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Abstract

In this thesis, we study problems under the theme of discovering joint structure in a set

of high-dimensional data samples from linear measurements. Our primary focus is on the

regime where the number of samples available is large, but we are constrained to access

very few measurements per sample. This setting can be used model high dimensional

estimation tasks in a distributed setting, where storing or communicating more measure-

ments per sample can be expensive. We study a basic problem in this setting – that of

support recovery from linear measurements. In this problem, a set of n samples in Rd,

each having a support of size k, is accessed through m linear measurements per sample.

The goal is to recover the unknown support, given knowledge of the measurements and

the measurement matrices. This problem, also sometimes referred to as variable selection

or model selection, has been extensively studied in the signal processing and statistics

literature, and finds applications in source localization, hyperspectral imaging, heavy hit-

ters detection in networks, and feature selection in regression. It is known that if we

have m = Ω(k log d) measurements per sample, then a single sample is sufficient for sup-

port recovery. As such, when we have access to multiple samples, an interesting question

to consider is whether we can perform recovery with m < k measurements per sample.

This measurement-constrained setting is relatively less explored in the literature, and the

optimal sample-measurement tradeoff was unknown prior to our work.

We provide a tight characterization of the sample complexity of this problem, which

together with previous results in the literature gives a full understanding of this prob-

lem for all values of k/m. We propose two algorithms that can perform recovery in the
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measurement-constrained regime, where standard algorithms fail to work. Our first al-

gorithm is a simple, closed-form variance estimation-based procedure, while our second

algorithm is based on an approximate maximum likelihood procedure. We show that

when m < k, the minimum number of samples required for exact support recovery with

high probability scales as Θ((k2/m2) log d), and the closed-form estimator achieves this

scaling.

To obtain the upper bound on sample complexity, we analyze the closed-form estimator

for both random inputs drawn from a subgaussian prior, and for deterministic, worst-case

inputs. We show that in either case, the upper bound has the same scaling with respect

to the problem dimensions. In our analysis for the worst-case input setting, we provide

some useful results in the form of concentration bounds for heavy-tailed random variables,

which may find use in other problems as well.

Our lower bound construction uses Gaussian samples and Gaussian measurement ma-

trices, and is based on characterizing the distance between pairs of competing output

distributions resulting from linear measurements from samples whose supports are close.

The lower bound that we obtain with Gaussian inputs implies a lower bound for the de-

terministic inputs case as well. In fact, it matches the upper bound that we obtain for the

deterministic input case, in turn showing that the case of Gaussian inputs is the hardest

for the common support recovery problem. In summary, our results settle the question

of tradeoff between m and n in the m < k regime, and show that there exists a phase

transition for the sample complexity of this problem at k/m = 1. Roughly, around this

point, the sample complexity for support recovery undergoes a change from being linear

in the ratio k/m to being quadratic in k/m (up to a factor of log d).

We then consider an extension of the common support recovery problem to the case

of multiple disjoint supports, where the support of each sample is assumed to be one out

of a small set of ` allowed supports, each of size k. We propose a two-step algorithm for

this setting, that first estimates the union of the underlying supports, and then estimates

the individual supports using a spectral algorithm. In effect, the first step utilizes second

order statistics of the data to recover the union, while the second step uses fourth order
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statistics to cluster coordinates in the union into ` different supports. We analyze this

algorithm for the class of subgaussian inputs and measurement matrices, and show an

upper bound of Õ(k4`4/m4) on the sample complexity of this problem when m < k.
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Chapter 1

Introduction

Modern applications involving high-dimensional data have led to a resurgence of interest

in several classical problems in the theory of estimation and detection. Unlike the classical

setting, however, the focus has shifted to the regime where the number of observations

available is much smaller than the dimension of the data. This shift can be attributed to

the limitations that are associated with collecting and processing high-dimensional data.

On the other hand, making meaningful inference is still possible in such cases because the

data typically has additional structure, which can be exploited by the inference procedure.

As a concrete example, consider the task of linear regression and the performance

that the least squares estimator achieves. In particular, assume we are given observations

Y = Φx+W ∈ Rm, where x ∈ Rd are the regression coefficients, Φ ∈ Rm×d is the matrix of

covariates, and W ∼ N (0, σ2I) is additive noise. When m ≥ d, the regression coefficients

can be estimated using the least squares estimator x̂LS
def
= (Φ>Φ)−1Φ>Y , and the resulting

mean squared error (MSE) can be explicitly characterized. Specifically, a simple calcula-

tion shows that the MSE as a function of Φ is given by E [‖x̂LS − x‖2
2|Φ] = σ2Tr((Φ>Φ)−1).

When Φ has independent, standard normal entries, the MSE averaged over Φ simplifies

to O(dσ2/m). This in turn means that as long as the number of observations scales at

least linearly with the dimension d, the MSE remains bounded above by a constant.

On the other hand, when m < d, it is impossible to estimate x without further

assumptions. If, for instance, most of the coefficients in x are expected to be zero (implying

1
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that only a few columns of the covariates matrix are active), then a constrained version

of the least squares estimator can instead be used. In particular, if at most k < d

coefficients are known to be nonzero, then one can perform least squares restricted to the

set {z ∈ Rd : |supp (z) | ≤ k}, provided k ≤ m. Unfortunately, unlike the previous case,

the solution is not available in closed form, but it can be shown that for Gaussian design

matrices as before, the MSE scales as O(σ2k log(d/k)/m), using a more involved analysis

compared to the unconstrained version [63]. Note that in this case fewer observations are

sufficient to guarantee that the MSE is small.

Although the discussion above was limited to a specific estimator and its variants,

the performance bounds that we saw can be shown to be optimal [63]. Nonetheless, at

a high level, the example illustrates two key points. The first is that fewer observations

suffice when the data has additional structure, as might be expected. The second is that

new estimators and techniques are required that exploit this underlying structure. These

observations have been made in the context of several other problems as well, including

support recovery, covariance estimation, matrix completion, and principal components

analysis (PCA), in similar high-dimensional settings. In each of these problems, additional

structural assumptions such as sparsity and low-rankness lead to error rates that scale

only sublinearly with the dimension d, see [81], [14], [17], [93], [24], [10] for more details

and precise statements.

In spite of a large body of work on these problems, we now point to a canonical

setting that is relatively less understood, which we will refer to as the multiple sample

measurement-constrained setting (or simply, the measurement-constrained setting). In

this setting, there are multiple data samples with some joint structure that we wish

to infer using observations made per data sample (for example, in the form of linear

measurements, quadratic measurements, or random subsamples). The question that we

ask is whether such inference can be done with fewer observations per sample than what

is dictated by the single sample setting. In other words, what is the tradeoff between

the number of samples and the number of measurements per sample? Understanding

this tradeoff can be useful for settings where obtaining more measurements per sample
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is expensive, and we would like to reduce the number of measurements collected per

sample as much as possible. Our goal in this work will be to study this question in the

context of the problem of support recovery from linear measurements. We will do so

by characterizing the sample complexity of this problem in the measurement-constrained

regime. Our results will show that the sample complexity undergoes a change as we move

from the measurement-rich regime to the measurement-constrained regime, with more

samples being required in the latter case. We describe the problem setting in more detail

in the next section.

