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Abstract—In this paper, we address the problem of observabil-
ity of a linear dynamical system from compressive measurements
and the knowledge of its external inputs. Observability of a high
dimensional system state in general requires a correspondingly
large number of measurements. We show that, if the initial
state vector admits a sparse representation, the number of
measurements can be significantly reduced by using random
projections for obtaining the measurements. Our analysis gives
sufficient conditions for the restricted isometry property of the
observability matrix to hold, which leads to guarantees for the
observability of the system. Our results depend only on the
properties of system transfer and observation matrices, and
are derived using tools from probability theory and compressed
sensing. Unlike the prior work in this direction, our results are
applicable to systems with an arbitrary nonzero system transfer
matrix. Moreover, our results are stronger than the existing
results in the regime where they are comparable.

Index Terms—Linear dynamical systems, observability, com-
pressed sensing, sparse signal recovery

I. INTRODUCTION

Observability is an important notion in control theory. It
is concerned with the question of how well the state of a
linear dynamical system can be inferred from its observations
and inputs [2]. The classical observability problem involves
solving a linear system of equations:

ỹ(K) = Ã(K)x0, (1)

where the measurement vector ỹ(K) and the observability
matrix Ã(K) are known, and we need to estimate x0 exactly.1

The standard results from linear algebra state that a discrete
time system is observable if the rank of the observability
matrix Ã(K) equals the system dimension [3]. This result
applies to the general formulation of the problem, and hence,
a large number of measurements are required to recover the
initial state for systems with a high dimensional state [4]–[6].
However, if the initial state of the system is known to admit a
sparse representation in a suitable basis, the number of mea-
surements required can be potentially reduced by exploiting
this additional information. For example, diffusion processes
in complex networks that model phenomena like disease or
epidemic spreading in the human society [7], [8], air or water
pollution [9], [10], virus spreading in computer and mobile
phone networks [11], [12], information propagation in online
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1We discuss the system model in detail in Section II.

social networks [13], [14], etc., are known to have a sparse
initialization. Identifying the initial state of these processes
accurately is a critical first step towards their control [15].
Thus, a key problem in this context is the recoverability of the
sparse system state using as few measurements as possible.
Further, in some cases, the measurements are obtained as
random linear projections of the system state. For example, in
the problem of finding the source of pollution in a water body
or in the atmosphere, measurements collected from sensors
placed at spatially random locations can be mathematically
modeled as random linear projections of the system state [16]–
[19]. Hence, in this paper, we provide guarantees on the
observability of a system when the observability matrix is
random and possibly rank deficient, and the initial state admits
a sparse representation. Our work is motivated by the results
from the area of sparse signal recovery or compressive sensing
which studies the theory and algorithmic development for
finding sparse solutions to underdetermined linear systems of
equations [20]–[22]. As these results serve as the point of
departure for our work, we discuss them in the next subsection.

A. Recovery Guarantees in Compressed Sensing

The most popular approach to establishing guarantees for
the exact recovery of an unknown sparse vector from un-
derdetermined linear measurements is through the so-called
restricted isometry property (RIP) [23], defined as follows.
An observability matrix Ã(K) is said to satisfy the s-RIP with
restricted isometry constant (RIC) δs if δs ∈ (0, 1), where

δs , inf

{
δ : 1− δ ≤

∥∥∥Ã(K)z
∥∥∥2 ≤ 1 + δ,

∀ ‖z‖ = 1, and ‖z‖0 ≤ s
}
. (2)

Some examples of RIP based guarantees for exact recovery of
sparse vectors with `0 norm at most s are as follows:
• δs < 1/3 and δ2s <

√
1/2, (more generally, δts <√

(t− 1)/t for t ≥ 4/3 and δts <
√
t/(4− t) for

0 < t < 4/3) are sharp for recovery using basis
pursuit [24]–[26]

• δ2s < δ(p) for 0 < p ≤ 1 is sharp for recovery using `p
minimization2 [27]

• δ3s < 1/8 is sufficient for recovery via the iterative hard
thresholding algorithm [28]

• δs+1 <
1√
s+1

is sufficient for recovery via the orthogonal
matching pursuit (OMP) algorithm [29]

2We omit the definition of δ(p) specified in [27].
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The RIP also ensures that the recovery process is robust to
noise and is stable when the unknown vector is not precisely
sparse. Thus, in order to establish bounds on the number of
measurements, it is necessary to derive conditions under which
the observability matrix satisfies the RIP. In this work, we
analyze the RIP of the structured random observability matrix
arising out of a linear dynamical system.

B. Related Work

Our work focuses on two aspects: first, we explore the
connection between compressed sensing and observability of
the state of a linear dynamical system, and second, we derive
sufficient conditions for state recovery by analyzing the RIP
of the observability matrix. In our case, the observability
matrix is a random matrix with a special structure. Hence,
the existing results from the compressed sensing literature
cannot be directly applied to our problem. In this subsection,
we provide review the past literature in this direction.

1) Compressed sensing and observability: The connection
between the compressed sensing and linear dynamical systems
is a nascent topic, and has only recently been studied in the
literature. The design of control algorithms based on sparsity
in the state using tools from compressed sensing is presented
in [30]. However, this paper does not discuss guarantees for
recoverability of the system state in the proposed framework.
On the other hand, [31], [32] assert that a linear dynamical
system is observable if the observability matrix satisfies the
RIP. However, conditions under which the observability matrix
satisfies RIP are not discussed.

The results in [16]–[18] characterize the number of mea-
surements required for the exact recovery of the initial state
in a stochastic setting. However, the results are useful only
under somewhat overly restrictive conditions such as the
system transfer matrix being unitary, the observation matrices
being i.i.d. Gaussian, and the initial state being sparse in the
canonical basis. Moreover, those results depend on the smallest
singular value of the transfer matrix. As a consequence, they
are not independent of scaling of the transfer matrix. In our
recent work [1], we derived an initial set of results on the
observability of the system considered in this paper. That
work is limited to the case when the observation matrices
are random and mutually independent, and the initial state is
sparse in the canonical basis. However, in many applications,
due to hardware constraints, the measurement process could
involve linear projection using a single, randomly selected
matrix, rather than an independent matrix for each measure-
ment instant. Hence, it is more pertinent to derive recovery
guarantees for the case when the observation matrix is fixed,
but equal to an instantiation of a random matrix. Direct
extension of the techniques in [1] yields a weak result, where
the sufficient condition for observability does not improve
with the number of measurements available. In this paper,
we present a different, new analysis to obtain guarantees for
uniform recovery of the state for the identical observation
matrices cases. We also study the problem of joint recovery
of the initial state and sparse input vectors, which was not
considered in [1].

2) RIP of structured random matrices: We list a few types
of structured random matrices which have been shown to
satisfy the RIP in the literature:
• Subsampled bounded orthonormal systems [33], [34]
• Partial random circulant matrices and partial random

Toeplitz matrices [35]–[37]
• Block diagonal measurement matrices where each block

on the main diagonal is a subgaussian random matrix [38]
• The column-wise Khatri-Rao product of two matri-

ces [39].
As we will see, the RIP of the structured random observability
matrix that arises in our problem has not been studied in
the past. Hence, it requires new analysis using tools from
non-asymptotic random matrix theory. This leads us to our
contributions in this paper, which we summarize next.

C. Our Contributions

In this work, we derive guarantees on recoverability of
the sparse initial state of a linear dynamical system under a
stochastic setting for two cases: (i) the observation matrices
at different time instants are independent and identically
distributed (i.i.d.) subgaussian random matrices; (ii) the obser-
vation matrices at all time instants are identical, and equal to a
subgaussian random matrix. Our contributions are as follows:
• Independent observation matrices: We analyze the RIP of

the observability matrix when the mutually independent
observation matrices have i.i.d. subgaussian entries in
Section III. Our results show that Km = O(s lnN) to
ensure observability with high probability, where m is
the number of observations per time instant and K is
the number of time steps over which observations are
collected. Also, s and N denote sparsity and length of
the initial state vector, respectively. We provide a detailed
discussion on the implications of the result. We also
show that our results are more general and stronger than
existing results in the literature.

