters dmax o(x) d | L

3 0.03z2 + 0.9723 2.97 | 1.78

po=Lyn=1 4 0.42% + 0.092 + 0.51z* | 3.1 | 1.85

8 0.2622 + 0.623 + 0.142% | 3.37 | 1.9

3 a3 3 1071

Po=D5,Y%n =25 4 z? 4 10.85

8 | 0.41x3+0.382* +0.212% | 4.6 | 0.91

3 @3 3 10.62

po=10,y=10| 4 0.032% + 0.972* 3.94 1 0.75
8 0.522 + 0.2123 +0.292% | 4.74 | 0.8

3 a3 3 |1.05

po=10,%n =5 4 0.3322 + 0.67z* 3.35 | 1.11
8 0.22% +0.62% +0.22% | 3.71 | 1.17

We present the optimal distributions for the fading channel in Table 7.2, and we
compare the effect of varying the SNR py and the capture threshold 7, on the inflection
load L*. As expected, as dp.y is increased, the optimized distributions perform marginally
better. Thus, the disparity that is offered by a higher repetition factor helps improve the
performance. Increasing py = vy from 1 to 5 to 10 reduces the inflection load L* as
expected. This is because even though the SNR improves, the capture threshold also
increases and thus the number of users who cross the SINR threshold reduces. Further
for po = 10, with a reduction in , from 10 to 5, L* improves. These observations are
also supported by the observations in Chapter 3.

We present the optimal distributions for the fading channel in Table 7.3, with similar
settings as the previous table but with N = 8 instead. The inflection loads increase from
N =2 to N = 8 and the distributions require a higher d,,,, to achieve marginally higher

inflection loads. Here the inflection load has increased from L* = 1.9 with N = 2 to

2For the other approximations, see Sec. 7.8.1.
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Table 7.3: Throughput Optimal Distributions for IRSA with the Fading Channel,
MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 8.

Parameters Ainasx o(x) d L
3 22 2 |7.36
po=1,vm=1 8 0.9722 4+ 0.032% 2.14 | 7.38
16 | 0.962% + 0.01z™ + 0.01z'® + 0.022 | 2.55 | 7.53
3 0.372% + 0.632° 2.62 | 2.12
Po=5%m=>5 4 0.6822 + 0.32z* 2.64 | 2.24
8 0.772% + 0.012° + 0.062” + 0.162% | 3.22 | 2.35
3 0.112% + 0.892° 2.88 | 1.51
8 0.5422 4 0.2423 4 0.2228 3.56 | 1.69
po = 10,7 = 10
0.5222 4 0.162> + 0.182* + 0.02z!*
16 43 | 1.74
+0.012' + 0.012" + 0.1216
3 0.412% + 0.592° 2.59 | 2.21
po=10,v =5 4 0.692% + 0.312* 2.62 | 2.29
8 0.792% + 0.2128 3.21 | 245

2 T — T
—Opt. d=3.37,dnax =8
-- Opt C{= 3-11dmax =4
T | Y R Opt. d=2.97,dnax =3 |
—Soliton d = 2.9633, dyax = 8
C - - Soliton d = 2.4444, dyax = 4
DO /St | I S Soliton d = 2.25, dpay = 3
=T -} CRDSA |
Q,
=
e
o 0.8 ]
—
<=
H
0.4 7
0 i

Figure 7.2: Comparison between optimized performance and soliton performance for
N = 2,py = 1,v = 1, for the fading channel with MIMO, MRC, and the Normal

approximation.
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Figure 7.3: Comparison between optimized performance and soliton performance for

N = 8,p0 = 1,%n = 1, for the fading channel with MIMO, MRC, and the Normal

approximation.

Table 7.4: Throughput Optimal Distributions for IRSA with the Fading Channel,
MIMO, and Maximal Ratio Combining, with pg = 1, % = 1, and the Normal

Approximation.
N | dax o(x) d | L
3 0.0322 + 0.972° 2.97 | 1.78
2| 4 0.42% 4 0.092% 4+ 0.512* 3.1 | 1.85
8 0.2622 + 0.62% 4- 0.142° 337| 1.9
3 0.862% + 0.1423 2.14 | 3.94
4| 4 0.89z2 4 0.11z* 2.22 | 3.97
8 0.9122 + 0.012° 4 0.0828 2.5 | 4.11
3 22 2 | 7.36
8| 8 0.972° + 0.032° 2.14 | 7.38
16 | 0.962% +0.012' + 0.012" + 0.022'¢ | 2.55 | 7.53
3 2 2 | 1331
16 | 16 0.982% 4 0.012° + 0.012'¢ 2.15 | 13.35
24 | 09722 + 0.012'% + 0.012% 4 0.012** | 2.35 | 13.37
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Table 7.5: Throughput Optimal Distributions for IRSA with the Fading Channel,
MIMO, and Maximal Ratio Combining, with pg = 10, v, = 10, and the Normal

Approximation.
N | o é(z) d | L
3 3 3 0.62
2 4 0.03z% 4+ 0.972* 3.94 | 0.75
8 0.522 + 0.212% + 0.2928 474 | 0.8
3 3 3 1.11
4 4 0.2723 + 0.73z* 3.72 | 1.15
8 0.1122 + 0.7223 + 0.1728 3.75 | 1.2
3 0.1122% 4+ 0.8923 2.88 | 1.51
8 0.5422 + 0.2423 + 0.2228 3.56 | 1.69
8
0.5222 + 0.162° + 0.18z* + 0.022™
16 4.3 | 1.74
+0.012" + 0.012 + 0.12'6
3 0.4322 + 0.572° 2.57 1 2.18
0.5122 + 0.362% 4+ 0.01z* + 0.0328
16 3.67 | 2.42
16 +0.01z" + 0.042' + 0.032° + 0.01216
0.52% + 0.3223 + 0.08z° + 0.02x!!
24 4.11 | 2.46
+0.02217 + 0.012%° + 0.0222% + 0.032:%4
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L* = 7.53 with N = 8 due to array gain. The distributions themselves change a lot and
no obvious trends in the optimized distributions are observed with variations in py and
Tth-

In Fig. 7.2, we compare the performance of different repetition distributions for the
fading channel with MIMO, MRC, and the Normal approximation, and with N = 2, pg =
1,7%n = 1. All the optimized distributions perform better than the Soliton distribution,
and CRDSA has the lowest peak performance with 7 = 1.15 at L = 1.5. We see that con-
sidering a realistic fading assumption on the channel allows for power disparity amongst
users which leads to all the throughputs exceeding unity. Further, with d,.. = 8, the
optimized distribution performs the best, albeit with a higher d when compared to the
soliton distribution. Thus, even for the fading channel, the soliton distribution is not
good enough and we can find distributions that perform better.

In Fig. 7.3, we analyze the same as the previous figure, but with N =8, po = 1, 4, = 1.
The performance highly improves compared to the previous figure due to the increase in
the diversity gain offered by the number of antennas. The soliton distribution with d =
3.5394, d . = 16 is no longer the optimal distribution, and in fact, it is the lowest curve,
i.e., it is the distribution that achieves the lowest peak performance with an inflection load
of L* ~ 5.5. As we decrease the maximum repetition factor from d,., = 16 to 8,4, and
3, we observe that the peak throughputs for the soliton distribution increases. CRDSA
also performs better than all the soliton distributions. The optimized distribution with
d = 2.53, dax = 16 achieves the highest throughput and it performs better than CRDSA.

We now present the optimal distributions for the fading channel, where we study the
effect of the number of antennas on the inflection load L*. In Table 7.4, we present the
result with pg = 1, %, = 1, whereas in Table 7.5, we present the result with pg = 10, v, =
10. For py = 1,vn = 1, the maximum inflection loads are L* = 1.9, 4.11, 7.36, and
13.37 for N = 2, 4, 8, and 16. For py = 10, vy, = 10, the maximum inflection loads are
L* =0.8, 1.2, 1.74, and 2.46 for N = 2, 4, 8, and 16. With an increase in the number
of antennas, the diversity gain increases for MRC, and thus, the decodability of users

improves which leads to a significant increase in the inflection load. As N is increased,
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the optimal distributions for pg = 1,7, = 1 become closer to that of CRDSA. Recall
that a D-regular distribution for DRRSA is ¢(x) = x”. In fact, for N = 2, the optimal
distribution is closer to 3-regular DRRSA, and when N is increased to 16, the optimal
distribution is indeed the 2-regular DRRSA, which is the same as CRDSA. This behaviour
is very different for py = 10, v, = 10, for which as N is increased, the optimal distributions
for pp = 1,3 = 1 remain as irregular distributions. For pg = 10,y = 10, the optimal
distributions become less sparse compared to the distributions for pg = 1, %, = 1 for each
N. Here, sparse distributions are distributions which have most entries to be zero, whereas
dense distributions are distributions which have most entries as non-zero entries. Thus, we
can summarize that for higher SNRs and higher modulation and coding schemes (MCSs)
which require a higher ~y,, the optimized distributions are indeed irregular in nature,
and would require us to use more dense distributions as seen for pg = 10, v, = 10, and

N = 16.

7.4.3 Fading Channel with MIMO, Channel Estimation Errors,
Pilot Contamination, and MMSE Combining

In the general case, i.e., with MIMO, fading, channel estimation, pilot contamination,
and MMSE combining, we cannot compute the success probability 6, in closed form as
observed in Chapter 3. Hence, we resort to empirical calculation of 6, for the general
case, and then optimize the throughput of IRSA using the same.

We now present the throughput-optimized distributions for IRSA with the fading
channel, MIMO, channel estimation errors, pilot contamination, and MMSE combining
in Table 7.6 for 7 = 10, pg = 1, and y, = 1; in Table 7.7 for 7 = 10, pg = 10, and 4, = 10.
For N = 2, the optimal distribution is 3-regular for d,,., = 3, whereas for d.x = 4, it is
4-regular. For dpa. = 8, it is more dense but with the same d as the previous distribution.
As we increase N to 4, 8, and then 16, we see that the distributions become closer to a
2-regular distribution.

We now present the throughput-optimized distributions for different pilot lengths in
IRSA with the fading Channel, MIMO, channel estimation errors, pilot contamination,
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Table 7.6: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

=10,pp =1, and v, = 1.