1.1 Support recovery from multiple samples

In the problem of support recovery from linear measurements, a set of d-dimensional data

samples x1, . . . , xn are observed through linear measurements of the form Yi = Φixi +Wi,

where Φi ∈ Rm×d with m < d is the ith measurement matrix and Wi is additive noise,

independent across samples. Each sample has a support of size k < d, and we will be

interested in two kinds of settings. The first one is where the support is common across

samples, i.e., supp (xi) = S for all i ∈ [n] for some unknown S ⊂ [d]. The second case

is where the support can vary, but it is drawn from a small unknown set of ` allowed

supports. That is, for each i ∈ [n], supp (xi) ∈ {S1, . . . ,S`} with ` � n, implying that

there will be multiple samples with the same support. Note, however, that the label

associating samples to their respective supports is unknown. Our goal in either case is

to recover the underlying support(s) with high probability. This setting has been used

to model problems in hyperspectral imaging, source localization, anomaly detection, and

mixed linear models [20], [35], [44], [3], [6], [8].

We will first focus on the case of a common support to describe what was known

prior to our work and to highlight our results. As we will describe in detail in subsequent

chapters, the n = 1 case, where there is a single unknown sample, is fairly well-understood.

It is known that m = Θ(k log(d−k)) measurements are necessary and sufficient to recover

S exactly with high probability using a Gaussian measurement matrix [81](see the next

chapter for a more precise statement involving conditions on the SNR). Following this, it
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was shown that when multiple samples are available, i.e., when n > 1, mn = Θ(k log(d/k))

overall measurements1 are necessary and sufficient provided m > k [55]. The upper

bound from [55] uses an exhaustive search decoder, but a similar condition of m > k is

required for other estimators such as `1,2 minimization as well [51], and we call this the

measurement-rich regime. This suggests that regardless of how large n is, we still require

at least k measurements per sample (which is roughly what is required in the n = 1 case).

Furthermore, in this measurement-rich regime, the two resources m and n have a similar

effect on the recovery performance, and only the overall number of measurements mn

matters.

However, when we have multiple samples with joint structure (e.g., common or re-

peating supports), it is natural to expect that we should be able to perform support re-

covery with fewer than k measurements per sample.2 We will call this the measurement-

constrained regime. For both the problems described in the beginning of this section,

we will design estimators that can reliably recover the support(s) in the measurement-

constrained regime. For the problem of a common support, we will also show the op-

timality of our proposed estimator through a lower bound on the sample complexity.

Our results show that compared to the m > k regime, more samples are required in the

m < k regime, and the effect of the parameters m and n on the recovery performance

is different. In summary, our results, together with previous results in the literature for

the measurement-rich regime provide a full understanding of the sample complexity of

this problem for all regimes of m and k. For the setting with multiple supports, we will

derive an upper bound on the sample complexity by analyzing a spectral clustering-based

algorithm. We will also demonstrate the empirical performance of our algorithm on syn-

thetic and real datasets, and show that it can perform support recovery with very few

measurements per sample.

1We refer to the quantity mn as the overall number of measurements in our model.
2Clearly, support recovery with m < k measurements is impossible using a single sample as dictated

by the lower bound for n = 1.
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1.2 Summary of contributions and techniques

In this section, we briefly describe the contributions of this thesis.

1. We characterize the sample complexity n∗(m, k, d) of support recovery when there is

a single unknown support, and show that in the measurement-constrained regime of

m < k, n∗(m, k, d) = Θ((k2/m2) · log d). Our results thus demonstrate a change in

the behavior of the sample complexity from linear to quadratic in the ratio k/m (up

to logarithmic factors) as we move from the m > k to the m < k regime. We also

show that a closed-form estimator based on estimating coordinate-wise variances

achieves the optimal scaling. See Theorem 3.2.1for a statement of the result.

2. Our sample complexity bound holds for both random and deterministic inputs. In

particular, we analyze the performance of the closed-form estimator for inputs drawn

from certain subgaussian priors and for deterministic, worst-case inputs. We show

that in either case, the sample complexity upper bound has the same scaling with

respect to the problem dimensions. The proofs of both of our upper bounds rely

on deriving concentration inequalities for heavy-tailed random variables, which in

our case are functions of the measurement matrices. Standard approaches based on

controlling the moment generating function (MGF) cannot be used, since the MGF

is unbounded in this case. In proving the upper bounds, we will derive exponential

tail bounds for quadratic forms of random vectors with heavy-tailed entries using a

moment based method. See Theorems 2.3.6 and 2.4.1 for a statement of our results.

3. Our lower bound is derived using Gaussian inputs, stated in Theorem 3.1.1, and

relies on characterizing the distance between pairs of output distributions resulting

from linear measurements made on inputs with supports that are close to each

other. The lower bound that we obtain for the Gaussian case implies a lower bound

for the deterministic input setting as well. In fact, it matches the upper bound

that we obtain for the deterministic input case, in turn showing that the case of

Gaussian inputs is the hardest for the common support recovery problem. Our lower

bound proof is based on controlling the distance between the covariance matrices of
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competing output distributions measured in terms of their spectrum, and involves

characterizing the expected value of quantities that are a function of the spectrum of

the measurement matrices. In this respect, our lower bound proof differs from those

in previous works, which proceed by controlling the difference ‖ΦSxS − ΦS′xS′‖2

between the means of the output distributions for nearby supports S and S ′.

4. For the case of multiple unknown supports, we propose a spectral algorithm and an-

alyze it to obtain an upper bound (stated in Theorem 4.2.1) on the sample complex-

ity of the multiple support recovery problem, focusing again on the measurement-

constrained regime. The algorithm first computes the union of the underlying sup-

ports by using the closed-form estimator, and then obtains individual support es-

timates from this union estimate by performing spectral clustering on a certain

matrix that depends on fourth order statistics of the inputs. Our analysis is based

on characterizing the distance between the eigenvectors of this random clustering

matrix from those of the expected clustering matrix.

5. Our estimators for both the single and multiple support recovery problems are

based on the idea that higher order statistics of the data can reveal finer structure.

We use second order statistics of the data for detecting coordinates with nonzero

entries, and fourth-order statistics to further cluster the coordinates (which leads to

recovery of multiple supports). In particular, the construction of the estimator for

both problems is based on the idea of first forming proxy samples using the linear

measurements, and then using second and fourth order statistics of these proxy

samples. Alternatively, one can also view this as forming the sample mean and

covariance after an initial preprocessing step which involves squaring the entries of

the proxy samples. This squaring step makes the estimator robust to “cancellations”

that can occur when averaging across samples that can lead to missed detection

errors.
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1.3 Organization of the thesis

We describe the problem of support recovery with a single unknown support in Chapter 2.

