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Abstract

This thesis contributes new theoretical results and recovery algorithms for the area of

sparse signal recovery motivated by applications to the problem of channel estimation in

mmWave communication systems.

The thesis is written in two parts. The first part focuses on the recovery of sparse vec-

tors with correlated nonzero entries from their noisy low dimensional projections. Such

structured sparse signals can be recovered using the technique of covariance matching.

Here, we first estimate the covariance of the signal from the compressed measurements,

and then use the obtained covariance matrix estimate as a plug-in to the linear minimum

mean squared estimator to obtain an estimate of the sparse vector. We present a novel

parametric Gaussian prior model, inspired by sparse Bayesian learning (SBL), which cap-

tures the underlying correlation in addition to sparsity. Based on this prior, we develop

a novel Bayesian learning algorithm called Corr-SBL, using the expectation-maximization

procedure. This algorithm learns the parameters of the prior and updates the posterior es-

timates in an iterative fashion, thereby yielding a sparse vector estimate upon convergence.

We present a closed form solution for the hyperparameter update based on fixed-point it-

erations. In case of imperfect correlation information, we present a pragmatic approach

to learn the parameters of the correlation matrix in a data-driven fashion.

Next, we apply Corr-SBL to the channel estimation problem in mmWave multiple-input
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Abstract iii

multiple-output systems employing a hybrid analog-digital architecture. We use noisy low

dimensional projections of the channel obtained in the pilot transmission phase to estimate

the channel across multiple coherence blocks. We show the efficacy of the Corr-SBL prior

by analyzing the error in the channel estimates. Our results show that, compared to genie-

aided estimators and other existing sparse recovery algorithms, exploiting both sparsity

and correlation results in significant performance gains, even under imperfect covariance

estimates obtained using a limited number of samples.

In the second part of the thesis, we consider the sparse signal recovery problem when

the measurement acquisition process has a limited dynamic range, for example, when low-

resolution analog-to-digital converters are used. To counter the effect of signal clipping

in these systems, we use modulo arithmetic to fold the measurements crossing the range

back into the dynamic range of the system. For this setup, termed as modulo-CS, we

answer the fundamental question of signal identifiability, by deriving conditions on the

measurement matrix and the minimal number of measurements required for unique recov-

ery of sparse vectors. We also show that recovery using the minimum required number

of measurements is possible when the entries of the measurement matrix are drawn inde-

pendently from any continuous distribution. Finally, we present an algorithm based on

convex relaxation, and formulate a mixed integer linear program (MILP) for recovery of

sparse vectors under modulo-CS. Our empirical results show that the minimum number

of measurements required for the MILP is close to the theoretical result, for signals with

low variance.



Notation

Fields

R Field of real numbers

R+ Field of non-negative real numbers

C Field of complex numbers

Z Field of integers

FN Set of vectors of length N with entries from the field F

Other Sets: Denoted by calligraphy alphabets

|S| Cardinality of set S
SC Complement of S
[N ] Set of integers from 1 to N

a : b Set of integers from a to b⋃
Union of sets

Vectors: Denoted by bold lowercase letters

xi ith element of vector x

xS Vector supported on index set S
‖x‖p `p-norm of vector x

‖x‖0 `0-norm of vector x: Number of nonzero entries

〈a,x〉 Inner product between a and x

1
x

Element wise inverse of vector x

diag(x) Diagonal matrix with entries of the vector x on the diagonal

supp(x) Support of vector x: Index set of nonzero elements in x

0 All zero vector

1 All ones vector
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Notation v

Matrices: Denoted by bold uppercase letters

[A](i,j) or (A)ij {i, j}th element of matrix A

[A](Sr,Sc)

Submatrix consisting of intersection of rows and columns of

A with respect to index sets Sr and Sc respectively

AS Submatrix with columns of A corresponding on index set S
AT Transpose of matrix A

AH Conjugate transpose of matrix A

det(A) Determinant of matrix A

logdet(A) Logarithm of the determinant of matrix A

A�B Hadamard product of A and B

Tr [A] Trace of a square matrix A

diag(A) Vector with diagonal entries of A

IN Identity matrix of size N

Ji,i Square matrix with 1 in ith diagonal entry and zeros elsewhere

Probability theory

p(x; θ) Probability distribution on x with parameters θ

E Expectation operator

Ex Expectation with respect to probability distribution p(x)

CN (x;µ,Σ)
Complex normal distribution (Complex Gaussian) on x with

mean µ and covariance Σ

i.i.d. Independent and identically distributed

Miscellaneous

|x| Absolute value of a scalar x

Re {x} Real part of x where x can be scalar, vector or a matrix

btc Integer part of scalar t: Floor function

JtK Fractional part of scalar t
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Chapter 1

Introduction

Cellular communication systems have come a long way since their inception in the early

1980s. A combination of market demands and technological research have driven new

generations of cellular systems every decade. Riding on the success of the fourth generation

(4G), research and development efforts are now concentrating on the next generation

of communication systems that has been termed as 5G technology. This generation is

expected to connect a massive number of devices, support extremely high data rates, and

provide ultra-high reliability. To cater to these design targets of 5G, innovations in newer

technologies has gained utmost importance, and one key technology is millimeter wave

(mmWave) communications.

1.1 mmWave Communications

The existing cellular networks including the 4G technology largely operate in the sub-6

GHz frequency spectrum. The bandwidth available at these frequencies are not sufficient

to meet the capacity requirement of the next-gen wireless networks. A promising approach

to address the demands is to utilize the large bandwidths available in the frequency bands

1



Chapter 1. 2

above 6 GHz, which includes the mmWave frequencies ranging from about 30-300 GHz.

1.1.1 mmWave MIMO Systems

mmWave communications has been in use for some years now, especially with it being

standardized for the IEEE 802.11ad WiGig network standard. The high frequencies al-

low the use of large bandwidths, which, in turn, enables transmission at very high data

rates. However, signals at these high frequencies experience high attenuation, scattering

and absorption, leading to high propagation and penetration losses [1]. These challenges

have hindered the use of mmWave communications for cellular systems. In the recent

years, research and development advances in areas like massive deployment of small cells,

multiple-input multiple-output (MIMO), have significantly improved the reliability to the

mmWave systems, and have resulted in mmWave communications being a potential tech-

nology to the meet the 5G requirements [2].

The large antenna gains obtained in MIMO systems from the use of large antenna arrays

help overcome the severe path loss at the high frequencies. At the same time, the short

wavelengths of mmWave signals are conducive to the deployment of MIMO because a larger

number of antennas can be accommodated in a small area due to the lower antenna spacing

requirements [2]. In the cellular communications realm, the concept of multi-user MIMO

(MU-MIMO) [3] has been introduced to add the capability of simultaneously supporting

multiple users to MIMO. In this setup, a base station/access point with multiple antennas

communicates with multiple users employing single or multiple antennas each.

Traditionally, to handle the interface between the analog and digital parts of a commu-

nication system, each antenna is equipped with a dedicated radio frequency (RF) chain
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and analog-to-digital converters (ADCs). The high cost and power consumption of these

circuits hinder the use of a dedicated RF chain for each antenna, and as a result traditional

MIMO baseband precoding and combining schemes cannot be used. To overcome this lim-

itation, the beamforming operations can be divided into the analog and digital domains

leading to the hybrid analog-digital architecture [4]. Similarly, low resolution ADCs are

employed to reduce the hardware cost and power consumption [5]. While these systems

lead to lower hardware complexity, it comes at a cost of increased software complexity in

implementing the transceivers. As a result, signal processing plays a critical role in the

implementation of mmWave MIMO systems. Specifically, techniques such as compressed

sensing, which exploit underlying structures in the system, are beneficial in the design of

channel estimation and beamforming algorithms.

1.1.2 Channel Estimation

The performance of mmWave MIMO systems depends critically on the availability of chan-

nel state information (CSI) at both transmitter and receiver. In general, CSI is obtained

in a separate training or channel estimation phase using pilot transmissions, which leads

to additional pilot overhead. In the MU-MIMO scenario, the overhead increases with the

number of users. This overhead can severely effect the spectral efficiency of the system, es-

pecially when the channel coherence time is small. Thus, both accuracy and low overhead

play crucial role in the design of channel estimation algorithms.

The hybrid analog-digital architecture used in mmWave communications precludes the

use of traditional channel estimation techniques, as the channel is only observed through

the lens of the analog beams used at the radio-frequency (RF) front-end, which leads
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to an underdetermined system. In addition to the hybrid architecture, the use of low

resolution ADCs can also be detrimental to the accuracy of channel estimation due to the

quantization errors introduced in the ADCs.

Multiple techniques have been studied in literature for mmWave channel estimation, in-

cluding analog beam sweeping and compressed sensing based approaches. Measurement

campaigns have revealed structures like sparsity and correlation in the channel, which can

be exploited to obtain better estimates of the channel and/or reduce the pilot overhead.

The measurements in the pilot transmission phase can be represented using a linear system

model. Due to the underdetermined nature of the system caused due to the hybrid archi-

tecture, algorithms based on compressed sensing have played a major role in estimation by

exploiting the sparsity in the signal. Exploiting additional structures along with sparsity

(e.g., correlation) can offer even better estimates [6]. To achieve this, an important step is

to develop better structural models that can fit the measurement campaigns in practical

scenarios.

In this thesis, we concentrate on design and analysis of two techniques motivated by

the above-mentioned problem of obtaining reliable channel estimates in mmWave MIMO

systems. In the first part, we discuss the importance of correlation in the mmWave chan-

nels and how it can be exploited for channel estimation. In the second part, we consider

the application of modulo operation for low resolution ADCs to increase the efficiency of

channel estimation.
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Fig. 1.1. Compressed sensing setup

1.2 Structured Signal Recovery

As seen in the previous section, exploiting structure in the signals is important for the

performance of mmWave systems. However, the structured signal recovery problem can be

useful in other applications as well. To this end, we first present the general framework of

structured sparse signal recovery in Chapter 2, and present a novel solution. In Chapter 3,

we formulate the mmWave channel estimation problem as one of structured sparse signal

recovery and show that our algorithm yields better channel estimates compared to state-

of-the-art methods. In the remainder of this section, we present a brief discussion of

sparse signal recovery, concentrating on results from and algorithms in compressed sensing

literature, and discuss a few extensions to structured signal recovery, summarized from [7].

1.2.1 Review of Compressed Sensing (CS)

The CS framework deals with reconstructing high-dimensional sparse signals from their

low-dimensional noisy linear measurements. A signal x ∈ CN is said to be s-sparse if
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‖x‖0 ≤ s� N . The signal acquisition is typically assumed to be linear, which leads to a

linear system of equations. The general setup for CS, as depicted in Fig. 1.1, involves a

system of compressed (underdetermined) measurements of an s-sparse vector x given by

the equation:

y = Ax ∈ Cm (m < N). (1.1)

In the classical linear algebra theory, it is impossible to recover x from y uniquely, since

the condition m < N leads to an underdetermined system having infinitely many solu-

tions. However, an important facet of the CS or sparse signal recovery area is that the

structural assumption of sparsity on the input vector can lead to the above system being

identifiable, i.e., there can be a one-to-one correspondence between all s-sparse vectors

and the corresponding compressed measurements, when A satisfies certain assumptions.

Additionally, it has also been shown that efficient algorithms exist that guarantee suc-

cessful recovery of sparse vectors from the compressed measurements. In this section, we

present some important results pertaining to both theoretical and algorithmic aspects of

CS which are useful in understanding the results in this thesis.

Theory

A natural cost function to minimize in order to find the sparsest solution vector to (1.1)

is the `0-norm, which returns the number of nonzero entries in the vector. This leads to

the optimization problem given by [7, Section 2.2]:

arg min
z
‖z‖0 subject to Az = y. (P0−CS)
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It can be shown that the existence of unique solution to the above optimization problem

is equivalent to the identifiability of sparse vectors from compressed measurements. The

important results with respect to this setup are:

1. Every s-sparse vector x ∈ CN is the unique solution to the (P0−CS) problem if and

only if every set of 2s columns of the measurement matrix A are linearly indepen-

dent [7, Theorem 2.13].

2. The minimal number of measurements required for identifiability of every s-sparse

vector from compressed measurements is m = 2s [7, Theorem 2.14].

3. For any N ≥ 2s, there exists a measurement matrix A ∈ Cm×N with m = 2s rows

such that every s-sparse vector x can be recovered from its measurement vector

y = Ax as a solution to the (P0−CS) optimization problem. [7, Theorem 2.14]

Unfortunately, `0-minimization is an NP-hard problem. Hence, the design of fast and

provable reconstruction algorithms is not a straightforward task. A popular and well-

understood method in CS literature is the convex relaxation of the `0-norm by using the

`1-norm, which leads to the convex optimization problem [7, Section 3.1]:

arg min
z
‖z‖1 subject to Az = y. (P1−CS)

Due to the convexity of the `1-norm, the optimization problem can be solved using methods

from convex optimization. In fact, it can be rewritten as a linear program. To obtain

recovery guarantees for (P1−CS), the null space property on the measurement matrix was

introduced, which can be shown to be necessary and sufficient for the unique recovery of

every s-sparse signal [7, Section 4.1, Theorem 4.5].
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Definition 1 (Null space property). A matrix A ∈ Cm×N is said to satisfy the null space

property of order s, if for all index sets S with |S| ≤ s,

‖uS‖1 < ‖uSC‖1

holds for every u ∈ CN \ {0} with Au = 0.

Other properties of the measurement matrix, such as mutual coherence [7, Chapter 5]

and restricted isometric property (RIP) [7, Chapter 6] have also been considered to obtain

recovery guarantees for the `1 norm minimization and other sparse recovery algorithms.

These recovery guarantees mainly deal with certain conditions or assumptions on the

measurement matrix A. As a result, design of matrices that satisfy these conditions also

form an important part of CS literature. A breakthrough result for construction of A has

been the use of random matrices such as Gaussian random matrices. To this end, a key

result in CS states that, with high probability, all s-sparse vectors can be reconstructed

using a variety of algorithms, when the entries of the measurement matrix are drawn

independently from a sub-Gaussian random matrix, with the number of rows satisfying

m ≥ Cs log(N/s), where C > 0 is a universal constant [7, Theorem 9.12]. This important

discovery has lead to the popularity of CS in a variety of applications. While sub-Gaussian

random matrices have been popular choices for measurement matrices, there exist other

constructions as well that have been widely used in various applications.

Algorithms

A variety of algorithms have been designed for the sparse signal recovery problem. In this

subsection, we discuss a subset of these algorithms which come under the purview of this
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thesis. The algorithms can be divided into three important categories.

1. Greedy algorithms: These are iterative algorithms, where, in the nth iteration,

locally optimal choices of index are added to obtain a target support Sn (updated

in each iteration), and the target vector xn is updated based on the best vector sup-

ported on Sn that fits the measurement. Some popular greedy methods are orthogo-

nal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP) and

subspace pursuit (SP). These algorithms generally tend to have low computational

complexity and are popular choices in many applications [7, Section 3.2].

2. Basis pursuit (BP): This category includes the algorithms which solve the convex

optimization problem given in (P1−CS). An alternative formulation in terms of linear

programming is also popular. Other variants of BP such as LASSO and the Dantzig

selector have also been studied in literature [7, Section 3.1].

3. Bayesian methods: These algorithms impose a fictitious prior on the unknown

vector and use probabilistic inference based methods to obtain posterior estimates

for the vector. Sparse Bayesian learning (SBL) [8] is a popular Bayesian method

that has been considered for a large number of applications. These algorithms tend

to have higher complexity, but usually perform better than the other methods. Low

complexity versions of these algorithms have also recently become available.

1.2.2 Structured Sparse Signals

Early research in CS mainly dealt with finding sparse solutions to underdetermined systems

of linear equations. However, in practical applications, signals tend to have additional

structure, and prior knowledge of these structures can be exploited to improve the recovery
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performance, especially in term of reducing the number of measurements required to obtain

solutions with a given level of accuracy. Two of the important structures considered in

literature are block sparsity and joint sparsity.

1. Block sparsity: In this model, the signal is divided into blocks or groups. A

signal is called as group/block sparse if only a small number of the groups have

nonzero entries [9]. By exploiting the group structure, algorithms based on greedy

and Bayesian methods have been developed in literature.

2. Joint sparsity: Consider the setup where measurements are obtained from multiple

signals given by:

yi = Axi, i = 1, 2, . . . , T. (1.2)

This setup is well known in the CS literature as the multiple measurement vec-

tor (MMV) paradigm. In this setup, along with each signal being sparse indepen-

dently, if all the signals have a common support, the vectors are termed as jointly

sparse [10]. To exploit this structure, instead of `1-minimization, the use of a mixed

`1/`2-minimization has been considered. Extensions of OMP, SBL algorithms dis-

cussed in the last section have also been proposed for the MMV setup.

The structures in addition to sparsity that has been presented here is not exhaustive.