N dmax ¢($) d Lx
3 z? 3 1.64
2 4 0.062 + 0.942* 394 | 1.76
8 0.1622 + 0.182% + 0.552° + 0.112% | 3.94 | 1.82
3 0.9322 + 0.072° 2.06 | 5.11
4 4 0.9222 + 0.08z* 2.16 | 5.15
8 0.9122 + 0.062% + 0.0328 2.25 | 5.18
3 22 2 8.1
8 8 0.9922 + 0.012® 2.1 | 8.15
16 | 0.972% + 0.01z™ + 0.01z"™ +0.012' | 2.2 | 8.18
3 x2 2 10.8
16 | 16 0.9822 + 0.01z' + 0.01216 2.03 | 10.84
24 | 0.9722 +0.012% 4+ 0.01z' 4+ 0.01z2* | 2.35 | 10.86
14 f?
| O N=16
12 X N=8 -
o +N=4
3 s
S ]
g6
g
E 4

20 30 40
Pilot Length (7)

50
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Figure 7.4: Impact of the pilot length on the inflection load L*, for the fading channel

with MIMO, MMSE combining, pilot contamination, and channel estimation errors.
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Table 7.7: Throughput Optimal Distributions for IRSA with the Fading Channel,
MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

7 =10, pg = 10, and v, = 10.

N dmax ¢($) (Z L*
3 z3 3 0.89
2 4 0.0122 + 0.0223 + 0.9724 3.97 | 1.01
8 0.432° + 0.39z* + 0.1828 4.3 | 1.05
3 0.622 4 0.423 2.4 1293
4 4 0.8522 + 0.0223 + 0.13z* 2.27 | 3.05
8 0.8922 + 0.022% + 0.092% 2.53 | 3.12
3 0.9922% + 0.012° 2.01 | 5.7
8 8 0.9822 + 0.012° + 0.0128 2.06 | 5.74
16 0.972% 4+ 0.012% 4+ 0.012'° + 0.012' | 2.21 | 5.78
3 0.9722 4 0.032 203 | 7.2
16 | 0.9722 + 0.012'2 + 0.012" + 0.012'¢ | 2.22 | 7.24
16
0.9622 + 0.012° + 0.01z7
24 2.35 | 7.27
+0.012" 4+ 0.012%*
=
e
<
o
—
=
.S
g
E 4r | | ]
T T
2L _
B = H all
0 1 1
2 4 8 16

Number of antennas (V)

Figure 7.5: Impact of the number of antennas on the inflection load L*, for the fading
channel with MIMO, MMSE combining, pilot contamination, and channel estimation

eIrors.
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Table 7.8: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

Amax = 8, po = 10, and ¢, = 10.

()

d

L*

10
20
30
60

0.43z° 4 0.392* + 0.182°
0.5922 + 0.252° + 0.162°
0.712% + 0.12* + 0.1828
0.81z% +0.01z* + 0.182%

4.3
4.06
3.97
3.91

1.05

1.15
1.2

1.22

10
20
30
60

0.89z% + 0.022% + 0.092%

0.93z2 + 0.012* + 0.0628

0.892% + 0.0423 + 0.072%
0.93z% + 0.072%

2.53
2.4
2.46
2.42

3.12
3.37
3.41
3.52

10
20
30
60

0.982% + 0.012° + 0.012®

0.972% + 0.012% + 0.022®

0.98z% + 0.01z7 + 0.012®
0.9922 + 0.012®

2.06
2.17
2.11
2.17

5.74
6.97
7.13
7.34

16

10
20
30
60

0.9822 4+ 0.012% + 0.0128
0.9922 + 0.0128
0.992% 4+ 0.0128

(L’2

2.1
2.17
2.17

7.22

11.82
13.24
13.86
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and MMSE combining in Table 7.8 for dy.« = 8, pg = 10, and 7, = 10. For each N, it
is observed that the inflection loads monotonically increase with an increase in the pilot
length 7. For N = 2, the optimized distributions are varied and differ from each other
as 7 is increased from 10 to 20 to 30 to 60. For a similar increase in 7, the optimized
distributions vary only slightly for NV = 4 and vary negligibly for N = 8 and N = 16. This
is because the system is already performing at the peak for low pilot lengths at higher N.
Thus, optimizing the distribution does not help much here. We can also see a reduction
in d with an increase in 7 for N = 2 and N = 4, which shows that fewer packets could be
transmitted in order to obtain higher inflection loads.

In Fig. 7.4, we study the impact of the pilot length on the inflection load L*. For
every N, the inflection load L* increases with 7. At low pilot lengths, there is a very
minute difference between the inflection loads for different N. Beyond 7 = 30, we can
see a very significant increase in the inflection load. This is because the pilot lengths are
now sufficient enough to ensure that channel estimation errors reduce (i.e., the variance
of the channel estimation errors have reduced enough) and improve the inflection loads.
At 7 = 10, nearly all the curves are at L* = 1.5. For N = 16, the inflection load highly
improves from L* = 1.5 at 7 = 10 to L* = 14 at 7 = 60, which is an 833.33% increase
in the inflection load. Here, even though N = 16 is enough to suppress interference, the
system is limited by the channel estimation errors.

Fig. 7.5 studies the effect of the number of antennas on the inflection load for varied
pilot lengths. As observed in the previous plot as well, for 7 = 10, the inflection load L*
stays fixed as we increase the number of antennas. This is because the system is limited
by channel estimation errors. For 7 = 20, the inflection load only slightly increases from
N = 2 to N = 4, and then stays fixed. For 7 = 30, the inflection load increases from
approximately L* = 6 to 7.5. Finally, for 7 = 60, the inflection load increases from
L* =75 for N = 2 to 14 for N = 16, which is an 86.67% increase in the inflection
load. In contrast to the perfect CSI case with MRC, where the impact of the number
of antennas was incremental on the inflection load (see Fig. 7.12), here the impact is

pretty significant. Thus, increasing both the pilot lengths and the number of antennas is
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beneficial towards obtaining higher inflection loads.

7.5 Energy Efficiency Maximization

In this section, we focus on the EE of IRSA. We first define the EE metric and then
later, obtain the corresponding optimal distributions in IRSA. In (7.8), we computed the
throughput of IRSA, Thpt ({2, @3, . . ., ¢a,... }) (Packets per slot or RB), which we now use
to compute the EE of IRSA, denoted by EE({¢s, @3, ..., ¢a,..})- The spectral efficiency
SE({¢2, ¢3, ..., ¢a,..}) in IRSA can be computed in bps/Hz as

SE({d2, 93, - P }) = (1 = 7/7c) ThpL ({2, 3, - - -, P }) X 1082 (1 + 7un),  (7.12)

where 7 is the pilot length, 7. is the length of the packet of any user, and ~, is the
SINR decoding threshold. Using the above, the EE can be conventionally calculated in
bits/Joule as

_ B SE({¢2, 03, - -, Pdpnar })
_ s :

EE({d2, 93, - -, Pdar 1) (7.13)

Here, B is the bandwidth, and P¢ is the total power consumed, which is dependent on
other factors such as circuit power at the BS. We use a well known realistic model for Pq

as seen in [49,150] as

Pc = Prix + Prc + Peg + Pep + Peu + Psp, (7.14)

where the terms are as follows: Pgi, is a fixed power required for control signaling and
includes the load-independent power of backhaul infrastructure and baseband processors,
Prc accounts for the power consumed by the transceiver chains, Pog is the power required
for for the channel estimation process, Pcp accounts for the channel encoding and decod-
ing powers, Pgy is the load-dependent backhaul signaling power, and Fsp is the signal
processing power at the BS.

We now define the above terms specifically for IRSA. Firstly, recall that the number
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of users transmitting per slot for an IRSA system with load L and with average repetition
factor d is Ld. The transceiver power is calculated as Prc = N Pgs+ Ld Pysers+ PrLo, Where
Pgs is the power required to run the circuit components per antenna at the BS, Pyges is the
power required at each of the single-antenna users, and P is the power required by the
local oscillator at each BS (for a cell-free setup with a distributed antenna array, Pro grows
with V). The channel estimation process plays a huge rule in MIMO communications and
the channel estimation power Pcg is dependent on the number of multiplication operations
performed as detailed in Chapter 3. If the computational efficiency of the BS is denoted

by ne, then the channel estimation power Pcg is calculated as

(

s(Ldr + (Ld)?), MSBL Estimator,
3B

TcNo

Pcp =

N - ¢ Ldr + (Ld)?, MMSE Estimator, (7.15)

Ldr + Ld, LCMMSE Estimator.
\

Here, s is the average number of iterations the MSBL algorithm is run for. The encod-
ing/decoding power contribution Pgp is calculated from the encoding power Pgp. and the
decoding power Ppe. as Pcp = (Pgne + Ppec) B SE({¢2, @3, - - - , da,... }) according to [49].
Unlike [49], we model the encoding/decoding power contribution not just from the frac-
tion of packets of the decoded users but from all the users. Hence, we model it as
Pop = (Pene + Ppec)B (1 — 7/7.) L1ogy(1 4+ vin). The backhaul power Pgy is calculated
from the backhaul traffic power Pgr as Pgy = PgrBSE({¢2, @3, ..., Pd,.. ). The sig-
nal processing power Psp is a sum of the transmission/reception power Psp_rr and the

combining (MMSE combining or MRC) power Psp_c. These can be calculated as

3BT

Psp_1p = e LdN., (7.16)
B N(N +1)Ld N3+6N
3 (3 ( : JLd 36 ) , MMSE Combining,
Psp_c = T?HBC (7.17)
N, MR Combining.
e

For the multi-cell and the cell-free setups, the above have to be changed as detailed in [49].



Chapter 7. Optimal Repetition Distributions 350

The EE optimization problem now becomes

]Pg : max EE({¢2, ng, ey ¢dmax}) (718)
D2,03,,Pdimax
subject to 0<o¢s<1, 2<d<dpa, (7.19)
dnlax
> ba=1, (7.20)
d=2
L = L,y. (7.21)

Here, the first two constraints ensure that the candidate solutions are indeed probability
vectors. The third constraint ensures that the distributions are optimized at a reference
load of L.;. We use the DEA to numerically obtain the optimal distributions in the next
section.

