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Abstract—In this work, we address the problem of multiple-
input multiple-output mmWave channel estimation in a hybrid
analog-digital architecture, by exploiting both the underlying
spatial sparsity as well as the spatial correlation in the channel.
We accomplish this via compressive covariance estimation, where
we estimate the channel covariance matrix from noisy low
dimensional projections of the channel obtained in the pilot
transmission phase. We use the estimated covariance matrix as a
plug-in to the linear minimum mean square estimator to obtain
the channel estimate. We present a new Gaussian prior model,
inspired by sparse Bayesian learning (SBL), which incorporates
parameters to capture the channel correlation in addition to
sparsity. Based on this prior, we develop the Corr-SBL algo-
rithm, which uses an expectation maximization procedure to
learn the parameters of the prior and update the posterior
channel estimates. A closed form solution is obtained for the
maximization step based on fixed-point iterations. To facilitate
practical implementation, an online version of the algorithm is
developed which significantly reduces the latency at a marginal
loss in performance. The efficacy of the prior model is studied
by analyzing the normalized mean squared error in the channel
estimate. Our results show that, when compared to a genie-
aided estimator and other existing sparse recovery algorithms,
exploiting both sparsity and correlation results in significant
performance gains, even under imperfect covariance estimates
obtained using a limited number of samples.

Index Terms—Millimeter wave, channel estimation, sparsity,
correlation, Bayesian learning.

I. INTRODUCTION

Millimeter wave (mmWave) communication has been in-
vestigated as a promising technology for the fifth generation
(5G) cellular networks [2]–[4]. The large bandwidth available
at mmWave frequencies can be utilized to obtain high data
rates. However, signals at these frequencies experience high
attenuation, leading to significant path loss [4]. To overcome
the path loss, multiple antennas are used along with a hybrid
analog-digital architecture to keep the hardware cost low [5].
The performance of these systems critically depends on the
availability of accurate channel state information (CSI) at both
the base station (BS) and the user equipments (UEs). In turn,
this requires a large training or pilot overhead for channel
estimation. In this work, our goal is to investigate the role of
spatial sparsity and intra-vector correlation to obtain reliable
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channel estimates with low pilot overhead. We start with a
review of literature.

A. mmWave Channel Estimation
The hybrid analog-digital architecture used in mmWave

communications precludes the use of traditional channel es-
timation techniques, as the channel is only observed through
the lens of the analog beams used at the radio-frequency (RF)
front-end. Analog beam sweeping based procedures have been
proposed to sample the channel subspace and estimate the
mmWave channel links [6]–[8], but these procedures typically
incur large pilot overheads. An alternative approach is to
exploit structure in the channel, and estimate it by solving an
optimization problem. Measurement campaigns for mmWave
channels [4], [9], [10] have revealed structures like sparsity
and correlation, which can be incorporated into a statistical
model to estimate channel using far fewer pilot transmissions
compared to beam scanning based approaches.

Spatial sparsity arises in mmWave channels because the
signals arrive at the receiver in a small number of path clus-
ters [4], [9]. Different sparse representations of the mmWave
channel have been studied in [11]–[13], and sparse recovery
algorithms such as orthogonal matching pursuit (OMP) have
been applied to estimate the channel using a reduced number
of pilots. In [14], [15], different training strategies for sparse
channel estimation have been discussed. In [16], a parameter-
perturbation framework combined with a low-complexity si-
multaneous OMP algorithm is presented mmWave channel
estimation, accounting for off-grid effects. These traditional
sparse recovery algorithms (e.g., OMP) yield accurate point
estimates when the measurement matrix satisfies strong re-
quirements such as restricted isometric property (RIP), which
are rarely met in highly measurement-constrained scenarios.
Further, they do not reveal the posterior distribution which
can add flexibility in dealing with additional structure.

In addition to sparsity, structures such as spatial correlation
have been observed due to mutual coupling at the anten-
nas [10], [17]. In [10], spatial fading models were provided
to fit measured spatial correlation using a parameterized ex-
ponential model. In a general massive MIMO scenario, [18]
developed a Toeplitz model for the covariance matrix under
the assumption that the angle of arrivals (AoAs) and path gains
are i.i.d. random variables. They also presented an algorithm
to exploit the correlation for channel estimation.

To the best of our knowledge, very few of the existing
studies capture sparsity (and the resulting spatial correlation)
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as well as correlation among the nonzero entries of the sparse
vector in the same statistical model. Such correlations can
arise, for example, due to signal propagation and scattering in
clusters (called block sparsity). Channel estimation techniques
that exploit block sparsity have been presented in [19], [20].
While these studies consider a common support in the sparse
representation of the channel from the user to the different
antennas at the BS, correlation among the nonzero entries
are not modeled or exploited. The block sparsity setup can
be modified to include correlation among path gains in each
block [21], but it does not generalize to correlation across
blocks. Rain attenuation leads to multiple scattering and cor-
relation at mmWave frequencies [22], [23]. Also, atmospheric
turbulence and correlated shadowing [24] lead to correlation
among paths that are further apart, which cannot be considered
under the ambit of block sparsity.

From the above discussion, correlation among the nonzero
entries of the sparse representation of the channel is un-
avoidable in general, which makes it necessary to incorporate
correlation along with sparsity into statistical models to obtain
accurate channel estimates. To this end, we start with a general
statistical model for the channel, where all nonzero entries
of the sparse representation are assumed to be correlated
with each other, similar to the model considered by Park et
al. [25]. The focus of Park et al. was on precoder design,
and a modification of OMP was developed for recovering the
covariance of the sparse channel. The goal of this paper is to
understand the role of sparsity and correlation in facilitating
accurate channel estimation, especially when the underlying
covariance structure is unknown and has to be estimated
from the received data itself. In the process, we also develop
new algorithms for channel estimation, based on Bayesian
inference, that exploit both correlation and sparsity.

Bayesian inference algorithms such as sparse Bayesian
learning (SBL) [26] are well suited to exploit correlation, as
they estimate the covariance as a key step within the algorithm.
Their primary goal is to infer the best-fitting distribution from
a parameterized class of distributions. Point estimates can then
be obtained from the posterior distribution. A message passing
algorithm for mmWave channel estimation was developed
in [27], and SBL based algorithms are presented in [20], [28]
for recovery of spatially uncorrelated sparse channels. The
algorithm developed in this paper is also related to algorithms
like TMSBL [29], BSBL [21], PCSBL [30]. However, to the
best of our knowledge, there is no existing algorithm based
on Bayesian inference, which considers possible correlation
among all the nonzero entries of a sparse vector.

B. Contributions

In this work, our main contributions are as follows:
1) We develop a novel Bayesian sparse recovery algorithm

called Corr-SBL for recovery of sparse vectors with
intra-vector correlation, in Sec. IV. We formulate a zero
mean hierarchical correlated complex Gaussian prior with
covariance matrix that can incorporate known correla-
tion structure while at the same time induce sparsity.
Our algorithm performs Bayesian inference based on

evidence maximization. A closed-form solution to update
the hyper-parameters is obtained as a fixed point iteration.
We also present a pragmatic approach for learning the
correlation coefficient in the unknown correlation case.

2) We investigate the utility of exploiting both spatial spar-
sity and correlation in the multi-paths of a mmWave
channel, for uplink channel estimation in a multi-user
MIMO setup with the hybrid architecture. We present the
application of Corr-SBL for this problem.

3) We extend Corr-SBL to jointly estimate the channels over
multiple coherence blocks in Sec. IV-D. To reduce the
overall latency in channel estimation, in Sec. IV-E, we
develop an online version of the algorithm.

4) We derive an alternative representation of the output of
the algorithm as a plug-in LMMSE estimator in Sec. V-A.
In Sec. V-B, we derive an expression for the normalized
mean squared error (NMSE) in channel estimation, and
discuss the efficacy of Corr-SBL for channel estimation.

5) We present a hybrid scheme for combining the data
signals using the channel estimates in Sec. V-C, and
derive a lower bound on the per-user spectral efficiency.

We elucidate the utility of the Corr-SBL prior using the
analytical expression for the NMSE, and present empirical
comparisons against optimal genie-aided estimators in highly
measurement-constrained scenarios. The Monte Carlo simu-
lation results in Sec. VI illustrate the advantage of exploiting
correlation as well as sparsity even under imperfect correlation
information, depending on the correlation level and number
of independent channel instantiations that are available to
estimate the covariance. Finally, our framework for recovering
sparse vectors with correlated nonzero entries could be of
independent interest, as it can potentially be very useful in
other applications besides mmWave channel estimation.