• Identical observation matrices: We study the conditions
on Km for the system to observable when the observa-
tion matrices are identical in Section IV. We show that
Km = O(s ln2 s ln2N) is sufficient for exact recovery.
This result is on par with recovery with an unstructured
subgaussian random matrix of the same size.

• Joint recovery of sparse input vectors and initial state:
We generalize the above results to the problem of re-
covering both the sparse initial state as well as the set
of input vectors, which are also assumed to be sparse.
We give lower bounds on the number of measurements
required to jointly recover both the sparse initial state
and the sparse input vectors in Section V, under both
independent and identical observation matrices.

In summary, we show that systems that are unobservable using
classical control theory can be observable when the underlying
sparsity is exploited. Also, our intermediate results could be
of independent interest as we analyze the RIP of independent
or identical subgaussian matrices with rows right-multiplied
by different, arbitrary matrices.
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Notation: In the sequel, boldface small letters denote vec-
tors, boldface capital letters denote matrices, and calligraphic
letters denote sets. The symbol R denotes the set of real
numbers. Also, Ai and Ai,j denote the ith column and (i, j)th

entry of the matrix A, respectively. The symbols ‖ · ‖, ‖ · ‖1
and (·)T denote the `2 norm, the `1 norm, and the transpose
of a vector (or a matrix), respectively. We use ‖ · ‖2 and
‖·‖F to denote spectral norm and Forbenius norm of a matrix,
respectively. The notation I represents the identity matrix and
0 represents the all zero matrix (or vector). We use P{·} to
denote the probability of an event, and E {·} to denote the
expectation operator.

II. SYSTEM MODEL

We consider the following discrete-time linear system:

xk+1= Dxk, (3)
yk = A(k)xk, (4)

for discrete time instants k = 0, 1, . . . ,K − 1. Here, D ∈
RN×N is a nonzero system transfer matrix and A(k) ∈
Rm×N ,m � N is the observation matrix of the system at
time instant k. We are interested in the observability of the
system when the initial state is sparse. We make the following
points before proceeding further:
(a) Observability of the initial sparse state x0 implies the

observability of xk for all k.
(b) In (3), we do not include an innovation term. Since we

are considering the problem of system observability, the
system input is assumed to be known. We can therefore
simply subtract its effect from the system evolution as well
as observation equations, resulting in the system model
given by (3) and (4). We consider the joint recovery of
the initial state and sparse innovation terms in Section V.

(c) The system equations do not consider measurement noise
or model mismatch. However, in the presence of these im-
pairments, our results can be extended to robust recovery
of the initial state; we discuss this in Section IV-C.

In view of the above, we formally define the notion of
observability as follows:

Definition 1 (Observability). A system is said to be observable
if any unknown s−sparse initial state x0 can be determined
uniquely from the outputs {yk}

K−1
k=0 , the transfer matrix D,

and the observation matrices
{
A(k)

}K−1
k=0

.

To recover the sparse initial vector, we consider the follow-
ing equivalent linear system at time K:

ỹ(K) = Ã(K)x0, (5)

where the measurement vector ỹ(K) ∈ RKm and the observ-
ability matrix Ã(K) ∈ RKm×N are defined as

ỹ(K) =


y0

y1
...

yK−1

 , Ã(K) =


A(0)

A(1)D
...

A(K−1)D
K−1

 . (6)

In order to ensure the recovery of x0 from (5) using sparse
signal recovery techniques, we need to analyze the RIP of the
observability matrix Ã(K). This, in turn, yields bounds on the
number of measurement vectors required to recover any sparse
initial state.

Before launching into the RIP analysis, we note that an
overall scaling does not affect the RIP of a matrix. Now, let
λmax 6= 0 be the largest singular value of D. We can rewrite
(5) as

L̃(λmax)ỹ(K) = L̃(λmax)Ã(K)x0, (7)

where λmax =
[
1 λmax . . . λK−1max

]T
∈ RK and the

matrix function L̃(λ) : RK → RKm×Km is defined as

L̃(λ) =
1√
Km


λ1I

λ2I
. . .

λKI


−1

, (8)

where λk denotes the kth element of the vector λ, and all the
identity matrices are of size m × m. Therefore, we get the
following relation:

L̃(λmax)Ã(K) =


A(0)

A(1)D̄

. . .

A(K−1)D̄
K−1

 (9)

where D̄ = D/λmax has the largest and the smallest singular
values as 1 and λ, respectively. Here, λ is the ratio of the
smallest to the largest singular value of D. Analyzing the
recoverability of x0 from (7), which is equivalent to (5),
requires one to study the RIP of the matrix L̃(λmax)Ã(K).
Therefore, in this paper, we focus on the RIP of such a scaled
version of Ã(K).

III. RIP FOR INDEPENDENT OBSERVATION MATRICES

In this section, we present a result on the RIP of the
observability matrix when the observation matrices A(k) are
independent random matrices, and discuss its implications. We
need the following definition of a subgaussian random variable
and matrix to state the main result of the section.

Definition 2 (Subgaussian random variable and matrix). A
random variable A is said to be subgaussian with parameter
c if, for any θ ∈ R, E {exp (θA)} ≤ exp

(
cθ2
)
. Also, if the

entries of the matrix A ∈ Rm×N are independent, zero mean,
unit variance subgaussian random variables with the same
parameter c, then A is said to be a subgaussian random
matrix.

The subgaussian random matrix includes a large class of
random matrices including i.i.d. Gaussian random matrices,
and i.i.d. Bernoulli random matrices, etc.

Theorem 1 (Independent random observation matrices). Sup-
pose A(k), k = 0, 1, . . . ,K − 1 are independent subgaussian
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random matrices with parameter c. Then, if

Km
(
δ − 1 + λ2(K−1)

)2
≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
,

(10)
the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K)

satisfies δs < δ for all 1− λ2(K−1) < δ < 1 with probability
at least 1 − ε. Here, c̃ is a constant dependent only on c,
and λ ≤ 1 is the ratio of the smallest to the largest singular
values of D. When (10) holds, the system is observable for
sufficiently large λ with high probability.

Here, we note that the phrase “sufficiently large” λ refers to
the fact that it must be large enough so as to be able to meet
the upper bound on the RIC set by the RIP based guarantees of
different algorithms, as discussed in Section I-A. We discuss
this point in detail in Section III-B.

Theorem 1 is proved in [1]. In the following subsections,
we discuss some implications of the above results.

A. Special Cases

1) Suppose D is a scaled unitary matrix. Then, λ = 1,
and Theorem 1 simplifies to the recovery condition
for the standard compressed sensing problem with Km
measurements. Since the RIP of a matrix is invariant to
multiplication by a unitary matrix, each new observation
vector adds m new measurements to (5) as K increases.

2) Suppose D is rank-deficient. Then, λ = 0, and (10) does
not hold for any δ < 1, unless

m ≥ c̃

δ2

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
. (11)

This is intuitive, because when x0 lies in the null space
of D, yk = 0 for k ≥ 1. Hence, the system is observable
if it is observable from y0. Thus, the uniform recovery
guarantee does not hold for a rank deficient D.

3) Suppose that D is an ill-conditioned matrix, i.e., λ is
close to zero. Then, the upper bound on δ required to
guarantee observability may not hold [24], [40], [41].
This is because right multiplication of a matrix by another
ill-conditioned matrix may severely degrade its RIP.

4) For K = 1, Theorem 1 reduces to the recovery condi-
tion of the standard compressed sensing problem [28].
Also, if the system is observable with m measurements
(for example, when (11) is satisfied), the conditions in
Theorem 1 hold for K = 1, as expected.

B. Number of Measurements

Theorem 1 shows that Km = O(s ln(N/s)) is sufficient
for observability. Note that the number of measurements are
independent of the scaling ofD. Thus, the number of measure-
ments can be greatly reduced for large dimensional systems.
In contrast, Km = O(N) measurements are necessary for
observability of a general non-sparse initial state vector. We
also recall from Section I-A that the initial state can be
recovered using any of the compressed sensing techniques like
basis pursuit, thresholding algorithms, or greedy algorithms.