Remark 9: Existing works have considered simpler models to compute the EE. The
simplest model for the EE is perhaps the ratio of the SE to the total power consumed [30].
For IRSA, this model can be written as

_ B SE({¢2,¢3, - -, Pdpnar })

EE({02, 05, G }) = - NPt L (7.22)

The power consumed in the denominator of this simplistic model does not account for
the SE. Even though we use the EE model from (7.13) to optimize the distributions,
we will use the model from (7.22) in the next section purely to obtain insights into the
dependence of the EE of IRSA on the system parameters such as N, L, d, and 7.
Remark 10: The trivial power allocation for maximizing the EE in typical communi-
cations is to let the transmit power to be zero [30], since this minimizes the denominator
of the EE. The equivalent of this for the energy efficient distribution design would be to

2

use the trivial distribution ¢(x) = 2? since it minimizes d in the denominator of the EE.
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7.6 Numerical Results for Energy Efficiency Maxi-
mization

We now optimize the repetition distributions in order to maximize the EE of IRSA. For the
results presented in this chapter, we operate the system with a reference load of L. = L*
in order to operate the system at the peak throughput and the reported distributions are
optimized at the inflection load to maximize the EE. The maximum EE obtained from the
DEA is denoted by Enax and is measured in kilobits per Joule [49]. The DEA parameters
are F' = 0.9, M = 10N, and C, = 0.9 [149]. We choose the terminating criteria TC(-) as
the standard deviation of the EEs of all the population vectors in any generation, and
terminate the DEA generations when TC(+) < ¢. = 1072 [149]. For the power consumption
model, we consider the following set of parameters as in [49]: 7. = 100 packet length,
Prix = 10W, Po = 02W, Pgs = 0.4W, Pysers = 0.2W, Pgye = 0.1 W/(Gbit/s), Ppe. =
0.8 W/(Gbit/s), Pgr = 0.25 W/(Gbit/s), and nc = 75 Gflops/W. We use B = 100 kHz as
the bandwidth, similar to the settings used by standard IoT-type devices in NB-IoT [3].
Since we consider low bandwidths of 100 kHz compared to 20 MHz in conventional cellular
communications, the achievable spectral efficiencies (and hence energy efficiencies) are a

magnitude of order smaller in TRSA.

7.6.1 K-Collision Channel

In Table 7.9, we present the EE optimal distributions for IRSA with the K-collision
channel with varied maximum repetition factors. For K = 1, as we increase dpay (or
alternately increase d), the inflection load L* increases from 0.82 to 0.95. The peak EE
Emax increases from 23.01 to 25.34 kilobits per Joule. For K = 2, as we increase day,
the inflection load L* increases from 1.71 to 1.89, and &,,.« increases from 46.77 to 49.36
kilobits per Joule. For K = 3, as we increase dp.y, the inflection load L* increases from
2.57 to 2.75, and &, increases from 67.1 to 70.09 kilobits per Joule. We observe that
we obtain higher peak EEs for higher K which is a result of improved throughputs since

up to K collisions can be resolved simultaneously. In the above table, we observe that
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Table 7.9: Energy Efficiency Optimal Distributions for IRSA with the K-Collision

Channel.
K | diax o(z) d | L' | Emax
3 0.2422 + 0.762° 2.76 | 0.82 | 23.1
4 0.542% + 0.462* 2.91 | 0.86 | 24.12
1] 8 0.472% 4+ 0.312% + 0.092% 4 0.1227 +0.012% | 3.27 | 0.92 | 25.04
6 0.4722 + 0.312% 4 0.06z* 4 0.022° + 0.022° a7 | 0.05 | 2534
+0.052% 4+ 0.042° + 0.012'° + 0.012'2 + 0.0121¢
3 0.8922 +0.1123 2.11 | 1.71 | 46.77
4 0.9622 + 0.042* 2.08 | 1.74 | 47.81
2] 8 0.922 + 0.012° 4 0.0827 + 0.012° 2.49 | 1.85 | 48.78
6 0.922 + 0.01z* 4 0.01z° + 0.04z" 058 | 180 | 49.36
+0.022% 4 0.012° + 0.012'6
3 22 2 | 257 67.1
4 0.9822 + 0.02* 2.04 | 2.58 | 68.81
’ 8 0.912% 4 0.09z® 2.54 | 2.65 | 69.21
16 0.942% + 0.042'2 + 0.01z* + 0.012 2.66 | 2.75 | 70.09

increasing d,,.x increases d which increases the inflection load L* as well as the energy

efficiency. This is because in the expression for the energy efficiency in (7.22), in this

regime, any increase in d increases the SE which dominates the corresponding small

increase in the denominator.

The authors in [74] have claimed that CRDSA, i.e., a 2-regular distribution is the

most energy efficient distribution for IRSA under every scenario, even under the collision

channel. In fact, for the rest of this chapter, we show that it is not universally true.

Our results above show that we can indeed obtain more efficient distributions than the

2-regular distribution. In several cases, a 2-regular distribution can be the most energy

efficient distribution (e.g., at high pilot lengths and high number of antennas), but in

general, it is not the EE optimal distribution.
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Table 7.10: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 2.

Parameters Ainax o(z) d L* | Emax

3 0.072% + 0.932° 2.92 | 1.78 | 12.91

p=Tlm=1 | 4 0.2522 + 0.492% + 0.262* 3.01 | 1.85 | 12.94

8 0.322% + 0.562% 4 0.122° 3.29 | 1.9 | 13.01

3 z° 3 0.71 | 124

p=5vm=5 | 4 ot 4 | 0851674

8 0.423 4+ 0.23z* + 0.082° + 0.232% | 4.36 | 0.91 | 17.15

3 z° 3 0.62 | 14.35

po = 10, % = 10 4 0.032% +0.972* 3.94 | 0.75 | 19.78
8 0.482% + 0.242* 4 0.282° 4.63 | 0.8 | 20.41

3 23 3 1.05 | 20.97

po=10,7m =5 | 4 0.2322 + 0.292% + 0.482% 3.25 | 1.11 | 21.68
8 0.152% + 0.692° 4 0.162° 3.63 | 1.17 | 22.45

Table 7.11: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with the Normal Approximation and N = 8.

Parameters inax o(z) d L* | Enax
3 22 2 | 7.36 | 40.53
po=1Lvmm=1 8 22 2 | 7.36 | 40.53
16 0.992% + 0.0126 2.14 | 7.42 | 40.94
3 0.68z% + 0.322° 2.32 | 2.12 | 33.99
Po =05, % =5 4 0.682% + 0.32z* 2.64 | 2.24 | 35.08
8 0.792% + 0.192° + 0.0127 + 0.0128 2.81 | 2.35 | 36.36
3 0.4622 4 0.5423 2.54 | 1.51 | 32.97
8 0.5622 + 0.222% + 0.0227 + 0.228 3.52 | 1.69 | 35.77

Po = 107'Yth =10 . -

0.522 + 0.322% + 0.022° + 0.0527
16 3.64 | 1.74 | 36.21
+0.062'° + 0.01z" + 0.032'2 4+ 0.01216

3 0.672% + 0.332° 2.33 | 2.21 | 35.48
po=10,vn =5 4 0.82% + 0.228 32 |229 | 36.14
8 0.782% + 0.032 + 0.192° 3.17 | 2.45 | 38.17
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Table 7.12: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,
MIMO, and Maximal Ratio Combining, with pg = 1, %, = 1, and the Normal

Approximation.
N | diax B(x) d | L* | Emax
3 0.0722 4 0.932° 292 | 1.78 | 12.91
2 | 4 | 0.252%+0.492% +0.262* | 3.01 | 1.85 | 12.94
8 | 0.3222 4+ 0.562° +0.122% | 3.29 | 1.9 | 13.01
3 z? 2 | 3.94 | 26.26
4| 4 0.9822 + 0.01z* 2.04 | 3.97 | 26.52
8 0.93z2 + 0.07z® 242 | 4.11 | 26.52
3 z? 2 | 7.36 | 40.53
8| 8 z? 2 | 7.36 | 40.53
16 0.992% + 0.0126 214 | 7.42 |40.94
3 x? 2 | 1331 | 54.6
16 | 16 0.992% + 0.01z'6 2.14 | 13.35 | 54.94
24 | 0.982% + 0.01z* + 0.012%* | 2.24 | 13.37 | 55.28

7.6.2 Fading Channel with MIMO, Perfect CSI, and Maximal

Ratio Combining

In Table 7.10, we present the EE optimal distributions for the fading channel with perfect
CSI, MIMO, and MRC, with the Normal approximation and N = 2. Here, most of the EE
optimal distributions are close to the 3- or 4-regular distributions and not the 2-regular
distribution. For higher d,,.x, we obtain slightly denser distributions for every combination
of po and . An important observation is that we obtain higher EEs for pg = 10, vy, = 10
compared to pg = 5,1n = 5, whereas the inflection loads reduce for py = 10,7y, = 10
compared to pg = 5,y = 5. A similar observation is made for py = 5, 3, = 5 compared
to po = 1,%n = 1, both of which have equal py 'y, = 1. Even though the decodability
of the users, which roughly depends upon the equal p; 'y, the EE increases because the
SE increases due to increase in 7y,. From pg = 5,9, = 5 to pg = 10, %, = 5, there is
an increase in the SNR and the corresponding inflection loads and EEs both improve. In
contrast, from pg = 10,4, = 5 to pg = 10,1, = 10, there is an increase in the SINR

threshold and the corresponding inflection loads and EEs both reduce. This is because
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Table 7.13: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with pg = 10, v, = 10, and the Normal

Approximation.
N dmax ¢(‘E) d_ L* gmax
3 3 3 10.62|14.35
2| 4 0.032% + 0.97z* 3.9410.75 | 19.78
8 0.482% + 0.2424 + 0.2828 4.63 | 0.8 | 20.41
3 0.342% + 0.6623 2.66 | 1.11 | 27.63
4 4 0.3622 + 0.3923 + 0.252* 2.88 | 1.15 | 28.7
8 0.3722 + 0.452° + 0.18z8 3.53 | 1.25 | 35.52
3 0.462% + 0.5423 2.54 | 1.51 | 32.97
8 0.562% + 0.2223 4+ 0.0227 + 0.228 3.52 | 1.69 | 35.77
8
0.52% + 0.3223 4 0.022° + 0.0527
16 3.64 | 1.74 | 36.21
+0.062'° 4 0.012' 4 0.032'2 4+ 0.012'6
3 0.682% + 0.3223 2.32 | 2.18 | 38.04
0.7122 + 0.052% + 0.03z* 4 0.072°
16 3.66 | 2.45 | 41.56
16 +0.042% + 0.022% + 0.062'° 4 0.02x6
0.742% + 0.062* 4 0.12% + 0.0328
24 3.77 | 2.46 | 41.58
+0.022'2 4+ 0.022"° + 0.012" + 0.022**
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Y is unilaterally increased, leading to fewer users getting decoded.

In Table 7.11 we present the EE optimal distributions for the fading channel with
perfect CSI, MIMO, and MRC, with the Normal approximation and N = 8. In contrast to
the previous table, we observe different trends. When the decodability at the BS improves
due to increase in N from 2 to 8, the increase from py = 1,3, = 1 to pop = 5, % = 5
to po = 10,y = 10 monotonically reduces both the inflection loads as well as the peak
EEs. This is because we are now operating in the regime where the higher number of
antennas N consumes more power and the corresponding decodability does not increase
a lot to counteract the effect of N. The peak EEs have, however, increased from the
previous table since an increase in N helps the decodability of MRC and also improves
the inflection loads. Finally, for py = 1, v, = 1, the 2-regular distribution is optimal, but
for the other sets of parameters, we obtain other distributions.