In fact, towards defining theory along similar lines to that of CS, there has been work

on model-based compressed sensing [11] and distributed compressed sensing [12], which

cater to more general structured sparsity setups. Generative models describing structured

sparse models are presented in more detail in Chapter 2. In the following sections, we

introduce the two structured signal recovery problems that are considered in this thesis.
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1.3 Intra-vector Correlation

The structured sparse models discussed in the previous section concentrated primarily on

the structure in the position of the nonzero entries in the signal. Very few works have

considered correlation among the nonzero entries, and how to exploit it. The block sparsity

model was extended to include correlation among the nonzero entries inside a block, which

is called as intra-block correlation [9]. In the joint sparsity model, correlation across the

different sparse vectors have been studied, and extensions to the MMV algorithms have

been considered [13]. However, the general scenario of intra-vector correlation, where all

the nonzero coefficients of the sparse vector can be correlated has not been well studied

in the literature.

Revisiting the channel estimation problem in mmWave, a number of works have consid-

ered sparse models for the mmWave channels. Spatial sparsity arises in mmWave because

the signal arrives at the receiver in a small number of paths [1,14]. However, these models

do not consider any correlations present between the multipaths of the channel. In sub-6

GHz systems, spatial correlation is typically introduced by the close spacing of antennas

(mutual coupling) or due to co-located transmitters or receivers [15, 16]. In the mmWave

MIMO scenario, new sources of correlation can exist due to the physical blockage and

common scattering, which can degrade the system performance [2]. Spatial correlation

can be beneficial for beamforming if the users have sufficiently different covariance matri-

ces, but it is detrimental to the multi-antenna diversity gain because the effective rank of

the channel gets reduced. However, correlation is unavoidable in general, which makes it

necessary to incorporate correlation along with sparsity into statistical models to obtain

accurate channel estimates.
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Our goal in the first part of the thesis is to study the interplay between correlation and

sparsity in the recovery of high-dimensional vectors from a small number of low dimen-

sional projections. It is well known that, when the covariance matrix of a vector is known,

an optimal estimator is the minimum mean squared error (MMSE) estimator. To reduce

complexity, a simple linear minimum mean squared error (LMMSE) estimator can also be

considered. The performance of this estimator increases when the entries of the vector are

highly correlated, as we will see from the LMMSE curve in Fig. 3.6. in Chapter 3. Loosely

speaking, when a vector is highly correlated, it can be reliably estimated from a small

number of its noisy linear projections using an LMMSE estimator. On the other hand, if

the vector is sparse, it can again be recovered from a small number of noisy linear projec-

tions, but more sophisticated sparse recovery algorithms are necessary. In this context, it

is pertinent to ask the question of how to recover vectors from noisy low dimensional linear

projections when both structures - sparsity and correlation - are simultaneously present.

Moreover, how can one extend this to the case where the covariance matrix of the sparse

vectors is unknown, and needs to be estimated from a set of measurements obtained using

independent instantiations of the sparse vectors? And finally, what are the performance

benefits that can be obtained?

We have tried to explore these questions in the thesis, with the mmWave channel esti-

mation as a case study. To this end, we consider a statistical model incorporating both

sparsity and correlation to model the mmWave MIMO channel. For the model, we derive

a Bayesian algorithm on the lines of SBL algorithm, and analyze the performance in terms

of the error in the channel estimates and the spectral efficiency of the system.
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Fig. 1.2. Transfer function of conventional ADC compared with self-reset ADC

1.4 Dynamic Range in Signal Acquisition

The second problem is motivated by the use of analog-to-digital converters (ADCs), which

form an integral part of the signal acquisition at the receiver of any digital communication

system. A key design consideration for ADCs is the dynamic range of the system, which

has a direct bearing on the quantization error. Dynamic range is defined as the ratio

between the maximum and minimum value that can be represented by the ADC. Hence,

dynamic range is dependent on both the resolution (number of bits) and the maximum

allowable signal amplitude that can be represented without clipping the signal. Assuming

the resolution is fixed, lower quantization error is obtained when the ADCs are designed

with smaller dynamic range, i.e., smaller quantization range. However, if this quantization

range is smaller than the highest amplitude of the input signal, it leads to signal loss due

to clipping.

The literature has in general concentrated on algorithms to de-clip the signal (e.g., using

its band-limitedness) or ignore the clipped signal. A recent and new direction of research
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to avoid clipping has been the so-called self-reset ADCs (SR-ADCs) [17], which fold the

amplitudes back into the dynamic range using the modulo arithmetic, thus mitigating the

clipping effect. The transfer function of SR-ADC with parameter λ is given in Fig. 1.2,

where, if the input fIn crosses threshold |fIn| > λ, it is folded such that output fOut is

in the range [−λ, λ]. The SR-ADC encounters a different information loss, namely, the

loss caused due to the modulo operation. As a result, the Nyquist-Shannon sampling

theorem does not hold, as it assumes that the signal can be measured using an infinite

dynamic range and with infinite precision. This led to the development of an alternative

sampling theory called the unlimited sampling framework [18], which showed that if a

bandlimited signal is sampled at a sampling rate slightly above Nyquist rate, the signal

can be recovered from its folded samples. This framework provided a breakthrough for a

principled use of SR-ADCs for signal acquisition.

In the context of the channel estimation for mmWave systems, the relation between

observed data and the channel vector is usually modeled as a linear system. This model

assumes infinite dynamic range in the signal acquisition. Due to the large number of

antennas in mmWave MIMO systems, these ADCs are predominantly designed with low

resolution, i.e., the number of bits used to represent the signal is small. As a result,

ADCs with small quantization range is preferred. Hence, SR-ADCs can play a crucial

role in the design of ADCs for mmWave systems. To model the SR-ADCs along with the

hybrid analog-digital architecture, the low pass filtered samples in the unlimited sampling

framework can be replaced with modulo compressed measurements, leading to the so-called

modulo compressed sensing (modulo-CS) problem.

Modulo-CS is an emerging area with a few initial works presenting algorithms under



Chapter 1. 15

restricted settings. However, a general theory for the identifiability of the sparse signals

has not been studied. To this end, the second part of the thesis aims at answering the

questions listed below.

1. What are the conditions on the measurement matrix A such that, every s-sparse

vector x results in an unique modulo measurement z?

2. What is the minimum number of measurements (m) required for the identifiability

of sparse signals under modulo measurements?

3. How to construct a measurement matrix A that satisfies the above conditions?

4. How to solve the problem efficiently?

1.5 Thesis Outline and Key Contributions

This thesis is presented in two parts. The first part, comprising of two chapters, discusses

the correlated sparse signal recovery problem and a case study of the mmWave channel

estimation problem. The second part of the thesis is devoted to developing theory and al-

gorithms for the modulo-CS problem. In this section, we summarize the key contributions

of each chapter of the thesis.

1.5.1 Correlated Sparse Recovery

In Chapter 2, we study the sparse signal recovery problem when the nonzero entries of the

sparse vector are correlated. To exploit the correlation information, the sparse recovery in

the MMV setup is interpreted as a covariance estimation problem. We study the effect of

intra-vector correlation on two correlation-aware covariance matching algorithms, where
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the correlation is assumed to be zero. To obtain better estimates by exploiting correlation,

a novel covariance matching algorithm is presented. The key contributions are:

1. We formulate a hierarchical complex Gaussian prior with covariance matrix that can

incorporate known correlation structure while at the same time induce sparsity.

2. Using the above prior, we develop a novel Bayesian sparse recovery algorithm based

on evidence maximization called Corr-SBL. A closed-form solution to update the

hyper-parameters is obtained as a fixed point iteration, and a guarantee to show

that the update leads to convergence of the algorithm is provided.

3. We also present a heuristic approach for learning the correlation coefficient in the

unknown correlation case.

4. We derive an alternative representation of the output of the algorithm as a plug-

in LMMSE estimator, which in turn allows us to connect Corr-SBL to the general

approach of covariance matching. In effect, we show that Corr-SBL is a covariance

matching algorithm.

1.5.2 mmWave Channel Estimation

In Chapter 3, we address the mmWave channel estimation problem by modeling both

spatial sparsity and correlation in the same model. We also present the application of

Corr-SBL described in Chapter 2 for the above problem. Our key contributions include:

1. We investigate the utility of exploiting both spatial sparsity and correlation in the

multi-paths of a mmWave channel, for uplink channel estimation in a multi-user

MIMO setup with the hybrid analog-digital architecture.
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2. We extend Corr-SBL to jointly estimate the channels over multiple coherence blocks.

To reduce the overall latency in channel estimation, we develop an online version of

the algorithm.

3. We derive an expression for the normalized mean squared error (NMSE) in channel

estimation, and discuss the efficacy of Corr-SBL for channel estimation.

4. We present a design for hybrid combining of the received data using the channel

estimates, and derive a lower bound on the spectral efficiency achieved by each user.

We discuss the significance of the choice of prior using the analytical expression for

the NMSE, and present empirical comparisons against optimal genie-aided estimators in

highly measurement-constrained scenarios. The Monte Carlo simulation results illustrate

that it is advantageous to exploit correlation as well as sparsity even under imperfect

correlation information, depending on the correlation level and number of independent

channel instantiations that are available to estimate the covariance.

1.5.3 Modulo Compressed Sensing

In Chapter 4, we consider the sparse recovery problem from modulo compressed measure-

ments. We present the identifiability conditions for the recovery of sparse signals under

this framework without any assumptions on the input signal or the measurement matrix.

We also present a simple algorithm which does not assume any prior distribution on the

sparse signal, and present theoretical guarantees for unique recovery using the algorithm.

The key contributions can be summarized as follows:

1. We present an optimization problem for the Modulo-CS setup, and obtain necessary
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and sufficient conditions for unique recovery of sparse signals from their modulo

compressed measurements.

2. We show that the minimum number of measurements m to uniquely reconstruct

every s-sparse signal from modulo measurements is 2s+ 1.

3. We show that m = 2s + 1 suffices, and that a measurement matrix with 2s + 1

rows and entries derived from any continuous distribution satisfies the identifiability

conditions with high probability.

4. We develop an algorithm using convex relaxation to the optimization problem for

Modulo-CS setup, and present integer range space property for the measurement

matrix which guarantees unique recovery of sparse signals.

1.5.4 Conclusions and Future Work

The thesis is concluded in Chapter 5, where we offer a brief summary of the key results

of the thesis, and present some possible extensions and directions for further study.
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Correlated Sparse Signal Recovery

In the current era of digital economy, data powers the economy similar to how oil fueled

industrial economy, leading to the metaphor “Data is the new oil”. In fact, most of today’s

applications are becoming more and more reliant on the availability of data. While data

collection from a multitude of devices makes virtually infinite data collection possible,

factors like storage, transmission bandwidth, latency and data processing drive the data

availability at other locations. The traditional Nyquist theorem based sampling approaches

are fast turning out to be prohibitively expensive, and unable to keep up with the demand

for data. One promising approach to alleviate this problem is to exploit signal structure

to reduce the sampling rate requirements. In particular, sparse signal recovery has been

a breakthrough in sub-Nyquist (it has also been termed beyond-Nyquist in the literature)

sampling based approaches.

In Section 1.2, we presented an overview of the area of sparse signal recovery. Tradi-

tional sparse recovery algorithms including greedy methods and basis pursuit discussed in

A part of this chapter was presented in SPAWC conference [19] and has been published in IEEE

transactions on signal processing journal [20].

19
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the review yield accurate point estimates when the measurement matrix satisfies strong

requirements such as restricted isometric property (RIP), which are rarely met in highly

measurement-constrained scenarios. Further, they do not reveal the posterior distribution

which can add flexibility in dealing with additional structures. With the increasing de-

mand in data, it becomes necessary to exploit additional structures along with sparsity.

To this end, Bayesian inference algorithms such as SBL have been known to be well suited

to exploit these structures, especially the joint sparsity structure. Their primary goal is

to infer the best-fitting distribution from a parameterized class of distributions. Point

estimates can then be obtained from the posterior distribution.

In this chapter, we consider modeling the additional structure of correlation among

the nonzero entries of the sparse signal. Recovery of sparse vectors under this model

(with unknown covariance matrix) is termed as correlated sparse signal recovery. To

this end, a pragmatic approach could be first to estimate the covariance matrix from the

measurements, and then estimate the vectors using a plug-in-LMMSE estimator based on

the estimated covariance matrix. The problem of estimating the covariance matrix of a

set of vectors from noisy linear measurements has been an important area of research,

and a number of works have presented theoretical results for the error in the estimation

of the covariance matrix. The specific case when underdetermined linear measurements of

the vector are available has also been analyzed [21]. However, the final goal of correlated

sparse recovery is recovering the vectors themselves, and not just the covariance matrix.

In this context, the question of what is the best covariance estimate and what is the best

way to recover the vectors are open problems, to the best of our knowledge.

The goal of this chapter is to develop a Bayesian inference algorithm for the correlated
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sparse recovery problem. The problem setup and signal model is presented in Section

2.1. In Section 2.2, an interpretation of the above problem as a covariance estimation

problem is presented. Finally in Section 2.3 and 2.4, we present the Bayesian learning

methodology and the Corr-SBL algorithm based on this methodology for the correlated

sparse recovery problem. We apply the algorithm to the problem of mmWave channel

estimation in Chapter 3.

2.1 Structured Sparse Signal Recovery

2.1.1 Multiple Measurement Vector Setup

We consider the multiple measurement vector (MMV) setup, where noisy low dimensional

projections of vectors xi ∈ CN obtained according to the equation:

yi = Axi + wi ∈ Cm, i = 1, 2, . . . , T, (2.1)

where A ∈ Cm×N(m < N) is the measurement matrix and wi
i.i.d.∼ CN (0, σ2

nIm) denotes

the measurement noise corresponding to each measurement vector yi. By stacking the

vectors yi as columns of a matrix Y, (2.1) can be rewritten as:

Y = AX + W ∈ Cm×T . (2.2)

The above model presents a relation between the input signal X ∈ CN×T and the cor-

responding noisy measurements Y. Since the total number of measurements (mT ) is less

than the signal size (NT ), unique recovery of X from Y is not possible. However, the joint

sparsity pattern in X, along with other structures such as correlation, can be exploited

to uniquely recover X from the above low-dimensional noisy measurement matrix. In the
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(a) (b) (c) (d)

Fig. 2.1. Generative model for sparse signals (a) MMV model, (b) MMV with temporal
correlation, (c) Block sparse, and (d) Block sparse with intra-block correlation. Similar
colors in different shades in contiguous locations indicate the presence of correlation.

following, we present a generative model for the input signal X that can help capture the

structures present in the signal.

2.1.2 Generative Model for Correlated Sparse Signals

Observations in the real world such as images, sound measurements, channel measure-

ments, etc tend to be structured. One approach to model these structures has been the

use of generative models. A generative model includes the distribution of the data along

with the relation between the input and the output.

Compressed sensing deals with the recovery of sparse signals, i.e., most of the entries of

the signal are zero. An extension to the MMV setup is the joint sparsity setup, sometimes

called as the row sparse model, which forces a common sparsity support onto the multiple

vectors being measured.

supp(xi) = S, i = 1, 2, . . . , T , with |S| = K < N. (2.3)

A pictorial representation of the input signal under this model is given in Fig. 2.1a. It

can be observed that there is no systematic relationship between the nonzero entries of

the sparse vector, implying an absence of correlation across the sparse vectors. Generative
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(a) (b)

Fig. 2.2. Covariance matrix for sparse signals with (a) Independent entries and (b) Cor-
related entries.

models for this input is obtained by forcing an i.i.d. prior with a common support across

the vectors. To model existing knowledge of correlation in the model, non i.i.d. generative

models are required. Some of the existing models are presented in Fig. 2.1, which include:

1. MMV setup with temporal correlation [13]. Here, the covariance matrix of the sparse

vector is diagonal, but the corresponding entries of different jointly sparse vectors

are correlated.

2. Block sparsity with and without intra-block correlation [9]. Here, the covariance

matrix can either be diagonal or of block diagonal form.

In general, correlation can exist among all the nonzero entries of each sparse vector x.

The correlation among the entries can be modeled by a correlation matrix U ∈ RN×N ,

where (U)ij denotes the correlation coefficient between the xi and xj. Various correlation

matrix design such as uniform correlation, exponential correlation, Toeplitz correlation

matrix, have been considered in literature. For the simulations in the thesis, we will

concentrate mainly on a simple single parameter correlation matrix model called the Uni-

form correlation model [22], to elucidate the role of both sparsity and correlation in signal

recovery.

(U)ij =

 1, i = j

ρ, i 6= j
, (2.4)
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where the parameter ρ ∈ [0, 1) is called the correlation coefficient.