Notation: Bold lowercase letters denote vectors, bold up-
percase letters denote matrices and script styled alphabets
represent sets. The operator | · | when applied on a scalar
denotes the absolute value, and on a set denotes the cardinality.
The operator diag() when applied to a vector generates a
diagonal matrix consisting entries of a vector, and when
applied to a matrix returns the diagonal entries as a vector.
The trace of a matrix is denoted by Tr(). Re {x} denotes
the real part of a complex number x. Ex denotes expectation
with respect to the probability distribution p(x). CN (x;µ,Σ)
denotes the complex Gaussian distribution on x with mean µ
and covariance Σ. The notation A�B denotes the Hadamard
product of A and B. [n] denotes the set of integers from 1 to
n and a : b denotes the set of integers from a to b. Given a
set of indices S, xS denotes the subvector of x obtained by
retaining only the values corresponding to the indices in S .
[A](Sr,Sc) denotes a submatrix of A containing its rows and
columns indexed by Sr and Sc, respectively.

II. SYSTEM MODEL

In this section, we present the wireless system setup and the
channel model for single cell multi-user mmWave MIMO up-
link communication with a hybrid analog-digital architecture.
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Fig. 1. Wireless uplink system with a single N antenna BS
serving K single antenna users.

A. System and Channel Model

The mmWave wireless system consists of a single MIMO
BS equipped with a uniform linear array (ULA) consisting
of N equally spaced antennas, which serves K spatially
distributed single antenna users. The BS employs a hybrid
MIMO architecture with M (with K ≤M � N ) RF chains.

The signal at the antenna is converted to the digital domain
by a network of phase shifters in a fully connected structure,
represented by an analog combining matrix Wr ∈ CM×N ,
with the phase-only control of the phase shifters satisfied by
the constant modulus constraint | [Wr](m,n) | = 1√

N
∀m ∈

[M ], n ∈ [N ]. The digital baseband combiner F ∈ CK×M
then converts the signal into K data streams.

The uplink mmWave channel from each user to the BS is
assumed to have a block flat-fading structure, with coherence
time Tc (in s) and coherence bandwidth Bc (in Hz), i.e., the
channel is constant within time-frequency coherence blocks of
τc = BcTc channel uses. Further, the channel from kth user
to the BS is comprised of Lk � N multi-paths. The lth path
at the rth coherence block is characterized using a complex
baseband path gain ḡr,k,l and the corresponding AoA ψr,k,l.
The array response vector ā(ψr,k,l) ∈ CN for the ULA is

ā(ψr,k,l) =
1√
N

[
1, e−j2πvr,k,l , . . . , e−j2π(N−1)vr,k,l

]T
. (1)

where vr,k,l = d
λ cos(ψr,k,l) is the directional cosine corre-

sponding to the AoA ψr,k,l. The uplink mmWave channel can
then be represented as [25]

hr,k =

Lk∑
l=1

ḡr,k,lā(ψr,k,l) = Āḡr,k ∈ CN , (2)

where columns of Ā ∈ CN×Lk are the array response vectors
given by (1). If we grid the range of possible directional
cosine values (−1 to 1) using D � Lk points, (2) can be
approximated as

hr,k = Agr,k. (3)

The matrix A ∈ CN×D consists of the ULA response vectors
for the AoAs corresponding to the grid points. The index of
columns of Ā in A, denoted by the set Sk (with |Sk| = Lk),
are the grid points corresponding to AoAs given in (2), and
the corresponding nonzero entries of gr,k ∈ CD are the path
gains ḡr,k,l. Since D � Lk, gr,k is a sparse vector.

We assume that the non-zero entries in the complex base-
band path gain vector gr,k have zero mean and are correlated
with each other. The (i, j)th entry of the covariance matrix
Rgr,k

= E
[
gr,kg

H
r,k

]
∈ CD×D can be obtained from the

Pearson product-moment correlation coefficient definition [31]
as
[
Rgr,k

]
(i,j)

= ρij
√
γ∗i
√
γ∗j where γ∗i denotes the variance

of ith entry of gr,k and ρij is the correlation coefficient
between the two entries, which is a function of the pair of
indices (i, j) and is governed by a known correlation model
(e.g., uniform correlation model, exponential model, Toeplitz
model etc.). A matrix U ∈ CD×D with ρij as its (i, j)th entry
is called the correlation matrix. With this notation, we have
Rgr,k

= (Γ∗)1/2U(Γ∗)1/2 where Γ∗ = diag(γ∗1 , γ
∗
2 , . . . , γ

∗
D).

Note that, for a grid point j which does not correspond
to any of the Lk paths, the variance of the jth entry, γ∗j , is
zero. This results in the covariance structure similar to [25],
where Rgr,k

is a D ×D positive semi-definite (PSD) matrix
which contains a nonzero Lk × Lk positive definite (PD)
principal submatrix corresponding to the index set Sk, with
its other entries equal to 0. Using (3), the channel covariance
matrix Rhr,k

= E
[
hr,kh

H
r,k

]
= ARgr,k

AH ∈ CN×N .
The channel statistics vary slowly compared to the channel
instantiations [32], i.e., the channel statistics remain constant
over a time interval Ts > Tc. Hence, the channel covariance
and AoAs remain constant over τs = Ts

Tc
coherence blocks.

In the sequel, since we focus on estimating the covariance
matrix within τs coherence blocks where the covariance matrix
remains constant, we drop the subscript r in the covariance
matrices Rgr,k

and Rhr,k
.

B. Pilot Transmission
At the start of each coherence block, the kth user transmits

a unique orthonormal pilot pk ∈ Cτp , k = 1, 2, . . . ,K, where
τp is the pilot length satisfying τp = K < τc. This pilot signal
is used by the BS to estimate the uplink channels from all the
users. The pilot signal received at the BS is processed using
an analog combining matrix Wr ∈ CM×N , resulting in the
following signal at the digital front-end:

Yp
r = Wr

(
K∑
k=1

hr,kp
H
k + N

)
∈ CM×τp , (4)

where the entries of additive noise N are independent and
identically distributed (i.i.d.) Gaussian with zero mean and
variance σ2

n.1 Since the pilot signals are orthonormal, by
post-multiplying Yp

r with pk, we obtain the pilot signal for
estimating the kth user’s channel as

yr,k = Yp
rpk = Wrhr,k + WrNpk ∈ CM . (5)

The covariance of the effective noise nr = WrNpk is
σ2
nWrW

H
r . In Sec. III-B, we present a choice of Wr such

that WrW
H
r approaches IM asymptotically (N → ∞) [33].

Hence, nr is assumed to comprise of i.i.d. CN
(
0, σ2

n

)
entries.

1Without loss of generality, we consider the pilot signal to be of unit
power, and include the effect of pilot transmission power in σ2

n. Note that
(4) assumes the users are time and frequency synchronized with the BS. In
practice, this synchronization can be achieved using the primary and secondary
synchronization signals transmitted by the BS.
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From (5), it can be observed that the measurement yr,k
does not involve interference from other users. Also, since
the pilot sequences are orthogonal, the noise in the post-
processed received training signals are independent across the
users, and we can perform channel estimation independently
for each user. Hence, in the sequel, we drop the subscript k and
consider the channel estimation for a single user. Estimating
hr from yr in (5) constitutes the channel estimation problem.
Specifically, using (3), the channel estimation problem (5) can
be posed as a sparse recovery algorithm as:

yr = Φrgr + nr, (6)

where Φr = WrA ∈ CM×D. Hence, our goal boils down to
exploiting sparsity and correlation among the nonzero entries
of the sparse vector to obtain the channel estimate.

Note that, in the above system model, we have considered
a frequency-flat channel model and single antenna users.
Extensions to frequency-selective channel models and multi-
antenna users are discussed in Appendix B.

III. CHANNEL ESTIMATION: PRELIMINARIES

A. Channel Estimation Schemes

In this subsection, we present an overview of two existing
classes of channel estimation techniques, which form the
baseline for the comparisons in this paper. The details of these
estimators are presented in Appendix A.

The first class of estimators are linear estimators, where the
estimate of the channel in each coherence block can be rep-
resented as ĥr = Mryr. This includes linear minimum mean
squared error (LMMSE) and least squared (LS) estimation,
among others. When the covariance matrix is not known, a
plug-in LMMSE estimation can be formed using an estimate
R̂h for the covariance matrix Rh. When the sample covariance
is used to estimate R̂h, the estimator exploits correlation
structure, but ignores sparsity in the channel.