For both the above tables, we observe that increasing d in each configuration, in-
creases the inflection load L* as well as the EE. This is because in the expression for the
EE in (7.22), in this regime, any increase in d increases the SE which dominates the cor-
responding small increase in the denominator. Now, increasing /N here across the tables
does not decrease the EE because the corresponding increase in the inflection load is high
enough to dominate the 4-fold increase in N. This increase in N improves the decoding
capability due to array gain and interference suppression. We can also observe that the
average repetition factors of the optimal distributions at the inflection loads reduce across
the tables when we increase N, since the denominator of the EE reduces.

In Table 7.12, we present the EE optimal distributions for the fading channel with
MIMO, MRC, py = 1, and v, = 1. As we increase the number of antennas N from 2 to 4
to 8 to 16, the maximum inflection loads increase from 1.9 to 4.11 to 7.42 to 13.37, and the
maximum peak EEs increase from 13.01 to 26.52 to 40.94 to 55.28 kilobits per Joule. The
optimal distributions as N increases becomes closer to the 2-regular distribution. Further,
the inflection loads significantly increase with N. The peak EEs also significantly increase
since the decodability with MRC highly improves with /N which is also sufficient enough

to overcome the extra power consumed due to higher N. The success probability 6,.,



Chapter 7. Optimal Repetition Distributions 357

under pg = 1 & v, = 1, is lower for every r for N = 2 compared to N = 8, which
yields lower decodability for N = 2 compared to N = 8. In order to compensate for the
lower decoding capability, the distribution is optimized to achieve distributions that are
variedly different from ¢(x) = z2. For N = 4,8, 16, we observe that since 0, is better, the
inflection loads are higher, but the optimal distribution reduces to ¢(x) = x? since the
effect of N and d dominates the SE.

In Table 7.13, we present the EE optimal distributions for the fading channel with
MIMO, MRC, py = 10, and ~, = 10. As we increase the number of antennas N from 2 to
4 to 8 to 16, the maximum inflection loads increase from 0.8 to 1.25 to 1.74 to 2.46, which
is a very small increase compared to the previous table. The maximum peak EEs increase
from 20.41 to 35.52 to 36.21 to 41.58 kilobits per Joule. For N = 2 and 4, the peak EEs
were higher in the previous table, but for N = 8 and 16, the peak EEs are higher in this
table. This is because, even though the decodability stays roughly the same, the increase
in the SNR is not sufficient enough to counteract the increase in the decoding threshold,
at higher N. This is supported by a very small increase in inflection load which does not
depend on the power consumed. This is the opposite for lower N. We also observe that
the distributions are more dense compared to the previous table.

In both the above tables, for each N, we observe that increasing d, increases the
inflection load L* as well as the EE. This is because in the expression for the EE in (7.22),
in this regime, any increase in d increases the SE which dominates the corresponding small
increase in the denominator. Increasing the number of antennas N has a higher effect on
increasing the SE rather than the denominator of the EE, and thus, the EE improves. In
Table 7.13, due to a higher 74, = 10, the inflection loads and the EE do not significantly
increase with N as it increased for v, = 1. However, we observe that the distributions
become more dense with increase in N to compensate for the lower decodability due to
higher v;,. We also note that, in this regime, a good increase in d improves the SE
and thus, even though the denominator of the EE reduces, the overall effect of the SE

dominates the system and hence the EE improves.
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7.6.3 Fading Channel with MIMO, Channel Estimation Errors,
Pilot Contamination, and MMSE Combining

Table 7.14: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,
MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

7=10,p9 =1, and vy = 1.

N | dpax o(x) d | L' | Emax
3 z? 3 | 164 | 991
2| 4 0.0722 + 0.112° + 0.82z* 3.75| 1.76 | 11.96
8 | 0.0122 +0.322°% 4+ 0.647* +0.032® | 3.78 | 1.82 | 12.74
3 22 2 | 511 |33.12
4| 4 z? 2 | 511 |33.12
8 0.9922 +0.012% 2.06 | 5.18 | 33.37
3 z? 2 | 81 |4381
8 | 8 22 2 8.1 |43.81
16 0.992% + 0.012'0 2.14 | 8.18 | 43.92
3 z? 2 | 10.8 | 46.46
16| 16 z? 2 | 10.8 | 46.46
24 | 0.9722 +0.012% 4+ 0.012 + 0.012* | 2.4 | 10.86 | 46.83

In Table 7.14 we present the EE optimal distributions for the fading channel with
MIMO, MMSE combining, pilot contamination, and channel estimation errors, with 7 =
10,p0 = 1, and vy, = 1. It can be seen that the 2-regular distribution is optimal or
nearly optimal for N > 4 and distributions with higher d are optimal for N = 2. In
Table 7.15 we present the EE optimal distributions for the fading channel with MIMO,
MMSE combining, pilot contamination, and channel estimation errors, with 7 = 10, pg =
10, and v, = 10. It can be seen that the 2-regular distribution is optimal or nearly
optimal for N > 8 and distributions with higher d are optimal for N = 2 and 4. In
both the tables, the inflection loads highly increase with the number of antennas due
to improved suppression of interfering users due to MMSE combining. The performance
improvement is drastic since MMSE combining is better than MRC, at the cost of higher

complexity. This improvement is also seen in the EEs: MMSE combining consumes higher

power compared to MRC.



Chapter 7. Optimal Repetition Distributions

359

Emax (kbits per Joule)

Emax (kbits per Joule)

40|

[\
=
._/[

20

30 40
Pilot Length (1)

(a) 7. = 100.

100+ ON=16
>N =
" i T P
60 - —
40 +
Qd:_' E D\ L L '_-l
10 20 30 40 50 60

Pilot Length (1)

(b) 7. = 200.

Figure 7.6: Effect of the pilot length on the peak energy efficiency &, with varied 7,

for the fading channel with MIMO, MMSE combining, pilot contamination, and channel

estimation errors.
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Table 7.15: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,
MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

7 =10, po = 10, and 4, = 10.

N | dmax o(x) d | L* | Emax
3 2 3 1089 | 20.02
2| 4 zt 4 |1.01| 25.76
8 0.4z + 0.452* +0.152% | 4.2 | 1.05 | 26.08
3 22 2 1298 71.31
4 | 4 0.98z% + 0.02z* 2.04 | 3.05 | 71.61
8 0.942% + 0.062° 2.36 | 3.12 | 72.73
3 22 2 | 5.7 | 113.18
8 | 8 22 2 | 5.7 |113.18
16 0.992% + 0.01z'6 2.14 | 5.78 | 113.45
3 x? 2 | 7.2 | 115.75
16 | 16 z? 2 | 72 | 115.75
24 | 0.982% 4 0.012'® 4+ 0.012** | 2.38 | 7.27 | 116.06

The huge increase in EE is because of high SE improvement due to MMSE combining,
but the effect on the distribution is different. In both the tables, we observe that with
low L* (e.g., with N = 2 and N = 4), increasing dp.x to 8 optimizes the distribution
to a variedly different distribution and also increases the EEs. This is not observed with
high L* (e.g., with N = 8 and N = 16), where the distributions only slightly vary. This
is because the extra power consumed due to higher number of replicas and operating at
higher L is not dominant enough to improve the SE but would actually reduce d in the
denominator of the EE in (7.22). The peak EEs are much higher with MMSE combining
than MRC due to improved interference suppression. When going from py = 1,y = 1
to po = 10,9, = 10, the peak EEs reduce for MRC as we saw earlier. Unlike what
was observed with MRC, for MMSE combining, the peak EEs improve when going from
po = 1,7 = 1 to pg = 10,3, = 10. For MRC, the effect of improved decodability is
eclipsed by the higher amount of power consumed due to higher N. However, for MMSE

combining, the amount of power consumed due to more computations and high N is
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Table 7.16: Energy Efficiency Optimal Distributions for IRSA with the Fading Channel,

MIMO, Channel Estimation Errors, Pilot Contamination, and MMSE Combining, with

dmax = 8, po = 10, and ¢, = 10.

e o(z) p I Emax for | Enax for
7. =100 | 7. = 200
10 | 0.42% +0.452* 4 0.152% | 4.2 | 1.05 | 26.08 27.53
20 | 0.412°% +0.52* +0.092% | 3.95 | 1.15 | 25.73 28.76
? 30 | 0.5223 +0.38z* + 0.12% | 3.88 | 1.2 22.59 27.43
60 | 0.642° +0.262* +0.12% | 3.76 | 1.22 | 13.48 23.35
10 0.9422 + 0.062° 236 | 3.12 | 72.73 76.77
20 0.9622 + 0.042® 224 | 3.37 | 69.69 78.39
! 30 0.9722 +0.032® 218 | 3.41 | 61.88 79.56
60 0.9622 + 0.04a 224 | 352 | 36.21 63.14
10 22 2 | 57 | 113.18 120
20 z? 6.97 | 118.87 | 134.05
i 30 z? 2 | 7.13 | 106.48 | 129.89
60 z? 2 | 7.34 | 61.89 | 108.85
10 22 2 | 7.22 | 11575 | 12247
20 22 2 | 11.82 | 153.16 | 172.31
0 30 22 2 | 13.24 | 146.07 | 177.48
60 z? 2 | 13.86 | 86.31 151.05
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eclipsed by the decodability of MMSE. Thus, MRC and MMSE combining have different
trends in the peak EEs.

In Table 7.16, we present the EE optimal distributions for IRSA in the general case,
when the pilot length is varied. For N = 2, the 2-regular distribution is not optimal
whereas for N = 4, it is nearly optimal, and for N = 8 and 16, it is optimal. As the
pilot length is increased for NV = 2 and 4, the average repetition factor of the optimized
distribution reduces whereas the inflection loads increase. The inflection loads increase due
to improved channel estimation. For NV = 4, the inflection load increases only marginally
with an increase in 7, since the system is limited by decodability even if the channel
estimates vastly improve. For N = 16, the inflection load increases significantly with an
increase in 7, since the system is not limited by decodability. Here, the channel estimates
vastly improve and thus, the inflection loads highly increase. At low N, the success
probability 6, is lower for every r compared to higher N (e.g., with N = 8), which yields
lower decodability for N = 2 compared to N = 8. In order to compensate for the lower
decoding capability, the distribution is optimized to obtain distributions that are different
from ¢(z) = x2. At high N, the system already performs very well to obtain high L*,
and thus the optimal distribution would just result in the minimizer of the denominator
of the EE, which is the 2-regular distribution. We also present the peak EEs for varied
T.. The optimal distributions do not change when we change 7., but the trends in the EE
are different, as we will see next.