For the correlated sparse recovery problem, we start with a general statistical model for

the signal, where all nonzero entries of the sparse representation are assumed to be corre-

lated with each other. The (i, j)th entry of the covariance matrix Σx = E
[
xxH

]
∈ CN×N

can be obtained from the Pearson product-moment correlation coefficient definition [23]

as [Σx](i,j) = (U)ij
√
γ∗i
√
γ∗j where γ∗i

1 denotes the variance of ith entry of x and (U)ij

is the correlation coefficient between the two entries, which is a function of the pair of

indices (i, j) and is governed by a known correlation model. With this notation, we have

Σx = (Γ∗)1/2U(Γ∗)1/2 where Γ∗ = diag(γ∗1 , γ
∗
2 , . . . , γ

∗
N) ∈ RN

+ . Note that when the index

j does not belong to the support, the variance of the jth entry, γ∗j , is zero. Thus, Σx is

a N × N positive semi-definite (PSD) matrix which contains a nonzero K × K positive

definite (PD) principal submatrix corresponding to the index set S, with its other entries

equal to 0. The covariance matrix of this model as compared to that of i.i.d. model is

shown in Fig. 2.2. We assume that in the MMV setup the columns of the signal X are

obtained independent of each other, but the covariance matrix of all the vectors are equal

to Σx.

In the next section, we present a framework called covariance matching for the above

system model and study the effect of correlation for the algorithms in the framework.

2.2 Covariance Matching Algorithms

Covariance matching approach is a popular methodology in the array processing literature.

This approach is well suited to exploit correlation, as they estimate the covariance as a

1The asterisk notation (*) is used to denote the true value of the variances.
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Fig. 2.3. Signal recovery using covariance matching framework

key step. Consider the covariance matrix of the input signal Σx and the covariance of

measurements Σy = E[yyH ] ∈ Cm×m. These matrices are related by the covariance

matching criterion given by,

Σy = AΣxAH + σ2
nIm. (2.5)

The covariance matching framework aims at recovering Σx by minimizing a distance

measure d(., .) between the empirical covariance matrix R̂y , 1
T
YYH and the covariance

matrix induced by the generative model (2.5):

Σ̂x = arg min
Σx

d
(
Ry,AΣxAH + σ2

nIm
)

The covariance estimate Σ̂x is then plugged in to a minimum mean square estimator

(MMSE) to obtain an estimate for the input signal, as illustrated in Fig. 2.3.

An interpretation of MSBL as a covariance matching algorithm was presented in [24], and

a general framework for this approach was presented which has the potential to spawn new

MMV sparse recovery algorithms. In [25], it was shown that the extension of basis pursuit

to the MMV setup can be decoupled as a covariance matching algorithm. Other algorithms

based on this framework are Co-Lasso [26], RDCMP [27] among others. However, it is

important to note that these algorithms assume the absence of correlation among the

nonzero entries of the sparse vectors.
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Fig. 2.4. Support recovery performance of MSBL and RDCMP
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Fig. 2.5. NMSE performance of MSBL and RDCMP

2.2.1 Effect of Intra-vector Correlation

We compare the performance of two covariance matching based algorithms; MSBL and

RDCMP, with and without the presence of correlation. We set the signal length N = 100,

the number of MMV vectors T = 200 and the sparsity level K = 30. The number of

measurements m is varied from 15 − 40. Noise variance is chosen as σ2
n = 0.1, which

corresponds to an SNR of 10 dB when the signal power is unity. The support of the

sparse vectors is obtained by drawing K samples from the N points uniformly at random
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without replacement. The MMV sparse vectors are obtained i.i.d. from a complex normal

distribution with covariance model Σx of the form described in Section 2.1.2.

Consider S to be the original support, and the recovered signal is Xout with support Sout.

The performance is measured under three metrics,

� False Alarm percentage= |Sout|−|S∩Sout|
N−K × 100

� Probability of Detection (%)= |S∩Sout|
K
× 100

� NMSE = ‖X−Xout‖2
‖X‖2

From Fig. 2.4, it can be observed that false alarm is higher and the detection probability

is lower for correlated signals when compared to uncorrelated signals for both RDCMP

and MSBL. The RDCMP algorithm which concentrates specifically on support recovery

has better performance in terms of support recovery when compared to MSBL. However,

it can be observed in Fig. 2.5 that the performance loss in terms of NMSE is less in

MSBL when compared to RDCMP. It is also noteworthy, that the performance hit due to

correlation is significant mainly in the highly measurement-constrained region (K ≥M).

The above results showed that the existing algorithms can perform poorly when there is

high intra-vector correlation. Hence, it is important to exploit correlation to obtain better

recovery performance. To this end, we concentrate on the Bayesian learning framework

which can be interpreted as a covariance matching approach for the correlated sparse

signal recovery problem.
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Fig. 2.6. Bayesian learning framework

2.3 Sparse Bayesian Learning

In this section, we present an overview of the Bayesian framework used to derive an

algorithm for correlated sparse recovery.

2.3.1 Bayesian Learning Methodology

Bayesian learning is a statistical inference methodology that uses Bayes’ theorem to deter-

mine the conditional probability of a hypothesis given some observations. A block diagram

depicting the framework is presented in Fig. 2.6. In this methodology, a parameterized

fictitious prior p(x; θ) with parameter θ is imposed on the signal of interest. The aim of

the Bayesian inference procedure is to learn the prior parameters such that the resulting

distribution best fits the observed data according to the underlying measurement model.

Using the posterior distribution obtained using the Bayes theorem for the prior estimate,

estimates for the signals or parameters of the signal can be obtained, for example using the

maximum a posteriori estimate (MAP estimate). The two important design considerations

in the framework are:
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1. Parameterized prior model: The choice of the prior is crucial to the success of the

algorithm. The prior must be designed to promote the structure in the signal and

at the same time facilitate the computation of the posterior.

2. Inference procedure: In general, estimating the optimal value of the prior parameters

θ is not straightforward. A popular method is the type-II maximum likelihood

estimation procedure. The design of the inference procedure plays a major role in

both accuracy and complexity of the algorithm.

2.3.2 Prior Design in SBL

Sparse Bayesian learning (SBL) is a popular algorithm for the sparse recovery problem

derived based on the Bayesian learning framework. The crux of this algorithm is the

use of a parameterized Gaussian distribution for the prior model. Mathematically, a

parameterized Gaussian prior with the covariance matrix Σθ ∈ CN×N is modeled as Σθ =

diag(γ), where the unknown hyperparameter θ consists of the entries of the vector γ =

[γ1, γ2, . . . , γN ]T ∈ RN
+ which denote the variances of the entries of x. This choice of

prior model is known to induce sparsity in the final estimate. The diagonal nature of the

covariance matrix implicitly assumes that the entries of x are uncorrelated. Hence, this

prior cannot accommodate any knowledge of the correlation structure in x.

By modifying the parameters of the prior design, various extensions of SBL have been

considered to exploit additional structures in the sparse signal. TMSBL [13] was developed

for the MMV model with or without temporal correlation, BSBL [9] and PCSBL [28] for

block sparse signals. In the following section, we present a novel choice of prior to promote

intra-vector correlation and develop a SBL based algorithm on similar lines to the above
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algorithms. To the best of our knowledge, there is no existing algorithm based on Bayesian

inference, which considers possible correlation among the nonzero entries of a sparse vector.

2.4 Corr-SBL Algorithm

In this section, we present the derivation of the Corr-SBL algorithm for the single mea-

surement vector (SMV) case, where the goal is to recover a sparse vector x ∈ CN from its

noisy measurements y = Ax + w ∈ Cm. The extension to the MMV setup is simple, and

will be discussed in Section 3.3 while presenting an application of Corr-SBL.

2.4.1 Prior Model

Similar to SBL, in this chapter, we consider a parameterized Gaussian prior for x with

hyperparameter set θ as

p(x; θ) = CN (x; 0,Σθ). (2.6)

Recall that the true covariance matrix Σx is a N × N positive semidefinite matrix with

a K × K positive definite principal submatrix corresponding to K entries in the sup-

port, and other entries equal to zero. In order to incorporate the above structure, the

covariance matrix Σθ induced by the prior is modeled using two hyperparameter sets:

{γ ∈ RN
+} denoting the vector containing unknown variances of the entries of x, and

U ∈ CN×N denoting a positive definite matrix with correlation coefficients between the

entries of x. For ease of exposition, we deal with the hyperparameter U in two cases: (i)

when U is known; and (ii) when U is an unknown matrix parameterized based on the
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underlying channel model.2 Using the definition for Pearson product-moment correlation

coefficient [23], Σγ,U , Σθ is modeled as

Σγ,U = Γ
1
2 UΓ

1
2 , (2.7)

where Γ , diag(γ). To see how the above model incorporates the structure in Σx, consider

the case where ith element of γ is zero. Since it denotes the variance of a zero mean random

variable, ith entry of x is zero, and the ith row and column of Σθ are zero vectors. If all

but K entries are zero, then Σθ has a structure similar to Σx. Consequently, the MAP

estimate for x is also an K-sparse signal, with the same support of γ. Also, the prior

model is a generalization to SBL, as it reduces to the SBL prior Σγ = Γ when U = IN .

In the sequel, it will be more convenient to work with the precision matrix Ωc,U , Σ−1
γ,U.

Note that Ωc,U = CU−1C, where C , diag(c) and c ∈ RN
+ has 1/

√
γi as its ith entry.

In the following section, we present an iterative algorithm to estimate the value of ci.

When an index i is not in the support, the value of ci goes to infinity as the iterations

proceed. To counter the numerical instability, in any iteration, if the value of ci exceeds

a predetermined threshold ε, we remove the index i and the corresponding column of A

from the support. This also speeds up the algorithm.

2.4.2 Algorithm Derivation

We now proceed with developing a Bayesian algorithm for the proposed choice of prior

when the correlation matrix U is known, and drop the subscript U in Ωc,U. This involves

two steps: obtaining the optimal value for the hyperparameters c, and computing the

2An algorithm is derived for the first case in Sec. 2.4.2, while a pragmatic procedure is presented in

Sec. 2.4.3 to estimate the parameters of U.
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posterior distribution.

We use type-II ML estimation to obtain the optimal value of c. This is based on the

evidence maximization framework, where the cost function is the marginal likelihood of y.

cML = arg max
c

p(y; c, σ2
n). (2.8)

By marginalizing the joint density p(x,y; c, σ2
n) with respect to x, it is straightforward to

show that the marginal likelihood is given by p(y; c, σ2
n) = CN (y; 0,Ω−1

y ), where Ωy ,[
σ2
nIm + AΩ−1

c AH
]−1

denotes the precision matrix of y. Thus, the cost function that

needs to be maximized for finding c is obtained from the log likelihood log(p(y; c, σ2
n)) as

L(c) , logdet(Ωy)− yHΩyy. (2.9)

The optimal c is then used to compute the posterior distribution and the estimate using

the following Lemma [29, Theorem 10.3].

Lemma 1. Let the prior distribution on x be modeled as p(x; c) = CN (x; 0,Ω−1
c ). Then,

the posterior distribution of x given the observation y and hyperparameter c, p(x|y; c) =

CN (x;µx|y,Ωx|y), where

Ωx|y =
1

σ2
n

AHA + Ωc; µx|y =
1

σ2
n

Ω−1
x|yAHy. (2.10)

Proof. The posterior distribution of x given the observations y and hyperparameter value

c is given by

p(x|y; c, σ2
n) =

p(y|x;σ2
n)p(x; c)

p(y; c, σ2
n)
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Using the prior on x : CN (x; 0,Ω−1
c ), we get

p(x|y; c, σ2
n) =

CN (y; Ax, σ2
nIm) CN (x; 0,Ω−1

c )

CN (y; 0,Ω−1
y )

= k exp

(
−xH(Ωc +

AHA

σ2
n

)x +
xHAHy + yHAx

σ2
n

)
,

where k is a normalization constant. Using Ωx|y = Ωc + 1
σ2
n
AHA and µx|y = 1

σ2
n
Ω−1

x|yAHy

and completing the squares, the posterior distribution can be written as

p(x|y; c, σ2
n) = k exp

(
−
(
x− µx|y

)H
Ωx|y

(
x− µx|y

))
,

which is the complex Gaussian distribution with mean µx|y and covariance Ω−1
x|y, as given

in the statement of the Lemma.

Since the posterior distribution of x is Gaussian, its mode (i.e., the MAP estimate) is

the same as its mean. Hence, the posterior mean µx|y computed using the optimal value

of the hyperparameters c is the estimate for the sparse signal. Note that (2.10) involves

inverting the N ×N matrix Ωx|y. The complexity can be reduced from O(N3) to O(m3)

by using the Woodbury matrix identity, which also speeds up the algorithm.

The problem of maximizing the cost function (2.9) is non-convex and does not admit

a closed form solution. Hence, we use the expectation-maximization (EM) procedure to

maximize (2.9) by treating x as a latent variable. The EM procedure involves iterating

between an expectation step (E-step) and a maximization step (M-step) [30, Section 9.3].

Expectation Step

This step involves computing the expected value of the complete-data log likelihood with

respect to the posterior distribution for x computed at the hyperparameter value cold
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obtained from previous iteration of the EM algorithm. The expected value is denoted by

the so-called Q function3, which is defined as follows:

Q(c, cold) , Ex|y;cold,σ2
n

[
log(p(x,y; c, σ2

n))
]
. (2.11)

The posterior distribution p(x|y; cold, σ
2
n) is computed using Lemma 1. Using this distri-

bution, the Q function is computed as given by the following theorem.

Theorem 1. The expected value of complete-data log likelihood evaluated using the hyper-

parameter value cold corresponding to the cost function L(c) = logdet(Ωy) − yHΩyy is

given by

Q(c, cold) = k′ + (logdet(Ωc))− Tr
[
ΩcR̂x

]
, (2.12)

where k′ is a constant independent of c, and R̂x ,
[
Ω−1

x|y + µx|yµ
H
x|y

]
.

Proof. The lower bound Q on the cost function L using the EM framework is given as

Q(c, cold) = Ex|y;cold,σ2
n

[
log(p(x,y; c, σ2

n))
]

= Ex|y,cold
[
log(p(y|x;σ2

n))
]

+ Ex|y,cold [log(p(x; c))] . (2.13)

The first expectation term is a constant independent of c, which does not affect the M-step.

The second expectation is computed as

Ex|y,cold [log(p(x; c))] = Ex|y,cold
[
log(CN (x; 0,Ω−1

c ))
]

= −N log(π) + log(det(Ωc))− Ex|y,cold
[
xHΩcx

]
. (2.14)

The scalar term xHΩcx can be rewritten using the trace operator. Using the product

3The Q function used here is not the popularly used Gaussian tail probability Q-function.
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property of trace (Tr[AB] = Tr[BA)]), the expectation term in (2.14) can be rewritten as

Ex|y,cold
[
xHΩcx

]
= Tr

[
ΩcEx|y,cold

[
xxH

]]
.

The expectation term is the second moment matrix with respect to the posterior prob-

ability distribution. Using Lemma 1, the second moment matrix is obtained as R̂x ,

Ex|y,cold
[
xxH

]
= Ω−1

x|y +µx|yµ
H
x|y. Substituting this into (2.13), the Q function is given by

Q(c, cold) = constant + log(det(Ωc))− Tr
[
ΩcR̂x

]
.

Maximization Step

In this step, the hyperparameter c is updated by maximizing the Q function. The first

order optimality condition for the stationary points of Q(c, cold) is given by the following

theorem.

Theorem 2. The first order optimality condition for the optimization problem c∗ =

arg maxc Q(c, cold) is given by

1

ci
= Re

{
N∑
k=1

ck[U
−1](i,k)[R̂x](k,i)

}
, i ∈ [N ], (2.15)

Proof. Using the first order optimality condition for maximizing Q(c, cold),

∂Q

∂ci
= 0, i ∈ {1, 2, . . . N}, (2.16)
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and from Theorem 1, we get

∂
(

log(det(Ωc))− Tr
[
ΩcR̂x

])
∂ci

= 0. (2.17)

The first term is

∂ log(det(Ωc))

∂ci
=
∂ log(det(CU−1C))

∂ci
=

2

ci
. (2.18)

Considering the second term,

∂
(

Tr
[
ΩcR̂x

])
∂ci

=
∂
(

Tr
[
CU−1CR̂x

])
∂ci

= Tr
[
JiiU

−1CR̂x + R̂xCU−1Jii

]
, (2.19)

where Jii an N ×N matrix with a single 1 in the ith diagonal entry and zeros elsewhere.

Utilizing the fact that the two matrices inside the trace expression are Hermitian transpose

of each other and using the property of single entry matrices, the term is simplified as,

∂
(

Tr
[
ΩcR̂x

])
∂ci

= 2 Re
{(

U−1CR̂x

)
ii

}
. (2.20)

Substituting (2.18) and (2.20) in (2.17), and simplifying expressions, the optimality con-

dition is obtained as

1

ci
= Re

{
N∑
k=1

ck[U
−1](i,k)[R̂x](k,i)

}
. (2.21)

In the conventional sparse Bayesian learning algorithm, the optimality condition above

decouples into separate equations in each hyperparameter ci, and the update for ci can be

obtained independent of cj, j 6= i. However, for the prior considered here, the optimality
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condition in (2.15) is a coupled quadratic equation, which cannot be solved in closed form.