The RIP based recovery guarantees available in the literature
set an upper bound on the RIC. For example, using the
necessary and sufficient condition for `1 based recovery:
δs ≤ 1/3 [24], (10) reduces to

K
(
λ2(K−1) − 2/3

)2
≥ c̃

m

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (12)

for λ2(K−1) ≥ 2/3. In other words, if (12) is satisfied for
some K ≤ b(ln(2/3))/(2 ln(λ))c + 1, then the system is
observable. However, note that, if the system is observable
for K1 measurements, it remains observable for K > K1.

We note that K
(
λ2(K−1) − 2/3

)2
is an increasing function

of K, which gives a lower bound m from (12). Therefore, for
λ < 1,

m = O

(
ln(N/s)

K
(
λ2(K−1) − 2/3

)2
)
. (13)

We also note that value of m required decreases with λ and
K. This is in agreement with the fact that as K increases, we
get more measurements and a smaller m suffices for ensuring
successful recovery of the initial state. Also, as λ increases,
the matrix D becomes better conditioned, and, consequently,
a smaller value of m is sufficient for exact recovery.

C. Comparison With Prior Work

In [17], [18], the authors address the same problem as ours
and give a sufficient condition on number of measurements
Km for successful recovery. In this subsection, we compare
and contrast the two results. We begin with the result from
[17], [18], stated in our notation.

Theorem 2 (Prior work [17], [18]). Suppose that D =
aU where a 6= 0 and U ∈ RN×N is unitary. Define
b ,

∑K
k=1 a

2(k−1). Assume A(k), k = 0, 1, . . . ,K − 1 are
independent Gaussian random matrices with mean zero and
variance 1/m. Then, if

Kmδ2 ≥ 512

[
s ln

(
42

δ

)
+ 1 + ln

(
N

s

)
+ ln

(
2

ε

)]
[∣∣1− a2∣∣K + min

{
1, a2

}
max {1, a2}

]
(14)

the RIC δs of 1√
b
Ã(K) satisfies δs < δ < 1 with probability

at least 1− ε.

We make the following observations:
• Restriction on D: Theorem 2 is applicable only when
D is a scaled unitary matrix. Reference [18] extends the
result to a certain type of positive definite matrices. Our
results are more general, and hold true for any arbitrary
matrix D 6= 0.

• Bound for scaled unitary matrices: For the special case
of D = aU , (10) reduces to the following:

Kmδ2 ≥ c̃
[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (15)
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for 0 < δ < 1. We see that there is an extra term on the
right hand side of (14) of Theorem 2. We can bound this
term as follows:∣∣1− a2∣∣K + min

{
1, a2

}
max {1, a2}

≥
∣∣1− a2∣∣+ min

{
1, a2

}
max {1, a2}

= 1, (16)

for all a 6= 0. Hence, our results are stronger than
Theorem 2 for the scaled unitary matrix case.

• Dependency on the eigenvalue: The condition (14) heav-
ily depends on the eigenvalue a of D. The least number
of measurements Km are required for |a| = 1, and as
|a| moves away from unity, the lower bound on Km
increases. However, our results depend only on the ratio
of the smallest to the largest singular value of D, and
therefore gives the best bound for all values of a. This
is because our results make use of the fact that the
recovery properties are independent of scaling due to
the equivalence of (5) and (7). This critical observation
allowed us to get stronger results compared to Theorem 2.

D. Extension to Identical Observation Matrices Case

Suppose we carry out a similar analysis for the case
when all observation matrices are identical A(k) = A for
k=0, 1, . . . ,K−1, where A is a subgaussian random matrix
with parameter c. The sufficient condition then obtained shows
that the system is recoverable if (11) is satisfied. However, this
condition ensures that the system is observable with K = 1.
This is a weak result, because it implies that the availability
of additional measurements does not improve the sufficient
condition for observability. This is indeed true when D = αI ,
for some α ∈ R, because we are only adding scaled versions
of the rows of A to Ã(K) as K increases. For general D, a
different proof technique has to be used, which is discussed
in the next section.

IV. RIP FOR IDENTICAL OBSERVATION MATRICES CASE

In this section, we present a result on the RIP of the ob-
servability matrix when the observation matrices are identical
random matrices. First, we define the following quantities:

D̃(K,i) ,
[
Ii Di . . . DK−1

i

]
, (17)

L (D,K) , max
i

∥∥∥D̃(K,i)

∥∥∥
2
, (18)

where Ii is the ith column of identity matrix of size N ×N
and Dk

i is the ith column of Dk.

Theorem 3 (Identical random observation matrices). Suppose
all the observation matrices are identical, i.e., A(k) = A for
k = 0, 1, . . . ,K−1, where A is a subgaussian random matrix
with parameter c. Then, if

Km

(
δ − 1 + λ2(K−1)

)2
L2 (D,K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (19)

then the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K)

satisfies δs < δ for all 1− λ2(K−1) < δ < 1 with probability
at least 1− ε. Here, c̃ is a constant dependent only on c, and
λ ≤ 1 is the ratio of the smallest to the largest singular values
of D. Hence, when (19) holds, the system is observable for
sufficiently large λ with high probability.

Proof: See Appendix A.
Next, using the proof technique of the above theorem,

we can show the following interesting corollaries. We omit
their proofs as they are straightforward. The first corollary
extends Theorem 3 to the case when the measurements are
not necessarily taken over a contiguous set of time instants.

Corollary 1 (Non-consecutive measurements). Suppose the
available measurements are {yk}k∈K, where K is an index
set of cardinality K, and A(k) = A, k ∈ K where A is a
subgaussian random matrix with parameter c. Then, if

Km

(
δ − 1 + λ2max{K})2

L2 (D,K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (20)

then the RIC δs of the scaled version L̃ (λmax,K) Ã(K) of
Ã(K) satisfies δs < δ for all 1 − λ2max{K} < δ < 1 with
probability at least 1−ε. Here, c̃ is a constant dependent only
on c, and λ ≤ 1 is the ratio of the smallest to the largest
singular values of D. L2 (D,K) has same definition as that
of L2 (D,K) with jth column of D̃(K,i) as Dj̃

i where j̃ is the
jth smallest element of K. Also, λmax,K ∈ RK has jth entry
as λj̃max. Hence, when (20) holds, the system is observable for
sufficiently large λ with high probability.

The next corollary extends Theorem 3 to the case when x0

is sparse under an arbitrary basis Ψ ∈ RN×N rather than the
canonical basis.

Corollary 2 (Sparsifying basis other than the canonical basis).
Suppose A(k) = A, k = 0, 1, . . . ,K − 1, where A is a
subgaussian random matrix with parameter c, and the initial
state is sparse under the basis Ψ ∈ RN×N , which need not
be the canonical basis. Then, if

Km

(
δ − 1 + λ̃2

)2
L̃2 (D,K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (21)

the RIC δs of the scaled version L̃
(
λ̃max

)
Ã(K) of Ã(K)

satisfies δs < δ, for all 1 − λ̃2 < δ < 1, with probability
at least 1 − ε. Here, c̃ is a constant dependent only on c,
and λ̃ ≤ 1 is the ratio of the smallest to the largest singular
value of D(K−1)Ψ. L̃ (D,K) has same definition as that of
L (D,K), but with jth column of D̃(K,i) as Dj−1Ψi. Also,
λ̃max ∈ RK has jth entry as the largest singular value of
Dj−1Ψ. Hence, when (21) holds, the system is observable
for sufficiently large λ̃ with high probability.

It is also interesting to consider guarantees for the case
where the matrixD is an RIP-compliant matrix. The following
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corollary gives guarantees similar to Theorem 3 based on the
RIC of an RIP-compliant N ×N matrix D.

Corollary 3 (Relaxation based on the RIP of the transfer
matrix). Suppose A(k) = A, k = 0, 1, . . . ,K − 1, where A is
a subgaussian random matrix with parameter c. Then, if

Km

(
δ − 1 + λ̄2(K−2)(1− δ̃s)2

)2
L2 (D,K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (22)

then the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K)

satisfies δs < δ for all 1 − λ̄2(K−2)(1 − δ̃s)2 < δ < 1 with
probability at least 1 − ε. Here, c̃ is a constant dependent
only on c, and λ̄ < 1 and δ̃s ≤ 1 are the smallest nonzero
singular value and the RIC of D normalized to unit spectral
norm. Hence, when (22) holds, the system is observable for
sufficiently small δ̃s with high probability.