In Fig. 7.6, we study the impact of the pilot length 7 and the number of antennas
N on the peak EE of IRSA. The EE is dependent on the packet length 7., via both the
SE and the power consumed. For 7. = 100, 7 = 60 achieves the lowest peak EE since a
majority of the time is spent in channel estimation. This effect is not indicative in either
the throughput or the inflection loads since their definitions do not include 7.. Here,
7. = 10,20 achieves the highest peak EE for N = 2/4 and N = 8/16, respectively. For
T. = 200 and N < 8, 7 = 60 achieves the lowest peak EE since a majority of the time
is spent in channel estimation. For 7, = 200 and N = 16, 7 = 10 achieves the lowest

peak EE since channel estimates are not good enough to decode users. This inverse
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trend is due to increase in 7.. EE improves due to both increase in SE due to higher L*
and lower d, but this happens only in the regime where the pilot length is not too high
enough to eclipse the length of the data symbols. In both the subfigures, the peak EEs
monotonically increase with an increase in N. As discussed earlier, this is due to the
dominant effect of the throughput over the power consumed due to higher N. Unlike the
trends in the inflection loads seen with the throughput optimal distributions previously,
where the inflection loads monotonically increase with 7, here, it is not the case. This is
because of the pre-log factor (1—7/7.) within the SE used to compute the EE. Thus, there
is a specific pilot length at which the EE is maximized at which IRSA can be operated at
the peak EE.

7.6.4 Comparison with Existing Distributions

We now compare the optimized distributions presented in this chapter with existing dis-
tributions [7], [17], and the soliton distribution in [72] (with a = 0in (7.1)), in Table 7.17.
For this, we consider only the general case, i.e., IRSA with MIMO, MMSE combining,
channel estimation errors, and pilot contamination. For comparison, we present the peak
performance with the 2-regular distribution, i.e., with CRDSA. CRDSA achieves an in-
flection load of L* = 0.55 and peak EE of &£,., = 14.92 kilobits per Joule for N = 2 and
an inflection load of L* = 2.98 and peak EE of &, = 71.31 kilobits per Joule for N = 2.
A high peak EE is obtained due to lower d which dominates the denominator of the EE.
For each dp.x, we compare our optimized distribution with the soliton distribution (see
(7.1)) and also with other existing distributions (when available). We observe that for
every dpax, our optimized distributions perform better than existing ones. The only ex-
ception is dyax = 3, N = 4, for which the 2-regular distribution is indeed optimal. Hence,
our optimized distributions perform either same as or better than existing distributions.

For N = 2 and dy.x = 3, our optimized distribution is the 3-regular distribution,
which achieves a 51% increase in the inflection load and a 25% increase in the peak EE
compared to the Soliton distribution which achieves an inflection load of 0.59. For N = 2

and dy.x = 4, our optimized distribution is the 4-regular distribution, which achieves: a
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Table 7.17: Comparison of our energy efficiency optimized distributions with existing

distributions under MIMO, MMSE combining, channel estimation errors, and pilot

contamination, with 7 = 10, py = 10, and 4, = 10.

N | diax () d L* | % Imp. | Epax | % Imp.
2 2-regular: z? 2 1055 - 14.92 -
Our: 23 3 10.89 - 20.02 -
’ Soliton 2251059 | 51 1597 | 25
Our: z* 4 1.01 - 25.76 -
[17]: 0.662% + 0.162% + 0.18z* 252|064 | 58 17.24 | 49
! [7): 0.510222 + 0.4898x* 249 1 0.63 | 60 17.08 | 51
2 Soliton 2441062 | 63 16.87 | 53
Our: 0.42% + 0.452* 4 0.1528 4.2 | 1.05 - 26.08 -
8 [7): 0.522 + 0.282% 4 0.222° 36 | 08 31 21.2 23
Soliton 296 | 0.71 | 48 19.09 | 37
Our: 0.162°% + 0.782* + 0.03z' + 0.03z'6 | 4.53 | 1.06 - 26.4 -
16 Soliton 3541078 | 36 |20.56| 28
[17]: 0.592% + 0.272% + 0.022° + 0.122'% | 4.01 | 0.73 | 45 19.22 | 37
2 2-regular: z? 2 1298 - 71.31 -
Our: 22 2 2.98 - 71.31 -
’ Soliton 2251296 07 |7011| 1.7
Our: 0.982% + 0.02z* 2.04 | 3.05 - 71.61 -
Soliton 244 | 291 | 48 | 6846 | 4.6
! [17): 0.662% + 0.162° + 0.182* 2521289 | 55 |67.82| 56
4 [7): 0.510222 + 0.4898x* 249|284 | 74 |67.09| 6.7
Our: 0.942% + 0.062° 2.36 | 3.12 - 72.73 -
8 Soliton 2.96 | 2.75 13 [63.71 14
[7]: 0.52% + 0.2823 + 0.2228 3.6 | 2,51 24 57.4 27
Our: 0.932% 4+ 0.032° + 0.032'° 4+ 0.012'¢ | 2.59 | 3.15 - 73.2 -
16 Soliton 354|257 | 23 |5872| 25
[17]: 0.592% + 0.2723 + 0.022° + 0.122'¢ | 4.01 | 2.54 | 24 | 57.11 28
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58% increase in L* and a 49% increase in Eyay compared to the distribution in [17]. For
N = 2 and d.x = 8, our optimized distribution achieves a 31% increase in the inflection
load and a 23% increase in the peak EE compared to the best existing distribution. For
N = 2 and dy,.x = 16, our optimized distribution achieves a 36% increase in the inflection
load and a 28% increase in the peak EE compared to the best existing distribution.
For N = 4, the percentage improvements in the inflection loads are as low as 0.7% at
dmax = 2 and as high as 23% at d,. = 16 compared to the best existing distributions; the
percentage improvements in the peak EEs are as low as 1.7% at d.x = 2 and as high as
25% at dpa.x = 16 compared to the best existing distributions. For higher N, as we have
seen before, the optimal distributions become closer to the 2-regular distribution. While
the percentage improvement in both the inflection load and the peak EE may reduce for
higher N, the optimized distributions presented in this chapter always perform better
than or the same as the best existing distributions. Finally, to improve the peak EE, we

can increase dpay (and consequently d) as observed in Table 7.17. This is because the

improved throughput in the numerator of the EE dominates d in the denominator of the

EE.

7.6.5 Variation of the Optimal Distributions with Load

So far we have optimized the repetition distributions of IRSA only at the inflection load,
i.e., for L = L*, and reported the distributions that maximize the throughput or the EE
at the inflection point only. In this section, we now optimize the repetition distributions
for each L and report the performance achieved by the optimal distributions at each L.
We perform this by setting L., = L in (7.21), and optimizing the distribution for every
L, possibly even beyond the inflection load. Beyond the inflection load, even though the
throughput of 7 = L is not achievable, we still assume it is indeed the reference load
and optimize the distribution. As we will see, we indeed obtain suboptimal throughputs
beyond L* as a reason, and thus, the main regime of interest for the results presented
in this section is L < L*. Since reporting the optimized distributions at each L for each

of the configurations is laborious, we only present the average repetition factors of the
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optimized distributions at each load.
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Figure 7.7: Variation of the EE with L, for the K-collision channel.

In Fig. 7.7, we present the variation of the EEs of the K-collision channel achieved by
the distributions optimized for each L. For K = 1, the inflection load occurs at L* = 0.8,
0.85, 0.9, and 0.9 for dy.x = 3, 4, 8, and 16. For K = 2, the inflection load occurs at
L*=1.7,1.8, and 1.85 for d.x = 3, 8, and 16. In each of the cases, up to L*, the energy
efficiency increases monotonically with L, hits a peak and then starts dropping, similar
to the trends in throughput observed in Chapter 3. All the distributions at low loads are
¢(x) = 22, since it is the only distribution with d = 2. At the inflection loads, the peak
EE and the optimal distributions for the above were presented before in Table 7.9. The



Chapter 7. Optimal Repetition Distributions 367
14 T T T T T 4
i D = S =16
= 1 F 5.: Sl =8 D
> 235 G4 ]
B £ Hdu =3
\__311 = -
g
Z10 S |
= [
g g
g 9 S luas = 16 =
= o = 8 © o
B 8F [ Hdua—d B2 ]
g B dux =3 e
&= Tr 5 <G -
2 L L L g
61 7 1 ‘75 1‘8 1 8 1‘0 1 i)a 2 L6 L7 L8 L
. Hie : Loa;i )(L) h Load (L)

(a) EE achieved by the optimal distribution (b) Average repetition factor of the optimal

for N =

2.

20

15

10

Energy Efficiency (kbits/Joule)

S o = 16
> dinax = 8

- duax = 4

o
o)

3.9

4 4.1 4.2 4.3

Load (L)

distribution for N = 2.

3 T T T T

Average Repetition Factor (d)

2.8} © dnax = 16
el = 8
Hrduax =4

2.6

3.8 3.9 4 4.1 4.2 4.3 4.4
Load (L)

(c) EE achieved by the optimal distribution (d) Average repetition factor of the optimal

for N = 4.
45 ‘ ‘ ‘

=

=4 1
2

=35t 1
2

=30} 1
g

< 25t ]
o

i5]

Moot i
)

z S i = 16

S 15+ 5 o = 8 1
= B dun =3

,_
o
o

(e) EE achieved by the optimal distribution

7.3

for N = 8.

7.4 7.5
Load (L)

distribution for N = 4.

N
2
T

© dinax = 16
e diax =8
Hrduax =3

N4
o

2.1

Average Repetition Factor (d)

(f) Average repetition factor of the optimal
distribution for N = 8.

Figure 7.8: Variation of the EE with L, for the fading channel with MIMO, MRC, and

the Normal approximation with py = 1, vy, = 1.



Chapter 7. Optimal Repetition Distributions

368

22

20

Energy Efficiency (kbits/Joule)

182
O duax = 16
16 Hedpax =8
e = 4
14} B dun =3 4
12 ‘ ‘ . ‘
0.7 0.8 0.9 1 1.1 1.2

(a) EE achieved by the optimal distribution

for N =

2.

Load (L)

'S
=)
T

Energy Efficiency (kbits/Joule)
g g

20

S e = 16
S e = 8
i = 4
B i = 3

2.8

2.9

3 3.1 3.2
Load (L)

5 T T T T
=
- 1.4 ]
E 2
o+ )
=}
2
E3sl i
5]
g
e 1 e o e = = = 1
% © s = 16
Sos5l Hedax =8 1
& e =4 -
B dnax =3 1
92 T . . .
0.7 0.8 0.9 1 1.1 1.2
Load (L)

(b) Average repetition factor of the optimal

distribution for NV = 2.

3 T T T

=

528}

g

2

=

5 26f S dux = 16 1
£ X i = 8

2 i =4

g 241 B =3 .
o~

[

a0

£22

14

g

<

3.3

(¢) EE achieved by the optimal distribution (d) Average repetition factor of the optimal
distribution for N = 4.

for N =

4.