Gradient based methods can be used to search for the solution, but the computational

complexity involved is large. Instead, we draw from the generalized EM theory [31]: in-

stead of achieving the maximum of the Q function, any hyperparameter update rule which

ensures that Q(c, cold) is non-decreasing in each EM iteration will lead to convergence of

the EM iterations to a local maximum or saddle point of L(c).

To this end, we consider a vector representation for (2.15) as c = (Re {K})−1 1
c
, where

K , U−1 � R̂T
x ∈ CN×N and 1

c
denotes the element-wise inverse. A single iteration of

this fixed point equation results in a non-decreasing cost function value, as asserted by

the following proposition.

Proposition 1. Consider the update for the hyperparameter given by

cnew = (Re {K})−1 1

cold

. (2.22)

This satisfies the condition
∑

i

(
dQ
dci

((cnew)i − (cold)i)
)
≥ 0. Consequently, by the general-

ized EM theory, the cost function in (2.12) does not decrease after the update. In turn,

this guarantees the convergence of the overall algorithm.

Proof. Let si,j and ti,j denote the {i, j}th entry of the real symmetric matrix S , Re {K}

and its inverse T, respectively. These follow the condition
∑N

i=1 si,kti,l =
∑N

i=1 si,ktl,i = 1

if k = l and 0 otherwise. Also, since U−1 and R̂T
x are positive definite, Re{K} is a positive

definite matrix.

We need to show that the update in (2.22) results in
∑

i

(
dQ
dci

((cnew)i − (cold)i)
)

being

greater than or equal to zero. This would in turn imply that the cost function is nonde-

creasing in each iteration. Using the expression for dQ
dci

derived in the proof of Theorem 2
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Algorithm 1: Corr-SBL procedure

Input: A,y,U, σ2
n

Initialize: c

repeat

E-Step: Compute Ωx|y, µx|y using (2.10) and R̂x using (2.12)

M-Step: Update c using (2.22)
until Stopping Criterion;

and the expression for cnew from (2.22), the above quantity can be written as

N∑
i=1

((
2

(cold)i
− 2

N∑
k=1

(cold)ksi,k

)(
N∑
k=1

ti,k
(cold)k

− (cold)i

))

= 2
N∑
i=1

(
N∑
k=1

ti,k
(cold)i(cold)k

+ si,k(cold)i(cold)k − 1−
N∑

k,l=1

(cold)k
(cold)l

si,kti,l

)

= 2
N∑
i=1

(
N∑
k=1

ti,k
(cold)i(cold)k

+ si,k(cold)i(cold)k − 1

)
− 2

N∑
k,l=1

(cold)k
(cold)l

N∑
i=1

si,kti,l.

Using the properties of S and T, the last term is equal to 2. Further, by considering

B = CSC, where C is a diagonal matrix with (cold)i as its entries and using the eigen

decomposition of B = UΛUT , the above can be simplified as

21T
(
B + B−1 − 2I

)
1 =21TU

(
Λ + Λ−1 − 2I

)
UT1 ≥ 0,

where 1 is the all ones vector of length N . The last inequality is because entries of Λ

are positive since B is positive definite, and as a consequence Λ + Λ−1 − 2I is a diagonal

matrix with non-negative entries, hence is positive semi-definite.

Hence, by iterating over the E-step and the hyperparameter update given by (2.22), the

algorithm is guaranteed to converge to a local optimum. The pseudocode for the Corr-SBL

algorithm is summarized in Algorithm 1. Initialization for c and the stopping criterion
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can be chosen depending on the application.

In the preceding derivation, it was assumed that the noise variance σ2
n was known. In

some applications, it is desirable for the algorithm to learn the noise variance also. This

can be incorporated by learning a hyperparameter λ , σ2
n. The E-step of the algorithm

remains unchanged, while the M-step decouples into independent updates for c (given by

(2.22)) and λ. The update for λ is given by

λ =
1

m

[
yHy − yHAµx|y − µH

x|yAHy + Tr
[
AHAΩ−1

x|y

]]
.

2.4.3 Learning Correlation

The Bayesian inference discussed above assumed that correlation matrix U is known. One

approach for estimating U could be to consider it as an additional hidden parameter in the

EM algorithm, and use the optimality condition to obtain an update. However, due to the

matrix derivatives involved, deriving a closed form update for U is not straightforward.

Instead, we present a pragmatic approach for learning the correlation in this subsection.

In the previous section, we saw that the mean µx|y of the posterior distribution is the

MAP estimate for x upon convergence of the algorithm. Similarly, the matrix R̂x =

Ω−1
x|y + µx|yµ

H
x|y can be interpreted as an estimate for the covariance matrix Σx. In fact,

SBL uses the diagonal entries of this estimate to update the variance hyperparameters in

each iteration. For the correlated case considered in this paper, a similar update for the

inverse variance entries c does not satisfy the first order optimality condition (2.15), and

hence is not a viable choice for an update rule for c in the EM algorithm. Instead, an

update for U can be obtained by using (2.7) to project R̂x onto the space of correlation

matrices. To this end, the estimate for Γ in (2.7), denoted by Γ̂, is obtained by considering
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Fig. 2.7. Loss in NMSE performance with and without learning the correlation due to
imperfect correlation information.

the diagonal entries of R̂x. An estimate for the correlation matrix, denoted by Û, is then

obtained by projecting onto space of correlation matrices with unit diagonal entries, given

by

Û = Γ̂−1/2R̂xΓ̂−1/2. (2.23)

In case a parameterized model for U is available, e.g., if U is determined by a scalar

parameter ρ, the above estimate can be used as a sufficient statistic to estimate ρ. In

particular, for the uniform correlation model given in (2.4), ρ ∈ [0, 1) and can be obtained

by averaging the off-diagonal entries of Û.

We term the algorithm for unknown U case as Corr-SBL-learn. To demonstrate the

advantage of this algorithm for imperfect correlation information, we compare its per-

formance with Corr-SBL when the exact correlation is not known. The simulation is

performed for the uniform correlation model. Let ρ be the correlation coefficient of the

true channel. The initial value of the correlation coefficient ρ̂ for both Corr-SBL and

Corr-SBL-learn is chosen uniformly at random in the range [(1− ε)ρ, (1 + ε)ρ]. The other
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parameters for the setup are size of the signal N = 256, number of measurements m = 16

and sparsity level K = 16. The performance loss due to imperfect correlation is presented

in Fig. 2.7, where we plot the difference between the NMSE of each of the algorithms

initialized with the imperfect correlation ρ̂ and the NMSE of genie-Corr-SBL which has

the exact knowledge of ρ, as a function of the error range coefficient ε. Since Corr-SBL

continues with the initialization of the correlation coefficient, the performance deteriorates

with increase in ε. Corr-SBL-learn learns the correlation coefficient from the data, and

exhibits relatively stable performance irrespective of ε, and outperforms Corr-SBL with

inaccurate knowledge of the correlation coefficient. The NMSE increases slightly with the

size of the uncertainty interval, but the loss in NMSE is small even for high values of ε.

2.4.4 Corr-SBL as a Covariance Matching Algorithm

The focus of first part of this chapter was the compressive covariance matching algorithms.

The Corr-SBL algorithm was derived using the Bayesian methodology. The following result

connects the two methodology by providing an alternative representation of the output of

the Corr-SBL algorithm.

Proposition 2. The output of the Corr-SBL algorithm is given by

x̂ = My = Σ̂xAH
(
AΣ̂xAH + σ2

nIm

)−1

y (2.24)

with the covariance estimate Σ̂x given by Σ̂x = Γ
1
2
Corr-SBLUΓ

1
2
Corr-SBL, where ΓCorr-SBL =

C−2
opt is the hyperparameter matrix at convergence of the Corr-SBL algorithm.

Proof. Let Copt denote the value of the hyperparameters obtained upon termination of

the Corr-SBL algorithm, and let Ωc = CoptU
−1Copt. The posterior mean estimate x̂ is
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obtained as

x̂ = µx|y =
1

σ2
n

Ω−1
x|yy =

1

σ2
n

(
1

σ2
n

AHA + Ωc

)−1

AHy.

Using the matrix identity

(
1

σ2
n

AHA + Ωc

)−1

AH = σ2
nΩ
−1
c AH

(
AΩ−1

c A + σ2
nIm
)−1

,

we obtain x̂ = Σ̂xAH
(
AΣ̂xA + σ2

nIm

)−1

y, where Σ̂x , C−1
optUC−1

opt. From Sec. 2.4.1, we

have C−1
opt = Γ

1
2
Corr-SBL, which results in the expression (2.24) as given in the proposition.

In Section 2.2, a plug-in MMSE estimator was considered in the covariance matching

framework. Since Corr-SBL uses a Gaussian prior, the MMSE estimator is linear. Hence,

the plug-in LMMSE estimator (2.24) can be viewed as a covariance matching algorithm.

2.5 Chapter Summary

In this chapter, we developed a novel covariance matching algorithm based on the Bayesian

methodology called Corr-SBL, for the recovery of sparse signals in the presence of intra-

vector correlation. The algorithm exploits the knowledge of presence of sparsity and

correlation to facilitate recovery of the signal, especially when the covariance structure

is unknown and has to be estimated from the data itself. To elucidate the advantage

of the algorithm for the correlated sparse recovery problem, we consider a case study of

the mmWave MIMO channel estimation problem in a hybrid analog-digital architecture

in the next chapter. However, the framework developed can be potentially useful in

other applications besides mmWave channel estimation, where the data admits a sparse

representation with the nonzero entries being correlated with each other.
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mmWave Channel Estimation

Millimeter wave (mmWave) communication has been investigated as a promising technol-

ogy for the fifth generation (5G) cellular networks [1,32,33]. In the introduction chapter,

we discussed the challenges in the implementation of mmWave MIMO systems. An im-

portant challenge lies in the channel estimation, especially due to hybrid analog-digital

architecture that is employed to keep the hardware cost low. In this chapter, our goal

is to investigate the role of spatial sparsity and intra-vector correlation to obtain reliable

channel estimates with low pilot overhead. We start with a review of literature.

The hybrid analog-digital architecture used in mmWave communications precludes the

use of traditional channel estimation techniques. Analog beam sweeping based procedures

have been proposed to sample the channel subspace and estimate the mmWave channel

links [34–36], but these procedures typically incur large pilot overheads. An alternative

approach is to exploit structure in the channel and estimate the channel by solving an

The contents of this chapter have been published in the IEEE transactions on signal processing

journal [20].
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optimization problem. Measurement campaigns for mmWave channels [1, 14, 15] have re-

vealed structures like sparsity and correlation, which can be incorporated into a statistical

model to estimate channel using far fewer pilot transmissions compared to beam scanning

based approaches.

Spatial sparsity arises in mmWave channels because the signals arrive at the receiver in

a small number of path clusters [1, 14]. Different sparse representations of the mmWave

channel have been studied in [37–39], and sparse recovery algorithms such as orthogonal

matching pursuit (OMP) have been applied to estimate the channel using a reduced num-

ber of pilots. In [40,41], different training strategies for sparse channel estimation has been

discussed. In [42], a parameter-perturbation framework combined with a low-complexity

simultaneous OMP algorithm is presented mmWave channel estimation, accounting for

off-grid effects. These algorithms based on traditional sparse recovery algorithms are

generally not suitable for highly measurement-constrained scenarios and do not provide

flexibility in dealing with additional structures.

In addition to sparsity, structures such as spatial correlation have been observed due to

mutual coupling at the antennas [15, 43]. In [15], spatial fading models were provided to

fit measured spatial correlation using a parameterized exponential model. In a general

massive MIMO scenario, [16] developed a Toeplitz model for the covariance matrix under

the assumption that the angle of arrivals (AoAs) and path gains are i.i.d. random variables.

They also presented an algorithm to exploit the correlation for channel estimation.

To the best of our knowledge, very few of the existing studies capture sparsity (and the

resulting spatial correlation) as well as correlation among the nonzero entries of the sparse

vector in the same statistical model. Such correlations can arise, for example, due to
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signal propagation and scattering in clusters (called block sparsity). Channel estimation

techniques that exploit block sparsity have been presented in [44,45]. While these studies

consider a common support in the sparse representation of the channel from the user to

the different antennas at the base station, correlation among the nonzero entries are not

modeled or exploited. The block sparsity setup can be modified to include correlation

among path gains in each block [9], but it does not generalize to correlation across blocks.

In mmWave MIMO systems, new correlation sources may be present [2]. In the multi-

path channel model that is typically used in the literature, the path gains are modeled

as Rayleigh distributed by assuming a rich scattering environment and exploiting the law

of large numbers. This does not necessarily hold true for mmWave channels, where the

channel consists of a significant line-of-sight component along with a small number of mul-

tipath components, and, due to the short range of communication, rich scattering cannot

be assumed to occur. In these systems, the covariance matrix of the sparse representation

need not be diagonal, and can have non-negligible off-diagonal entries [46]. For example,

fading statistics of the multipaths can be correlated, especially when the mmWave commu-

nications are used for short range communications. This can lead to correlation between

the different links/beams in the multipath setting. This scenario has been observed in

practical measurements for rain attenuation in the mmWave band [47, 48]. Also, atmo-

spheric turbulence and correlated shadowing [49] lead to correlation among paths that are

further apart, which cannot be considered under the ambit of block sparsity.

From the above discussion, correlation among the nonzero entries of the sparse represen-

tation of the channel is unavoidable in general, which makes it necessary to incorporate

correlation along with sparsity into statistical models to obtain accurate channel estimates.
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To this end, we start with a general statistical model for the channel, where all nonzero

entries of the sparse representation are assumed to be correlated with each other, similar

to the model considered by Park et al. [46]. The focus of Park et al. was on precoder

design, and a modification of OMP was developed for recovering the covariance matrix

of the sparse channel vector. An important aspect of correlation-aware channel estima-

tion is the estimation of the channel covariance itself. However, due to the compressed

measurements obtained in the hybrid architecture, simple techniques such as the sample

covariance do not provide reliable estimates, and new approaches are needed. Bayesian

inference algorithms such as sparse Bayesian learning (SBL) [8] are well suited to exploit

correlation, as they estimate the covariance as a key step within the algorithm. Their

primary goal is to infer the best-fitting distribution from a parameterized class of distri-

butions. Point estimates can then be obtained from the posterior distribution. A message

passing algorithm for mmWave channel estimation was developed in [50], and SBL based

algorithms are presented in [45,51] for recovery of spatially uncorrelated sparse channels.

In this chapter, we address the problem of multiple-input multiple-output mmWave

channel estimation in a hybrid analog-digital architecture, and investigate the role of

underlying spatial sparsity as well as the spatial correlation in the channel to obtain

reliable channel estimates with low pilot overhead. In Section 3.1 we present the system

model for the mmWave MIMO system. Estimation schemes considered in the work is

presented in Section 3.2. For the above problem, we present the application of Corr-SBL

algorithm derived in the previous chapter. The analysis of the algorithms is presented

in Section 3.4. Finally, the efficacy of the algorithm is presented in Section 3.5 using

simulation results.
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3.1 System Model

In this section, we present the wireless system setup and the channel model for single cell

multi-user mmWave MIMO uplink communication with hybrid analog-digital architecture.

3.1.1 mmWave MIMO Channel Model

The mmWave wireless system consists of a single MIMO base station (BS) equipped with

a uniform linear array (ULA) consisting of N equally spaced antennas, which serves K

spatially distributed single antenna users. The base station employs a hybrid MIMO

architecture with M (with K ≤ M � N) RF chains. The system model is shown in

Fig. 3.1.

The signal at the antenna is converted to the digital domain by a network of phase

shifters in a fully connected structure, represented by an analog combining matrix Wr ∈

CM×N , with the phase-only control of the phase shifters satisfied by the constant modulus

constraint | [Wr](m,n) | = 1√
N
∀m ∈ [M ], n ∈ [N ]. The digital baseband combiner F ∈

CK×M then converts the signal into K data streams.

The uplink mmWave channel from each user to the base station is assumed to have a

block flat-fading structure, with coherence time Tc (in s) and coherence bandwidth Bc (in

Hz), i.e., the channel can be modeled as constant within time-frequency coherence blocks

of τc = BcTc channel uses. Further, the channel from kth user to the BS is comprised of

Lk � N multi-paths. The lth path at the rth coherence block is characterized using a

complex baseband path gain ḡr,k,l and the corresponding AoA ψr,k,l. The array response
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Fig. 3.1. Wireless uplink system with a single N antenna base station serving K single
antenna users.

vector ā(ψr,k,l) ∈ CN for the ULA is

ā(ψr,k,l) =
1√
N

[
1, e−j2πvr,k,l , . . . , e−j2π(N−1)vr,k,l

]T
. (3.1)

where vr,k,l = d
λ

cos(ψr,k,l) is the directional cosine corresponding to the AoA ψr,k,l. The

uplink mmWave channel can then be represented as [46]

hr,k =

Lk∑
l=1

ḡr,k,lā(ψr,k,l) = Āḡr,k ∈ CN , (3.2)

where columns of Ā ∈ CN×Lk are the array response vectors given by (3.1). If we grid the

range of possible directional cosine values (−1 to 1) using D � Lk points, (3.2) can be

approximated as

hr,k = Agr,k. (3.3)

The matrix A consists of the ULA array response vectors for the AoAs corresponding to

the grid points. The index of columns of Ā in A, denoted by the set Sk (with |Sk| = Lk),
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are the grid points corresponding to AoAs given in (3.2), and the corresponding nonzero

entries of gr,k are the path gains ḡr,k,l. Since D � Lk, gr,k is a sparse vector.