The second class of estimators utilize sparse signal recovery
algorithms such as OMP [11] and SBL [26] to recover sparse
representation of the channel gr from the measurements using
(6). We note that these algorithms exploit the sparsity structure,
but neglect channel correlation.

Channel estimators based on covariance estimation require
knowledge of the covariance matrix. Estimating the covariance
entails computing the sample-averaged covariance using multi-
ple channel instantiations. Since the channel statistics are con-
stant over τs coherence blocks, pilots from multiple coherence
blocks can be used to estimate the covariance matrix without
additional pilot overhead. The support is also constant within
a coherence block, and sparse recovery algorithms developed
in the multiple measurement vector (MMV) paradigm such
as SOMP [25] and MSBL [29] can be used to obtain better
performance. In this work, compute the sample covariance by
averaging over T ≤ τs coherence blocks, with T being chosen
to trade-off between performance and complexity.

B. Analog Combiner Matrix Design

The analog combining matrix Wr ∈ CM×N plays an
key role in the performance of channel estimation. In this

subsection, we discuss two schemes used in the paper for the
choice of combining matrices across coherence blocks.

The analog combining matrix can be represented as Wr =
1√
N
eiΘr to satisfy the constant modulus constraint, where the

entries of Θr represent the phase of each entry of Wr. The
first of the two schemes uses the same combining matrix across
coherence blocks and is referred to as “shared Wr scheme”.
In this scheme, Θr = Θ ∀r, with the entries of Θ chosen
independently from a uniform distribution in [0, 2π].

In [34, Proposition 2], the authors proved that when a shared
compression matrix is applied on every sample of a signal,
all possible estimators are asymptotically biased. Instead, if
independent compression matrices are applied on different
samples, unbiased estimators can be designed. Using this for
the channel estimation problem, better estimation performance
can be obtained when a different combining matrix is chosen
for each coherence block. Thus, in our second scheme, Θr

is chosen independently across r, with the distribution for
each Θr being the same as in the shared Wr scheme. This
scheme is referred to as “i.i.d. Wr scheme”. We note that
the memory and computational complexity of the i.i.d. Wr

scheme is higher than that of the shared Wr scheme.
In the sequel, we borrow terminology from the compressed

sensing literature to refer to estimating the channel within a
single coherence block as single measurement vector (SMV)
channel estimation and estimation over multiple blocks by
exploiting the joint sparsity structure as multiple measurement
vector (MMV) channel estimation. In the next section, we
present a novel Bayesian learning algorithm which exploits
both sparsity and correlation.

IV. CORRELATED SPARSE BAYESIAN LEARNING

We recall that our goal for SMV channel estimation is to
recover gr ∈ CD from the measurements yr = Φrgr +
nr ∈ CM which, given gr, are distributed as p(yr|gr) =
CN (yr; Φrgr, σ

2
nIM ). Following the Bayesian learning phi-

losophy, we impose a parameterized prior on gr, and develop
an algorithm to find its MAP estimate. The choice of the
prior is crucial to the success of the algorithm. It must
promote the structure – sparsity and correlation – in gr, and
must facilitate computation of the posterior. The Bayesian
inference procedure learns the prior parameters such that the
resulting distribution best fits the observed data according to
the underlying channel and measurement model. We present
a choice for such a prior in the next subsection. We discuss
the utility of the prior in obtaining low NMSE for channel
estimation in Sec. V-B.

A. Prior Model

In SBL, a parameterized Gaussian prior with the covariance
matrix Σθ ∈ CD×D is modeled as Σθ = diag(γ), where
the unknown hyperparameter θ consists of the entries of
the vector γ = [γ1,γ2, . . . ,γD]T ∈ RD+ which denote the
variances of the entries of gr. This choice of prior model is
known to induce sparsity in the final channel estimate. The
diagonal nature of the covariance matrix implicitly assumes
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that the entries of gr are uncorrelated. Hence, this prior cannot
accommodate any knowledge of the correlation structure in gr.

Similar to SBL, in this paper, we consider a parameterized
Gaussian prior for gr with hyperparameter set θ as

p(gr; θ) = CN (gr; 0,Σθ). (7)

Recall that the covariance matrix Rg is a D × D positive
semidefinite matrix with an L × L positive definite principal
submatrix corresponding to L active paths, and other entries
equal to zero [25]. In order to incorporate this structure, we
model Σθ using two hyperparameter sets: {γ ∈ RD+} denoting
the vector containing unknown variances of the entries of gr,
and U ∈ CD×D denoting a positive definite matrix with
correlation coefficients between the entries of gr. For ease
of exposition, we deal with the hyperparameter U in two
cases: (i) when U is known; and (ii) when U is an unknown
matrix parameterized based on the underlying channel model.2

Using the definition for Pearson product-moment correlation
coefficient [31], Σγ,U , Σθ is modeled as

Σγ,U = Γ
1
2 UΓ

1
2 , (8)

where Γ , diag(γ). To see how the above model incorporates
the structure in Rg, consider the case where ith element of γ
is zero. Since it denotes the variance of a zero mean random
variable, ith entry of gr is zero, and the ith row and column of
Σθ are zero vectors. If all but L entries are zero, then Σθ has
a structure similar to Rg. Consequently, the MAP estimate for
gr is also an L-sparse estimate, with the same support as that
of γ. Also, the prior model is a generalization to SBL prior,
as it reduces to the SBL prior Σγ = Γ when U = ID.

In the sequel, it will be more convenient to work with the
precision matrix Ωc,U , Σ−1

γ,U. Note that Ωc,U = CU−1C,
where C , diag(c) and c ∈ RD+ has 1/

√
γi as its ith entry.

In the following section, we present an iterative algorithm to
estimate the value of ci. When an index i is not in the support,
the value of ci goes to infinity as the iterations proceed.
To counter the numerical instability, in any iteration, if the
value of ci exceeds a threshold ε, we remove the index i and
the corresponding column of Φr from the support. This also
speeds up the algorithm. In the Algorithms 1 and 2 presented
later in this section, the thresholding operation described above
is performed at the start of each EM iteration (while loop), and
indexes i for which ci > ε are removed from the support.

B. Case I: Algorithm Development for Known U

We now proceed with developing a Bayesian algorithm for
the proposed choice of prior when U is known, and drop the
subscript U in Ωc,U. This involves two steps: obtaining the
optimal value for the hyperparameters c, and computing the
posterior distribution.

We use type-II ML estimation to obtain the optimal value
of c. This is based on the evidence maximization framework,
where the cost function is the marginal likelihood of y. By
marginalizing the joint density p(gr,yr; c, σ2

n) with respect to

2An algorithm is derived for the first case in Sec. IV-B, while a pragmatic
procedure to estimate the parameters of U is presented in Sec. IV-C.

gr, it is straightforward to show that the marginal likelihood
is given by p(yr; c, σ

2
n) = CN (yr; 0,Ω

−1
y ), where Ωy ,[

σ2
nIM + ΦrΩ

−1
c ΦH

r

]−1
denotes the precision matrix of yr.

Thus, the cost function that needs to be maximized for finding
c is obtained from the log likelihood log(p(yr; c, σ

2
n)) as

L(c) , logdet(Ωy)− yHr Ωyyr. (9)

The optimal c is then used to compute the posterior distri-
bution and the channel estimate using the following Lemma.

Lemma 1. Let the prior distribution on gr be modeled as
p(gr; c) = CN (gr; 0,Ω

−1
c ). Then, the posterior distribution

of gr given the observation yr and hyperparameter c, is
p(gr|yr; c) = CN (gr;µg|y,Ωg|y), where

Ωg|y =
1

σ2
n

ΦH
r Φr + Ωc; µg|y =

1

σ2
n

Ω−1
g|yΦH

r y. (10)

Proof. See Appendix C. �

Since the posterior distribution of gr is Gaussian, its mode
(i.e., the MAP estimate) is the same as its mean. Hence, the
posterior mean µg|y computed using the optimal value of the
hyperparameters c is our channel estimate.

The problem of maximizing the cost function (9) is non-
convex and does not admit a closed form solution. Hence,
we use the expectation-maximization (EM) procedure to max-
imize (9) by treating gr as a hidden (latent) variable. The
EM procedure involves iterating between an expectation step
(E-step) and a maximization step (M-step) [35, Section 9.3].