80

60

40+

Energy Efficiency (kbits/Joule)

O dax = 16
6 o = 12
B diax =8

5.75 5.8 5.85 5.9
Load (L)

2.3 , , , ; .
=

=225} 1
5

5

g o22) .
=1

S 215} S s = 16 1
b= e diax = 12

:% 21l Hdax =8 i
=

)

0 2.0

]

£

< =

5.6 5.65 5.7 5.75 5.8 5.85 5.9
Load (L)

() EE achieved by the optimal distribution (f) Average repetition factor of the optimal
distribution for N = 8.

for N =

8.

Figure 7.9: Variation of the EE with L, for the fading channel with MIMO, MMSE

combining, pilot contamination, and channel estimation errors, with 7 = 10, py = 10, and

Yen = 10.



Chapter 7. Optimal Repetition Distributions

369

Energy Efficiency (kbits/Joule)

80 T T
Dashed: 7 =10
@ G— - Solid: 7 =20
R &Y 6269 Dotted: =30 |
1‘ )
60 - ' 8
1
1
50 - \ 1
1
1
40} \ 1
1
30+ D‘ 8
S duax = 16
20| | 3% dune = 8 :
Hduax =4
10 . . . . . . . @
2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

(a) EE achieved by the optimal distribution.

o
o0
T

g
o>
T

[V

Average Repetition Factor (d)
~

(b) Average repetition factor of the optimal distri-

o

3

bution.

Dashed: 7 =10
Solid: 7 = 20
Dotted: 7 = 30

S =16
e = 8
B =4

Figure 7.10: Variation of the EE with L, for the fading channel with MIMO, MMSE

combining, pilot contamination, and channel estimation errors, with N =4, pg = 10 and

Yen = 10.



Chapter 7. Optimal Repetition Distributions 370

optimal distributions exhibit an interesting trend as described below. At loads much less
than L*, the distributions remain the same for every dp.. (all are ¢(z) = 2?). At loads
near the inflection load (0.5 < L < 0.8 for K = 1, and 1.65 < L < 1.8 for K = 2), the
distributions are not the 2-regular distributions anymore; they are optimized with higher
d to obtain higher SEs near the inflection load. For a few of the plotted configurations,
the optimized distributions at very low and very high L are the 2-regular distributions.
At loads beyond the inflection load, the SE is poor, and thus, the d of the optimal
distribution starts dropping to increase EE. Thus, we infer that optimizing the repetition
distributions near the inflection load helps in improving the inflection load as well as the
energy efficiency of the system.

At these low loads of 0.7 < L < 1 for K =1 (and 1.6 < L < 2 for K = 2) increasing
dmax improves the SE which dominates the small increase in L and d in the denominator
of the EE in (7.22). In fact, we see that for K = 2, the rate of increase of the EE is lower
than the rate of increase of the EE for K = 1. Since K = 2 can achieve higher L* than
K =1, any corresponding increase in L for K = 2 results in a correspondingly smaller
increase in the EE due to higher load of operation. Increasing d,., significantly improves
L* and the EE initially (i.e., from dpax = 3 t0 dpax = 4 t0 dimax = 8) and then only
marginally (to dpax = 16). As we saw before, from dy.x = 3 t0 dpax = 8 increases the SE
significantly but increasing it to dy.x = 16 does not warrant the increase in d to increase
the EE. For example, with K = 1, increasing d to 4.2 at L = 0.95 does not increase the
EE; in fact there is a small drop in the EE from L = 0.9 to L = 0.95 with a huge increase
in d from 3.4 to 4.2. Hence, beyond L*, both EE and d starts reducing.

In Fig. 7.8, we present the variation of the EEs of the fading channel (with MIMO,
MRC, and the Normal approximation with py = 1,1, = 1) achieved by the distributions
optimized for each L. For N = 2, the inflection load occurs at L* = 1.8, 1.85, 1.9, and
1.95 for dy.x = 3, 4, 8, and 16. For N = 4, the inflection load occurs at L* = 3.95, 4.1,
and 4.25 for d.c = 4, 8, and 16. For N = 8, the inflection load occurs at L* = 7.35, 7.35,
and 7.5 for d.. = 3, 8, and 16. At the inflection loads, the peak EE and the optimal

distributions for the above were presented before in Table 7.12. Previously we observed
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that the energy efficiency increases monotonically with L up to L*, hits a peak and then
starts dropping. The same is true here for N = 2, but is not true for N =4 or N = 8.
For N = 4 and N = 8, the EEs remain roughly equal with increase in L up to L*: for
N = 4, the EEs remain the same; for N = 8, the EEs dip only slightly; for L > L*, the
EEs drop with L as before. This behaviour is because the system is now in the regime
where any increase in L would dominate the denominator of the EE rather than the SE.
For N = 4 and N = 8, the huge increase in d has roughly the same impact as the increase
in SE, and thus, the EEs do not change significantly. In fact, we see that for N = 8, the
rate of increase of the EE is lower than the rate of increase of the EE for N = 4, which
is lower than the rate of increase of the EE for N = 2. Since N = 8 can achieve higher
L* than N = 4, any corresponding increase in L for N = 8 results in a correspondingly
smaller increase in the EE due to higher load of operation. Further, for N = 2, we observe
that the optimal distributions for L < 1.8 under all the configurations are close to the
3-regular distribution (¢(z) = 2?): for dmax = 3, it is exactly the 3-regular distribution
and for higher d,., it is still close to the 3-regular distribution.

Beyond L = 1.8, d drops down to 2 to achieve higher EE, i.e., the 2-regular distribution
is obtained. For higher dy.., near the inflection loads, the SE increases as d increases,
and thus we obtain higher EEs for all N. Increasing d,.x significantly improves L* and
the EE initially (i.e., from dyayx = 3 t0 dpax = 4 t0 diax = 8) and then only marginally (to
dpax = 16). For N = 8, this change is invisible from d. = 3 to dmax = 8, but is visible
with dpa = 16. For N = 4 and N = 8, all the distributions at low loads are ¢(x) = 22,
since it is the only distribution with d = 2. At loads much less than L*, the distributions
remain the same for every dp.. (all are ¢(x) = 2?). At loads near the inflection load
(395 < L <43 for N =4, and 7.35 < L < 7.5 for N = 8), the distributions are
not the 2-regular distributions; they are optimized with higher d to obtain higher SEs
near the inflection load. At loads beyond the inflection load, the SE is poor, and thus,
the d of the optimal distribution starts dropping to increase EE. Thus, for the above
configurations, we infer that optimizing the repetition distributions near the inflection

load helps in achieving a higher inflection load, but the energy efficiency of the system
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remains roughly the same.

In Fig. 7.9, we present the variation of the EEs of the fading channel (with MIMO,
MMSE combining, pilot contamination, and channel estimation errors, with 7 = 10,
po = 10, and 7, = 10) achieved by the distributions optimized for each L. For N = 2,
the inflection load occurs at L* = 0.9, 1, 1.05, and 1.05 for dn.x = 3, 4, 8, and 16. For
N =4, the inflection load occurs at L* = 2.95, 3, 3.1, and 3.2 for dy., = 3, 4, 8, and 16.
For N = 8, the inflection load occurs at L* = 5.7, 5.75, and 5.8 for d., = 8, 12, and
16. At the inflection loads, the peak EE and the optimal distributions for the above were
presented before in Table 7.15. Similar to the results with MRC, the energy efficiency
increases monotonically with L up to L*, hits a peak and then starts dropping for N = 2,
for N = 4 the EE very marginally improves with L, and for N = 8 the EEs remain
roughly equal with increase in L up to L*. This is because the system is once again in
the regime where any increase in L would dominate the denominator of the EE rather
than the SE. For N = 8, the increase in d has roughly the same impact as the increase in
SE, and thus, the EEs do not change significantly. Similar to before, the rate of increase
of the EEs with respect to L is lower for higher N. Since we can achieve higher L* with
higher N, any corresponding increase in L for a higher N results in a correspondingly
smaller increase in the EE due to higher load of operation.

For N = 2, unlike before, we observe that the optimal distributions for L < 1 under
all the configurations are different from each other. In order to compensate for the lower
decoding capability, the distribution is optimized to achieve distributions that are variedly
different from ¢(x) = 2. For dpa. = 3, it is ¢(z) = z3; for dpa = 4, it is ¢(z) = z%;
and for d.. = 8,16 it is a distribution with higher average repetition factor of d=4.5.
Beyond L = 1, for dy.. = 3/4, d drops down close to 2 to achieve higher EE, i.e., close
to the 2-regular distribution. For d.x = 8, 16, d remains roughly the same, and increases
till L = 1.1 and then drops down, respectively. For higher d,,.y, near the inflection loads,
the SE increases as d increases, and thus we obtain higher EEs for all N. For N = 2,
increasing dp,.y significantly improves L* and the EE initially (i.e., from dp.x = 3 to 4

to 8) and then only marginally (to dp.x = 16). Similar trends are observed for N = 4
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and N = 8, but the rate of improvement of the EE reduces. For N = 4 and N = §,
all the distributions at low loads are ¢(x) = z?, since it is the only distribution with
d = 2. At loads much less than L*, the distributions remain the same for every dmax
(all are ¢(z) = z?). At loads near the inflection load (2.95 < L < 3.2 for N = 4, and
5.7 < L < 5.8 for N = 8), the distributions are not the 2-regular distributions anymore;
they are optimized with higher d to obtain higher SEs near the inflection load. For L > L*,
the SE is poor, and thus, the d of the optimal distribution starts dropping to increase EE.
Thus, similar to the previous case, for the above configurations, we infer that optimizing
the repetition distributions near the inflection load helps in achieving a higher inflection
load, but the EE of the system remains roughly the same.

In Fig. 7.10, we study the effect of the pilot length 7 on the variation of the optimal EE
distributions for each L, for the fading channel with N = 4 antennas, MMSE combining,
pilot contamination, and channel estimation errors (with py = 10 and ~, = 10). For
7 = 10, the inflection load occurs at L* = 3, 3.1, and 3.2 for d,.. = 4, 8, and 16. For
7 = 20, the inflection load occurs at L* = 3.25, 3.35, and 3.45 for d,.. = 4, 8, and 16.
For 7 = 30, the inflection load occurs at L* = 3.3, 3.4, and 3.5 for d.. = 4, 8, and 16.
Each set of curves for a specific 7 follow the same observations about the EE as what we
have seen earlier in this section; hence, we now talk only about the effect of variation in
7. With increase in 7, we observe that the EE curves and the average repetition factor
curves both shift rightward; the peak EE and the peak d reduces. Increasing in 7 improves
the quality of the channel estimates, leading to higher throughputs and inflection loads.
However, the change in the inflection loads is not high enough to justify using a higher
pilot length. The SE reduces due to the pre-log factor (1 — 7/7.) and thus, the peak EE
reduces with increase in 7 as seen in (7.22).