We assume that the nonzero entries in the complex baseband path gain vector gr,k have

zero mean and are correlated with each other. The (i, j)th entry of the covariance matrix

Rgr,k
= E

[
gr,kg

H
r,k

]
∈ CD×D can be obtained from the Pearson product-moment correlation

coefficient definition [23] as
[
Rgr,k

]
(i,j)

= ρij
√
γ∗i
√
γ∗j where γ∗i denotes the variance of ith

entry of gr,k and ρij is the correlation coefficient between the two entries, which is a

function of the pair of indices (i, j) and is governed by a known correlation model (e.g.,

uniform correlation model, exponential model, Toeplitz model etc.). A matrix U ∈ CD×D

with ρij as its (i, j)th entry is called the correlation matrix. With this notation, we have

Rgr,k
= (Γ∗)1/2U(Γ∗)1/2 where Γ∗ = diag(γ∗1 , γ

∗
2 , . . . , γ

∗
D).

Note that, for a grid point j which does not correspond to any of the Lk paths, the

variance of the jth entry, γ∗j , is zero. This results in the covariance structure similar

to [46], where Rgr,k
is a D × D positive semi-definite (PSD) matrix which contains a

nonzero Lk × Lk positive definite (PD) principal submatrix corresponding to the index

set Sk, with its other entries equal to 0. Using (3.3), the channel covariance matrix

Rhr,k
= E

[
hr,kh

H
r,k

]
= ARgr,k

AH ∈ CN×N . The channel statistics vary slowly compared

to the channel instantiations [52], i.e., the channel statistics remain constant over a time

interval Ts > Tc. Hence, the channel covariance and AoAs remain constant over τs = Ts
Tc

coherence blocks. In the sequel, since we focus on estimating the covariance matrix within

τs coherence blocks where the covariance matrix remains constant, we drop the subscript

r in the covariance matrices Rgr,k
and Rhr,k

.
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3.1.2 Pilot Transmission

At the start of each coherence block, the kth user transmits a unique orthonormal pilot

pk ∈ Cτp , k = 1, 2, . . . , K, where τp is the pilot length satisfying τp = K � τc. This pilot

signal is used by the BS to estimate the uplink channels from all the users. The pilot

signal received at the BS is processed using an analog combining matrix Wr ∈ CM×N ,

Yp
r = Wr

(
K∑
k=1

hr,kp
H
k + N

)
∈ CM×τp , (3.4)

where the entries of additive noise N are independent and identically distributed (i.i.d.)

Gaussian with zero mean and variance σ2
n.1 Since the pilot signals are orthonormal, by

post-multiplying Yp
r with pk, we obtain the pilot signal for estimating the kth user’s channel

as

yr,k = Yp
rpk = Wrhr,k + WrNpk ∈ CM . (3.5)

The covariance of the effective noise nr = WrNpk is σ2
nWrW

H
r . In Sec. 3.2.2, we present

a choice of Wr such that WrW
H
r approaches IM asymptotically (N → ∞) [53]. Hence,

nr is assumed to comprise of i.i.d. CN (0, σ2
n) entries.

From (3.5), it can be observed that the measurement yr,k does not involve interference

from other users. Also, since the pilot sequences are orthogonal, the noise in the post-

processed received training signals are independent across the users, and we can perform

channel estimation independently for each user. Hence, in the sequel, we drop the sub-

script k and consider the channel estimation for a single user. Estimating hr from yr in

1Without loss of generality, we consider the pilot signal to be of unit power, and include the effect of

pilot transmission power in σ2
n. Note that (3.4) assumes the users are time and frequency synchronized with

the BS. In practice, this synchronization can be achieved using the primary and secondary synchronization

signals transmitted by the BS.
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(3.5) constitutes the channel estimation problem. Specifically, using (3.3), the channel

estimation problem (3.5) can be posed as a sparse recovery algorithm as:

yr = Φrgr + nr, (3.6)

where Φr = WrA ∈ CM×D. Hence, our goal boils down to exploiting sparsity and

correlation among the nonzero entries of the sparse vector to obtain the channel estimate.

3.2 Channel Estimation: Preliminaries

3.2.1 Channel Estimation Schemes

In this subsection, we present an overview of two existing classes of channel estimation

techniques, which form the baseline for the comparisons in this chapter.

Linear Estimation

The first class of estimators are linear estimators, where the estimate of the channel in

each coherence block can be represented as ĥr = Mryr. This includes linear minimum

mean squared error (LMMSE) and least squared (LS) estimation, among others. When

the channel covariance matrix Rh is known, LMMSE is the optimal linear estimator.

ĥLMMSE
r = RhWH

r

(
WrRhWH

r + σ2
nIM

)−1
yr. (3.7)

However, in practice Rh is not known at the receiver. In this case, the simplest estimator

is the least squares (LS) estimator:

ĥLS
r = W†

ryr, (3.8)
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where W†
r denotes the pseudo-inverse of Wr. The LS estimator does not exploit the

correlation Rh in the channel. To exploit correlation, LS estimates of the channel in T

coherence blocks are computed, and the sample covariance obtained from the estimates is

used as an estimate for Rh as

R̂h = W†
r

(
1

T

T∑
r=1

yry
H
r

)(
W†

r

)H
. (3.9)

R̂h is plugged into the LMMSE estimator resulting in an imperfect channel covariance

information (IPCI) based estimator, which exploits correlation structure, but ignores spar-

sity in the channel.

ĥIPCI
r = R̂hWH

r

(
WrR̂hWH

r + σ2
nIM

)−1

yr. (3.10)

Compressed Sensing based Estimation

The second class of estimators utilize sparse signal recovery algorithms such as OMP [37]

and SBL [8] to recover sparse representation of the channel gr from the measurements

using (3.6). Using ĝr, the channel is estimated as ĥr = Aĝr. These algorithms exploit the

sparsity structure, but neglect channel correlation. An OMP-based greedy sparse recovery

algorithm, CovOMP, was proposed in [46]. This estimator exploits both sparsity and cor-

relation, and is also used for performance comparisons. Our simulation results show that

Bayesian methods significantly outperform CovOMP, especially in highly measurement-

constrained scenarios.

We also consider two genie-aided estimators. When the covariance matrix Rg is known,

the LMMSE estimate results in the same estimator as in (3.7), with Rh replaced with
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ARgAH . To characterize performance of estimators that neglect the correlation informa-

tion, using the support and individual variances as the diagonal matrix Γg, a genie-aided

element-wise plug-in LMMSE estimator is

ĝE-LMMSE
r = ΓgΦ

H
r

(
ΦrΓgΦ

H
r + σ2

nIM
)−1

yr. (3.11)

MMV Recovery Algorithms

Channel estimators based on covariance estimation require knowledge of the covariance

matrix. Estimating the covariance entails computing the sample-averaged covariance using

multiple channel instantiations. Since the channel statistics are constant over τs coherence

blocks, pilots from multiple coherence blocks can be used to estimate the covariance matrix

without additional pilot overhead. The support is also constant within a coherence block,

and sparse recovery algorithms developed in the multiple measurement vector (MMV)

paradigm such as SOMP [46] and MSBL [13] can be used to obtain better performance.

However, estimating the channel at the end of τs coherence blocks leads to large latency

and memory requirements. Instead, we consider averaging over T ≤ τs coherence blocks,

with T being chosen to trade-off between performance and complexity.

3.2.2 Analog Combiner Matrix Design

The analog combining matrix Wr ∈ CM×N plays an key role in the performance of channel

estimation. In this subsection, we discuss two schemes used in the chapter for the choice

of combining matrices across coherence blocks.

The analog combining matrix can be represented as Wr = 1√
N
eiΘr to satisfy the constant

modulus constraint, where the entries of Θr represent the phase of each entry of Wr. The
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first of the two schemes uses the same combining matrix across coherence blocks and is

referred to as “shared Wr scheme”. In this scheme, Θr = Θ ∀r, with the entries of Θ

chosen independently from a uniform distribution in [0, 2π].

In [21, Proposition 2], the authors proved that when a shared compression matrix is

applied on every sample of a signal, all possible estimators are asymptotically biased.

Instead, if independent compression matrices are applied on different samples, unbiased

estimators can be designed. Using this for the channel estimation problem, better es-

timation performance can be obtained when a different combining matrix is chosen for

each coherence block. Thus, in our second scheme, Θr is chosen independently across

r, with the distribution for each Θr being the same as in the shared Wr scheme. This

scheme is referred to as “i.i.d. Wr scheme”. We note that the memory and computational

complexity of the i.i.d. Wr scheme is higher than that of the shared Wr scheme.

In the sequel, we borrow terminology from the compressed sensing literature to refer

to estimating the channel within a single coherence block as single measurement vector

(SMV) channel estimation and estimation over multiple blocks by exploiting the joint

sparsity structure as multiple measurement vector (MMV) channel estimation. In the next

section, we will present the application of Corr-SBL algorithm for channel estimation.

3.3 Corr-SBL

We recall that our goal for SMV channel estimation is to recover gr ∈ CD from the

measurements yr = Φrgr + nr ∈ CM with the knowledge of the structure of covariance

matrix of gr as given in Section 3.1.1. This setup is similar to the correlated sparse signal

recovery problem discussed in Chapter 2, and Corr-SBL algorithm can be applied to the
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Algorithm 2: Corr-SBL for mmWave channel estimation

Input: {Φr}Tr=1, {yr}Tr=1,U, σ
2
n

Initialize: k ← 0, c← 1

while k ≤ kmax and ‖
[
µg|y

]
k
−
[
µg|y

]
k−1
‖F < ε do

R̂g = 0D×D

for r = 1 to T do
Ωg|y = 1

σ2
n
ΦH
r Φr + Ωc[

µg|y
]

([D],r)
= 1

σ2
n
Ω−1

g|yΦH
r yr

R̂g ← R̂g + 1
T

(
Ω−1

g|y +
[
µg|y

]
([D],r)

[
µg|y

]H
([D],r)

)
end

c←
(

Re
{

U−1 � R̂T
g

})−1
1
c

Ωc = diag(c)U−1 diag(c)

k ← k + 1
end

Output: {ĝr}Tr=1 = µg|y, c.

above problem.

The performance of correlation-aware algorithms depends on accuracy of the estimates

for the channel covariance. Since the channel covariance is constant for T coherence blocks,

multiple measurements can be used to estimate the channel statistics, and improve the

performance. The extension of the algorithm derived above to the MMV case involves

averaging the E-step updates over all coherence blocks under consideration. In the sequel,

the name Corr-SBL is used for the resulting MMV algorithm for the known U case, and

the algorithm in the i.i.d. Wr scheme is presented as Algorithm 2. When the heuristic

approach to learn the correlation is incorporated, the algorithm is called Corr-SBL-learn.

In the shared Wr scheme, the updates in the inner for-loop are independent of the loop

index, and thus a computationally simpler algorithm can be obtained by vectorizing the

updates.
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Algorithm 3: Online Corr-SBL

Input: Φ,Yr,∆ =
[
yr yr+1 . . . yr+∆−1

]
,U, σ2

n, r,∆

Prior: Rold =
∑r−1

s=1

(
ΦHysy

H
s Φ
)

Initialize: k ← 0, c← 1, Û = U

while k ≤ kmax and ‖
[
µg|y

]
k
−
[
µg|y

]
k−1
‖F < ε do

Ωg|y = 1
σ2
n
ΦHΦ + Ωc

µg|y = 1
σ2
n
Ω−1

g|yΦHYr,∆

R̂g = Ω−1
g|y + 1

r+∆

(
Ω−1

g|yRoldΩ
−1
g|y + µg|yµ

H
g|y

)
c←

(
Re
{

Û−1 � R̂T
g

})−1
1
c

Γ̂ = diag(diag(R̂g))

Û = Γ̂−
1
2 R̂gΓ̂−

1
2

Ωc = diag(c)Û−1 diag(c)

k ← k + 1
end

Output: {ĝt}r+∆−1
s=r = µg|y, c,

Rold ← Rold +
∑r+∆−1

s=r

(
ΦHYr,∆YH

r,∆Φ
)

3.3.1 Online Estimation

In the MMV estimation problem, the channel is estimated at the end of T coherence

blocks, which could be impractical in terms of latency when T is large. In this subsection,

we present an online version of Corr-SBL, which also incorporates the advantages of MMV

estimation.

We first consider the shared Wr scheme. The only update which involves averaging over

multiple coherence blocks is in computing µg|yµ
H
g|y. A running sum

∑r−1
s=1

(
ΦHysy

H
s Φ
)

for the r − 1 preceding coherence blocks can be used as prior knowledge for estimating

the channel in the rth coherence block. Building on this idea, we perform joint channel

estimation over ∆� T blocks starting from the rth coherence block. The final algorithm
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proposal of Online Corr-SBL with learning correlation called Online-Corr-SBL-learn is

presented in Algorithm 3. For the i.i.d. Wr scheme, a running sum of R̂g computed in

Theorem 1 is required for each iteration of EM algorithm, resulting in a large memory

overhead. Instead, an approximation for the MMV setup can be obtained by storing the

running sum of R̂g at the end of the final EM iteration of the preceding block.

3.3.2 Algorithm Extensions

The main goal of this chapter is to elucidate the role of spatial sparsity and correlation in

mmWave channel estimation. For simplicity of exposition, we considered a frequency-flat

channel model and single-antenna users in developing our solution. In this section, we

briefly discuss extensions of our approach to the cases where the channels are frequency-

selective and the users are equipped with multiple antennas.

Multiple Antennas at the Users

In this subsection, we present a measurement model for the correlated sparse recovery

problem when the users are equipped with multiple antennas. Suppose the BS and the K

users employ ULAs with NB and NU antennas, and have MB < NB and MU < NU RF

chains, respectively. For this setup, the channel in (3.2) can be written as,

Hr,k =

Lk∑
l=1

ḡr,k,lāB(ψr,k,l)ā
H
U (θr,k,l) = ĀBḡr,kĀ

H
U ∈ CNB×NU ,

where ĀB ∈ CNB×Lk and ĀU ∈ CNU×Lk denote the array response vectors at the BS and

the kth user, respectively. Using grids of size DB and DU , Hr,k can be approximated as

Hr,k = ABGr,kA
H
U
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where Gr,k ∈ CDB×DU is a sparse matrix with Lk nonzero path gains corresponding to

the respective AoAs and AoDs. If the BS uses a combiner Wr ∈ CMB×NB and the user

employs a precoder Fr ∈ CNU×MU , the received signal at the BS for estimating the kth

user’s channel (corresponding to (4)) is obtained as

Yr,k = WrABGr,kA
H
U Fr + Nr,k.

By vectorizing Yr,k, we obtain the linear system given by

yr,k =
(
FT ⊗W

)
(Ac

U ⊗AB) gr,k + nr,k ∈ CMBMU×1,

where Ac
U denotes the element wise conjugate of AU , and gr,k ∈ CDBDU×1 is vectorized

form of Gr,k. This is now in the same form as the sparse recovery framework developed

in this paper, albeit with a larger dimensional measurement matrix and sparse vector. At

the cost of higher computational complexity, the Corr-SBL can now be directly used for

learning the channel gr,k from the measurements yr,k.

Frequency-selective Channel Models

In OFDM systems, the use of subcarriers for data transmission allows one to convert

frequency selective channels into multiple parallel frequency flat channels. In this case,

the algorithm described in the paper can be applied independently over the different sub-

carriers. However, this approach cannot exploit the correlation in the channels across

sub-carriers. The work in [46] considers a combination of time-domain and frequency-

domain algorithms. A challenge in extending Corr-SBL to the frequency-selective case is

in working out the parameters of the channel correlation across subcarriers, and studying
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Table 3.1: Memory and computational complexity

Algorithm Mode Memory complexity Computational complexity

MSBL
i.i.d. Wr O (DMT ) O (DM2T )

Shared Wr O (M(D + T )) O (DM(M + T ))

Corr-SBL
i.i.d. Wr O (DMT +D2) O (DM2T +D3)

Shared Wr O (M(D + T ) +D2) O (DM(M + T ) +D3)

Online-Corr-SBL
i.i.d. Wr O (DM∆ +D2) O (DM2∆ +D3)

Shared Wr O (M(D + ∆) +D2) O (DM(M + ∆) +D3)

the performance of the resulting algorithm.