Proof: When the matrix D is normalized to unit spectral
norm, for any unit norm s−sparse vector z ∈ RN , we have∥∥∥Dkz

∥∥∥ ≥ λ̄k−1 ‖Dz‖ ≥ λ̄k−1(1− δ̃s), (23)

since the vector Dz belongs to the column space of D. Thus,
we can replace λ(K−1) with λ̄(K−2)(1− δ̃s) in Theorem 3 to
obtain the desired result.

We note that λ̄ ≥ λ and 1 − δ̃s ≥ λ, and thus the above
corollary is a stronger result than Theorem 3. However, λ is
easier to compute than the RIC constant of D.

In the following subsections, we provide more insights into
the above results.

A. Special Cases

1) Suppose D is a scaled identity matrix. Then, λ = 1, and
L2 (D,K) = K, and hence from Theorem 3, we retrieve
the recovery condition for a standard compressed sensing
problem with m measurements, and the guarantee does
not improve with increasing K. This is intuitive, because
we are only adding scaled versions of the rows of A to
Ã(K) as K increases.

2) Suppose D is rank-deficient. Then, λ = 0, and (19) does
not hold for any δ < 1, unless

m ≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (24)

as expected. However, if δ̃s 6= 0, Corollary 3 guarantees
that it is possible to recover x0 even if (11) is not
satisfied.

3) Suppose that D is ill-conditioned, i.e., λ is close to
zero. Then, the upper bound on δ required to guarantee
observability may not hold [24], [40], [41], which is in
similar vein as explained in the case of Theorem 1.

4) For K = 1, Theorem 3 reduces to the recovery condi-
tion of the standard compressed sensing problem [28].
Also, if the system is observable with m measurements
(for example, when (24) is satisfied), the conditions in
Theorem 3 hold for K = 1, as expected.
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20

30

40
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Uniform

Bernoulli
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linear fit

Figure 1. Variation of K/L2 (D,K) with K when D generated using dif-
ferent distributions. We see that K/L2 (D,K) is a (linearly) non-decreasing
function of K, and it meets the upper bound in Proposition 1. Thus, random
matrices are good choices for D.
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Figure 2. Variation of K/L2 (D,K) with K for Fourier, Hadamard and
identity constructions of D. We see that K/L2 (D,K) is not an increasing
function of K.

B. Number of Measurements

Theorem 3 shows that Km = O(s ln2 s ln2N) is sufficient
for observability, whereas O(N) measurements are necessary
for observability of a non-sparse initial state vector. Also, as
mentioned in Section I-A, the initial state can be recovered
using any of the compressed sensing techniques like basis
pursuit, thresholding algorithms, or greedy algorithms. As in
the case of Theorem 1, the RIP based guarantees fix an upper
bound on K, and hence a lower bound on m. However, note
that, if the system is observable for K1 measurements, it
remains observable for K > K1.

The main difference between the results in Theorem 1 and
Theorem 3 is in the L2 (D,K) term. Hence, in order to
gain intuition on the number of measurements required in the
identical observation matrices case, we study the behavior of
the L (D,K) term in the following proposition.
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Proposition 1. The term K/L2 (D,K) satisfies

1 ≤ K/L2 (D,K) ≤ K. (25)

Proof: See Appendix F.
We note that the upper and the lower bounds are achieved

by D = 0, and D = I , respectively. Further, as discussed
in Section IV-A, both cases are not favorable from the ob-
servability point of view. Although the D = 0 case achieves
the upper bound of the term K/L2 (D,K), this choice is not
desirable since λ = 0.

In Figure 1, we empirically illustrate that if D is randomly
chosen, the upper bound can be nearly achieved. Also, when
D is a random matrix, λ is non-zero with high probability [42],
which makes this choice desirable. Random transfer matrices
occur in some linear dynamical systems with sparse initial
state, which models homogeneous spreading of epidemic or
information or computer virus. For example, a dynamical
system corresponding to a epidemic spread can be modeled
using a Erdos-Renyi model in which case the transfer matrix
has independent Bernoulli distributed entries [43]–[46]. In
Figure 1, we use N = 50 and vary K from 1 to N [43]. The
entries of D are drawn from the following four distributions:

1) Standard Gaussian distribution
2) Uniform distribution on [0, 1]
3) Bernoulli distribution with parameter 0.5
4) Rademacher distribution.

The curve f(K) = K is labeled as linear fit. The value of
K/L2 (D,K) is averaged over 100 trials and plotted along the
Y-axis as a function of K. In all the four cases, the behavior
of the curves is nearly linear, and K/L2 (D,K) ≈ K.

Before we discuss the implications of the result, we first give
some intuition on reason behind this linear behavior. Since
L2(D,K) is a complicated function of D, we focus on the
regime where N is large and the distribution of the entries
of D is Gaussian. We note that, from the Marchenko-Pastur
theorem [47], the spectral norm of a Gaussian matrix with
zero mean and unit variance is close to 2

√
N . Thus, after

normalization, as K increases, DK goes to 0, and the extra
column that gets added to the matrix D̃K,i as K increases is
approximately 0. Therefore, we have

∥∥∥D̃(K,i)

∥∥∥
2
≈
∥∥∥D̃(2,i)

∥∥∥
2
.

Further,
∥∥∥D̃(2,i)

∥∥∥
2

is the same as the largest eigenvalue of the

matrix:

[
1 Dii

Dii ‖Di‖2

]
. Also, for large N , ‖Di‖2 ≈ 1 and

D2
ii ≈ 0, which gives

∥∥∥D̃(K,2)

∥∥∥
2
≈ 1. Hence, we have the

following relation:

L(D,K) = arg max
i

∥∥∥D̃(K,i)

∥∥∥
2
≈
∥∥∥D̃(K,2)

∥∥∥
2
≈ 1. (26)

Thus, intuitively, K/L2(D,K) ≈ K for sufficiently large N .
Also, from Figure 1, we see that N = 50 is large enough for
the argument to hold.

Next, we discuss some implications of Figure 1. The RIP of
the observability matrix Ã(K) is on par with an unstructured
random Gaussian matrix. In turn, this suggests that it is not
necessary to use independent observation matrices to ensure
observability; identical observation matrices result in a penalty

of only O(ln2s lnN) in terms of the number of measurements
required, provided D is a random matrix. Hence, we conclude
that even though I and 0 are poor choices for D, matrices
with good recovery properties are plenty in number.

Another important observation from the plot is that
K/L2 (D,K) is a non-decreasing function of K. Thus, as
K increases, we need a smaller value of m for exact recovery
of the sparse initial state. That is, one can trade-off K and m
while ensuring observability. The following result shows that
the function is increasing for the special case when D is a
positive semi-definite (psd) matrix.

Proposition 2. When D is a psd matrix, the function
K/L2 (D,K) is a non-decreasing function of K.

Proof: See Appendix G.
Remark: The above result does not, in general, imply that

K/L2 (D,K) increases with K. For example, from Figure 2,
we see that K/L2 (D,K) for standard dictionaries like Fourier
and Hadamard matrices is not strictly increasing with K.

C. Extension to Robust Recovery
Theorem 3 can be extended to bound the error in recovery

of the initial state under bounded noise and model mismatch.
In this case, the system model modifies as

xk = Dk(x0 + x̌0), k ≥ 1 (27)
yk = A(k)xk +wk, (28)

for discrete time instants k = 0, 1, . . . ,K − 1. Here, wk ∈
Rm denotes the bounded measurement noise: ‖wk‖ ≤ W ;
while x̌0 ∈ RN represents the error in approximating
the initial state by an s−sparse vector. That is, x0 =

arg min
v∈RN :‖v‖0≤s

‖x0 + x̌0 − v‖. Therefore, the overall set of

equations can be written as

ỹ(K) = Ã(K)(x0 + x̌0) + w̃, (29)

where the bounded noise w̃ ∈ RKm satisfies ‖w̃‖ ≤
√
KW .