We observe that with loads near L* (for each 7), increasing dp.x from 4 to 8 or 16
optimizes the distribution to a variedly different distribution. For higher d,., near the
inflection loads (3 < L < 3.2 for 7 = 10, 3.25 < L < 3.4 for 7 = 20, and 3.3 < L < 3.5
for 7 = 30), the SE increases as d increases, and thus we obtain higher EEs for all 7. For

each 7, all the distributions at loads much lower than L* are ¢(z) = 22, since it is the
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only distribution with d = 2. At loads much less than L*, the distributions remain the
same for every dpay (all are ¢(x) = 2%). For L > L*, the SE is poor, and thus, the d
of the optimal distribution starts dropping to increase EE as L increases. We note that
these trends are for N = 4 and 7. = 100, and under these parameters 7 = 10 performs
the best as observed earlier in Table 7.16. For different N and 7., any other 7 may be the

maximizer of the EE.

7.7 Summary

In this chapter, we optimized the repetition distributions of IRSA using the differential
evolution genetic algorithm. Firstly, we optimized the repetition distributions of IRSA
with the throughput objective. Next, we found the EE optimal repetition distributions.
We studied the effect of the optimal distributions ¢(x) on the inflection load L* under
three cases: first case with the K-collision channel; second case with perfect CSI, MIMO,
and MRC; and third case with channel estimation errors, MIMO, pilot contamination,
and MMSE combining. We studied the impact of the maximum repetition factor dax,
the average repetition factor d, the number of antennas N, the pilot length 7 on the
repetition distributions, the inflection load, and also the peak EE &,... The throughput
optimal distributions were close to the 2-regular distribution at high number of antennas.
The 2-regular distribution was also the most energy efficient distribution for IRSA at high
number of antennas and high pilot lengths. However, it was not optimal in the general
case with fewer number of antennas or lower pilot lengths. Compared to the best existing
distributions, we showed that our optimized distributions can achieve up to 58% increase
in the inflection load and up to 49% increase in the peak EE. The optimal distributions
for EE were generally more sparse whereas the optimal distributions for throughput were
more dense. The obtained optimal distributions can be used to operate mMTC at the
peak throughputs as well as the peak EEs. Future work could include finding the optimal
pilot length that maximizes the peak EE.
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7.8 Appendix

7.8.1 Other Results

We recall from Chapter 3 that when perfect CSI is available at the BS, and MRC is used

for decoding, 6, is given by
01 = I‘inc(]\fa p817th)/F(N), (723)

where pg is the SNR, Tjc(s,z) = f;o ts~le~tdt is the upper incomplete gamma function,
and ['(s) is the ordinary gamma function. For r > 2, with ¢y £ v;' — (Npy) ™, 65 can be

calculated as
0y = 1{to > 1} + (1 — (1 — o)) 1{0 < t, < 1}. (7.24)
For r > 3, the Gamma approximation is:
Gamma: 6, =1—Ti(r—1,Nty)/T'(r — 1), (7.25)

whereas the Normal approximation is

Normal: 6, =1-Q (to \—/(T_—ll)MN) , (7.26)
r—10N

and the Deterministic approximation is
Deterministic: 0, = 1{r < |N/vwm — po* +1]}. (7.27)

With these approximations, we now optimize the performance of IRSA.

In Table 7.18, we present the throughput optimal distributions for the fading channel,
and we compare the effect of the approximations on the inflection load L*. The Gamma
and the Normal approximations have similar optimized distributions as well as average

repetition factors, but the Normal approximation has higher inflection loads. Further,
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Table 7.18: Throughput Optimal Distributions for IRSA with the Fading Channel,

MIMO, and Maximal Ratio Combining, with pg = 1,3, =1, and N = 2.

Approximation | dpay o(x) d L
3 0.052% + 0.9523 2.95 | 1.69

Gamma 4 10.392% +0.142% + 0.472* | 3.08 | 1.75

8 0.2822 4+ 0.62% +0.122% | 3.33 | 1.78

3 0.0322 + 0.972° 2.97 | 1.78

Normal 4 | 0.42%40.092° + 0.512* | 3.1 | 1.85

8 0.2622 + 0.62% +0.142% | 3.37 | 1.9

3 0.712% + 0.2923 2.29 | 1.71

Deterministic 4 0.8222 4+ 0.18x* 2.36 | 1.74
8 | 0.862% +0.022% +0.122% | 2.75 | 1.84

the Deterministic approximation yields similar inflection loads but very different repeti-

tion distributions. This is because the Deterministic approximation is not as good an

approximation to 6, as compared to the other two approximations. Also, we have seen in

Chapter 3 that the Normal approximation approximates the inflection load better than

the Gamma approximation.
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Figure 7.11: Effect of dy.x on the inflection load L*, for the fading channel with MIMO,

MRC, and the Normal approximation.
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In Fig. 7.11, we study the effect of d,.x on the inflection load L*, for the fading chan-
nel with MIMO, MRC, and the Normal approximation. The inflection loads marginally
increase with increase in dy.« as observed previously. Further, the performance with
N = 8 is more than 2x that with N = 2. The effect of the SNR and the threshold on
the inflection load is pretty similar to the previous observations. There is, however, a
saturation in the inflection load at high d,,.,, which shows that the throughput does not
keep increasing with d,.x. The marginal increase in the inflection load, at times, need
not warrant a significant increase in dpay.

We plot the inflection load versus the number of antennas in Fig. 7.12 for Table 7.4
and Table 7.5. In both the subfigures, the inflection load L* increases with the number
of antennas. This is because the diversity gain increases with the number of antennas for
MRC, and thus, the SINRs of the users improve which leads to an increase in the inflection
load. Fig. 7.12(a) shows that increasing dpy.. and trading off a higher d for a higher L*
is not highly useful. The inflection load increases only margnally and the reduction in
EE due to higher d is not helpful. In contrast, in Fig. 7.12(b) we see that increasing
dmax and trading off a higher d for a higher L* is indeed useful, albeit only compared to
the previous figure. In applications where it is necessary to have higher throughputs and
higher inflection loads, increasing dp,.x is indeed beneficial. The inflection load for every
N reduces with an increase in py and vy, when the two subfigures are compared.

In Fig. 7.13, we study the effect of the number of antennas on the inflection load for
the general case (fading channel with MIMO, MMSE combining, pilot contamination, and
channel estimation errors). This is based on Table 7.6 and Table 7.7. As we observed
in the perfect CSI case with MIMO, the gap between the inflection loads for varied dp.y
is very small. In both the subfigures, the inflection load L* increases with the number
of antennas. This is because the interference suppression capability increases with the
number of antennas for MMSE, and thus, the SINRs of the users improve which leads to
an increase in the inflection load.

In Fig. 7.14, we plot the peak EEs as a function of the number of antennas for both
po =1, vwu = 1 and py = 10, vy, = 10 from Table 7.12 and Table 7.13. The maximum



Chapter 7. Optimal Repetition Distributions 378

12¢ ]
10+ 'e'dmax =8 p=Lywm=1 ]
— 8L *dmax:47p0:17’hh:1 ]
= - duwax =3,p0=Lym =1
K |
Q
=
5
E 4r ]
[
[
=
=
4 8 16
Number of antennas (N)
(a) po = 1,%n = 1.
2.2F
o [ tmax =8,p0 =10,y = 10 ]
18 > diax = 4, pp = 10,y = 10
8 4 duax = 3,p0 = 10,7 = 10 ]
1.6F 1
1.4} B

Inflection Load (L*)
=
[ [}

e
e

4 8 16
Number of antennas (N)

(b) po = 10,74, = 10.

Figure 7.12: Effect of the number of antennas on the inflection load L*, for the fading
channel with MIMO, MRC, and the Normal approximation.



Chapter 7. Optimal Repetition Distributions 379

10F 2
8 [ 4
S
S 'e'dmax =8 p=Lymwm=1
g 4r Hdmax =4, p0 =1,y =1 i
2 - = 3.0 = Ly = 1
B
< 3 ]
—
2 b 4
4 8 16
Number of antennas (N)
(a) po=1,vn = 1.

T

6 3 |

5 3 4
=4 ]
g
g S dinax = 8, p0 = 10,7, = 10
2 2 K dimax = 4, po = 10,y = 10
kst L i
3 +dmax =3,p0 =10,y = 10
=
=
o

4 8 16
Number of antennas (N)

(b) po = 10,y = 10.

Figure 7.13: Effect of the number of antennas on the inflection load L*, for the fading
channel with MIMO, MMSE combining, pilot contamination, channel estimation errors,

and 7 = 10.



Chapter 7. Optimal Repetition Distributions 380

'e‘dmax =8,p=1Lym=1
HKedmax = 4,00 =1,7m =1
+dmax =3,p=1Lym=1

4 8 16
Number of antennas (V)

(a) po = 1,9n = 1.

40 F }_
351 1
)
= 30+ ,
]
2
-
5]
25+ ,
2 S dunax = 8,p0 = 10,7, = 10
= - dinax = 4, po = 10,y = 10
\g Q(g —+dmax = 3, po = 10,y = 10 ]
oS
155 f
4 8 16

Number of antennas (V)

(b) po = 10,7, = 10.

Figure 7.14: Effect of the number of antennas on the peak energy efficiency &,.., for the

fading channel with MIMO, MRC, and the Normal approximation.



Chapter 7. Optimal Repetition Distributions 381

peak EEs increase from 20.41 to 35.52 to 36.21 to 41.58 kilobits per Joule.
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Figure 7.15: Effect of the number of antennas on the peak energy efficiency &k, for the
fading channel with MIMO, MMSE combining, pilot contamination, channel estimation

errors, and 7 = 10.

In Fig. 7.15, we plot the peak EEs as a function of the number of antennas. The EEs
in both the subfigures marginally improve with an increase in dy... The peak EEs are
much higher with MMSE combining than MRC due to improved interference suppression.
When going from py = 1,v, = 1 to pp = 10,7, = 10, the peak EEs reduce for MRC



Chapter 7. Optimal Repetition Distributions 382

(see Fig. 7.14). Unlike what was observed with MRC, in Fig. 7.15, for MMSE combining,
the peak EEs improve when going from py = 1,79, = 1 to pp = 10, v, = 10. For MRC,
the effect of improved decodability is eclipsed by the higher amount of power consumed
due to higher N. However, for MMSE combining, the amount of power consumed due
to more computations and high N is eclipsed by the decodability of MMSE. Thus, MRC
and MMSE combining have different trends in the peak EEs.