Our main result is a tight characterization of the sample complexity of this problem. We

describe two estimators for support recovery and prove an upper bound on the sample

complexity by analyzing one of the estimators. Chapter 3 is devoted to the proof of

the sample complexity lower bound. We also discuss some consequences of our results

including the change in the sample complexity of support recovery as we move from the

measurement-rich to the measurement-constrained regime. In Chapter 4, we consider

the setting with multiple unknown supports. We describe an algorithm for this setting

and derive an upper bound on the sample complexity of the multiple support recovery

problem. We conclude with a discussion of possible extensions of our work in Chapter 5.



Chapter 2

Recovering a Single Support:

Estimators

In this chapter, we study the problem of recovering the common k-sized support of a

set of n samples of dimension d, using m noisy linear measurements per sample. Most

prior work has focused on the case when m exceeds k, in which case n of the order

(k/m) log(d/k) is both necessary and sufficient. Thus, in this regime, only the total

number of measurements mn across the samples matter, and there is not much benefit in

getting more than k measurements per sample. In the measurement-constrained regime

where we have access to fewer than k measurements per sample, we show an upper

bound of O((k2/m2) log d) on the sample complexity for successful support recovery when

m ≥ 2 log d. We will see two estimators that can perform recovery in the m < k regime:

the first is an approximate maximum likelihood (ML) estimator, and the second is a

closed-form estimator. The first estimator uses the specific form of the covariance matrix

resulting from linear measurements, and a Gaussian approximation step to then find

the ML estimate using a nonnegative quadratic program. We empirically evaluate the

performance of this estimator and show that it successfully recovers the support in the

m < k regime. Analyzing this estimator turns out to be difficult in general due to the fact

that the ML cost is a complicated function of higher order products of the measurement

The work in this chapter is based on [58], [59], [62].

8
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matrix. We then consider the closed-form estimator which is more amenable to analysis,

and is in fact sample optimal. Our sample complexity upper bound will thus be obtained

using the closed-form estimator, which we will analyze for both random and deterministic

inputs.

2.1 Introduction

The problem of support recovery in the single sample setting considers the following

question: given noisy linear measurements Y = Φx + W ∈ Rm of a k-sparse vector

x ∈ Rd, can we recover the locations of its nonzero entries when m < d? The set of

indices corresponding to the nonzero entries of x is called the support of x, and is denoted

by supp(x). The measurement matrix Φ ∈ Rm×d is a design parameter that is chosen

to enable exact or approximate recovery of supp(x), and W ∼ N (0, σ2I) is noise. This

problem (also sometimes referred to as model selection or variable selection) has received

a lot of attention in the past decade [81], [27], [4], [64], [47], with a focus on designing

recovery algorithms and on determining the number of measurements m required for

successful recovery. In particular, it is known that m = Θ(k log(d − k)) measurements

are necessary and sufficient for support recovery with high probability using a Gaussian

measurement matrix [81]. It is important to note that this tight scaling holds in the low

signal to noise ratio (SNR) regime of xmin/σ
2 = Θ(1/k), where xmin

def
= mini∈[d] xi. In other

regimes of SNR, either the log dependence changes or the upper and lower bounds are

known to differ by a factor of (log(1+kx2
min/σ

2))−1; see [84], [91], [47] for more discussion.

Parallel to the results in the single sample setting, there has been work on the natural

extension of this problem to the multiple sample setting, which is also the focus of our

work. In this setting, there are multiple samples x1, . . . , xn, all sharing a common unknown

support S of cardinality k. For each sample xi, we observe measurements Yi = Φixi +Wi,

and the goal is to recover S. We can ask the question of how the number of measurements

per sample m and the number of samples n can be traded off for each other, and whether

it is useful to take more samples or more measurements per sample.

While there have been several works in the multiple sample setting [88], [72], [28], [36],
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[69], [55], they focus on the regime where one has access to roughly m ≥ k measurements

per sample. In particular, omitting the dependence on SNR, [55] shows that mn =

Θ(k log(d/k)) is necessary and sufficient assuming m = Ω(k) and k = o(d). While the

sufficient condition in [55] is obtained via the analysis of an exhaustive search decoder,

algorithms such as the group LASSO also show a similar scaling of mn = Θ(k log(d− k))

provided m > k [51].

From the discussion in the previous paragraph, it is clear that if we have m =

Ω(k log(d−k)), then a single sample is sufficient for support recovery. Therefore, given that

we have access to multiple samples now, a more interesting question to consider is whether

we can perform recovery with m < k measurements per sample. This measurement-

constrained regime has received some attention in the past [9], [54], but a characterization

of the sample complexity was not known prior to our work.

In the first part of this chapter, we will show that for the case of random inputs

drawn from a subgaussian distribution, the sample complexity upper bound (ignoring

noise variance and parameters dependent on the generative model for the samples) is

n = O((k2/m2) log d) for (log k)2 ≤ m < k. In the next part, we will focus on the

case of deterministic inputs and show that the tradeoff identified for subgaussian inputs

holds for the worst-case setting as well. This result, together with our lower bound result

from Chapter 3 will provide a tight characterization of the sample complexity of support

recovery.

2.2 Prior work

Information-theoretically optimal support recovery in the single sample setting is well-

understood and [81], [27], [4] were some of the first works to look at this problem. In par-

ticular, [81] shows that for a deterministic input vector, m = Θ(k log(d−k)) measurements

are necessary and sufficient to exactly recover the support using a Gaussian measurement

matrix, establishing that support recovery is impossible in the m < k regime using a single

sample. Following these works, several papers proposed algorithms for the multiple sam-

ple setting, that include convex programming methods [44], [75], [26], thresholding-based
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methods [28], [31], Bayesian methods [88] and greedy methods [77], [25] [79]. Recovery of

the support is important in several practical applications including spectrum sensing [71]

and group testing [83]. Moreover, in settings where there are multiple unknown sup-

ports, the common support recovery algorithm can be used to estimate the union of the

supports. This can be useful in problems of linear regression where there are multiple

unknown subsets of correlated variables [51]. When m ≥ k, support recovery implies

recovery of the data vectors also. Indeed, given the support, one can estimate the data

vectors by solving a least squares problem restricted to the support. In this work, we show

that when m < k, support recovery is still possible. Clearly, recovery of the data vectors

is no longer possible, since there are infinitely many solutions even after restricting to the

support.

A setup similar to ours was studied in [55], but the results are not tight in the m < k

regime. In particular, [55] showed a lower bound on sample complexity of support recovery

of roughly (k/m), much weaker than our (k/m)2 lower bound. Another related line of

works [72], [36] studies this problem considering the same measurement matrix for all

samples, under the assumption that the data vectors are deterministic. However, none of

these works characterize the tradeoff between m and n when m < k.