1) Expectation step: This step involves computing the
expected value of the complete-data log likelihood with respect
to the posterior distribution for gr computed at the hyperpa-
rameter value cold obtained from previous iteration of the EM
algorithm. The expected value is denoted by the so-called Q
function, which is defined as follows:

Q(c, cold) , Egr|yr;cold,σ2
n

[
log(p(gr,yr; c, σ

2
n))
]
. (11)

The posterior distribution p(gr|yr; cold, σ
2
n) is computed using

Lemma 1. The Q function is given by the following theorem.

Theorem 1. The expected value of complete-data log like-
lihood evaluated using the hyperparameter value cold corre-
sponding to the cost function L(c) = logdet(Ωy)−yHr Ωyyr
is given by

Q(c, cold) = k′ + (logdet(Ωc))− Tr
[
ΩcR̂g

]
, (12)

where k′ is a constant independent of c, and R̂g ,[
Ω−1

g|y + µg|yµ
H
g|y

]
.

Proof. See Appendix D. �

From Theorem 1, we observe that the Q function can be
characterized by the matrix R̂g. Thus, the E-step involves
computing R̂g given by the theorem, which in turn requires
the computation of the covariance matrix Ω−1

g|y and the mean
µg|y of the posterior distribution given by (10). Note that (10)
involves inverting the D×D matrix Ωg|y. The complexity can



6

be reduced from O(D3) to O(M3) by using the Woodbury
matrix identity, which speeds up the algorithm.

2) Maximization step: In this step, the hyperparameter c
is updated by maximizing the Q function. The first order
optimality condition for the stationary points of Q(c, cold) is
given by the following theorem.

Theorem 2. The first order optimality condition for the
optimization problem c∗ = arg maxc Q(c, cold) is given by

1

ci
= Re

{
D∑
k=1

ck(U−1)ik

[
R̂g

]
(k,i)

}
, i ∈ [D], (13)

Proof. See Appendix E. �

In the conventional sparse Bayesian learning algorithm, the
optimality condition above decouples into separate equations
in each hyperparameter ci, and the update for ci can be
obtained independent of cj , j 6= i. However, for the prior
considered here, the optimality condition in (13) is a coupled
quadratic equation, which cannot be solved in closed form.
Gradient based methods can be used to search for the solution,
but the computational complexity involved is large. Instead,
we draw from the generalized EM theory [36]: any hyper-
parameter update rule which ensures that Q(c, cold) is non-
decreasing in each EM iteration will ensure convergence of
the EM iterations to a local maximum or saddle point of L(c).

To this end, we consider a vector representation for (13) as
c = (Re {K})−1 1

c , where K , U−1 � R̂T
g ∈ CD×D and

1
c denotes the element-wise inverse. A single iteration of this
fixed point equation results in a non-decreasing cost function
value, as asserted by the following proposition.

Proposition 1. Consider the update for the hyperparameter
given by

cnew = (Re {K})−1 1

cold
. (14)

This satisfies the condition
∑
i

(
dQ
dci

((cnew)i − (cold)i)
)
≥ 0.

Consequently, by the generalized EM theory, the cost function
in (12) does not decrease after the update. In turn, this
guarantees the convergence of the overall algorithm.

Proof. See Appendix F. �

In the preceding derivation, it was assumed that the noise
variance σ2

n was known. In some applications, it is desirable
for the algorithm to learn the noise variance also. This can
be incorporated by learning a hyperparameter λ , σ2

n. The
E-step of the algorithm remains unchanged, while the M-step
decouples into independent updates for c (given by (14)) and
λ. The update for λ is given by

λ=
1

M

[
yHr yr−yHr Φrµg|y−µHg|yΦH

r yr+Tr
[
ΦH
r ΦrΩ

−1
g|y

]]
.

C. Case II: A Pragmatic Approach for Learning the Parame-
ters of the Correlation Matrix

The Bayesian inference discussed above assumed that cor-
relation matrix U is known. One approach for estimating U
could be to consider it as an additional hidden parameter in

the EM algorithm, and use the optimality condition to obtain
an update. However, due to the matrix derivatives involved,
deriving a closed form update for U not straightforward.
Instead, we present a pragmatic approach for learning the
correlation in this subsection.

In the previous section, we saw that the mean µg|y of
the posterior distribution is the MAP estimate for gr upon
convergence of the algorithm. Similarly, the matrix R̂g =
Ω−1

g|y + µg|yµ
H
g|y can be interpreted as an estimate for the

covariance matrix Rg. In fact, SBL uses the diagonal entries
of this estimate to update the variance hyperparameters in each
iteration. In the correlated case, a similar update for the inverse
variance entries c does not satisfy the first order optimality
condition (13), and hence is not a viable choice for an update
rule for c in the EM algorithm. Instead, an update for U can
be obtained by using (8) to project R̂g onto the space of
correlation matrices. To this end, the estimate for Γ in (8),
denoted by Γ̂, is obtained by considering the diagonal entries
of R̂g. An estimate for the correlation matrix, denoted by Û, is
then obtained by projecting onto space of correlation matrices
with unit diagonal entries, given by

Û = Γ̂−1/2R̂gΓ̂−1/2. (15)

In case a parameterized model for U is available, e.g., if U
is determined by a scalar parameter ρ, the above estimate can
be used as a sufficient statistic to estimate ρ. In particular, for
the uniform correlation model, ρ ∈ [0, 1) and can be obtained
by averaging the off-diagonal entries of Û. In Sec. VI, we
empirically show that the performance of this update is close
to the original algorithm that has knowledge of U.

D. Multiple Measurement Vector Setup

The performance of correlation-aware algorithms depends
on accuracy of the estimates for the channel covariance. Since
the channel covariance is constant for T coherence blocks,
multiple measurements can be used to estimate the channel
statistics, and improve the performance. The extension of the
algorithm derived above to the MMV case can be summarized
as follows. The E-step updates are averaged over all coherence
blocks under consideration. The resulting algorithm for known
U case is called Corr-SBL, and the algorithm in the i.i.d.
Wr scheme is presented as Algorithm 1. When the approach
to learn the correlation outlined in Sec. IV-C is incorporated,
the algorithm is called Corr-SBL-learn. In the shared Wr

scheme, the updates in the inner for-loop are independent of
the loop index, and thus a computationally simpler algorithm
can be obtained by vectorizing the updates.

E. Online Algorithm

In the MMV estimation problem, the channel is estimated at
the end of T coherence blocks, which could be impractical in
terms of latency when T is large. In this subsection, we present
an online version of Corr-SBL, which also incorporates the
advantages of MMV estimation.

We first consider the shared Wr scheme. The only update
which involves averaging over multiple coherence blocks is
in computing µg|yµ

H
g|y. A running sum

∑r−1
s=1

(
ΦHysy

H
s Φ

)
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Algorithm 1: Corr-SBL
Input: {Φr}Tr=1, {yr}Tr=1,U, σ

2
n

Initialize: k ← 0, c← 1

while k ≤ kmax and ‖
[
µg|y

]
k
−
[
µg|y

]
k−1
‖F < ε do

R̂g = 0D×D

for r = 1 to T do
Ωg|y = 1

σ2
n
ΦH
r Φr + Ωc[

µg|y
]
([D],r)

= 1
σ2
n
Ω−1

g|yΦH
r yr

R̂g ← R̂g +
Ω−1

g|y+[µg|y]
([D],r)

[µg|y]
H

([D],r)

T

end

c←
(

Re
{

U−1 � R̂T
g

})−1
1
c

Ωc = diag(c)U−1 diag(c)

k ← k + 1
end
Output: {ĝr}Tr=1 = µg|y, c.

Algorithm 2: Online Corr-SBL

Input: Φ,Yr,∆ =
[
yr yr+1 . . . yr+∆−1

]
,U, σ2

n, r,∆

Prior: Rold =
∑r−1
s=1

(
ΦHysy

H
s Φ

)
Initialize: k ← 0, c← 1, Û = U

while k ≤ kmax and ‖
[
µg|y

]
k
−
[
µg|y

]
k−1
‖F < ε do

Ωg|y = 1
σ2
n
ΦHΦ + Ωc

µg|y = 1
σ2
n
Ω−1

g|yΦHYr,∆

R̂g = Ω−1
g|y + 1

r+∆

(
Ω−1

g|yRoldΩ
−1
g|y + µg|yµ

H
g|y

)
c←

(
Re
{

Û−1 � R̂T
g

})−1
1
c

Γ̂ = diag(diag(R̂g))

Û = Γ̂−
1
2 R̂gΓ̂−

1
2

Ωc = diag(c)Û−1 diag(c)

k ← k + 1
end
Output: {ĝt}r+∆−1

s=r = µg|y, c,

Rold ← Rold +
∑r+∆−1
s=r

(
ΦHYr,∆YH

r,∆Φ
)

for the r− 1 preceding coherence blocks can be used as prior
knowledge for estimating the channel in the rth coherence
block. Building on this idea, we perform joint channel es-
timation over ∆ � T blocks starting from the rth coherence
block. We present this solution in Algorithm 2. For the i.i.d.
Wr scheme, a running sum of R̂g computed in Theorem 1
is required for each iteration of EM algorithm, resulting in
a large memory overhead. Instead, an approximation for the
MMV setup can be obtained by storing the running sum of
R̂g at the end of the final EM iteration of the preceding block.