In Fig. 7.16, we study the effect of the number of antennas N on the peak EE of IRSA.
The EE is dependent on the packet length 7., via both the SE and the power consumed.
For 7. = 100, 7 = 60 achieves the lowest peak EE since a majority of the time is spent in
channel estimation. This effect is not indicative in either the throughput or the inflection
loads since their definitions do not include 7.. Here, 7. = 20 achieves the highest peak
EE across all N. For 7. = 200 and N < 8, 7 = 60 achieves the lowest peak EE since a
majority of the time is spent in channel estimation. For 7. = 200 and N = 16, 7 = 10
achieves the lowest peak EE since channel estimates are not good enough to decode users.
This inverse trend is due to increase in 7.. EE improves due to both increase in SE due
to higher L* and lower d, but this happens only in the regime where the pilot length is
not too high enough to eclipse the length of the data symbols.
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Figure 7.16: Effect of the number of antennas on the peak energy efficiency &.x With
varied packet lengths, for the fading channel with MIMO, MMSE combining, pilot con-

tamination, channel estimation errors, and 7 = 10.






Chapter 8

Conclusion

In this thesis, we studied and analyzed the IRSA random access protocol for mMTC
applications. We firstly investigated the performance of IRSA accounting for multiple
antennas, channel estimation errors, and pilot contamination. We also studied the theo-
retical performance of IRSA via density evolution. We next developed a UAD algorithm
based on sparse Bayesian learning to detect the subset of active users in IRSA. We also
analyzed the Cramér-Rao bound on the channel estimation errors in IRSA. After this, we
developed an enhanced version of IRSA termed as censored-IRSA, which performs at the
peak throughput for overloaded mMTC applications. We then investigated IRSA in the
multi-cell and cell-free setups accounting for inter-cell effects and a distributed antenna
array setup, respectively. We studied the effects of densification in IRSA systems and the
advantages of cell-free IRSA systems. Finally, we found the optimal repetition distribu-
tions for IRSA using the differential evolution algorithm for both the throughput and the

energy efficiency objectives. We summarize the main contributions of this thesis below.

8.1 Summary of the Thesis

In Chapter 3, we studied the effect of estimated CSI on the throughput of IRSA. We
first derived the channel estimates in IRSA with the MSBL algorithm, then we derived

the MMSE channel estimates, and finally the low complexity MMSE channel estimates.
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We then analyzed the performance of IRSA under all three channel estimation schemes
accounting for pilot contamination, channel estimation errors, path loss, and multiple
antennas at the BS. The peak achievable throughput significantly reduced: in certain
regimes, it resulted in up to 70% loss. We then presented a density evolution based analysis
which can be used to compute the asymptotic performance of IRSA, when users perform
path loss inversion based power control. This analysis included the derivation of three
approximations to the success probability 6,, and we observed that these approximations
match well as the number of antennas at the BS becomes large. Finally, we discussed
several new insights into the design of IRSA-based systems: the improvement of the
system throughput, the evaluation of the operating load beyond which the system becomes
interference limited, and the choice of the decoding threshold ~,. The results underscored
the importance of accounting for practical channel estimation in studying the throughput
offered by the IRSA protocol.

In Chapter 4, we studied the impact of UAD on the throughput of IRSA. We first
proposed a novel Bayesian algorithm to detect the set of active users in IRSA, which
exploited the knowledge of the APM, and combined the hyperparameter updates across
all RBs to yield an improved UAD performance. We then derived the channel estimates
in IRSA accounting for UAD errors. We next derived the Cramér-Rao bound for the
channels estimated under the hierarchical Bayesian model used to develop the proposed
algorithm. After that, we derived the SINR of all the users accounting for UAD, channel
estimation errors, and pilot contamination, and then studied the effect of these errors on
the throughput via extensive simulations. We finally discussed many new insights into
the design of the IRSA protocol: the complexity of UAD compared to channel estimation,
and the improvement of both UAD and throughput with respect to 7, N, SNR, and L.

In Chapter 5, we developed Censored-IRSA (C-IRSA), which overcame the interfer-
ence limitation of IRSA at high loads. In C-IRSA, users self-censor depending on their
CSI based on an adaptive threshold that is periodically broadcast by the BS, and the
protocol retains the fully distributed, random access nature of IRSA. Firstly, we derived

the MMSE channel estimates and the SINR in C-IRSA accounting for multiple antennas
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the BS, fading, path loss, MMSE combining, pilot contamination, and channel estimation
errors. We then analyzed the empirical performance of C-IRSA with the SINR threshold
model. We next characterized the asymptotic performance of C-IRSA using DE, and also
derived closed-form for the success probability 6,, under the Normal and the Gamma
approximations. We also developed two semi-analytic censor functions (L, Ly, Lo) and
h(L, Lig), with which the system throughput was maximized and the active PLR was
minimized, respectively. After this, we developed an algorithm to find the active PLR-
optimal censor threshold. With this, the PLR of the active users can be driven close to
zero, whilst achieving the highest throughput. At high loads, C-IRSA operates at the
full capacity compared to IRSA which has near-zero throughputs. Finally, we discussed
several insights into the design of C-IRSA: the choice of the target load Ly, the load Ly,
and the optimal censor function.

In Chapter 6, we first studied the effect of MC interference, namely inter-cell PC and
inter-cell interference, on the performance of IRSA. Firstly, the channel estimates and
the SINR in MC IRSA were derived, accounting for path loss, MIMO fading, intra-cell
PC, and intra-cell interference. It was seen that MC IRSA had a significant degradation
in performance compared to SC IRSA, even resulting in up to 70% loss of throughput
in certain regimes. Recuperating this loss requires at least 4 — 5x larger pilot length
in MC IRSA to yield the same performance as that of SC IRSA. We then analyzed
IRSA in the CF setup, accounting for path loss, MIMO fading, and channel estimation
errors. Specifically, we studied three CF schemes for IRSA: LCF IRSA, CCF IRSA, and
HCF IRSA. We provided insights into the effect of system parameters such as number of
antennas, pilot length, and SNR on the throughput of MC and CF IRSA. We showed that
we can achieve more than 14x improvement in the throughput of CCF IRSA compared
to a massive MIMO SC setup at high loads. We also studied the densification trends
in MC IRSA and LCF IRSA, where we observe an inverse behaviour in the throughput
compared to CCF IRSA and HCF IRSA. For CCF IRSA and HCF IRSA, densification
always improves the performance. For LCF IRSA and MC IRSA, densification does not

help at loads near the inflection loads: it is better to not densify and to operate with a
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massive MIMO SC setup.

In Chapter 7, we optimized the repetition distributions of IRSA using the differential
evolution genetic algorithm. Firstly, we optimized the repetition distributions of IRSA
with the throughput and the energy efficiency objectives. We studied the effect of the
optimal distributions ¢(x) on the inflection load L* under three cases: first case with
the K-collision channel; second case with perfect CSI, MIMO, and MRC; and third case
with channel estimation errors, MIMO, pilot contamination, and MMSE combining. We
studied the impact of the maximum repetition factor dpa.x, the average repetition factor d,
the number of antennas N, the pilot length 7 on the repetition distributions, the inflection
load, and also the peak energy efficiency &.x. The throughput optimal distributions were
close to the 2-regular distribution at high number of antennas. The 2-regular distribution
was also the most energy efficient distribution for IRSA at high number of antennas and
high pilot lengths. However, it is not optimal in the general case with lower number of
antennas or lower pilot lengths. Compared to the best existing distributions, we showed
that our optimized distributions can achieve up to 58% increase in the inflection load and
up to 49% increase in the peak energy efficiency. The optimal distributions for energy
efficiency were generally more sparse whereas the optimal distributions for throughput
were more dense. The obtained optimal distributions can be used to operate mMTC at

the peak throughputs and the peak energy efficiencies.

8.2 Future Work

We list a few interesting research directions which can be pursued as future work.

1. Asynchronism: The asynchronism in random access transmissions can be exploited
to identify which users are active and estimate their channels. In this case, users’
pilot sequences could be thought of as slightly delayed versions of a common syn-
chronization signal. A database of the time shifted pilots available at BS itself
can be used to detect the users and estimate their channels. Exploiting the asyn-

chronous nature of random access transmissions to detect active users and estimate
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their channels instead of orthogonal /non-orthogonal pilots (as seen in Chapter 4) is

an interesting direction for future work.

2. Fairness in C-IRSA: In Chapter 5, we observed that C-IRSA is fair for users since
censoring is performed based only on the small scale fading states of the users. If
a user is shadowed for a long duration of time, then the user can transmit in a
different frequency band. However, if there is a scarcity of bands, then that user
will never be able to send its data to the BS. Accounting for a proportional fairness
mechanism for users with poor CSI can help with this. Another way to incorporate
this is to use multiple thresholds instead of a single threshold. Further, accounting
for load estimation errors, and also a scheme in which the repetition distribution

itself is CSI dependent can improve the performance of C-IRSA.

3. Pilot design for MC IRSA: In Chapter 3, we have seen that employing QPSK
pilots with pilot reuse improved the throughput of IRSA (in Chapter 3, the UAD
performance improved as well). Existing works show that the pilot sequences can be
designed in order to reduce PC [119]. This is especially important in the multi-cell
setup where inter-cell pilot contamination bogs down the performance of IRSA (see
Chapter 6). Designing the pilot sequence sets intelligently can help us overcome the

poor performance of MC IRSA at low pilot lengths.

4. Clustering for CF IRSA: In CF IRSA, only the APs that are associated to any user
can try to decode the user instead of all the APs attempting to decode every user
(see Chapter 6). This reduces the complexity of decoding at each AP, and thus,

user-AP clustering is an interesting direction for future work.

5. Pilot length: The spectral and energy efficiencies of IRSA are maximized by a
moderate pilot length. Low pilot lengths would yield poor throughputs, whereas
high pilot lengths would leave only a small fraction of the packet for data symbol
transmission and would also consume higher power. This was observed in Chapter 3
and Chapter 7. Finding the optimal pilot length can help us operate the system at

the maximum energy efficiency or throughput, depending on the metric of interest.
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6. Quantization and synchronization errors: We assumed full-resolution quantization,
and also perfect RB- and frame- level synchronization across users and the BS in
this thesis (see Chapter 3). Future work can consider relaxing this assumption, and

analyze IRSA with synchronization and quantization errors.

7. Age of information: The age-of-information is a metric that can be used to evaluate
the latency of decoding the users’ packets. This is especially important in massive
random access since it can help us terminate users’ transmissions especially if they
are old packets containing “stale” information. Few recent works in IRSA [51, 79
have considered this metric with simplistic system models. Analyzing this metric

in the general case can be an interesting direction for research.

8. Machine learning: Machine learning techniques can be used to improve the perfor-
mance of IRSA for mMTC. When the scale of the problem increases to a million
users in mMTC, deep unfolding techniques from machine learning can be leveraged
with our algorithm in Chapter 4 to perform UAD. Further, learning techniques can

be incorporated to improve the multi-user decoding for mMTC.
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