Initial works considering the m < k regime were [54] and [9], followed by [37] and [59],

where it was empirically demonstrated that when multiple samples are available, it is

possible to operate in the m < k regime. We note that the estimator we consider is similar

to the one in [40]. However, the analysis in [40] is conditioned on the measurement matrix

ensemble, and the error probability is expressed in terms of quantities dependent on the

measurement matrix. As such, the final dependence of n on m, k and d cannot be inferred

from this result. In this work, we overcome these shortcomings by showing that the

estimator successfully recovers the support for a large class of subgaussian measurement

matrix ensembles, and we explicitly characterize the dependence of n on m, k and d. We

also provide matching lower bounds, which shows the optimality of the estimator. Two

other related works that consider the m < k setting are [54] and [39]. However, the precise

characterization of sample complexity is not addressed in any of these works.
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We will consider the case of both random and deterministic inputs, and our formulation

in the random setting naturally relates to some of the works on covariance estimation.

A recent work which looks at the problem of covariance estimation from low-dimensional

projections of the data is [7]. As we will see in the next section, support recovery in a

Bayesian setting amounts to estimating a diagonal and sparse covariance matrix, and the

general result in [7, Corollary 3] for this specific case is loose and does not give the correct

scaling for the sample complexity. Two other works that study covariance estimation

from projected samples in the m = 1 case are [15] and [21]. However, these results also

do not give the correct scaling on the number of samples, when applied to the diagonal

sparse case. Further, since m is set to one, the tradeoff between m and n is not clear.

Our setting is also related to the recently considered inference under local information

constraints setting of [2]. We impose information constraints on each sample by allowing

only m linear measurements per sample. Roughly, our results say that when local in-

formation constraints are placed (namely, m < k), support recovery requires much more

than k overall measurements.

Before moving further we make an additional remark about notation.

Remark 2.2.1 (Elaboration on notation.). We use upper case letters to denote random

variables (scalars, vectors or matrices) and deterministic matrices, and lowercase letters

to denote deterministic scalars or vectors. For a matrix Aj, Aji denotes its ith column,

Aj(u, v) denotes its (u, v)th entry and (Aj)S denotes the submatrix formed by columns

indexed by S. Also, for a vector Xj, Xji denotes the ith component of Xj.

2.3 The case of random inputs

We start by considering a Bayesian formulation for support recovery, where the input

comprises n independent samples X1, . . . , Xn in Rd, with each Xi having a zero-mean

Gaussian distribution. We denote the covariance of Xi by Kλ
def
= diag(λ1, λ2, . . . , λd),

where the d-dimensional vector λ has entries λ1, λ2, . . . , λd, such that λ ∈ Sk,d
def
=
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{
u ∈ {0, 1}d : |supp(u)| = k

}
. That is, the (random) data vectors have a common sup-

port S = supp(λ) of size k, almost surely1.

Each Xi is passed through a random m × d measurement matrix Φi, 1 ≤ i ≤ n,

with independent, zero-mean Gaussian entries with variance 1/m, and the observations

Yi = ΦiXi+Wi ∈ Rm are made available to a center, where the noise Wi has independent,

zero-mean Gaussian entries with variance σ2, independent of Xi and Φi. Using the mea-

surements Y1, . . . , Yn, the center seeks to determine the common support S of X1, . . . , Xn.

To that end, the center uses an estimate Ŝ : Rm×n →
(

[d]
k

)
, where

(
[d]
k

)
denotes the set of

all subsets of [d] of cardinality k. We seek estimators that can recover the support of λ

accurately with probability of error no more than δ, namely 2

Pr
(
Ŝ(Y n) 6= supp(λ)

)
≤ δ, ∀λ ∈ Sk,d. (2.1)

This is similar to the nonuniform recovery guarantee in compressed sensing [30, Section

9.2].

We are interested in sample-efficient estimators. The next definition introduces the

fundamental quantity of interest to us.

Definition 2.3.1 (Sample complexity of common support recovery). For m, k, d ∈ N, the

sample complexity of common support recovery n∗C,avg(m, k, d) is defined as the minimum

number of samples n for which we can find an estimator Ŝ satisfying (2.1) for some

δ ∈ (0, 1), i.e.,

n∗C,avg(m, k, d)
def
= min

{
n : ∃Ŝ s.t. Pr

(
Ŝ(Y n) 6= supp(λ)

)
≤ δ, ∀λ ∈ Sk,d

}
.

We will show the following upper bound on the sample complexity.

1Throughout, we will be considering inputs with support size exactly k, also sometimes referred to as
exact k-sparsity.

2We will usually choose δ = 1/3 in our upper bound results for convenience and it can be replaced
with any acceptable value below 1/2. We also note that although our upper bound results capture the
dependence on δ, the lower bound which we derive later is stated for a fixed δ.
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Theorem 2.3.1. For (log k)2 ≤ m < k and 1 ≤ k ≤ d − 1, the sample complexity of

common support recovery in the noiseless case satisfies

n∗C,avg(m, k, d) = O

(
k2

m2
log d

)
.

Remark 2.3.2. Our formulation assumes that the support size k is known. That said,

our proposed estimator extends easily to the setting where we only have an upper bound

of k on the support size, and we seek to output a set of indices containing the support.

Remark 2.3.3. We will use the notation n∗C,avg(m, k, d) to denote the sample complexity

derived under the assumption of random inputs, and n∗C,w(m, k, d) to denote that the inputs

are worst-case or deterministic. The dependence of sample complexity on the problem

dimensions (m, k, d) remains the same in both cases, but we use this notation to point out

the dependence on other parameters in the statement of our results.

We will present performance guarantees for our estimator in the more general noisy

setting in the next section, from which the result above will follow. Our proposed estimator

and its analysis applies to a much broader setting involving subgaussian priors. For Xn
1 ,

we can use any prior with subgaussian distributed entries, i.e., the entries of Xi are

independent and zero-mean with E
[
X2
i,j

]
= λj for λ ∈ Sk,d and Xi,j ∼ subG(λ′j), where

λ′j is the variance parameter for the subgaussian random variable Xi,j. Our analysis will

go through as long as the variance and variance parameters differ only up to a constant

factor.

Also, the measurement matrices Φi can be chosen to have independent, zero-mean

subgaussian distributed entries in place of Gaussian. However, as above, we assume that

the variance and variance parameter of each entry are the same up to a multiplicative

constant factor. Further, we assume that the fourth moment of the entries of Φi is of the

order of the square of the variance. Two important ensembles that satisfy these properties

are the Gaussian ensemble and the Rademacher ensemble.

For clarity, we restate our assumptions below. These assumptions are required for

the analysis of our estimator; the lower bound proof is done under the more restrictive
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setting of Gaussian measurement matrix ensemble (which implies a lower bound for the

subgaussian ensemble also).