We note that, at the T th coherence block, the online al-

gorithm is the same as the MMV algorithm for the shared
Wr scheme, and is an approximation of the MMV algorithm
for the i.i.d. Wr scheme. Thus, for both schemes, the overall
latency is reduced at the cost of a slightly higher mean squared
error in the initial coherence blocks due to the approximation.

F. Complexity Analysis

Table I compares the per-iteration memory and computa-
tional complexity of Corr-SBL, its online version, and MSBL.
Here, the computational complexity is measured in terms of
the number of floating point operations. The overall complex-
ity of Corr-SBL and Corr-SBL-learn (and online versions)
are the same since the additional computation of Û given by
O(D2) is included in O(D3). The additional complexity of
O(D3) of Corr-SBL over MSBL is due to the c-update step
in Algorithm 1. The complexity is higher for the i.i.d. Wr

scheme due to the additional inner-loop. The online version
of Corr-SBL has lower computational complexity, in addition
to lower latency. From our experiments, Corr-SBL converges
in a similar number of iterations as MSBL, both with and
without learning the correlation.

The additional complexity of O(D3) can be computation-
ally expensive, especially when large grid sizes are used. An
approach to reduce complexity is to use lower grid sizes, but
this can result in performance loss due to grid mismatch. A
recent approach3 has considered integrating a greedy search
procedure to obtain coarse estimates of the AoAs with a
statistical interference model (based on MSBL), followed
by dictionary refinement with smaller grid sizes. Another
approach to reduce complexity is to consider the algorithm
unrolling framework [37], where model based approaches can
be used to develop deep learning techniques that perform
similar to or better than the optimization based approaches
while reducing the complexity [38].

The memory complexity is measured by the storage required
for input information. Storing the correlation matrix informa-
tion leads to higher memory complexity in Corr-SBL com-
pared to MSBL. However, this can be significantly reduced
for parameterized models by storing only the parameters.
The memory complexity is higher for the i.i.d. Wr scheme
compared to the shared Wr scheme, as expected.

V. PERFORMANCE ANALYSIS

Corr-SBL algorithm is designed based on the maximum
likelihood principle and was shown to attain a stationary point
of the cost function. However, the performance of channel
estimation is usually measured using other cost functions such
as NMSE or spectral efficiency of the system. To analyze the
performance of Corr-SBL under these measures, we present a
unified framework by considering the class of plug-in LMMSE
estimators, which includes the LMMSE, E-LMMSE and IPCI
estimators described in Appendix A. We also show that the
output of Bayesian learning algorithms, MSBL and Corr-SBL,
can be represented as a plug-in LMMSE estimator.

3https://ece.iisc.ac.in/∼cmurthy/Learned Chester AI5GPHY Challenge.pdf
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Table I. Memory and Computational Complexity
Algorithm Mode Memory complexity Computational complexity

MSBL i.i.d. Wr O (DMT ) O
(
DM2T

)
Shared Wr O (M(D + T )) O (DM(M + T ))

Corr-SBL i.i.d. Wr O
(
DMT +D2

)
O
(
DM2T +D3

)
Shared Wr O

(
M(D + T ) +D2

)
O
(
DM(M + T ) +D3

)
Online-Corr-SBL-learn i.i.d. Wr O

(
DM∆ +D2

)
O
(
DM2∆ +D3

)
Shared Wr O

(
M(D + ∆) +D2

)
O
(
DM(M + ∆) +D3

)
A. Plug-in LMMSE Estimators

The following result unifies the channel estimation schemes
considered in this work, and shows that they can be repre-
sented as plug-in LMMSE estimators.

Proposition 2. The class of plug-in LMMSE estimators can
be represented as

ĥr = Mryr = R̂hWH
r

(
WrR̂hWH

r + σ2
nIM

)−1

yr, (16)

where the covariance matrix R̂h depends on the estimator:

R̂h =



Rh = AΓ
1
2 UΓ

1
2 AH LMMSE

AΓAH E-LMMSE

AΓ
1
2

Corr-SBLUΓ
1
2

Corr-SBLA
H Corr-SBL

AΓMSBLA
H MSBL

R̂IPCI
h IPCI

where Γ and U denote the variance matrix and the correlation
matrix, and R̂IPCI

h ,W†
r

(
1
T

∑T
r=1 yry

H
r

) (
W†

r

)H
with W†

r

denoting the pseudoinverse of W.

Proof. See Appendix G. �

B. Normalized Mean Squared Error (NMSE)

The NMSE in the channel estimate is defined as NMSE =
E
[
‖ĥr − h‖22

]
/E
[
‖h‖22

]
. The following theorem provides the

NMSE for the plug-in LMMSE estimators. Its proof follows
from direct computation and is omitted.

Theorem 3. Consider the estimator ĥr = Mryr, where

Mr = R̂hWH
r

(
WrR̂hWH

r + σ2
nIM

)−1

is the plug-in

LMMSE matrix. Assuming that the estimate R̂h is independent
of the measurement yr, i.e., R̂h is computed using measure-
ments from other coherence blocks, the NMSE in the channel
estimate is given by

1

Tr [Rh]
× E [Re {Tr [ Mr

(
WrRhWH

r + σ2
nIM

)
MH

r

+ Rh − 2MrWrRh]}] , (17)

where the expectation is over the randomness in Mr and Wr.

In the above, we assumed that R̂h is independent of the
measurement yr. If this does not hold, the expression for
the MSE becomes complicated due to the coupling between
the two, making the analysis more involved. In any case,

one typically uses multiple previous channel instantiations to
estimate R̂h, hence, this is not unduly restrictive.

We note that the error in estimating the covariance ma-
trix using performance measures like Frobenius and spectral
norm have been studied in literature [34]. However, very few
works consider the error in signal recovery using the noisy
covariance estimates, especially for the compressed sensing
case. Theorem 3 presents the NMSE performance for the
class of plug-in LMMSE estimators. For a given set of system
parameters W,Rh and σ2

n, the NMSE depends on Mr, which
in turn depends on the covariance estimate. From the theorem,
it is straightforward to verify that the least NMSE is obtained
by the LMMSE estimator, which assumes perfect knowledge
of the covariance matrix Rh. It can be verified that the
genie-aided LMMSE achieves the Cramér-Rao bound for the
above problem. The E-LMMSE estimator and MSBL force a
diagonal structure correlation, and therefore do not exploit the
full covariance structure. The IPCI estimator uses the sample
covariance, which requires large number of samples to learn
the structure of Rh because the underlying sparsity is not
exploited. The covariance estimate of Corr-SBL follows has a
structure similar to actual covariance, and has the potential to
learn Rh accurately using only a small number of samples. We
illustrate this by comparing the NMSE value computed using
Theorem 3 with the simulated NMSE in Fig. 5 in Sec. VI.

C. Spectral Efficiency (SE) Analysis

Let Ĥ =
[
ĥ1ĥ2 . . . ĥK

]
∈ CN×K denote the channel

estimates for all users obtained using (16) in a single coherence
block. If the kth user transmits a symbol xk ∀k with zero mean
and power P , the received combined vector at the BS is

y = FWRF

(
K∑
k=1

hkxk + n

)
. (18)

where we use WRF ∈ CM×N as the analog combiner matrix
to distinguish it from the matrix Wr used in the pilot trans-
mission phase. Various designs for the analog combiner WRF

and digital combiner F ∈ CM×M matrices have been studied
in the literature when perfect CSI is available at the BS; one
such design aims at designing them independently [39]. In this
work, we use the same methodology, with channel estimates
Ĥ replacing the unknown CSI H. We let the number of users
served by the BS to be equal to the number of RF chains, i.e.,
K = M . Then, the phase-only control of the analog combining
matrix WRF is satisfied by constraining the amplitude of
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all entries to 1√
N

, and the phase of (m, k)th entry of WRF ,
denoted by θ̂m,k, is set using the channel estimate as

θ̂m,k = φ̂m,k, m ∈ [M ], k ∈ [K], (19)

where φ̂m,k is the phase of
[
ĤH

]
(m,k)

. The effective baseband

channel ĤB = WRF Ĥ is used to design the digital combiner
using the regularized zero forcing (RZF) combining with
regularization parameter η =

Mσ2
n

P :

F =
(
ĤH
B ĤB + ηIM

)−1

ĤH
B . (20)

In order to compute the SE, we write the kth row of (18) as

yk = E [fkWRFhk]xk︸ ︷︷ ︸
signal

+ (fkWRFhkxk − E [fkWRFhk]xk)︸ ︷︷ ︸
self-interference

+

K∑
q=1,q 6=k

fkWRFhqxq︸ ︷︷ ︸
inter-user interference

+ fkWRFn︸ ︷︷ ︸
AWGN

, (21)

where fk is the kth row of F. The term E [fkWRFhk] is
treated as a known deterministic channel. Noting that it is
uncorrelated with other terms in the summation, we obtain
the following result. The proof follows from applying the use-
and-then forget bound [40, Section 3.2] and is omitted.