Corollary 4 (Robust recovery). Suppose A(k) = A for k=
0, 1, . . . ,K−1, where A is a subgaussian random matrix with
parameter c. Also, suppose that, for some integer p > 0 and
positive real number cth,

Km

(
cth − 1 + λ2(K−1)

)2
L2 (D,K)

≥ c̃psmax
{

ln2(ps) ln2N, ln(2ε−1)
}
, (30)

and λ2(K−1) > 1−cth. Here, c̃ is a constant dependent only on
c, and λ ≤ 1 is the ratio of the smallest to the largest singular
values of D. Then, with probability at least 1− ε, the initial
vector x0 + x̌0 can be recovered with errors as follows:

‖x0 + x̌0 − x̂0‖1 ≤ c1 ‖x̌0‖1 + c2

√
s(1− λ−2Kmax )

Km(1− λ−2max)
W

(31)

‖x0 + x̌0 − x̂0‖ ≤
c1√
s
‖x̌0‖1 + c2

√
(1− λ−2Kmax )

Km(1− λ−2max)
W,

(32)



8

where x̂0 is the estimate of the initial vector, and c1, c2 > 0
are universal constants. The estimate x̂0 can be computed by
pre-multiplying (29) by the matrix L̃

(
λ̃max

)
, and then using

one of the algorithms mentioned below.
Further, the constants p and cth depend on the recovery

algorithms as follows:
• Basis pursuit: p = 2 and cth = 4√

41
.

• Iterative hard-thresholding: p = 6 and cth = 1√
3

.
• Compressive Sampling Matching Pursuit: p = 8 and

cth =

√√
11/3−1
2 .

Proof: From Theorem 3, the matrix L̃
(
λ̃max

)
Ã(K)

satisfies RIP. Then, the result follows from the upper bound on
the RIC required by the different algorithms to ensure robust
recovery [28, Theorem 6.12, 6.21, 6.28].

We note the dependence on λmax in the above expressions
is not unexpected: it arises because of the scaling of the
measurement matrix. The scaling operation is reasonable due
to the following reasons:
• One can always scale the linear equations with no infor-

mation loss. The scaling operation neither changes the
problem nor affects any intuitive notion of SNR.

• The scaling matrix is diagonal, and therefore does not
introduce any correlation between the noise terms which
might affect the recovery. Moreover, the recovery guar-
antees of the algorithms listed in Corollary 4 depend only
on the `2 norm of the noise vector, and are independent
of the individual variances of the noise terms.

• Note that λmax determines the effective SNR of the
system, and hence it plays an important role in recov-
erability of the initial state. The effect of λmax appears

as the factor
√
s

√
(1−λ−2K

max )

K(1−λ−2
max)

W√
m

in (31). Here,
√
s and

W/
√
m capture the same effect as those of the sparsity

s and the average noise power per measurement W/
√
m,

respectively, in the standard compressed sensing results.

Further, we intuitively examine the term
√

(1−λ−2K
max )

K(1−λ−2
max)

via

three special cases of λmax below:
(i) λmax � 1: When λmax is large, this term reduces

to 1/
√
K, which has no dependence on λmax. This is

because the effective SNR is large, and hence the noise
term is negligible, for all measurements except for the
first measurement vector, y0. Thus, we have one noisy
and K − 1 noiseless measurements, which leads to an
error bound that decreases with K.

(ii) λmax ≈ 1: When λmax is close to 1, this term
reduces to 1. This is equivalent to having K noisy
measurements with equal scaling factor and thus the
error bound per measurement is independent of K. In
this case, the advantage of having multiple observations
comes in terms of the Km dependence of the number
of measurements in (30).

(iii) λmax � 1: When λmax is small, this term reduces
to λ−(K−1)max /

√
K, which is a new dependence. In this

case, the noise in the later measurements gets amplified

by the scaling factor. Hence, the noise term in the
last measurement dominates the average noise power.
However, in practice, one would consider the smallest
value of K for which (30) is satisfied, and substitute
that value of K in (31) and (32) to get the bound on
robust recovery of the initial state.

Remark: Theorem 1 also has corollaries similar to Corollary 1-
Corollary 4. We omit those results to avoid repetition.

V. JOINT RECOVERY OF SPARSE INITIAL STATE AND
SPARSE INPUTS

We now discuss the extension of the results presented thus
far to the problem of jointly estimating the initial state as well
as the input sequence, under sparsity constraints [32]. Sparse
inputs are relevant in the networked control of systems, where
the controller and plant communicate over a network [48],
[49]. In these applications, using sparse inputs helps to han-
dle rate-limited channels over which the control signals are
exchanged, because they admit compact representations. The
system model in this case is as follows:

xk+1 = Dxk +Hhk+1, (33)
yk = A(k)xk, (34)

whereH ∈ Rn×L is the input matrix and hk ∈ RL is the input
vector such that ‖hk‖0 ≤ sin. Therefore, the sparse recovery
problem is given by the following equation:

ỹ(K) = Ã(K)x0 + J̃ (K)h̃(K), (35)

where the measurement vector ỹ(K) ∈ RKm (as de-
fined in (6)), the unknown sparse vector h̃(K) ,[
hT
1 . . . hT

K−1

]T
∈ R(K−1)L which is at most s̃ = s +

(K − 1)sin sparse, and the matrix J̃ (K) ∈ RKm×(K−1)L is
defined follows:

J̃ (K) =



0 ∈ Rm×(K−1)L

A(1)H̃(1) ∈ Rm×L 0 ∈ Rm×(K−2)L

A(2)H̃(2) ∈ Rm×2L 0 ∈ Rm×(K−3)L
...

A(K−1)H̃(K−1) ∈ Rm×(K−1)L


(36)

H̃(k)=
[
Dk−1H Dk−2H . . . H

]
∈ RN×kL. (37)

Comparing (35) with (5), the effective measurement matrix
of the recovery problem takes the form

A(0)U (0)

A(1)U (1)

...
A(K−1)U (K−1),

 ,
where

U (k) ,
[
Dk H̃(k) 0N×(K−1−k)L

]
∈ RN×(N+(K−1)L).

(38)
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To state results similar to Theorem 1 and Theorem 3, we
define δ̃s,max as the largest of the RICs among the matrices{
U (k)

}K−1
k=0

.The proofs of the two theorems below are similar
to that of the earlier results, and hence are omitted.

Theorem 4 (Independent random observation matrices). Sup-
pose A(k), k = 0, 1, . . . ,K − 1 are independent subgaussian
random matrices with parameter c. Then, if

Km
(
δ − 1 + (1− δ̃s,max)2

)2
≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (39)

the RIC δs of a suitably scaled version L̃(δ)
[
Ã(K) J̃ (K)

]
of
[
Ã(K) J̃ (K)

]
satisfies δs < δ for all 1− (1− δ̃s,max)2 <

δ < 1 with probability at least 1 − ε. Here, c̃ is a constant
dependent only on c, and δj = 1−δ̃s,j where δ̃s,j is the RIC of
matrix U (j). Hence, when (39) holds for s = s̃, the system is
observable for sufficiently small δ̃s,max with high probability.

Next, to state the corresponding result for the identical
observation matrices case, we define quantities similar to (17)
and (18) as follows:

Ũ (K,i) ,
[
U (0)i U (1)i . . . U (K−1)i

]
, (40)

LU (D,H,K) , max
i

∥∥∥Ũ (K,i)

∥∥∥
2
, (41)

where U (k)i denotes the ith column of U (k).

Theorem 5 (Identical random observation matrices). Suppose
all observation matrices are identical, i.e., A(k) = A for k=
0, 1, . . . ,K−1, where A is a subgaussian random matrix with
parameter c. Then, if

Km

(
δ − 1 + (1− δ̃s,max)2(K−1)

)2
L2
U (D,H,K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (42)

then the RIC δs of a suitably scaled version
L̃(δ)

[
Ã(K) J̃ (K)

]
of
[
Ã(K) J̃ (K)

]
satisfies δs < δ

for all 1 − (1 − δ̃s,max)2 < δ < 1 with probability at
least 1 − ε. Here, c̃ is a constant dependent only on c, and
δj = 1 − δ̃s,j where δ̃s,j is the RIC of matrix U (j). Hence,
when (42) holds for s = s̃, the system is observable for
sufficiently small δ̃s,max with high probability.