Assumption 2.3.1. The entries of Xi, i ∈ [n], are independent and zero-mean with

E
[
X2
i,j

]
= λj for λ ∈ Sk,d and Xi,j ∼ subG(cλj), where c is an absolute constant;

Assumption 2.3.2. The m × d measurement matrices Φ1, . . . ,Φn are independent and

have entries that are independent and zero-mean with E [Φi(u, v)2] = 1/m, Φi(u, v) ∼

subG(c′/m), and E [Φi(u, v)4] = c′′/m2, where c′ and c′′ are absolute constants.

We have restricted λ to binary vectors for ease of presentation. Later, in Sec-

tion 2.3.1.2, we will show that our sample complexity results extend almost verbatim

to a more general setting with the nonzero coordinates of λ taking values between λmin

and λmax. The only change, in effect, is an additional factor (λmax/λmin)2 in the sample

complexity of support recovery.

We will work with the more general setting with subgaussian random variables sat-

isfying assumptions 2.3.1 and 2.3.2. In fact, for simplicity, we assume that Xi,j and Wi

are subgaussian with variance parameter equal to their respective variances, a property

known as strict subgaussianity . We also note that in Assumption 2.3.2, while subgaussian-

ity will provide an upper bound on the fourth moment, we require the fourth moment to

be between c/m2 and C/m2 for absolute constants c and C. In essence, we are presenting

a unified analysis for Rademacher, Gaussian and other random variables which satisfy

these conditions. For notational simplicity, we will fix the value of the constants and take

E
[
Φi(u, v)2

]
=

1

m
, E

[
Φi(u, v)4

]
=

3

m2
,

and assume that Φi(u, v) is subgaussian with variance parameter 1/m. These assumptions

of equality can be relaxed to order equality up to multiplicative constants.

Our results also extend to the case when the data vectors are not necessarily sparse

in the standard basis for Rd, i.e., the data vectors can be expressed as Xi = BZi, i ∈ [n],

where B is any known orthonormal basis for Rd and Zis have a common support of size k.

Under the same generative model as before, but for Zi this time, Theorem 2.3.1 continues
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to hold. This is because when Φi has subgaussian entries, the effective measurement

matrix ΦiB also satisfies the properties we mentioned above, namely, it has independent

mean zero subgaussian entries with variance and fourth moment of the order 1/m and

1/m2, respectively.

2.3.1 The closed-form estimator

We now present a closed-form estimator for the support, based on estimating the variance

along each of the d coordinates. To build heuristics, consider the trivial case where we can

directly access samples {Xi}ni=1. Then, a natural estimate for λi is the sample variance.

But in our setting, we only have access to the measurements {Yi}ni=1. We compute the

vector Φ>i Yi and treat it as a “proxy” for Xi. When Φ>i Φi = Id and the measurements

are noiseless, this proxy will indeed coincide with Xi. We compute the sample variances

using these new proxy samples and use it to find an estimate for the support of λ.

Formally, we compute variance estimates

λ̃i
def
=

1

n

n∑
j=1

(Φ>jiYj)
2, (2.2)

where Φji denotes the ith column of Φj. Since we are only interested in estimating the

support, we simply declare indices corresponding to the largest k entries of λ̃ as the

support, namely, we sort λ̃ to get λ̃(1) ≥ λ̃(2) ≥ · · · ≥ λ̃(d) and output

S̃ = {(1), ..., (k)}, (2.3)

where (i) denotes the index of the ith largest entry in λ̃. This is similar in spirit to the

Iterative Hard Thresholding (IHT) algorithm [12] from the compressed sensing literature,

where a similar support estimation step followed by least squares is used to estimate the

data vectors. The difference is that IHT is an iterative procedure and the least squares step

requires m ≥ k. Note that evaluating λ̃i requires O(nm) operations, whereby the overall

computational complexity of (naively) evaluating our proposed estimator is O(dnm).
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Before we move to detailed analysis in the next section, we do a quick sanity test for

our estimator and evaluate its “expected behavior”. An easy calculation shows that λ̃i is

a biased estimate of λi with a bias depending on k,m, and σ2. In particular, we have the

following result.

Lemma 2.3.4. Let the estimator λ̃ be as defined in (2.2). Then, under Assumptions

2.3.1 and 2.3.2 with c = c′ = c′′ = 1, we have that

E
[
λ̃i

]
=
m+ 1

m
λi +

k

m
+ σ2, i ∈ [d],

where the expectation is with respect to the joint distribution of {Xn
1 ,Φ

n
1 ,W

n
1 }.

Proof. We can rewrite the estimator in (2.2) as

λ̃i =
1

n

n∑
j=1

(∑
l∈S

Xjl(Φ
>
jiΦjl) + Φ>jiWj

)2

, i ∈ [d].

Taking expectation, we note that,

E
[
λ̃i

]
= EΦn1

[
1

n

n∑
j=1

(
EXn

1

[∑
l∈S

X2
jl(Φ

>
jiΦjl)

2

]
+ EWn

1

[
(Φ>jiWj)

2

])∣∣∣∣Φn
1

]

= EΦn1

[
1

n

n∑
j=1

(∑
l∈S

(Φ>jiΦjl)
2 + σ2‖Φji‖2

2

)]
,

where the second step uses the fact that Xj has zero mean entries.

Using our assumption that the columns of Φj have independent mean-zero entries with

variance 1/m and fourth moment 3/m2, it follows from Lemma 2.6.13 that

E
[
λ̃i

]
=
m+ 1

m
λi +

k

m
+ σ2, i ∈ [d],

which establishes the lemma.

We work with this biased estimate λ̃ and analyze its performance in the next section.

Since the bias is the same across all coordinates, it does not affect sorting/thresholding



Chapter 2. Recovering a Single Support: Estimators 18

based procedures. The key observation here is that the expected value of the entries of

λ̃ for coordinates in the true support exceeds those outside the support, making it an

appropriate statistic for support recovery.

We next compute the variance of the estimator, which would give an idea of the per-

formance of the estimator. In particular, it can be used to bound the error probability

as a function of the problem parameters by an application of Chebyshev inequality. We

will compute the variance for the basic case of Gaussian measurement matrices and Gaus-

sian inputs, with noiseless observations, and it will provide a rough understanding of the

sample complexity of the problem. In later sections, we will obtain more precise results

by deriving concentration bounds for the estimator. We state our assumptions and the

variance bound below.

Assumption 2.3.3. The entries of Xi, i ∈ [n], are independent with Xi,j ∼ N (0, λj),

j ∈ [d], and λ ∈ Sk,d;

Assumption 2.3.4. The m× d measurement matrices Φ1, . . . ,Φn are independent, with

entries that are independent and distributed as N (0, 1/m).

Lemma 2.3.5. Let the estimator λ̃ be as defined in (2.2). Then, under Assumptions

2.3.3 and 2.3.4, we have in the noiseless setting that

var (λi) ≤

c
(

1 + k2

m2

)
, if i ∈ S,

c′ k
2

m2 , otherwise,

for absolute constants c and c′.

We provide the proof of this lemma in Section 2.6.