Theorem 4. The spectral efficiency (SE) of user k is lower-
bounded by

SEk ≥
(

1− K

τc

)
log2 (1 + γ̃k) bits/s/Hz, (22)

where the pre-log factor accounts for pilot overhead, and γ̃k
is an effective SINR term given by

γ̃k =
P |E [fkWRFhk] |2

P
∑K
q=1 E [|fkWRFhq|2]− P |E [fkWRFhk] |2 + αk

(23)

where αk = σ2
nE
[
fkWRFWH

RF fHk
]

is the effective noise
power in the combined signal.

The expectations in Theorem 4 cannot be obtained in closed
form. They are computed using simulations in the next section.

VI. SIMULATION RESULTS

A. Simulation Setup

We now present simulation results to elucidate the role of
correlation and sparsity in mmWave channel estimation. We
compare the NMSE performance of Corr-SBL with the genie-
aided LMMSE, LS, IPCI, E-LMMSE estimators given by
(24), (25), (27), (28) in Appendix A, respectively, and sparse
recovery algorithms SOMP [25], CovOMP [25] and MSBL
[41]. We also compare the average sum rate achieved by the
hybrid MIMO architecture with channel estimates obtained
using Corr-SBL against that of a system equipped with a
fully digital architecture (where there is no need for an analog
beamforming stage) and genie-aided LMMSE channel esti-
mates. We consider the uniform correlation model, where Uij

Table II. Simulation Parameters
Parameters Values

Number of antenna N 256
Grid size D 256

Number of RF chains M 16
Number of users K 16

Number of multipaths Lk 16
Number of snapshots T 512

SNR 10 dB
Correlation coefficient ρ 0.5

Coherence interval τc 2000
Hyperparameter pruning threshold ε 105

-15 -10 -5 0 5 10 15 20

SNR (in dB)

-15

-10

-5

0

5

N
M

S
E

 (
in

 d
B

)

IPCI

Corr-SBL

MSBL

LMMSE

Fig. 2. Comparison of NMSE against SNR for the class of
plug-in LMMSE estimators.

equals unity when i = j and equals ρ ∈ [0, 1) otherwise [42].
The support of the sparse vector is obtained by drawing Lk
samples from the D grid points uniformly at random without
replacement. The path gain vector is obtained from a complex
normal distribution with zero mean and covariance matrix
of the form described in Section. II. We use the command
zadoffChuSeq(19,17) (in MATLAB) to generate a base
sequence of length 17. Then, we consider 15 successive
cyclically permuted sequences of the base sequence, along
with the base sequence, as pilot sequences for the K = 16
users. The other parameter values are as listed in Table II,
unless specified otherwise.

B. Effect of SNR

In the first experiment, we study the NMSE performance of
the class of plug-in LMMSE estimators as a function of the
SNR. From Fig. 2, we see that for SNR less than 0 dB, the
advantage of exploiting correlation is not significant since the
noise overwhelms the signal. However, as the SNR increases
beyond 0 dB, performance of all algorithms exploiting sparsity
increases, with the gain being higher for Corr-SBL and genie
aided LMMSE estimator compared to MSBL. In the further
simulations, we fix the SNR to 10 dB, and study the effect
of other parameters of the system to elucidate the role of
correlation in sparse signal recovery.

C. mmWave Channel Estimation

In the second set of experiments, we present the cumulative
distribution function (CDF) of the NMSE of different algo-
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Fig. 3. Comparison of NMSE for different algorithms for both
shared Wr and i.i.d. Wr schemes.
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Fig. 4. Loss in NMSE performance with and without learning
the correlation due to imperfect correlation information.

rithms, run for 1000 independent realizations of the channel
and T coherence blocks. The curves for both i.i.d. Wr

and shared Wr schemes are presented in Fig. 3. The genie
based LMMSE estimator (curve labeled LMMSE), sets the best
achievable benchmark for all algorithms and the performance
of Corr-SBL (curve labeled Corr-SBL) is only marginally
worse. For the case where the correlation coefficient ρ is
not known, we estimate it by averaging the off-diagonal
entries of Û as explained in Sec. IV-C. This curve, labeled
Corr-SBL-learn, matches the performance of Corr-SBL,
showing that the algorithm can learn ρ without appreciable
loss in performance. Exploiting only correlation (IPCI) or
only sparsity (MSBL) performs worse than Corr-SBL.

The NMSE with the i.i.d. Wr scheme is lower than that
of the shared Wr scheme, showing that it is better to use
independent measurement matrices across coherence blocks.
The genie-based estimator E-LMMSE only exploits sparsity
and is a lower bound on the performance of sparse recovery
algorithms that do not exploit correlation. It performs worse
than Corr-SBL, which illustrates the importance of exploiting
correlation in addition to sparsity. However, although it does
not exploit correlation, the hierarchical Bayesian prior used
in MSBL results in better performance than CovOMP (which
does exploit both correlation and sparsity). In the shared Wr

scheme, the algorithms CovOMP and SOMP in fact perform
worse than a trivial estimator which outputs all zeros (and
yields an NMSE of 0 dB).
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Fig. 5. NMSE performance against sparsity level.

D. Corr-SBL Performance

Here, we demonstrate the robustness of the Corr-SBL algo-
rithm to imperfect correlation information and high sparsity
levels. First, we demonstrate the advantage of learning the
correlation. Let ρ be the true correlation coefficient. The
initial value of the correlation coefficient ρ̂ for both Corr-
SBL and Corr-SBL-learn is chosen uniformly at random in
the range [(1 − ε)ρ, (1 + ε)ρ]. The performance loss due to
imperfect correlation is presented in Fig. 4, where we plot
the difference between the NMSE of each of the algorithms
initialized with the imperfect correlation ρ̂ and the NMSE of
genie-Corr-SBL which has the exact knowledge of ρ, as a
function of ε. Since Corr-SBL continues with the initial value
of the correlation coefficient, its performance deteriorates with
increasing ε. Corr-SBL-learn learns ρ from the data, and
exhibits relatively stable performance irrespective of ε, and
outperforms Corr-SBL. The NMSE increases slightly with the
size of the uncertainty interval, but the loss in NMSE is small
even for high values of ε. This shows that Corr-SBL-learn does
not require a very accurate knowledge of ρ in order to exploit
the underlying channel correlation.

The NMSE performance of different algorithms is compared
as a function of the number of multi-path components, i.e.,
the sparsity level of the channel, in Fig. 5. The performance
of all sparse recovery algorithms are similar at low sparsity
levels, hence exploiting the correlation is not crucial. The per-
formance of SOMP, CovOMP and MSBL deteriorate quickly
with increasing sparsity. In contrast, both Corr-SBL and Corr-
SBL-learn continue to perform close to the optimal genie-
aided estimator even at high sparsity levels, and significantly
outperform the other methods. Thus, Bayesian methods can
offer significant advantages especially in highly measurement-
constrained scenarios, when the prior model is chosen to best-
fit the underlying model. Also, the NMSE values computed
using Theorem 3 overlap perfectly with the simulated NMSE
values, illustrating the accuracy of the theoretical expressions.