3.4 Analysis

3.4.1 Complexity Analysis

Table 3.1 compares the per-iteration memory and computational complexity of Corr-SBL,

its online version, and MSBL. Here, the computational complexity is measured in terms

of the number of floating point operations. The overall complexity of Corr-SBL and Corr-

SBL-learn (similar for online versions) are the same since the additional computation of Û

given by O(D2) is included in O(D3). The additional complexity of O(D3) of Corr-SBL

over MSBL is due to the c-update step in Algorithm 2. The complexity is higher for

the i.i.d. Wr scheme due to the additional inner-loop. The online version of Corr-SBL

has lower computational complexity, in addition to lower latency. From our experiments,

Corr-SBL converges in a similar number of iterations as MSBL, both with and without

learning the correlation.

The additional complexity of O(D3) can be computationally expensive, especially when

large grid sizes are used. An approach to reduce complexity is to use lower grid sizes,

but this can result in performance loss due to grid mismatch. A recent approach2 has

2https://ece.iisc.ac.in/∼cmurthy/Learned Chester AI5GPHY Challenge.pdf
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considered integrating a greedy search procedure to obtain coarse estimates of the AoAs

with a statistical interference model (based on MSBL), followed by dictionary refinement

with smaller grid sizes. Another approach to reduce complexity is to consider the algo-

rithm unrolling framework [54], where model based approaches can be used to develop

deep learning techniques that perform similar to or better than the optimization based

approaches while reducing the complexity [55].

The memory complexity is measured by the storage required for input information. Stor-

ing the correlation matrix information leads to higher memory complexity in Corr-SBL

compared to MSBL. However, this can be significantly reduced for parameterized models

by storing only the parameters. The memory complexity is higher for the i.i.d. Wr scheme

compared to the shared Wr scheme, as expected.

3.4.2 Plug-in LMMSE Estimators

Corr-SBL algorithm is designed based on the maximum likelihood principle and was shown

to attain a stationary point of the cost function. However, the performance of channel

estimation is usually measured using other cost functions such as NMSE or spectral effi-

ciency of the system. To analyze the performance of Corr-SBL under these measures, we

present a unified framework by considering the class of plug-in LMMSE estimators, which

includes the LMMSE, E-LMMSE and IPCI estimators described in 3.2. We also showed

in Section 2.4.4, that the output of Corr-SBL can be represented as a plug-in LMMSE

estimator, and a similar argument can be presented for MSBL also. The following result

summarizes the class of plug-in-LMMSE estimators, unifying algorithms described above.
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Proposition 3. The class of plug-in LMMSE estimators can be represented as

ĥr = Mryr = R̂hWH
r

(
WrR̂hWH

r + σ2
nIM

)−1

yr, (3.12)

where the covariance matrix R̂h depends on the estimator:

R̂h =



Rh = AΓ
1
2 UΓ

1
2 AH LMMSE

AΓAH E-LMMSE

AΓ
1
2
Corr-SBLUΓ

1
2
Corr-SBLAH Corr-SBL

AΓMSBLAH MSBL

R̂IPCI
h IPCI

where Γ and U denote the true values for the variances and the correlation matrix, and

R̂IPCI
h , W†

r

(
1
T

∑T
r=1 yry

H
r

) (
W†

r

)H
with W†

r denoting the pseudoinverse of W.

3.4.3 Normalized Mean Squared Error (NMSE)

The NMSE in the channel estimate is defined as NMSE = E
[
‖ĥr − h‖2

2

]
/E [‖h‖2

2]. The

following theorem provides the NMSE for the plug-in LMMSE estimators. Its proof follows

from direct computation and is omitted.

Theorem 3. Consider the estimator ĥr = Mryr, where the the plug-in LMMSE matrix

Mr is given by Mr = R̂hWH
r

(
WrR̂hWH

r + σ2
nIM

)−1

. Assuming that the estimate R̂h is

independent of the measurement yr, i.e., R̂h is computed using measurements from other

coherence blocks, the NMSE in the channel estimate is given by

NMSE =
1

Tr [Rh]
× E

[
Re
{

Tr
[
Mr

(
WrRhWH

r + σ2
nIM

)
MH

r + Rh − 2MrWrRh

]}]
,

(3.13)

where the expectation is over the randomness in Mr and Wr.
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In the above, we assumed that R̂h is independent of the measurement yr. If this does not

hold, the expression for the MSE becomes complicated due to the coupling between the

two, making the analysis more involved. In any case, one typically uses multiple previous

channel instantiations to estimate R̂h, hence, this is not unduly restrictive.

We note that the error in estimating the covariance matrix using performance measures

like Frobenius and spectral norm have been studied in literature [21]. However, very few

works consider the error in signal recovery using the noisy covariance estimates, especially

for the compressed sensing case. Theorem 3 presents the NMSE performance for the class

of plug-in LMMSE estimators. For a given set of system parameters W,Rh and σ2
n, the

NMSE depends on Mr, which in turn depends on the covariance estimate. From the

theorem, it is straightforward to verify that the least NMSE is obtained by the LMMSE

estimator, which assumes perfect knowledge of the covariance matrix Rh. It can be verified

that the genie-aided LMMSE achieves the Cramér-Rao bound for the above problem. The

E-LMMSE estimator and MSBL force a diagonal structure correlation, and therefore do

not exploit the full covariance structure. The IPCI estimator uses the sample covariance,

which requires large number of samples to learn the structure of Rh because the underlying

sparsity is not exploited. The covariance estimate of Corr-SBL has a structure similar to

actual covariance, and has the potential to learn Rh accurately using only a small number

of samples. We illustrate this by comparing the NMSE value computed using Theorem 3

with the simulated NMSE in Fig. 3.4 in Sec. 3.5.
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3.4.4 Spectral Efficiency (SE) Analysis

Let Ĥ =
[
ĥ1ĥ2 . . . ĥK

]
denote the channel estimates for all users obtained using (3.12) in

a single coherence block. If the kth user transmits a symbol xk ∀k with zero mean and

power P , the received combined vector at the base station is

y = FWRF

(
K∑
k=1

hkxk + n

)
. (3.14)

where we use WRF as the analog combiner matrix to distinguish it from the matrix

Wr used in the pilot transmission phase. Various designs for the analog combiner WRF

and digital combiner F matrices have been studied in the literature when perfect CSI is

available at the BS. One simple design aims at designing them independently [56]. In this

work, we use the same methodology, with channel estimates Ĥ replacing the unknown

CSI H. We let the number of users served by the BS to be equal to the number of RF

chains, i.e., K = M . Then, the phase-only control of the analog combining matrix WRF

is satisfied by constraining the amplitude of all entries to 1√
N

, and the phase of (m, k)th

entry of WRF , denoted by θ̂m,k, is set using the channel estimate as

θ̂m,k = φ̂m,k, m ∈ [M ], k ∈ [K], (3.15)

where φ̂m,k is the phase of
[
ĤH
]
m,k

. The effective baseband channel ĤB = WRF Ĥ is used

to design the digital combiner using the regularized zero forcing (RZF) combining with

regularization parameter η = Mσ2
n

P
:

F =
(
ĤH
B ĤB + ηIM

)−1

ĤH
B . (3.16)
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In order to compute the SE, we write the kth row of (3.14) as

yk = E [fkWRFhk]xk︸ ︷︷ ︸
signal

+ (fkWRFhkxk − E [fkWRFhk]xk)︸ ︷︷ ︸
self-interference

+
K∑

q=1,q 6=k

fkWRFhqxq︸ ︷︷ ︸
inter-user interference

+ fkWRFn︸ ︷︷ ︸
AWGN

,

(3.17)

where fk is the kth row of F. The term E [fkWRFhk] is treated as a known deterministic

channel. Noting that it is uncorrelated with other terms in the summation, we obtain

the following result. The proof follows from applying the use-and-then forget bound [57,

Section 3.2] and is omitted.

Theorem 4. The spectral efficiency (SE) of user k is lower-bounded by

SEk ≥
(

1− K

τc

)
log2 (1 + γ̃k) bits/s/Hz, (3.18)

where the pre-log factor accounts for pilot overhead, and γ̃ is a lower bound on SINR given

by

γ̃k =
P |E [fkWRFhk] |2

P
∑K

q=1 E [|fkWRFhq|2]− P |E [fkWRFhk] |2 + αk
(3.19)

where αk = σ2
nE
[
fkWRFWH

RF fHk
]

is the effective noise power in the combined signal.

The expectations in Theorem 4 cannot be obtained in closed form. They are computed

using simulations in the next section.
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Table 3.2: Simulation parameters

Parameters Values
Number of antenna N 256

Grid size D 256
Number of RF chains M 16

Number of users K 16
Number of multipaths Lk 16
Number of snapshots T 512

SNR 10 dB
Correlation coefficient ρ 0.5

Coherence interval τc 2000
Hyperparameter pruning threshold ε 105

3.5 Results

3.5.1 Simulation Setup

In this section, we present simulation results to elucidate the role of correlation and spar-

sity in mmWave channel estimation. We benchmark the NMSE performance of Corr-

SBL against the genie-aided LMMSE, LS, IPCI, E-LMMSE estimators given by equations

(3.7), (3.8), (3.10), (3.11) in Appendix 3.2, respectively, and sparse recovery algorithms

SOMP [46], CovOMP [46] and MSBL [10]. We also compare the average sum rate achieved

by the hybrid MIMO architecture with channel estimates obtained using Corr-SBL against

that of a system equipped with a fully digital architecture (where the number of RF chains

equals the number of antennas and hence there is no need for an analog beamforming stage)

and genie-aided LMMSE channel estimates. We consider the uniform correlation model,

where Uij equals unity when i = j and equals ρ ∈ [0, 1) otherwise [22]. The support of

the sparse vector is obtained by drawing Lk samples from the D grid points uniformly at

random without replacement. The path gain vector is obtained from a complex normal

distribution with zero mean and covariance matrix of the form described in Section. 3.1.1.
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Fig. 3.2. Comparison of NMSE against SNR for the class of plug-in LMMSE estimators.

Orthogonal Zadoff-Chu sequences of length equal to the number of users are used for pi-

lot signals. Specifically, for K = 16 users, we use the command zadoffChuSeq(19,17)

(in Matlab) to generate a base sequence of length 17. Then, we consider 15 successive

cyclically permuted sequences of the base sequence, along with the base sequence, as pi-

lot sequences for the 16 users. The other parameter values are as in Table 3.2, unless

mentioned otherwise.

3.5.2 Effect of SNR

In the first experiment, we study the NMSE performance of the class of plug-in LMMSE

estimators as a function of the SNR. From Fig. 3.2, we see that for SNR less than 0

dB, the advantage of exploiting correlation is not significant since the noise overwhelms

the signal. However, as the SNR increases beyond 0 dB, performance of all algorithms

exploiting sparsity increases, with the gain being higher for Corr-SBL and genie aided

LMMSE estimator compared to MSBL. In the further simulations, we fix the SNR to

10 dB, and study the effect of other parameters of the system to elucidate the role of
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schemes.

correlation in sparse signal recovery.

3.5.3 mmWave Channel Estimation

In the second set of experiments, we present the cumulative distribution function (CDF)

of the NMSE of different algorithms, run for 1000 independent realizations of the channel

and T coherence blocks. The curves for both i.i.d. Wr and shared Wr schemes are

presented in Fig. 3.3. The genie based LMMSE estimator (curve labeled LMMSE), sets the

best achievable benchmark for all algorithms and the performance of Corr-SBL (curve

labeled Corr-SBL) is only marginally worse. For the case where the correlation coefficient

ρ is not known, we estimate it by averaging the off-diagonal entries of Û as explained in

Sec. 2.4.3. This curve, labeled Corr-SBL-learn, matches the performance of Corr-SBL,

showing that the algorithm can learn ρ without appreciable loss in performance. Exploiting

only correlation (IPCI) or only sparsity (MSBL) performs worse than Corr-SBL.

The NMSE with the i.i.d. Wr scheme is lower than that of the shared Wr scheme,
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showing that it is better to use independent measurement matrices across coherence blocks.

The genie-based estimator E-LMMSE only exploits sparsity and is a lower bound on the

performance of sparse recovery algorithms that do not exploit correlation. It performs

worse than Corr-SBL, which illustrates the importance of exploiting correlation in addition

to sparsity. However, although it does not exploit correlation, the hierarchical Bayesian

prior used in MSBL results in better performance than CovOMP (which does exploit both

correlation and sparsity). In the shared Wr scheme, the algorithms CovOMP and SOMP

in fact perform worse than a trivial estimator which outputs all zeros (and yields an NMSE

of 0 dB).

3.5.4 Performance for Varying Sparsity Levels

The NMSE performance of different algorithms is compared as a function of the number of

multi-path components, i.e., the sparsity level of the channel, in Fig. 3.4. The performance

of all sparse recovery algorithms are similar at low sparsity levels, hence exploiting the

correlation is not crucial. The performance of SOMP, CovOMP and MSBL deteriorate
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Fig. 3.5. NMSE performance with averaging over multiple coherence blocks.

quickly with increasing sparsity. In contrast, both Corr-SBL and Corr-SBL-learn continue

to perform close to the optimal genie-aided estimator even at high sparsity levels, and

significantly outperform the other methods. Thus, Bayesian methods can offer significant

advantages especially in highly measurement-constrained scenarios, when the prior model

is chosen to best-fit the underlying model. Also, the NMSE values computed using Theo-

rem 3 overlap perfectly with the simulated NMSE values, illustrating the accuracy of the

theoretical expressions.
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3.5.5 Shared Wr vs i.i.d. Wr Schemes

Fig. 3.5 compares the channel estimation performance of the i.i.d. Wr and shared Wr

schemes. The estimators which perform poorly in the highly measurement-constrained

scenarios are not plotted to avoid clutter. As the number of coherence blocks used to

estimate the channel covariance (T ) increases, the performance of Corr-SBL and Corr-SBL-

learn converge to the LMMSE estimator and that of MSBL converges to the E-LMMSE

estimator, for both schemes. The NMSE value of the Corr-SBL algorithm for T = 512

is lower for the i.i.d. Wr scheme compared the shared Wr scheme. Fig. 3.6 shows that

the performance of MSBL and Corr-SBL deteriorate with increase in correlation only for

the shared Wr scheme. The i.i.d. Wr scheme offers better performance compared to the

shared Wr scheme at high correlation, as shown in Fig. 3.6. In the shared Wr scheme,

the performance of MSBL deteriorates with increasing correlation, and Corr-SBL follows

the performance of the genie aided LMMSE estimator until a correlation threshold, after

which the high correlation overwhelms the covariance estimation procedure, possibly due



Chapter 3. 71

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

NMSE (in dB)

10-3

10-2

10-1

100

101

102

P
e

rc
e

n
ta

g
e

 o
f 

c
o

h
e

re
n

c
e

 b
lo

c
k
s

 = 512

 = 128

 = 64

 = 32

 = 16

 = 8

 = 1

Fig. 3.7. Expected percentage of coherence blocks with NMSE value more than x, where
x is the x-axis coordinate value.

to the larger condition number of U. However, as seen for both MSBL and Corr-SBL, in

the i.i.d. Wr scheme, better covariance estimation leads to better performance even at

high correlation levels.

3.5.6 Online Estimation

Here, we compare the performance of the online version of Corr-SBL for different block

lengths ∆. We consider the scenario of estimating the channel over T = 512 channel

coherence blocks. In Fig. 3.7, we plot the percentage of the 512 coherence blocks where

the NMSE is greater than a given value, say x, as a function of x. With ∆ = 64, which

offers a significant reduction in latency compared to using all 512 coherence blocks, less

than 0.2% of the blocks have an NMSE higher than −5 dB, while the MMV solution

that uses all the 512 coherence blocks achieves an NMSE slightly lower than −6 dB. Even

with ∆ = 1, less than 10% of the blocks have an NMSE higher than −3 dB. The higher

NMSE at smaller ∆ is due to poor estimates in the initial few blocks; the NMSE in fact
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rapidly decreases in the later blocks. This small performance loss can be insignificant

when compared to the latency reduction advantage in practical applications.

3.5.7 Spectral Efficiency

Lastly, in Fig. 3.8, we compare the sum-rate performance of the system when the channel

estimates are obtained using the different algorithms, calculated using (3.18). The hybrid

architecture in Section. 3.4.4 with genie-aided LMMSE channel estimates performs close

to the fully digital architecture with the optimal genie aided LMMSE channel estimates.