We can now use the bound on var(λ̃i) to obtain a bound on the probability of error per

coordinate by an application of Chebyshev inequality. In particular, assuming k/m > 1,

we get for every i ∈ [d] and t > 0,

Pr

(∣∣∣∣λ̃i − E
[
λ̃i

] ∣∣∣∣ > t

)
≤ k2

t2m2n
,
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which indicates that for constant t < 1, the number of samples should scale roughly as

k2/δm2 for the probability of error to remain bounded above by δ. This, however, only

captures the per- coordinate behaviour of the estimator and an application of the union

bound over all coordinates will inevitably lead to a factor of d, indicating that the sample

size should scale linearly with d. This is not desirable and can be avoided by using sharper

concentration bounds for the estimator. This is the focus of the next section.

2.3.1.1 Analysis

A high level overview of our analysis is as follows. We first note that, conditioned on the

measurement matrices, the entries of λ̃ are sums of independent subexponential random

variables. If we can ensure that there is sufficient separation between the typical values of

λ̃i in the i ∈ S and i′ ∈ Sc cases, then we can distinguish between the two cases. We show

that such a separation holds with high probability for subgaussian measurement matrix

ensembles satisfying the assumptions in Assumption 2.3.2.

We now present the performance of our estimator.

Theorem 2.3.6. Let S̃ be the estimator described in (2.3), and assume that (log k)2 ≤ m

and k ≤ d− 1. Then, under Assumptions 2.3.1 and 2.3.2, S̃ equals the true support with

probability at least 1− δ provided

n ≥ c

(
k

m
+ 1 + σ2

)2

log
k(d− k)

δ
,

for an absolute constant c.

Remark 2.3.7. We note that the result above applies for all k and all m > (log k)2, and

not only to our regime of interest m < k. When σ2 = 0, m < k ≤ d− 1, and δ = 1/3, we

obtain the upper bound claimed in Theorem 2.3.1.

Proof. While computationally tractable, analyzing our proposed estimator directly may

not be easy. Instead, we analyze an alternative thresholding-based estimator given by

λ̂i = 1{λ̃i≥τ}. (2.4)
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We note that if λ = λ̂, the largest k entries of λ̃ must coincide with the support of λ.

Therefore,

Pr
(
S̃ 6= supp(λ)

)
≤ Pr

(
Ŝ 6= supp(λ)

)
, (2.5)

where Ŝ is the support of λ̂. Using this observation, it suffices to analyze the estimator λ̂

in (2.4), which will be our focus below.

The proof of Theorem 2.3.6 entails a careful analysis of tails of λ̃i and uses standard

subgaussian and subexponential concentration bounds. To bound the error term in (2.5),

we rely on the measurement matrix ensemble satisfying a certain separation condition;

we denote this event by E and describe it in detail shortly. Denoting by S the support of

λ, the error event Pr
(
Ŝ 6= S

)
can be bounded as

Pr
(
Ŝ 6= S

)
≤ Pr

(
Ŝ 6= S|E

)
+ Pr (Ec)

≤
∑
i∈S

Pr
(
λ̃i < τ |E

)
+
∑
i′∈Sc

Pr
(
λ̃i′ ≥ τ |E

)
+ Pr (Ec) . (2.6)

We show that the first two terms in the equation above, involving probabilities conditioned

on the event E , can be made small. Also, for the subgaussian measurement ensemble, E

occurs with large probability, which in turn implies that the overall error can be made

small.

Our approach involves deriving tail bounds for λ̃i conditioned on the measurement

matrices, and then choosing a threshold τ to obtain the desired bound for (2.6); we derive

lower tail bounds for i ∈ S and upper tail bounds for i′ ∈ Sc. The event E mentioned

above corresponds to the measurement ensemble being such that we can find a threshold

τ that allows us to separate these bounds.

Specifically, note that

λ̃i =
1

n

n∑
j=1

(∑
l∈S

Xjl(Φ
>
jiΦjl) + Φ>jiWj

)2

,
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where we used Yj = ΦjXj +Wj. Conditioned on Φn
1 , λ̃i is a sum of independent subexpo-

nential random variables. Using properties of subexponential random variables described

in Lemmas 2.6.3 and 2.6.4 in Section 2.6.3, we get that conditioned on the measurement

matrices Φn
1 , the random variable λ̃i is

subexp

(
c1

n2

n∑
j=1

α4
ji,
c2

n
max
j∈[n]

α2
ji

)
,

where c1 and c2 are absolute constants and

α2
ji =


‖Φji‖4

2 +
∑

l∈S\{i}

(Φ>jlΦji)
2 + σ2‖Φji‖2

2, i ∈ S,

∑
l∈S

(Φ>jlΦji)
2 + σ2‖Φji‖2

2, otherwise.

Using standard tail bounds for subexponential random variables given in Lemma 2.6.3

and denoting µi
def
= E

[
λ̃i|Φn

1

]
= 1

n

∑n
j=1 α

2
ji, i ∈ [d], we have for i ∈ S,

Pr
(
λ̃i < τ |Φn

1

)
≤ exp

(
−min

{
n2(µi − τ)2

c1

∑n
j=1 α

4
ji

,
n(µi − τ)

c2 max
j∈[n]

α2
ji

})
,

and for i′ ∈ Sc,

Pr
(
λ̃i′ ≥ τ |Φn

1

)
≤ exp

(
−min

{
n2(τ − µi′)2

c1

∑n
j=1 α

4
ji′
,
n(τ − µi′)
c2 max

j∈[n]
α2
ji′

})
.

We can upper bound the sum of the first two terms in (2.6) by δ/2 by showing that

with large probability Φn
1 takes values for which we get each term above bounded by

roughly δ′
def
= δ/(4 max{(d− k), k}). In particular, using a manipulation of the expression

for exponents, each of the conditional probabilities above will be less than δ′ if τ satisfies

the following condition for any i ∈ S and i′ ∈ Sc:

µi′ + νi′ ≤ τ ≤ µi − νi, (2.7)
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where

νi
def
= max


√√√√ c1

n2

n∑
j=1

α4
ji log

1

δ′
,
c2

n
max
j∈[n]

α2
ji log

1

δ′

 ,

and a similar definition holds for νi′ . Thus, the sufficient condition in (2.7) can be rewritten

as

1

n

n∑
j=1

α2
ji −

1

n

n∑
j=1

α2
ji′ ≥max


√√√√ c1

n2

n∑
j=1

α4
ji log

1

δ′
,
c2

n
max
j∈[n]

α2
ji log

1

δ′


+ max


√√√√ c1

n2

n∑
j=1

α4
ji′ log

1

δ′
,
c2

n
max
j∈[n]

α2
ji′ log

1

δ′

 . (2.8)

Let E denote the event that for all i ∈ S and i′ ∈ Sc, condition (2.8) is satisfied by

the measurement matrix ensemble.