Remark 1: As before, we can extend the above results to the
nonconsecutive measurements, noncanonical basis and robust
recovery cases. Also, conditions in Theorem 4 and Theorem 5
can be made less stringent using the RIC of D. We omit
explicitly stating the results to avoid repetition.
Remark 2: The above three theorems show how to extend
three main results of the paper (Theorem 1 and Theorem 3) to
derive a sufficient condition for the structured random matrix
in (36) to satisfy the RIP. These results could be of independent
interest: they provide insight to the RIP of two special types
of structured random matrices (resulting from independent and
identical A(k)).

VI. CONCLUSIONS

We derived the conditions for a linear dynamical system to
be observable using the knowledge of its noiseless observa-
tions and inputs, when the initial state is sparse. We derived
the results in the stochastic setting, both when the observation
matrices are independent random matrices and when they are
identical to a single random matrix. We characterized the
number of measurements that are sufficient to observe the state
of the linear dynamical system, using tools from compressed
sensing. We also extended the results to the joint sparse input
and initial state recovery problem. The development of a
similar theory on the controllability of a linear system under
sparsity constraints is an interesting direction for future work.

APPENDIX A
PROOF OF THEOREM 3

Before we prove the theorem, we present a set of mathe-
matical tools used in the proof.

A. Toolbox

Let Z ⊂ Rm×N be a set of matrices, and the set
Ts denote the set of s−sparse vectors in RN : Ts ={
z ∈ RN : ‖z‖ = 1 and ‖z‖0 ≤ s

}
. We need the following

two definitions to state the results in this subsection.

Definition 3 (Admissible sequence). An admissible sequence
U = {Ui}∞i=0 on Z is an increasing sequence of partitions
of Z such that |Ui| = 22

i

and |U0| = 1. Here, increasing
sequence of partitions implies that every set of Ui is contained
in one of the sets of Ui−1 for all i. Also, U0 = Z , and every
set of Ui is a subset of Z . Given a matrix Z ∈ Z , we denote
the unique set of Ui that contains Z by Ui(Z).

Definition 4. [Functionals on a set of matrices] We define
three functionals on Z as follows:

dF (Z) , sup
Z∈Z
‖Z‖F (43)

d2 (Z) , sup
Z∈Z
‖Z‖2 (44)

ζ (Z) , inf
U={Ui}∞i=0

sup
Z∈Z

∞∑
i=0

2i/2D(Ui(Z)), (45)

where the inf is over all possible admissible sequences,
and the term D(Ui(Z)) , max

U(1),U(2)∈Ui(Z)

∥∥U (1) −U (2)

∥∥
represents the diameter the set Ui(Z), which is a decreasing
function of i.

Next, we state a result which is the main ingredient of our
proof. It bounds the suprema of a chaos process indexed by
the set Z .

Theorem 6. [36, Theorem 3.1] Let u be a random vector
whose entries are independent zero-mean, unit-variance sub-
gaussian random variables with common parameter c. Let

F1 , ζ (Z) [ζ (Z) + dF (Z)] + dF (Z) d2 (Z) (46)

F2 , d22 (Z) [ζ (Z) + dF (Z)]
2 (47)

F3 , d22 (Z) . (48)
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Then, for t > 0, it holds that

P
{

sup
Z∈Z

∣∣∣‖Zu‖2 − E
{
‖Zu‖2

}∣∣∣ > c1F1 + t

}
≤ 2 exp

(
−c2 min

{
t2

F2
,
t

F3

})
, (49)

where c1, c2 > 0 are universal positive constants which
depend only on c.

It is difficult to directly apply the above theorem due to the
complicated form of the functional ζ (Z). We need a result
that bounds the function ζ (Z) using the notion of the covering
number. The covering number is defined as follows.

Definition 5 (Covering number). Given u > 0, the covering
number CN {Z, u} is defined as the smallest integer p such
that one can find a subset Z ′ ⊂ Z satisfying |Z ′| ≤ p and

min
Z′∈Z′

∥∥Z −Z ′∥∥
2
≤ u,∀Z ∈ Z. (50)

Lemma 1. [50]. For the functional ζ (Z), it holds that

ζ (Z) ≤
∫ ∞
0

ln1/2 (CN {Z, u}) du. (51)

The covering number is hard to compute in closed form.
Hence, we use the following lemma to further bound the
covering number of the set of interest to us.

Lemma 2. [38, Lemma 6] Let a linear map A : RN → Rm
be such that∥∥∥∥ 1√

s
A(z)

∥∥∥∥ ≤ κ ‖z‖1 ,∀z ∈ RN , κ > 0. (52)

Then, for the set Ts, it holds that

ln (CN {A(Ts), u})
≤ Csmin

{
κ2

u2 ln2N, s lnN + s ln
(
1 + 2κ

u

)}
for 0 < u < κ

= 0 for u > κ,

(53)

where C is a universal positive constant.

We will also need the following result from elementary
calculus in the proof to tackle the integral in Lemma 1.

Lemma 3. For a ≤ b, it holds that

∫ a

0

√
ln

(
1 +

b

u

)
du ≤ 3

2
a

√
ln

(
1 +

b

a

)
. (54)

Proof: See Appendix B.
We have now presented all the mathematical tools that are

required to prove the theorem. In the next subsection, we
formally prove the desired result.

B. Proof of Theorem 3

As mentioned in Section II, (7) is equivalent to (5). There-
fore, without loss of generality, we assume that the largest and
the smallest singular values of D are 1 and λ, respectively.
We recall that our goal is to obtain a probabilistic bound on∥∥∥Ã(K)z

∥∥∥ for z ∈ Ts, using Theorem 6. At a high level, there
are four main steps to the proof:
• First, we convert Ã(K)z to the form given in Theorem 6,

i.e., the product of a matrix and a subgaussian vector.
• Second, we bound the three functionals d2, dF and ζ in

Definition 4.
• Third, using the bounds in the previous step, we bound
F1, F2 and F3 in Theorem 6, since the three quantities
are functions of d2, dF and ζ.

• Fourth, we apply Theorem 6 with the upper bounds on
F1, F2 and F3. Here, we note that Theorem 6 holds for
upper bounds on F1, F2 and F3. This yields a concentra-
tion inequality bounding the deviation of the random vari-

able
∥∥∥ 1√

Km
Ã(K)z

∥∥∥2 from its mean 1
K

∑K−1
k=0

∥∥∥Dkz
∥∥∥2.

Finally, we establish the desired result by suitable alge-
braic manipulation of the concentration inequality.

In the remainder of this section, we provide the details of
each of these steps.

For the first step, we consider the following:∥∥∥∥ 1√
Km

Ã(K)z

∥∥∥∥2 =

K−1∑
k=0

∥∥∥∥ 1√
Km

ADkz

∥∥∥∥2 (55)

=

∥∥∥∥ 1√
Km

AZ(K)(z)

∥∥∥∥2
F

(56)

where the matrix function Z(K) : Ts → RN×K is defined as
follows:

Z(K)(z) ,
[
z Dz . . .DK−1z

]
, z ∈ Ts. (57)

Further, we have∥∥∥∥ 1√
Km

Ã(K)z

∥∥∥∥2 =

∥∥∥∥ 1√
Km

ZT
(K)(z)AT

∥∥∥∥2
F

(58)

=
∥∥∥Z̃(K)(z)vec

{
AT}∥∥∥2 , (59)

where vec
{
AT} ∈ RmN is the vectorized version of the

matrix AT, which has subgaussian entries with common
parameter c. The matrix function Z̃(K) : Ts → RKm×mN is
a block diagonal matrix with 1√

Km
ZT

(K)(z) as the mth block
diagonal entries, for all z ∈ Ts. Thus, the first step is complete.

The next step is bound the three terms d2, dF and ζ using
the following lemmas.