E. Shared Wr vs. i.i.d. Wr schemes

Fig. 6 compares the channel estimation performance of
the i.i.d. Wr and shared Wr schemes. As the number of
coherence blocks used to estimate the channel covariance
(T ) increases, the performance of Corr-SBL and Corr-SBL-
learn converge to the LMMSE estimator and that of MSBL
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Fig. 6. NMSE performance with averaging over multiple coherence blocks.
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converges to the E-LMMSE estimator, for both schemes.
The NMSE value of the Corr-SBL algorithm for T = 512
is lower for the i.i.d. Wr scheme compared to the shared
Wr scheme. The i.i.d. Wr scheme offers better performance
compared to the shared Wr scheme at high correlation, as
shown in Fig. 7. In the shared Wr scheme, the performance of
MSBL deteriorates with increasing correlation, and Corr-SBL
follows the performance of the genie aided LMMSE estimator
until a correlation threshold, after which the high correlation
overwhelms the covariance estimation procedure, possibly due
to the larger condition number of U. However, as seen for
both MSBL and Corr-SBL, in the i.i.d. Wr scheme, better
covariance estimation leads to better performance even at high
correlation levels.
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F. Online Estimation

Here, we compare the performance of the online version
of Corr-SBL for different block lengths ∆. We consider the
scenario of estimating the channel over T = 512 channel
coherence blocks. In Fig. 8, we plot the percentage of the 512
coherence blocks where the NMSE is greater than a given
value, say x, as a function of x. With ∆ = 64, which offers
a significant reduction in latency compared to using all 512
coherence blocks, less than 0.2% of the blocks have an NMSE
higher than −5 dB, while the MMV solution that uses all
the 512 coherence blocks achieves an NMSE slightly lower
than −6 dB. Even with ∆ = 1, less than 10% of the blocks
have an NMSE higher than −3 dB. The higher NMSE at
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smaller ∆ is due to poor estimates in the initial few blocks;
the NMSE in fact rapidly decreases in the later blocks. This
small performance loss can be insignificant when compared to
the latency reduction advantage in practical applications.

G. Spectral Efficiency

In Fig. 9, we compare the sum-rate performance of the
system when the channel estimates are obtained using the
different algorithms, calculated using (22). The hybrid ar-
chitecture in Sec. V-C with genie-aided LMMSE channel
estimates performs close to the fully digital architecture with
the optimal genie aided LMMSE channel estimates. The sum-
rate performance using Corr-SBL channel estimates is close
to the genie-aided estimator. It offers nearly 50% higher
sum rate compared to MSBL across the range of number of
antennas. The performance of IPCI is limited by the accuracy
of estimating the covariance itself, and as a consequence, it
does not improve with the number of antennas.

H. NYUSIM Channel Model

Lastly, we compare the performance of Corr-SBL and
MSBL with the genie-aided LMMSE estimator for the channel
model obtained from the NYUSIM mmWave channel simula-
tor [43], [44], which considers a practical clustering model.
Since the NYUSIM model does not consider correlation
among the path gains, we premultiply the obtained path gain
vector with a matrix that results in the covariance matrix of
the final vector to be similar to the model considered in this
paper. The parameters of the simulation are same as given in
Table II, but with the number of multipaths obtained from the
NYUSIM varying between 12 and 30 across different Monte
Carlo simulations. In Fig. 10, we plot the 95th percentile
NMSE (NMSE of top 95% runs, to remove outliers) as a
function of the grid size. We can observe that as the grid
size increases, the approximation of the channel using (2)
becomes more accurate, and, as a result, the performance of
the algorithm improves before it saturates beyond a grid size
of about 350. Also, unlike the previous simulations, Corr-SBL-
learn performs slightly better than Corr-SBL. This is because,
with the practical channel model, the covariance matrix may
not exactly match the U assumed by Corr-SBL. This shows
that learning the correlation from data, rather than fixing it
based on a model, can result in better performance in practice.

VII. CONCLUSION

In this paper, we explored the role of sparsity and intra-
vector correlation in the mmWave channel estimation problem.
We presented a novel prior model for exploiting both struc-
tures and developed a Bayesian inference algorithm named
Corr-SBL for channel estimation. Using the optimal prior
estimate obtained from an EM-type procedure, we derived
the MAP estimate of the sparse mmWave channel with intra-
vector correlation. For the case with imperfect correlation
information, we presented an approach for learning the correla-
tion. Experimental results showed that Corr-SBL outperforms
existing approaches and achieves close to genie-aided optimal

performance over a wide range of scenarios. The algorithm is
also robust to imperfect correlation information. In practical
implementations, the online version reduces the latency at
a slight loss in NMSE performance. Future extensions of
this work could consider exploiting inter-vector correlation
across coherence blocks, in addition to sparsity and intra-
vector correlation (see, e.g., [45], [46]). Also, while the paper
presented a framework for exploiting correlation, measurement
campaigns to estimate the correlation seen in practice will be
useful to fine-tune the algorithm for practical use-cases.

APPENDIX

A. Channel Estimation Schemes

In this subsection, the different channel estimation schemes
considered for comparison in the simulation results are pre-
sented. We recall that the goal is to estimate hr ∈ CN given
the pilot signal yr ∈ CM , where yr = Wrhr + nr.

1) Linear Estimation: Here, we restrict the attention to
estimation schemes of the form ĥr = Mryr. When the
channel covariance matrix Rh is known, LMMSE is the
optimal linear estimator.

ĥLMMSE
r = RhWH

r

(
WrRhWH

r + σ2
nIM

)−1
yr. (24)

However, in practice Rh is not known at the receiver. In this
case, the simplest estimator is the least squares (LS) estimator:

ĥLS
r = W†

ryr, (25)

where W†
r denotes the pseudo-inverse of Wr. The LS esti-

mator does not exploit the correlation Rh in the channel. To
exploit correlation, LS estimates of the channel in T coherence
blocks are computed, and the sample covariance obtained from
the estimates is used as an estimate for Rh as

R̂h = W†
r

(
1

T

T∑
r=1

yry
H
r

)(
W†

r

)H
. (26)

R̂h is plugged into the LMMSE estimator resulting in an im-
perfect channel covariance information (IPCI) based estimator:

ĥIPCI
r = R̂hWH

r

(
WrR̂hWH

r + σ2
nIM

)−1

yr. (27)

2) Compressed Sensing based Estimation: The estimators
discussed in the previous subsection do not exploit the spatial
sparsity in the channel. Using (3) in (5), and considering
Φr = WrA ∈ CM×D as the measurement matrix, the
received pilot can be written in the compressed sensing
framework as yr = Φrgr + nr. Any of the well known
sparse recovery algorithms can be used to recover an estimate
ĝr for gr from the pilot signal yr. Using ĝr, the channel
is estimated as ĥr = Aĝr. For performance comparison,
we consider two algorithms, OMP [11] and SBL [26]. For
estimating the channel over multiple coherence blocks, since
the channel support remains constant, OMP and SBL can be
replaced with their MMV counterparts, SOMP [25] and MSBL
[41], respectively. These algorithms exploit the sparse structure
in gr, but do not use the intra-vector correlation.

We also consider two genie-aided estimators. When the
covariance matrix Rg is known, the LMMSE estimate results
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in the same estimator as in (24), with Rh replaced with
ARgAH . To characterize performance of estimators that
neglect the correlation information, using the support and
individual variances as the diagonal matrix Γg, a genie-aided
element-wise plug-in LMMSE estimator is

ĝE-LMMSE
r = ΓgΦ

H
r

(
ΦrΓgΦ

H
r + σ2

nIM
)−1

yr. (28)

An OMP-based sparse recovery algorithm, CovOMP, was
proposed in [25], which exploits both sparsity and correlation.
Simulation results show that our solution outperforms Cov-
OMP, especially in highly measurement-constrained scenarios.

B. Extensions

The main goal of this paper is to elucidate the role of
spatial sparsity and correlation in mmWave channel estimation.
For simplicity of exposition, we considered a frequency-flat
channel model and single-antenna users in developing our
solution. In this section, we briefly discuss extensions of
our approach to the cases where the channels are frequency-
selective and the users are equipped with multiple antennas.

1) Multiple Antennas at the Users: In this subsection,
we present a measurement model for the correlated sparse
recovery problem when the users are equipped with multiple
antennas. Suppose the BS and the K users employ ULAs with
NB and NU antennas, and have MB < NB and MU < NU
RF chains, respectively. For this setup, the channel in (2) can
be written as,

Hr,k=

Lk∑
l=1

ḡr,k,lāB(ψr,k,l)ā
H
U (θr,k,l)=ĀBḡr,kĀ

H
U ∈CNB×NU ,

where ĀB ∈ CNB×Lk and ĀU ∈ CNU×Lk denote the array
response vectors at the BS and the kth user, respectively. Using
grids of size DB and DU , Hr,k can be approximated as

Hr,k = ABGr,kA
H
U

where Gr,k ∈ CDB×DU is a sparse matrix with Lk nonzero
path gains corresponding to the AoAs and AoDs. If the BS
uses a combiner Wr ∈ CMB×NB and the user employs a
precoder Fr ∈ CNU×MU , the received signal at the BS for
estimating the kth user’s channel (corresponding to (4)) is

Yr,k = WrABGr,kA
H
U Fr + Nr,k.