We will show that for Φn
1 drawn from the subgaussian ensemble satisfying assump-

tion 2.3.2, the event E in fact occurs with high probability. We establish this claim by

showing that each term in (2.8) concentrates well around its expected value and roughly

nm2 ≥ ck2 log(1/δ′) suffices to guarantee that the separation required in (2.8) holds with

large probability. The following result, which we prove in Section 2.6.1, shows that (2.8)

holds with large probability for all pairs (i, i′) ∈ S × Sc.

Lemma 2.3.8. The separation condition (2.8) holds simultaneously for all pairs (i, i′) ∈

S ×Sc with probability at least 1− δ, over the choice of Φn
1 , Xn

1 and W n
1 , if n ≥ c(k/m+

σ2)2 log(1/δ′), where δ′ = δ/(4 max{k, d− k}).

Choosing the probability parameter to be δ/2 in Lemma 2.3.8, we see that the third

term in (2.6) can be at most δ/2, leading to an overall error probability of at most δ.

Further, noting that 2 log(1/δ′) ≥ log(16k(d− k)/δ), we obtain the result claimed in the

theorem.

Remark 2.3.9. The separation condition (2.8) fails to hold for n = 1, regardless of

which measurement ensemble is used. This is to be expected in our setting of m < k, since
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from our lower bound for sample complexity stated in Theorem 3.1.1, multiple samples

are necessary in the m < k regime.

Remark 2.3.10. We also note that using the same measurement matrix across samples

leads to worse performance for the closed-from estimator. In particular, for the term on

the left hand side of (2.8) to remain positive (which is necessary since the right hand side

is always positive), m = O(
√
k) measurements are required per sample. This dependence

arises due to the deviation terms which only decay with m (instead of both m and n

when different Φi are used). The approximate ML estimator that we will see later can

work with the same measurement matrix across samples, but can only handle k/m ratios

slightly larger than one (see Figure 2.1 for details). Our lower bound, on the other hand,

continues to hold when all Φi are equal even with m = 1, indicating that better estimators

can be designed that can work with m <
√
k even when the same measurement matrix is

used across samples.

2.3.1.2 Extension to nonbinary variances

In this section, we extend our results to the case where λ is not necessarily binary. Specif-

ically, we have the following assumption.

Assumption 2.3.5. The entries of Xi, i ∈ [n], are independent and zero-mean with

E
[
X2
i,j

]
= λj for λ ∈ {u ∈ Rd : ‖u‖0 = k, λmin ≤ ui ≤ λmax} and Xi,j ∼ subG(cλj),

where 0 < λmin ≤ λmax and c is an absolute constant. In addition, we assume that

λmin/λmax > k/(k +m− 1).

Our sample complexity result continues to hold with an additional scaling by a factor

of λ2
max/λ

2
min. In particular, we have the following result.

Theorem 2.3.11. The sample complexity of support recovery under Assumptions 2.3.1

and 2.3.2 satisfies

n∗C,avg(m, k, d) ≤ C
λ2
max

λ2
min

(
k

m
+ 1 +

σ2

λmax

)2

log

(
k(d− k)

δ

)
,

provided m ≥ (log k)2, where C is an absolute constant.
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The techniques used for proving the upper bounds remains essentially the same, and

we highlight the key changes in this section.

We start by extending the bias calculation in Lemma 2.3.4 to the more general non-

binary setting. We omit the proof since it follows from straightforward calculations.

Lemma 2.3.12. Let the estimator λ̃ be as defined in (2.2). Then, under Assumptions

2.3.1 and 2.3.2 with c = c′ = c′′ = 1, we have that

E
[
λ̃i

]
=
m+ 1

m
λi +

1

m
Tr(Kλ) + σ2, i ∈ [d],

where the expectation is with respect to the joint distribution of (Xn
1 ,Φ

n
1 ,W

n
1 ).

Note that, when λ is binary, Tr(Kλ) = k and the result above reduces to Lemma 2.3.4.

WE now provide the proof of Theorem 2.3.11.

Proof. Our final estimate for the support is the same as before, namely, it computes λ̃ and

declares the indices of the k largest entries as the support. However, as before, we work

with a threshold based estimator, with the bias terms in Lemma 2.3.12 being accounted

for in the threshold.

Following the same series of arguments as in the binary case, and using the assumption

that λi ∈ [λmin, λmax], we have that Pr
(
S̃ 6= S

)
≤ δ can be achieved provided that the

following condition holds for every i ∈ S and every i′ ∈ Sc:

λmin

n

n∑
j=1

(α′ji)
2 − λmax

n

n∑
j=1

(α′ji′)
2 ≥λmax

max


√√√√ c1

n2

n∑
j=1

(α′ji)
4 log

1

δ′
,
c2

n
max
j∈[n]

(α′ji)
2 log

1

δ′


+ max


√√√√ c1

n2

n∑
j=1

(α′ji′)
4 log

1

δ′
,
c2

n
max
j∈[n]

(α′ji′)
2 log

1

δ′


 ,

where δ′ = δ/(4 max{k, d− k}), and

(α′ji)
2 =


‖Φji‖4

2 +
∑

l∈S\{i}

(Φ>jlΦji)
2 +

σ2

λmax

‖Φji‖2
2, i ∈ S,

∑
l∈S

(Φ>jlΦji)
2 +

σ2

λmax

‖Φji‖2
2, otherwise.
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Incorporating the scaling due to λmin and λmax into our concentration bounds in the proof

of Lemma 2.3.8, and simplifying, we get that

n ≥ C
λ2

max

λ2
min

(
k

m
+ 1 +

σ2

λmax

)2

log

(
k(d− k)

δ

)

samples suffice for Pr
(
S̃ 6= S

)
≤ δ, provided λmin/λmax > k/(k +m− 1).

2.3.2 The maximum likelihood estimator

In this section, we will look at another estimator that can perform support recovery in

the m < k regime and is based on the maximum likelihood principle. We will work

with the same setting of random inputs as before. In fact, we will restrict to a Gaussian

prior on the inputs and use the specific form of the output covariance matrix that results

due to the linear model to develop the estimator. We will use the variance parameter

λ of the prior to capture the common support structure of the inputs. Our approach

at a high level is to express the sample covariance matrix as a perturbed version of the

population covariance matrix that is parameterized by the measurement matrices and

the prior parameter λ. We then use a Gaussian approximation on the distribution of

the perturbation term, and set up a maximum likelihood problem to estimate the prior

parameter. More specifically, we find the approximate maximum likelihood estimate of λ

using a modified reweighted minimization procedure. Empirically, the proposed algorithm

succeeds in exactly recovering the common support with high probability in the m ≥ k

regime with n of the order of m and in the m < k regime with larger n.