Lemma 4. For the set Z̃(K),

dF

(
Z̃(K)

)
≤ 1 (60)

d2

(
Z̃(K)

)
≤
√

s

Km
L (D,K) , (61)

where L (D,K) is as defined in (18).

Proof: See Appendix C.
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Lemma 5. The functional ζ
(
Z̃(K)

)
can be bounded as

follows:

ζ
(
Z̃(K)

)
≤ C

√
s

Km
L (D,K) lnN ln s, (62)

for some C which is universal positive constant that depends
only on the subgaussian parameter c.

Proof: See Appendix D.
Now, we combine the results in the second step to obtain

bounds on F1, F2, and F3. Further, we note that we need to

bound P
{∣∣∣∣∥∥∥ 1√

Km
Ã(K)z

∥∥∥2 − 1
K

∑K−1
k=0

∥∥∥Dkz
∥∥∥2∣∣∣∣ > δ̃

}
, for

some 0 ≤ δ̃ < 1 using Theorem 6. To this end, we use the
assumptions of Theorem 3 to further upper bound F1 to make
it a multiple of δ̃. We summarize the third step in the following
lemma.

Lemma 6. Using the definitions in Theorem 6 and under the
assumptions of Theorem 3, there exists a constant C1 > 0
such that

F1 ≤ δ̃/2c1 (63)

F2 ≤ C1
s

Km
L2 (D,K) (64)

F3 ≤
s

Km
L2 (D,K) , (65)

where c1 is the same constant as in Theorem 6 and

δ̃ , δ − 1 + λ2(K−1). (66)

Proof: See Appendix E.
Now, we are ready to go the final step of the proof. We

apply Theorem 6 to (59) with t = δ̃/2 to get

P

{∣∣∣∣∣
∥∥∥∥ 1√

Km
Ã(K)z

∥∥∥∥2 − 1

K

K−1∑
k=0

∥∥∥Dkz
∥∥∥2∣∣∣∣∣ > δ̃

}

≤ 2 exp

(
−C min

{
δ̃2, δ̃

} Km

sL2 (D,K)

)
(67)

≤ 2 exp

(
−C Kmδ̃2

sL2 (D,K)

)
(68)

≤ ε, (69)

where the universal positive constant C depends on the sub-
gaussian parameter c, and we use (19) of Theorem 3 to bound
using ε in the last step.

Thus, for all z ∈ RN such that ‖z‖ = 1 and ‖z‖0 ≤ s,
with probability at least 1− ε,∣∣∣∣∣

∥∥∥∥ 1√
Km

Ã(K)z

∥∥∥∥2 − 1

K

K−1∑
k=0

∥∥∥Dkz
∥∥∥2∣∣∣∣∣ ≤ δ̃. (70)

Therefore, for 0 ≤ δ̃ < λ2(K−1),

λ2(K−1) − δ̃ < 1

Km

∥∥∥Ã(K)z
∥∥∥2 < 1 + δ̃, (71)

since λK−1 ≤ λk ≤
∥∥∥Dkz

∥∥∥ ≤ 1. We also use (66) to relate

δ and δ̃ as follows:

1− δ < 1

Km

∥∥∥Ã(K)z
∥∥∥2 < 1 + δ, (72)

for δ > 1 − λ2(K−1), with probability at least 1 − ε. Hence,
1
KmÃ(K) satisfies RIP of order s with RIC as δ, with
probability at least 1− ε. Thus, the proof is complete.

APPENDIX B
PROOF OF LEMMA 3

We have∫ a

0

√
ln

(
1 +

b

u

)
du

= b

∫ ∞
√

ln(1+b/a)

td

(
1

exp(t2)− 1

)
(73)

= a

√
ln

(
1 +

b

a

)
+ b

∫ ∞
√

ln(1+b/a)

1

exp(t2)− 1
dt, (74)

where we use the substitution t =
√

ln
(
1 + b

u

)
in (73)

and integration by parts to get (74). Now, the second term
simplifies as follows:∫ ∞

√
ln(1+b/a)

1

exp(t2)− 1
dt

≤
∫ ∞
√

ln(1+b/a)

t√
ln(1 + b/a)

e−t
2

1− e−t2
dt (75)

=
1

2
√

ln(1 + b/a)
ln
(

1 +
a

b

)
. (76)

Therefore, we get∫ a

0

√
ln

(
1 +

b

u

)
du

≤ a

√
ln

(
1 +

b

a

)
+

b

2
√

ln(1 + b/a)
ln
(

1 +
a

b

)
(77)

= a

√
ln

(
1 +

b

a

)[
1 +

b

2a

(
1−

ln
(
b
a

)
ln(1 + b/a)

)]
. (78)

Now, we need to show that b
a

(
1− ln( b

a )
ln(1+b/a)

)
≤ 1 to

complete the proof. So, we consider the function h(u) ,

u
(

1− lnu
ln(u+1)

)
, by replacing b/a = u ≥ 1. Further, we

note that h(1) = 1, and therefore it suffices to show that
d
duh(u) ≤ 0, which then implies that h(u) ≤ h(1) = 1, for
all u ≥ 1. We have

d

du
h(u) = 1− lnu

ln(u+ 1)
− (u+ 1) ln(u+ 1)− u lnu

(u+ 1) ln2(u+ 1)
(79)

=
h̃(u)

(u+ 1) ln2(u+ 1)
, (80)

where we define

h̃(u) , (u+ 1) ln2(u+ 1)− (u+ 1) ln(u+ 1) lnu

− (u+ 1) ln(u+ 1) + u lnu. (81)
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Now, d
duh(u) ≤ 0 if h̃(u) ≤ 0. Therefore, we show that

d
du h̃(u) ≤ 0, which implies that h̃(u) ≤ h̃(1) = 2 ln2 2 −
2 ln 2 < 0. Then, we get

d

du
h̃(u) = ln(u+ 1)

(
ln(u+ 1)− lnu− u+ 1

u

)
(82)

= − ln(u+ 1)

(
lnu+ 1− ln(u+ 1) +

1

u

)
. (83)

Using the same technique again, we now consider the function
lnu+ 1− ln(u+ 1). Since derivative of lnu+ 1− ln(u+ 1)
is 1

u(u+1) > 0, for u ≥ 1, lnu+ 1− ln(u+ 1) ≥ 1− ln 2 > 0.
Therefore, d

du h̃(u) ≤ 0 because lnu+ 1− ln(u+ 1) ≥ 0 and
1
u ≥ 0, for u ≥ 1. Hence, we get h̃(u) < 0. This implies
that d

duh(u) < 0, and thus, h(u) ≤ h(1) = 1, for u ≥ 1.
Substituting this in (78) completes the proof.

APPENDIX C
PROOF OF LEMMA 4

To show the first part of the lemma, we have

dF

(
Z̃(K)

)
= sup

z∈Ts

∥∥∥Z̃(K)(z)
∥∥∥
F

(84)

=
1√
K

sup
z∈Ts

∥∥Z(K)(z)
∥∥
F

(85)

= sup
z∈Ts

1√
K

√√√√K−1∑
k=0

∥∥∥Dkz
∥∥∥2 ≤ 1, (86)

where the last step follows from the definition of Ts, and the
fact that the largest singular value of D is unity.

To show the second part of the lemma, we have

d2

(
Z̃(K)

)
= sup

z∈Ts

∥∥∥Z̃(K)(z)
∥∥∥
2

(87)

=
1√
Km

sup
z∈Ts

∥∥Z(K)(z)
∥∥
2

(88)

=
1√
Km

sup
z∈Ts

∥∥∥∥∥
N∑
i=1

D̃(K,i)zi

∥∥∥∥∥
2

(89)

≤ 1√
Km

sup
z∈Ts

N∑
i=1

|zi|
∥∥∥D̃(K,i)

∥∥∥
2

(90)

≤ L (D,K)√
Km

sup
z∈Ts

‖z‖1 (91)

≤ L (D,K)

√
s

Km
‖z‖ , (92)

=

√
s

Km
L (D,K) . (93)

where (89) and (91) follow from the definitions of D̃(K,i) and
L (D,K) in (17) and (18), respectively. Also, (92) is because
z is at most s−sparse. Hence, the proof is complete.