The sum-rate performance using Corr-SBL channel estimates is close to the genie-aided

estimator. It offers nearly 50% higher sum rate compared to MSBL across the range of

number of antennas. The performance of IPCI is limited by the accuracy of estimating the

covariance itself, and as a consequence, it does not improve with the number of antennas.
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3.5.8 NYUSIM Channel Model

Lastly, we compare the performance of Corr-SBL and MSBL with the genie-aided LMMSE

estimator for the channel model obtained from the NYUSIM mmWave channel simula-

tor [58, 59], which considers a practical clustering model. For the NYUSIM model, we

considered a carrier frequency of 28 GHz and a bandwidth of 800 MHz. The large and

small scale fading parameters for the urban microcell scenario with LoS environment in-

clude: Path loss exponent = 2, transmit-receive separation of 100 − 500 m, free space

reference distance of 1 m, shadow fading standard deviation of 4 dB, mean angle of arrival

of 1.9◦ and mean excess delay of 123 ns. Since the NYUSIM model does not consider

correlation among the path gains, we premultiply the obtained path gain vector with a

matrix that results in the covariance matrix of the final vector to be similar to the model

considered in this paper. The parameters of the simulation are same as given in Table 3.2,

but with the number of multipaths obtained from the NYUSIM varying between 12 and

30 across different Monte Carlo simulations. In Fig. 3.9, we plot the 95th percentile NMSE
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(NMSE of top 95% runs, to remove outliers) as a function of the grid size. We can observe

that as the grid size increases, the approximation of the channel using (3.2) becomes more

accurate, and, as a result, the performance of the algorithm improves before it saturates

beyond a grid size of about 350. Also, unlike the previous simulations, Corr-SBL-learn

performs slightly better than Corr-SBL. This is because, with the practical channel model,

the covariance matrix may not exactly match the U assumed by Corr-SBL. This shows

that learning the correlation from data, rather than fixing it based on a model, can result

in better performance in practice.

3.6 Chapter Summary

In this chapter, we explored the role of sparsity and intravector sparsity in the mmWave

channel estimation problem. We presented the application of Corr-SBL algorithm de-

scribed in the previous chapter for estimating the mmWave channel over multiple coherence

blocks. Experimental results showed that Corr-SBL outperforms the existing approaches

and achieves close to genie-aided optimal performance over a wide range of scenarios. The

algorithm is also robust to imperfect correlation information. In practical implementa-

tions, the online version reduces the latency at a slight loss in NMSE performance.
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Modulo CS

The effect of dynamic range in data acquisition systems has been an important research

topic in various domains of signal processing [61–64]. Systems with low dynamic range

lead to signal loss due to clipping, and high dynamic range systems with finite resolution

sampling are affected by high quantization noise. A direction of research in recent years

to counter this problem has been the so-called self-reset analog to digital converters (SR-

ADCs) [65, 66], which fold the amplitudes back into the dynamic range of the ADCs

using the modulo arithmetic, thus mitigating the clipping effect. However, these systems

encounter information loss due to the modulo operation. The transfer function of the

SR-ADC with parameter λ is given by

Mλ(t) = 2λ

(s
t

2λ
+

1

2

{
− 1

2

)
, (4.1)

where JtK , t− btc is the fractional part of t [17].

The Nyquist-Shannon sampling theorem assumes infinite dynamic range and cannot be

considered for the SR-ADCs, since it does not cater to the information loss due to the

The contents of this chapter have been published in IEEE signal processing letters [60].

75
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modulo operation. In the context of SR-ADCs, an alternative sampling theory called

the unlimited sampling framework was developed in [17, 18], which provides sufficient

conditions on the sampling rate for guaranteeing the recovery of band-limited signals from

its folded samples, provided a norm constraint independent of the dynamic range of ADC

is satisfied. Extending these results, the work in [67] considered the inverse problem of

recovering K low pass filtered spikes in a continuous-time sparse signal, and developed a

new sampling theorem and a signal recovery algorithm. In [68], the authors studied the

quantization of oversampled signals in the SR-ADC architecture with the goal of reducing

the overload distortion error.

A novel HDR imaging system that employs SR-ADCs to overcome limitations due to

limited dynamic range was studied in [62, 69]. Mathematically, this involves applying an

SR-ADC individually to multiple linear measurements of the images, and is termed as

modulo compressed sensing (modulo-CS) [69]. Modulo-CS is an up-and-coming area with

good promise in handling the large dynamic range inherent with many signal acquisition

systems. While specific applications are yet to be developed, modulo-CS can be considered

as an alternative sensing framework to avoid signal clipping where where compressed mea-

surements of sparse signals are available, such as communication systems [64, 70], audio

processing [71], biomedical and physiological signals [72]. Another application area is the

phase unwrapping problem studied in applications like optical metrology [73], magnetic

resonance imaging (MRI) [74] and synthetic aperture radar [75]. In the somewhat restric-

tive setting where the modulo-CS measurements are assumed to span at most two periods

(the raw measurements lie in the interval [−1, 1), while the modulo measurements are in

[0, 1)), [69] proposes an algorithm and analyzes the sample complexity under Gaussian
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measurement matrices. In [70], a generalized approximate message passing algorithm tai-

lored to modulo-CS was proposed by assuming a Bernoulli-Gaussian distribution on the

sparse signal. The results in these papers suggest that sparsity is very useful in the recov-

ery of signals from modulo-CS measurements. However, a theoretical understanding of the

minimal number of measurements for the identifiability of sparse signals from modulo-CS

observations has not been developed to date.

In this chapter, we address the identifiability issue in the modulo-CS problem. The

problem setup is presented in Section 4.1. In Section 4.2, we derive necessary and sufficient

conditions on the measurement matrix under which sparse signals are identifiable under

modulo-CS measurements. A novel algorithm for modulo-CS recovery is presented in

Section 4.3 and theoretical guarantees for unique recovery are derived.

4.1 Modulo Compressed Sensing

In this section, we describe the modulo-CS problem and present an optimization problem

for this setup.

Let x ∈ RN denote an s-sparse vector, i.e., ‖x‖0 ≤ s, with s < N
2

. For ease of exposition,

instead of SR-ADC transfer function given in (4.1), we consider an equivalent modular

arithmetic which returns the fractional part of a real number, i.e., it returns JtK , t−btc.

We obtain m projections of x as follows:

zi = J〈ai,x〉K, i = 1, 2, . . . ,m. (4.2)

Usually, m ≤ N in the compressed sensing paradigm, but we will also present extensions

to dense vectors (s ≥ N
2

) in the overdetermined system setup (m > N).
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Stacking the projections 〈ai,x〉 as a vector y, we can rewrite (4.2) in a form similar to

the CS framework as

z = JyK = JAxK, (4.3)

where A =
[
a1 a2 . . . am

]T
∈ Rm×N is the measurement matrix and J·K represents the

element wise modulo-1 operation on a vector, as before.

The non-linearity introduced by the modulo operation along with the underdetermined

compressive measurements could lead to an indeterminate system, i.e., it may not have a

unique solution. In this chapter, we explore the role of sparsity in uniquely recovering an

s-sparse input signal x from the modulo-CS measurements z obtained using (4.3).

P0 formulation

Any real valued vector y ∈ Rm can be uniquely decomposed as y = z + v, where z ∈

[0, 1)m and v ∈ Zm denote the fractional part and integer part (the floor function) of y,

respectively. Using this decomposition, the non-linearity in (4.3) can be represented using

a linear equation Ax = z + v. The following proposition uses this decomposition to state

an equivalent optimization problem (P0) for the unique recovery of x from z.

Proposition 4 (P0 optimization). Given A ∈ Rm×N , an s-sparse x ∈ RN , and modulo-CS

measurements z , JAxK, the following statements are equivalent:

1. The vector x is a unique s-sparse vector w that satisfies Aw = y with y = z + v

and v ∈ Zm.

2. The vector x is the unique solution of

arg min
w,v

‖w‖0 subject to Aw = z + v; v ∈ Zm. (P0)
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Proof. (1)⇒ (2): Let x be the unique s-sparse solution of Aw = y with y = z + v where

z = JAxK and v ∈ Zm. Then a solution x# of (P0) is s-sparse and satisfies Ax# = z + v,

so that x = x#. The implication (2)⇒ (1) is direct.

Thus, unique identifiability of an s-sparse x from modulo-CS measurements is equivalent

to the existence of a unique solution to (P0), which we discuss next.

4.2 Identifiability

In this section, we derive conditions under which (P0) admits a unique s-sparse solution,

which is presented in the following Lemma.

Lemma 2 (Necessary and sufficient conditions). Any vector x satisfying ‖x‖0 ≤ s < N
2

is an unique solution to the optimization problem (P0) if and only if any 2s columns of

matrix A are linearly independent of all v ∈ Zm.

Proof. We first prove sufficiency by contradiction. Let z = JAxK, x is an s-sparse vector,

and A ∈ Rm×N . Suppose the optimization problem (P0) returned another s-sparse vector

x# (so that ‖x#‖0 ≤ s), then

A(x− x#) = v⇒ AS(xS − x#
S ) = v ∈ Zm,

where the set S is the union of the supports of x and x#. Since |S| ≤ 2s, a set of 2s

columns of A span an integer vector v, which violates the condition in the Lemma.

To prove the necessary part, suppose ∃S such that |S| = 2s and 0 6= u ∈ R2s such

that ASu = v, where v ∈ Zm. We construct two s-sparse vectors x0,x# ∈ RN from u,

where the first s indices of S constitute the support of x0 with the values equal to first s
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entries of u, and the remaining s entries of S constitute the support of x# with the values

equal to the corresponding s entries of u. Also, define z = JAx0K and y0 = Ax0, so that

y0 = z + v0 for some v0 ∈ Zm. Then, using ASu = v, we have Ax# + Ax0 = v which

implies y0 − v = −Ax#. Thus, −x# is also a solution to the optimization problem since

‖x#‖0 ≤ s and J−Ax#K = Jy0 − vK = z, which is a contradiction.

The following corollary presents a similar result for the recovery of dense vectors, which

requires m > N (overdetermined system).

Corollary 1. Any vector x satisfying ‖x‖0 ≥ N
2

is a unique solution to Aw = y with

y = JAxK + v and v ∈ Zm if only if the columns of matrix A are linearly independent

of all v ∈ Zm. Consequently, the minimum number of measurements required for unique

recovery is m = N + 1.

Proof. The sufficiency part of the proof is similar to that of Lemma 2. The difference stems

from the fact that the vector x−x# can be any N length vector in the dense case and hence,

A
(
x− x#

)
= v violates the condition that the columns of A are linearly independent

of all v ∈ Zm. For the necessary part, consider u ∈ RN such that Au = v ∈ Zm and a

decomposition u = x + x#. Similar to the proof of Lemma 2, it is evident that both x

and x# result in the same modulo measurements. Hence, we have a contradiction, and

the condition in the corollary is necessary. Finally, since the columns of A are linearly

independent of all v ∈ Zm, the minimum number of rows of A should be N + 1, thus

proving the the corollary.

To compare the modulo-CS problem to the standard CS problem, we state two necessary

conditions for modulo-CS recovery in the corollary below.
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Corollary 2. The following two conditions are necessary for recovering any vector x

satisfying ‖x‖0 ≤ s as a unique solution of the optimization problem (P0):

1. Any 2s columns of A are linearly independent., and

2. m ≥ 2s+ 1.

Proof. From Lemma 2, for unique recovery of s-sparse signals from modulo-CS measure-

ments, it is necessary that any 2s columns of A are linearly independent of all v ∈ Zm.

The first condition is necessary since if any 2s columns of A are not linearly independent,

they cannot be linearly independent of an integer vector. Also, since any 2s+ 1 vectors of

dimension less than 2s+1 are linearly dependent, m ≥ 2s+1 is required for the necessary

condition to hold true, and thus we arrive at the second condition.

Comparing the above result to the necessary and sufficient conditions for the (P0−CS)

optimization problem in standard compressed sensing problem discussed in Section 1.2.1,

we can observe two important differences. First, the first condition in the corollary is

both sufficient and necessary for the standard-CS, but in modulo-CS a stronger condition

given in Lemma 2 is required for sufficiency. Second, the number of measurements m = 2s

is necessary and sufficient for unique sparse signal recovery in the standard CS setup [7].

Thus, we see that the penalty for unique sparse signal recovery due to the modulo operation

is just one additional measurement. In fact, although the above corollary shows that

the minimum number of measurements needed to reconstruct all s-sparse vector from its

modulo measurements is 2s + 1, in the following theorem we will show that m = 2s + 1

measurements are also sufficient.
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Theorem 5 (Sufficiency). For any N ≥ 2s + 1, there exists a matrix A ∈ Rm×N with

m = 2s+1 rows such that every s-sparse x ∈ RN can be uniquely recovered from its modulo

measurements z = JAxK as a solution to (P0).

Proof. Let A ∈ R(2s+1)×N be a matrix for which at least one s-sparse vector x cannot be

recovered from its modulo measurements z = JAxK via (P0). Hence, A does not satisfy

the condition in Lemma 2. We will show that the set of all such matrices is of Lebesgue

measure 0. To this end, we define two sets:

1. Let V = {v|v ∈ Zm} denote the countably infinite set of all integer vectors.

2. Let S = {T |T ⊂ [N ], |T | = 2s} denote the set of all index sets on [N ] whose cardi-

nality is 2s. Note that the cardinality of S is
(
N
2s

)
.

For a given u ∈ V and S ∈ S, construct B(u,S) =
[
u AS

]
. Hence, the condition in

Lemma 2 fails if det (B(u,S)) = 0. This is a nonzero polynomial function of the entries of

AS , and therefore the set of matrices which satisfy this condition have Lebesgue measure 0.

Now, consider ∪S∈S∪u∈V {A| det (B(u,S)) = 0}. This is a finite union of countable unions

of Lebesgue measure 0 sets and hence is also of Lebesgue measure 0. Hence, a matrix A

chosen outside of this set will ensure that any s-sparse vector x can be recovered from its

modulo measurements y = JAxK.
Remark 1: If the entries of A are drawn independently from any continuous distribution,

A lies outside the set of Lebesgue measure 0 described in Theorem 5 and hence is a valid

candidate for modulo-CS recovery.

Remark 2: From [76, Proposition 1], for any integer vector a ∈ ZK and x ∈ RK it holds

that JaT JxKK = JaTxK. As consequence, if the entries of A are integers, then the two
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vectors x and JxK result in the same modulo measurements, and hence a unique recovery

is not possible. Hence, integer matrices cannot be used as candidate measurement matrices

for modulo-CS.

Remark 3: Extending Theorem 5 to dense vectors similar to Corollary 1, it can be shown

that m = N + 1 suffices for unique recovery of all x ∈ RN .

We next study the recoverability of sparse vectors when the `0-norm in (P0) is replaced

with the `1-norm, thus making the objective function convex.

4.3 Convex Relaxation Based Algorithm

In the previous section, we derived conditions for unique sparse vector recovery from

modulo-CS measurements via (P0). However, both the objective function and the con-

straint set of (P0) are non-convex, and solving it requires an exhaustive search over all

possible index sets and integer vectors of length m. Instead, in this section, we consider

an alternative optimization problem using a convex relaxation to the objective function,

and study its performance.

Replacing the `0-norm in (P0) with the `1-norm, we obtain the combinatorial optimization

problem:

arg min
x,v

‖x‖1 subject to Ax = z + v; v ∈ Zm. (P1)

4.3.1 Integer Range Space Property

In order to develop conditions on A for unique recoverability of the original sparse vector

via (P1), we introduce the following property and show that it is both necessary and

sufficient for the recovery of all s-sparse vectors using the (P1) problem.
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Definition 2 (Integer range space property (IRSP)). A matrix A is said to satisfy the

IRSP of order s if, for all sets S ⊂ [N ] with |S| ≤ s,

‖uS‖1 < ‖uSC‖1,

holds for every u ∈ RN with Au = v ∈ Zm.

Remark 4: In the above, if the integer vector v is replaced with the all zero vector, the

IRSP boils down to the null space property, which is necessary and sufficient for the `1

norm based relaxation of the standard CS problem.

Theorem 6 (`1 recovery from modulo-CS). Every s-sparse x is the unique solution of

(P1) if and only if the matrix A satisfies the IRSP of order s.

Proof. Consider a fixed index set S with |S| ≤ s, and suppose that every x supported on

S is a unique minimizer of (P1). Then, for any u such that Au = v ∈ Zm, the vector uS

is the unique minimizer of (P1). But, A(uS + uSC) = v. Thus, ‖uS‖1 < ‖uSC‖1, which

proves the necessary condition. Conversely, suppose that the IRSP holds with respect to

the set S. Consider x supported on S and another vector x# that result in the same

modulo measurements, i.e., Ax + v1 = Ax# + v2, where v1 and v2 are integer vectors.

Letting u = x − x#, the vector Au = v2 − v1 = v ∈ Zm. Hence, by virtue of the IRSP,

‖uS‖1 < ‖uSC‖1. Then,

‖x‖1 ≤ ‖x− x#
S ‖1 + ‖x#

S ‖1

= ‖uS‖1 + ‖x#
S ‖1

< ‖uSC‖1 + ‖x#
S ‖1 = ‖ − x#

SC‖1 + ‖x#
S ‖1 = ‖x#‖1.
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Thus, x is the unique minimizer of (P1), and thus the IRSP relative to S is sufficient.

Finally, letting S vary, we see that A satisfying the IRSP of order s is necessary and

sufficient.