By vectorizing Yr,k, we obtain the linear system given by

yr,k=
(
FT ⊗W

)
(Ac

U ⊗AB) gr,k + nr,k ∈ CMBMU×1,

where Ac
U denotes the element wise conjugate of AU , and

gr,k ∈ CDBDU×1 is vectorized form of Gr,k. This is now in
the same form as the sparse recovery framework developed
in this paper, albeit with a larger dimensional measurement
matrix and sparse vector. At the cost of higher computational
complexity, the Corr-SBL can now be directly used for learn-
ing the channel gr,k from the measurements yr,k.

2) Frequency-selective Channel Models: In OFDM sys-
tems, the use of subcarriers for data transmission allows one
to convert frequency selective channels into multiple parallel
frequency flat channels. In this case, the algorithm described

in the paper can be applied independently over the different
sub-carriers. However, this does not exploit the correlation in
the channels across sub-carriers. The work in [25] considers
a combination of time-domain and frequency-domain algo-
rithms. A challenge in extending Corr-SBL to this case is in
estimating the parameters of the channel correlation across
subcarriers. This is an interesting direction for future work.

C. Proof of Lemma 1

The posterior distribution of gr given the observations yr
and hyperparameter value cold is given by

p(gr|yr; cold, σ
2
n) =

p(yr|gr;σ2
n)p(gr; cold)

p(yr; cold, σ2
n)

Using the prior on gr : CN (gr; 0,Ω
−1
cold

), we get

p(gr|yr; cold, σ
2
n) =

CN (yr; Φrgr, σ
2
nIM ) CN (gr; 0,Ω

−1
cold

)

CN (yr; 0,Ω
−1
y )

= k exp

(
−gHr (Ωcold +

ΦH
r Φr

σ2
n

)gr+
gHr ΦH

r yr + yHr Φrgr
σ2
n

)
,

where k is a normalization constant. Using Ωg|y = Ωcold +
ΦH

r Φr

σ2
n

and µg|y = 1
σ2
n
Ω−1

g|yΦH
r yr and completing the squares,

the posterior distribution can be written as

p(gr|yr; cold, σ
2
n) = k exp

(
−
(
gr−µg|y

)H
Ωg|y

(
gr−µg|y

))
,

which is the Gaussian distribution with mean µg|y and covari-
ance Ω−1

g|y, as given in the statement of the Lemma.

D. Proof of Theorem 1

The lower bound Q on the cost function L using the EM
framework is given as

Q(c, cold) = Egr|yr;cold,σ2
n

[
log(p(gr,yr; c, σ

2
n))
]

=Egr|yr,cold

[
log(p(yr|gr;σ2

nIM ))
]
+Egr|yr,cold[log(p(gr; c))] .

(29)

The first expectation is a constant with respect to c, which does
not affect the M-step. The second expectation is computed as

Egr|yr,cold [log(p(gr;c))] = Egr|yr,cold

[
log(CN (gr; 0,Ω

−1
c ))

]
= −D log(π) + log(det(Ωc))−Egr|yr,cold

[
gHr Ωcgr

]
.

The scalar term gHr Ωcgr can be rewritten using the trace
operator. Using the product property of trace (Tr[AB] =
Tr[BA)]), the expectation term can be rewritten as

Egr|yr,cold

[
gHr Ωcgr

]
= Tr

[
ΩcEgr|yr,cold

[
grg

H
r

]]
.

The expectation term inside the trace is the second moment
matrix with respect to the posterior probability distribution.
Using Lemma 1, the second moment matrix is obtained as
R̂g , Egr|yr,cold

[
grg

H
r

]
= Ω−1

g|y + µg|yµ
H
g|y . Substituting

this into (29), the Q function is given by

Q(c, cold) = constant + log(det(Ωc))− Tr
[
ΩcR̂g

]
.
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E. Proof of Theorem 2

Using first order optimality condition for maximizing
Q(c, cold), ∂Q

∂ci
= 0, i ∈ {1, 2, . . . D}, and from Theorem 1,

∂
(

log(det(Ωc))− Tr
[
ΩcR̂g

])
∂ci

= 0. (30)

The first term is
∂ log(det(Ωc))

∂ci
=
∂ log(det(CU−1C))

∂ci
=

2

ci
. (31)

Considering the second term,

∂
(

Tr
[
ΩcR̂g

])
∂ci

=
∂
(

Tr
[
CU−1CR̂g

])
∂ci

= Tr
[
JiiU

−1CR̂g + R̂gCU−1Jii

]
, (32)

where Jii an N ×N matrix with a single 1 in the ith diagonal
entry and zeros elsewhere. Using the fact that the two matrices
in the trace are Hermitian transpose of each other and using
property of single entry matrices, the term is simplified as,

∂
(

Tr
[
ΩcR̂g

])
∂ci

= 2 Re

{[
U−1CR̂g

]
(i,i)

}
. (33)

Substituting (31) and (33) in (30), and simplifying expressions,
the optimality condition is obtained as

1

ci
= Re

{
D∑
k=1

ck
[
U−1

]
(i,k)

[
R̂g

]
(k,i)

}
. (34)

F. Proof of Proposition 1

For ease of presentation of the proof, we change our
notation, with c replaced with cnew and cold replaced with c.
Let si,j and ti,j denote the {i, j}th entry of the real symmetric
matrix S , Re {K} and its inverse T, respectively. These
follow the condition

∑D
i=1 si,kti,l =

∑D
i=1 si,ktl,i = 1 if k = l

and 0 otherwise. Also, since U−1 and R̂T
g are positive definite,

Re{K} is a positive definite matrix.
We need to show that the update in (14) results in the

quantity
∑
i

(
dQ
dci

((cnew)i − ci)
)

being greater than or equal
to zero. This would in turn imply that the cost function is
nondecreasing in each iteration. Using the expression for dQ

dci
derived in Appendix E and the expression for cnew from (14),
the above quantity can be written as
D∑
i=1

((
2

ci
− 2

D∑
k=1

cksi,k

)(
D∑
k=1

ti,k
ck
− ci

))

= 2

D∑
i=1

(
D∑
k=1

ti,k
cick

+ si,kcick − 1

)
− 2

D∑
k,l=1

ck
cl

D∑
i=1

si,kti,l.

Using the properties of S and T, the last term is equal to
1. Further, by considering B = CSC, where C is a diagonal
matrix with ci as its entries and using the eigen decomposition
of B = UΛUT , the above can be simplified as

21T
(
B + B−1 − 2I

)
1 =21TU

(
Λ + Λ−1 − 2I

)
UT1 ≥ 0,

where 1 is the all ones vector of length D. The last inequality
is because entries of Λ are positive since B is positive definite,
and as a consequence Λ+Λ−1−2I is a diagonal matrix with
non-negative entries, hence is positive semi-definite.

G. Proof of Proposition 2

The LMMSE, E-LMMSE and IPCI estimators presented in
Appendix A are in the form of (16) as given in statement
of the proposition. For Corr-SBL, we provide an alternative
representation of the final estimate as a plug-in LMMSE esti-
mator. The proof for MSBL follows similarly and is omitted.

Let Copt denote the value of the hyperparameters obtained
upon termination of the Corr-SBL algorithm, and let Ωc =
CoptU

−1Copt. The posterior mean estimate ĝr is obtained as

ĝr = µg|y =
1

σ2
n

Ω−1
g|yyr =

1

σ2
n

(
ΦH
r Φr

σ2
n

+ Ωc

)−1

ΦH
r yr.

Using the matrix identity(
ΦH
r Φr

σ2
n

+Ωc

)−1

ΦH
r = σ2

nΩ−1
c ΦH

r

(
ΦrΩ

−1
c Φr+σ

2
nIM

)−1
,

we obtain ĝr = ΣoptΦ
H
r

(
ΦrΣoptΦr + σ2

nIM
)−1

yr, where
Σopt , C−1

optUC−1
opt. From Sec. IV-A, we have C−1

opt =

Γ
1
2

Corr-SBL. Finally, using ĥr = Aĝr and substituting Φr =
WrA, the output of Corr-SBL can be written in the form
(16), with R̂h as given in the proposition.
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