APPENDIX D
PROOF OF LEMMA 5

From Lemma 4, for all Z ∈ Z̃(K) and any z ∈ RmN ,∥∥∥∥ 1√
s
Zz

∥∥∥∥ ≤
√

1

Km
L (D,K) ‖z‖ ≤

√
1

Km
L (D,K) ‖z‖1 .

(94)

Then, for some positive constant C ′, we have

1√
s
ζ
(
Z̃(K)

)
≤ 1√

s

∫ ∞
0

ln1/2
[
CN
{
Z̃(K), u

}]
du (95)

= C ′
1√
s

∫ L(D,K)√
sKm

0

ln1/2
[
CN
{
Z̃(K), u

}]
du

+ C ′
1√
s

∫ L(D,K)√
Km

L(D,K)√
sKm

ln1/2
[
CN
{
Z̃(K),u

}]
du (96)

≤ C ′
∫ L(D,K)√

sKm

0

√
s lnN + s ln

(
1 +

2L (D,K)

u
√
Km

)
du

+ C ′
∫ L(D,K)√

Km

L(D,K)√
sKm

L (D,K)

u
√
Km

lnNdu, (97)

where (95) and (97) follow from Lemma 1 and Lemma 2 with
κ =

√
1
KmL (D,K), respectively. Further, we have

1√
s
ζ
(
Z̃(K)

)
≤ C ′

∫ L(D,K)√
sKm

0

√
s lnN +

√
s ln

(
1 +

2L (D,K)

u
√
Km

)
du

+ C ′
L (D,K)√

Km
lnN ln

√
s (98)

≤ C ′L (D,K)√
Km

(√
lnN + 3/2

√
ln
(
1 + 2

√
s
)

+ lnN ln
√
s
)

(99)

≤ CL (D,K)√
Km

lnN ln s (100)

where C = 3C ′. Also, (98) uses the fact that
√
a+ b ≤

√
a+√

b, for any a, b > 0, and (99) uses Lemma 3. Thus, the proof
is complete.

APPENDIX E
PROOF OF LEMMA 6

From Lemma 4 and Lemma 5, we get

F1 = ζ
(
Z̃(K)

) [
ζ
(
Z̃(K)

)
+ dF

(
Z̃(K)

)]
+ dF

(
Z̃(K)

)
d2

(
Z̃(K)

)
(101)

≤ CL (D,K)

√
s

Km
lnN ln s(

CL (D,K)

√
s

Km
lnN ln s+ 1

)
+ L (D,K)

√
s

Km

lnN ln s

ln2 2
, (102)

where we use the bound lnN ln s
ln2 2

> 1 when N ≥ s > 1 to get
(102). Next, we use assumption (19) in Theorem 3, i.e.,

L (D,K)

√
s

Km
lnN ln s ≤

√
c̃δ̃, (103)
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to get

F1 ≤ C
√
c̃δ̃
(
C
√
c̃δ̃ + 1

)
+

√
c̃δ̃

ln2 2
(104)

≤
√
c̃δ̃

(
C2
√
c̃+ C +

1

ln2 2

)
. (105)

The last step above follows because of the bound δ̃ ≤ 1.
Finally, we choose c̃ in (19) of Theorem 3 such that

√
c̃

(
C2
√
c̃+ C +

1

ln2 2

)
≤ 1

2c1
, (106)

where c1 and C are the same constants as in Theorem 6 and
Lemma 5, respectively. We note that

√
c̃
(
C2
√
c̃+ C + 1

ln2 2

)
is strictly increasing with c̃, for c̃ ≥ 0, and the left hand side
equals zero when c̃ = 0. Thus, there exists a c̃ > 0 that satisfies
(106), for any c1 and C. Thus, from (105) and (106) we get

F1 ≤
δ̃

2c1
, (107)

and thus, we complete of the first part of the proof.
Similarly, we simplify F2 using Lemma 4, Lemma 5 and

(103) as follows:

F2 = d22

(
Z̃(K)

) [
ζ
(
Z̃(K)

)
+ dF

(
Z̃(K)

)]2
(108)

≤ s

Km
L2 (D,K)

(
CL (D,K)

√
s

Km
lnN ln s+ 1

)2

(109)

≤ s

Km
L2 (D,K)

(
C
√
c̃δ̃ + 1

)2
(110)

≤ C1
s

Km
L2 (D,K) (111)

where we use the fact that δ̃ < 1 and define C1 , (C
√
c̃+1)2.

Finally, we have,

F3 = d22

(
Z̃(K)

)
≤ s

Km
L2 (D,K) , (112)

which completes the proof.

APPENDIX F
PROOF OF PROPOSITION 1

To prove the result, we first upper and lower bound the term
L(D,K). We have,

L(D,K) ≤ max
i

∥∥∥D̃(K,i)

∥∥∥
F

(113)

= max
i

√√√√K−1∑
k=0

∥∥∥Dk
i

∥∥∥2 ≤ √K, (114)

where we obtain the last step from the fact that the largest
singular value of Dk is at most unity, and Rayleigh-Ritz
theorem [51, Theorem 4.2.2] which gives

1 = sup
z∈RN ,z 6=0

∥∥∥zTDkTDkz
∥∥∥

‖z‖2

≥ max
i

(
DkTDk

)
i,i

= max
i

∥∥∥Dk
i

∥∥∥2 . (115)

Similarly, we also have,

L(D,K)2 = max
i=1,2,...,N

 sup
z∈RK ,z 6=0

∥∥∥zTD̃
T
(K,i)D̃(K,i)z

∥∥∥
‖z‖2


(116)

≥ max
i=1,2,...,N

k=0,1,...,K−1

(
D̃

T
(K,i)D̃(K,i)

)
k,k

(117)

= max
i

[
max

k=0,1,...,K−1

∥∥∥Dk
i

∥∥∥2] = 1, (118)

where (118) uses the fact that
∥∥D0

i

∥∥2 = ‖Ii‖2 = 1 and∥∥∥Dk
i

∥∥∥2 ≤ 1, for k = 1, 2, . . . ,K − 1 from (115). Combining
(114) and (118), we obtain the desired result.

APPENDIX G
PROOF OF PROPOSITION 2

To prove the monotonicity of the function, we need to show
that

L2 (D,K + 1) ≤ L2 (D,K)

(
1 +

1

K

)
. (119)

Therefore, we consider the following relation connecting
L2 (D,K + 1) and L2 (D,K):

L2 (D,K + 1) = max
i

∥∥∥D̃(K+1,i)

∥∥∥
2

(120)

= max
i

sup
z∈RN

‖z‖=1

zTD̃(K+1,i)D̃
T
(K+1,i)z (121)

= max
i

sup
z∈RN

‖z‖=1

K∑
j=0

∣∣zTDjIi
∣∣2 (122)

≤ max
i

sup
z∈RN

‖z‖=1

K−1∑
j=0

∣∣zTDjIi
∣∣2

+ max
i

sup
z∈RN

‖z‖=1

∣∣∣zTDKIi

∣∣∣2 (123)

≤ L2 (D,K) + max
i

∥∥∥DKIi

∥∥∥2 , (124)

where we use the definition of L2 (D,K) and Cauchy-
Schwarz inequality to get the last step.

Now, to complete the proof, it suffices to show that

max
i

∥∥∥DKIi

∥∥∥2 ≤ L2 (D,K) /K. (125)

Since D is a psd matrix with largest singular value as unity,
Dj−Dk is a psd matrix, for any pair of integers j ≤ k. Then,
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we have

K2
∥∥∥DKIi

∥∥∥2 = K2IT
iD

2KIi ≤
K−1∑
j=0

K−1∑
k=0

IT
iD

j+kIi

(126)

=

K−1∑
j=0

K−1∑
k=0

IT
iD

jTDkIi (127)

= K
(
1/
√
K
)T
D̃

T
(K+1,i)D̃(K+1,i)

(
1/
√
K
)

(128)

≤ KL2 (D,K) . (129)

Hence, (125) holds, which in turn shows (119). Thus, the proof
is complete.
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