The above theorem shows that the IRSP is a key property for guaranteeing sparse vector

recovery from modulo-CS measurements via (P1). In the following subsection, we restrict

the possible set of s-sparse vectors catering to certain practical applications and provide

conditions for recovery of the restricted set of vectors.

4.3.2 L-restricted Integer Range Space Property

In practical applications, one can usually assume that there exists an integer l for which

the measurements y = Ax satisfy ‖y‖∞ < l, which results in the measurements spanning

a maximum of 2l modulo periods, thus reducing the search space for the vector v to (2l)m

possible integer vectors. For this setup, the (P1) problem can be modified (denoted as

P1,l problem) to include the additional constraint ‖Ax‖∞ < l to restrict the set of feasible

solutions, resulting in:

arg min
x,v

‖x‖1

subject to Ax = z + v; v ∈ Zm; ‖Ax‖∞ < l (P1,l)

We define a restricted integer range space property to study the guarantees for this setup.

Definition 3 (L-restricted integer range space property (L-restricted IRSP)). A matrix

A is said to satisfy the L-restricted integer range space property of order s if for all sets

S ⊂ [N ] with |S| ≤ s,

‖uS‖1 < ‖uSC‖1,
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holds for every u ∈ L ⊆ {u|Au = v ∈ Zm}.

We introduce three sets and derive necessary and sufficient conditions for the P1,l problem

using the restricted integer range space property with respect to these sets.

Proposition 5. Consider two sets Lk and Kk,S defined for k ∈ Z and S ⊆ [N ]:

1. Lk = {u|Au = v ∈ Zm, ‖v‖∞ ≤ k}

2. Kk,S = {u|Au = v ∈ Zm, ‖AuS‖∞ < k, ‖AuSC‖∞ < k}

Then Kk,S ⊂ L2k−1∀S and Kk =
⋃
S:|S|≤s(Kk,S) ⊆ L2k−1.

Proof. Let u ∈ Kk,S . Then,

‖v‖∞ = ‖Au‖∞

≤ ‖AuS‖∞ + ‖AuSC‖∞ < 2k

Since v ∈ Zm, the above strict inequality can be rewritten as ‖v‖∞ ≤ 2k − 1. Hence

u ∈ L2k−1. This holds true for all S and hence if u belongs to union over all S with 2s

entries, it belongs to L2k−1. Hence both Kk,S and Kk are subsets of L2k−1.

The following theorem presents the conditions on A for unique recovery of s-sparse

vectors from (P1,l) optimization problem.

Theorem 7. Given a matrix A ∈ Rm×N , the guarantees for unique recovery of every

s-sparse vector x as a solution to (P1) with the additional constraint ‖Ax‖∞ < l are:

� Necessary condition: A satisfies Kl,S-restricted IRSP for all sets S with |S| ≤ s.

Equivalently, A satisfies Kl-restricted IRSP.



Chapter 4. 87

� Sufficient condition: A satisfies L2l−1-restricted IRSP.

Proof. We first prove the necessary condition. Given a fixed index set S, let us assume

that every s-sparse vector x supported on S satisfying the condition ‖Ax‖∞ < l is a

unique minimizer of the (P1,l) optimization problem. Then for any u ∈ Kk,S , uS is the

unique minimizer of the (P1,l) problem. But, A(uS + uSC) = v. Thus, ‖uS‖1 < ‖uSC‖1.

This holds for all S with |S| ≤ s, thus establishing the necessary condition.

To prove sufficient condition, let us assume that the L2l−1-restricted IRSP holds. Then for

a given index set S of order s, consider two vectors x supported on S and x# which satisfy

the condition ‖Ax‖∞ < l and ‖Ax#‖∞ < l that result in the same modulo measurements,

i.e. Ax+v1 = Ax#+v2 (where v1 and v2 are integer vectors, which take values in [−l+1, l]

due to the norm condition). Considering u = x−x#, the integer vector v = Au = v2−v1,

can take values in [−(2l − 1), (2l − 1)]. Then, since u ∈ L2l−1,

‖x‖1 ≤ ‖x− x#
S ‖1 + ‖x#

S ‖1

= ‖uS‖1 + ‖x#
S ‖1

< ‖uSC‖1 + ‖x#
S ‖1 = ‖ − x#

SC‖1 + ‖x#
S ‖1 = ‖x#‖1

Thus, x is the unique minimizer of (P1). This holds for all possible index sets S of order

s, proving the sufficient condition.

The necessary and sufficient conditions do not coincide when k is finite. However, using

the relation betweenKl and L2l−1 as given in Proposition 5, the gap between two conditions

in Theorem 7 can be characterized by whether A satisfies the {L2l−1 \ Kl}-restricted IRSP.

At l =∞, i.e., when the restriction ‖Ax‖∞ < l is removed, the set characterizing the gap
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is a null set and hence both conditions boil down to the integer range space property. It

can also be observed that for the limiting condition l→ 0, both the necessary and sufficient

conditions boil down to the null space property used in the standard CS problem.

Both the IRSP and L-restricted IRSP were shown to be a key-property for obtaining

guarantees for the sparse recovery from modulo measurements via the `1 relaxation prob-

lem. Next, we present a practical algorithm for solving (P1,l) based on the mixed-integer

linear programming problem and empirically evaluate its performance.

4.3.3 Mixed Integer Linear Program (MILP)

In this subsection, we develop an algorithm to solve the (P1,l) problem. First, note that

since z ∈ [0, 1)m, the constraint ‖Ax‖∞ < l can be written as a bound on the extreme

values of entries of the integer vector v. Also, the `1 norm can be rewritten as a linear

function using two positive vectors x+ and x− such that x = x+ − x−. This leads to the

MILP formulation:

min
x+,x−,v

1T
(
x+ + x−

)

subject to
[
A −A −I

]
x+

x−

v

 = z; (4.4)

v ∈ Zm; x+,x− ≥ 0.

The MILP can be solved efficiently using the branch-and-bound algorithm [77]. Once x+

and x− are obtained, we can solve for x as x = x+ − x−.
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Fig. 4.1. Percentage of success recovery for MILP.

4.4 Simulation Results

We now empirically evaluate performance of the MILP for the modulo-CS problem. We

solve the MILP using the intlinprog function in the Matlab optimization toolbox. We set

N = 50, and for a given sparsity level ρ = s
N

, we randomly select ρN indices of the input

signal to be nonzero, and set the others to zero. The nonzero entries are drawn from either

the uniform or Gaussian distributions with zero-mean and different variances as specified

in the figures. For a given measurement ratio δ = m
N

, the entries of the measurement

matrix with δN rows are drawn from an i.i.d. Gaussian distribution with mean zero and

variance 1
m

.

We first present the phase transition curve of the MILP problem by plotting the success

rate over 1000 Monte Carlo simulations when the nonzero entries of the sparse signal are

obtained from a uniform distribution on [−1, 1], denoted by Unif [−1, 1]. From Fig. 4.1, we

see that the transition region between success and failure roughly follows the theoretical

result (solid line in red) in Theorem 5. In particular, the performance of the MILP based
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Fig. 4.2. Phase transition curves for 80% recovery accuracy.

algorithm, which is based on convex relaxation, is close to the theoretical bound for the

(P0) problem, i.e., it is near-optimal in the settings considered here.

In the next experiment, we compare the performance of the MILP algorithm when the

measurements span different number of modulo periods. To this end, we evaluate the

performance of the MILP for different distributions on the nonzero entries of the sparse

signal. We plot the minimum value of m required for 80% recovery accuracy (i.e., exact

recovery of the sparse signals in 80% of the random experiments) for sparsity levels varying

from 1 to N
2

in Fig. 4.2. For the Unif [−0.01, 0.01] curve, the measurements are always

in the range [−0.5, 0.5], and by shifting by 0.5, we obtain all measurements within a

single modulo period, hence the modulo operation does not introduce any nonlinearity.

As seen in the figure, the curve for Unif [−0.5, 0.5] which spans at least 2 modulo periods

is close to the Unif [−0.01, 0.01] case without the modulo operation. When the variance

of the signal is low, MILP performs close to the theoretical limit for the minimal number

of measurements required. However, with increase in variance of the input signal, the

measurements span a larger number of modulo periods, and the performance starts to



Chapter 4. 91

deteriorate. We also notice that the simulated curves for the Unif [−0.01, 0.01] and Unif

[−0.5, 0.5] cases cross the theoretical bound for sparsity levels beyond s = 18. There are

two reasons for this. First, the simulated curves correspond to 80% recovery success rate,

while the theoretical results were for perfect recovery of all sparse signals. Second, the

simulated curves are for specific source distributions, while the theoretical result is for

arbitrary (even adversarially chosen) sparse vectors. Nonetheless, the theoretical curve

forms a useful benchmark for the performance of modulo-CS recovery algorithms.

4.5 Chapter Summary

In this chapter, we considered the problem of recovering sparse signals from modulo com-

pressed sensing measurements. We presented an equivalent optimization problem for the

modulo-CS setup using the `0 norm. For this optimization problem, we showed that the

2s + 1 measurements are necessary and sufficient for recovering s-sparse signals. Finally,

we considered a convex relaxation for the `0-norm and presented an algorithm based on

mixed-integer linear programming. For this algorithm, we obtained theoretical guarantees

as a property of the measurement matrix.
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Conclusion

In this final chapter, we present the key contributions presented so far, and discuss the

significance of these results for the channel estimation problem. We then conclude by

discussing some extensions to these results and open questions that are promising for

future work.

5.1 Summary of Contributions

The problems addressed in this thesis can be structured into two setups; sparse signal

recovery in the presence of intra-vector correlation and sparse signal recovery from mod-

ulo measurements. We list the specific contributions associated with each setup in the

following subsections.

Sparse signal recovery in the presence of intra-vector correlation

In this setup, we explored the sparse recovery problem when the nonzero entries of the

sparse vector are correlated with each other, termed as correlated sparse recovery. To

this end, we first explored the covariance matching framework and presented the effect

92
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of intra-vector correlation on the algorithms which neglect the presence of correlation.

To obtain better recovery performance by exploiting the correlation, we presented a novel

prior model that has the potential to promote both sparsity and correlation. We developed

a Bayesian inference algorithm named Corr-SBL for recovering correlated sparse vectors

in an MMV setting, and showed that Corr-SBL comes under the purview of covariance

matching algorithms. For the case with imperfect correlation information, we presented

an approach for learning the correlation. The framework developed in this setup has the

potential to be useful in applications such as imaging [78], face recognition [79], biomedical

and physiological signals [80,81], where the intra-vector correlation can be useful to better

fit the structures in the signal. To study the performance of the proposed algorithm, we

considered a case study of mmWave channel estimation problem under scenarios such as

rain attenuation, where the channel estimation can be represented as a correlated sparse

recovery problem. Using the plug-in LMMSE structure of covariance matching algorithms,

we provided analytical expressions for the normalized mean square error and spectral effi-

ciency of the system and discussed the efficacy of the Corr-SBL prior. Experimental results

for both simulated data and a practical channel model suggested that Corr-SBL outper-

forms the existing approaches and achieves close to genie-aided optimal performance in a

wide range of scenario. For practical implementation, an online version of the algorithm

was considered which reduces latency at a slight loss in NMSE.

Sparse signal recovery from modulo measurements

This setup was motivated by the use of low resolution ADCs, where the quantization range

is small to reduce quantization errors. To counter the effect of clipping that can occur
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if input crosses the range, we considered the measurement model where the compressed

measurements of the signal are observed through modulo operation, termed as modulo-CS.

We presented an optimization problem for the recovery of sparse vectors under this setup

using the `0-norm. We then derived conditions on the measurement matrix to guarantee

unique recovery from the optimization problem and showed that 2s+ 1 measurements are

necessary and sufficient for recovery of all s-sparse signals. For algorithmic tractability, we

presented convex relaxation of the `0-norm using `1-norm and formulated a mixed integer

linear program (MILP) to recover the sparse signals. We also presented a property of the

measurement matrix called integer range space property and derived recovery guarantees

for the MILP algorithm.

5.2 Future Work

Some possible avenues for future work related to the results presented in the thesis are:

� Correlated sparse recovery

The Corr-SBL algorithm uses a pragmatic approach to learn the correlation. A

principled method to learn the correlation can possibly lead to faster convergence of

the algorithm. Furthermore, the Corr-SBL framework can be used to derive model-

based deep learning approaches that can lead to faster recovery algorithms that

perform similar to Corr-SBL.

� Extensions in mmWave channel estimation application

Exploiting the inter-vector correlation among channels across blocks in addition to

intra-vector correlation can be beneficial. Similarly, exploiting correlation among

sub-carriers when Corr-SBL is applied to sub-carriers in an OFDM system can be
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useful in frequency-selective channels. Off-grid based Corr-SBL algorithm to solve

grid mismatch issues is also an important direction for future work.

� Modulo-CS recovery

The thesis considered modulo-CS in a noiseless setting. For practical purposes,

it is important to extend the setup for noisy scenarios and design algorithms for

the same. In an algorithmic standpoint, applications of frameworks such as sparse

Bayesian learning, variational Bayes can result in better recovery performance. Fur-

ther, deriving sample complexity of these algorithms including the MILP algorithm

is an interesting direction for future work.

� Modulo quantizers The main application of modulo-CS is for the design of low-

resolution ADCs. Towards this, integrating finite resolution quantizers with the

modulo-CS framework will be important. The tradeoff between the number of folds

and the quantization levels will be a key question to be studied. Design of optimal

quantizers, algorithms to recover from quantized measurements in the modulo-CS

scenario are few of the other directions for future work in this emerging area.

To conclude, the results in the thesis have potential in a number of applications, with a

common application area and the main motivation of this thesis being the mmWave chan-

nel estimation problem. While the thesis presented a framework for exploiting correlation,

measurement campaigns to model the correlation structure seen in practice is required to

fine-tune the algorithms for practical implementation. Further, integrating both correlated

sparse recovery and modulo-CS for the channel estimation problem will pose additional

challenges in the design of the communication systems, and is an important direction for

further work due to the role of mmWave systems in the future of cellular communication.
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Birkhäuser, 2013.

[8] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans.

Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[9] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery of block sparse

signals with intra-block correlation,” IEEE Trans. Signal Process., vol. 61, no. 8, pp. 2009–

2015, 2013.

[10] D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving the simultaneous

sparse approximation problem,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704–3716,

Jul. 2007.

96



BIBLIOGRAPHY 97

[11] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sens-

ing,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982–2001, 2010.

[12] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, “Distributed

compressed sensing of jointly sparse signals,” in Proc. Asilomar Conf. on Signals, Syst., and

Comput., 2005, pp. 1537–1541.

[13] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors

using sparse Bayesian learning,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp.

912–926, 2011.

[14] H. Zhang, S. Venkateswaran, and U. Madhow, “Channel modeling and MIMO capacity for

outdoor millimeter wave links,” in Proc. WCNC, 2010, pp. 1–6.

[15] M. K. Samimi, G. R. MacCartney, S. Sun, and T. S. Rappaport, “28 GHz millimeter-wave

ultrawideband small-scale fading models in wireless channels,” in IEEE Veh. Technol. Conf.,

May 2016, pp. 1–6.

[16] L. Sanguinetti, E. Björnson, and J. Hoydis, “Toward massive MIMO 2.0: Understanding

spatial correlation, interference suppression, and pilot contamination,” IEEE Trans. Com-

mun., vol. 68, no. 1, pp. 232–257, 2020.

[17] A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling,” in Proc. SampTA,

2017, pp. 31–35.

[18] A. Bhandari and F. Krahmer, “On identifiability in unlimited sampling,” in Proc. SampTA,

2019, pp. 1–4.

[19] D. Prasanna and C. R. Murthy, “On the role of sparsity and intra-vector correlation in

mmwave channel estimation,” in Proc. SPAWC, May 2020, pp. 1–5.

[20] D. Prasanna and C. R. Murthy, “mmWave channel estimation via compressive covariance

estimation: Role of sparsity and intra-vector correlation,” IEEE Trans. Signal Process.,

vol. 69, pp. 2356–2370, 2021.

[21] M. Azizyan, A. Krishnamurthy, and A. Singh, “Extreme compressive sampling for covari-

ance estimation,” IEEE Trans. Inf. Theory, vol. 64, no. 12, pp. 7613–7635, Dec. 2018.

[22] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation

matrix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371, Sep. 2001.



BIBLIOGRAPHY 98

[23] J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,”

The Amer. Statistician, vol. 42, no. 1, pp. 59–66, 1988.

[24] S. Khanna and C. R. Murthy, “On the support recovery of jointly sparse gaussian sources

using sparse bayesian learning,” arXiv preprint arXiv:1703.04930, 2020.

[25] S. Haghighatshoar and G. Caire, “Multiple measurement vectors problem: A decoupling

property and its applications,” CoRR, vol. abs/1810.13421, 2018.

[26] P. Pal and P. P. Vaidyanathan, “Pushing the limits of sparse support recovery using corre-

lation information,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 711–726, 2015.
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