To capture the latent structure in Xi, we assume that Xi ∼ N (0, Kλ) where recall

from the previous section that Kλ = diag (λ). This multivariate Gaussian prior to model

sparsity was first introduced in [87]. Also, unlike the previous closed-form estimator, the

maximum likelihood estimator that we will see in this section can work in the setting

where the same measurement matrix is used across samples. We will derive the estimator



Chapter 2. Recovering a Single Support: Estimators 26

for this setting, but the same approach can be used in the case where different measure-

ment matrices are used across samples. The observations Yi are therefore distributed as

N (0,ΦKλΦ
> + σ2I) and the goal is to estimate the common support S from {Yi,Φi}ni=1.

We observe that under the prior model above, S = supp (Xi) = supp (λ), since λj = 0

if and only if Xij = 0 almost surely. Hence, support recovery from multiple samples is

equivalent to recovering the support of λ.

2.3.2.1 Gaussian approximation based support recovery

Let K ∈ Rm×m denote the covariance matrix of the observations. Then, in the noiseless

case, we have K = ΦKλΦ
>, which can be rewritten after vectorizing as vec (K) = (Φ �

Φ)λ, where � denotes the Khatri-Rao product [38]. The support recovery problem is to

then recover the support of the sparse non-negative vector λ from K. However, instead of

solving the problem over a discrete variable (the support), we will solve for the variance

parameter itself and show that this can be done efficiently using a nonnegative quadratic

program. We note that reformulating support recovery as a variance estimation problem

(using a convex optimization procedure) was first considered in [54] as

min
λ
‖λ‖1 s.t. (Φ� Φ)λ = vec (K) . (2.9)

This model is analyzed in [53], and conditions under which the model is identifiable are

derived. If we had access to the true covariance matrix K (which corresponds to the

n → ∞ case), then we could work with the system of equations K = ΦKλΦ
> to recover

the support of λ which, in turn, would give us the common support of Xis. For finite n,

we can use the sample covariance matrix K̂ = (1/n)
∑n

i=1 YiY
>
i as an estimate for K, but

we need to account for the error arising due to finite samples. In this section, we derive

the statistics of the error due to finite sample approximation to K, and then find the ML

estimate of λ. More precisely, the sample covariance matrix can be written as a noisy

version of the true covariance matrix as

K̂ = K +Kerr, (2.10)
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where Kerr represents the error matrix. Equivalently, vectorizing the matrices on either

side of (2.10), we get

R = (Φ� Φ)λ+N, (2.11)

where R
def
= vec

(
K̂
)

and N
def
= vec (Kerr). We now proceed to find the approximate ML

estimate of λ. To that end, we first derive the statistics of the error N .

Our starting point is the following lemma, which provides the mean and covariance

matrix of the vectorized error N . Also, for a random vector X, we will use the shorthand

cov (X) to denote its covariance matrix E
[
(X − E [X])(X − E [X])>

]
.

Lemma 2.3.13. Consider {Yi}ni=1 drawn iid from N (0, K). Let K̂ denote the sam-

ple covariance formed using {Yi}ni=1 and let N = vec
(
K̂ −K

)
. Further, let B =

cov
(
vec

(
ZZ>

))
where Z ∼ N (0, I) and let C be a matrix satisfying K = CC>. Then,

E [N ] = 0, and cov (N) =
1

n
(C ⊗ C)B(C ⊗ C)>.

Proof. The mean computation is straightforward:

E [N ] =
1

n

n∑
i=1

vec
(
E
[
YiY

>
i −K

])
= 0.

The covariance matrix can be computed as follows:

cov (N) = cov

(
vec

(
1

n

n∑
i=1

YiY
>
i −K

))
=

1

n
cov

(
vec

(
Y1Y

>
1 −K

))
=

1

n
cov

(
vec

(
Y Y >

))
,

where we used the fact that Y1, . . . , Yn are independent and identically distributed. We

now represent Y as Y = CZ, where Z ∼ N (0, I) and C is a matrix such that K = CC>.

Using this, we obtain

cov (N) =
1

n
cov

(
vec

(
CZZ>C>

))
=

1

n
cov

(
(C ⊗ C)vec

(
ZZ>

))
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=
1

n
(C ⊗ C)B(C ⊗ C)>,

where B
def
= cov

(
vec

(
ZZ>

))
.

For our model, K = ΦKλΦ
> + σ2I. Letting C = ΦD

1
2 , with D = Kλ + σ2Φ†Φ>

†
, and

using the lemma above, we get

cov (N) =
1

n
(ΦD

1
2 ⊗ ΦD

1
2 )B(ΦD

1
2 ⊗ ΦD

1
2 )

=
1

n
(Φ⊗ Φ)(D

1
2 ⊗D

1
2 )B(D

1
2 ⊗D

1
2 )(Φ⊗ Φ)>, (2.12)

where the second step uses the property that UV ⊗XY = (U ⊗X)(V ⊗ Y ). The d2× d2

covariance matrix B of vec
(
ZZ>

)
can be computed explicitly for a given d and it can be

verified that the entries of B lie in {0, 1, 2}.

We give an example for the case when d = 3.

Example The matrix B for N = 3.

Let Z = [Z1, Z2, Z3]> with Zi
iid∼ N (0, 1), i ∈ {1, 2, 3}. We wish to find the covariance

matrix of vec
(
ZZ>

)
. For example, the (1, 1)thand (1, 2)th entries can be computed as

follows:

B1,1 = E
[
Z4

1

]
− (E

[
Z2

1

]2
= 3− 1 = 2

B1,2 = E
[
Z3

1Z2

]
− E

[
Z2

1

]
E [Z1Z2] = 0.
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Computing the remaining entries in a similar way, we get

B = cov(vec(ZZ>)) =



2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 2



.

We also note that B is rank-deficient with rank(B) = d(d+ 1)/2.

For the noiseless case, we have D = Kλ and we can further simplify (2.12) by exploiting

the structure of B. Specifically, it can be shown that B can be expressed as Im2 + Q,

where Q denotes a permutation matrix and Im2 denotes the m2 × m2 identity matrix.

Using this fact and the structure of K
1
2
λ ⊗K

1
2
λ , we get

M
def
= cov (N)

=
1

n
(Φ⊗ Φ)(K

1
2
λ ⊗K

1
2
λ )(Im2 +Q)(K

1
2
λ ⊗K

1
2
λ )(Φ⊗ Φ)>

=
1

n
(Φ⊗ Φ)B(Kλ ⊗Kλ)(Φ⊗ Φ)>. (2.13)

In the next section, we use these statistics to derive an approximate ML estimate of λ.

2.3.2.2 Maximum Likelihood Estimation of λ

We consider the model derived in the previous section:

R = AKRλ+N, (2.14)

where AKR
def
= (Φ � Φ). We seek the ML estimate of λ from R. It is important to note

that the statistics of the noise N also depends on λ.
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Since R, AKRλ and N are vectorized versions of m×m symmetric matrices, they lie in

an m(m+1)
2

dimensional subspace of Rm2
. We therefore restrict our attention to the m(m+1)

2

linearly independent equations in (2.14). This can be done by pre-multiplying (2.14) by

a projection matrix P ∈ R
m(m+1)

2
×m2

, formed using a subset of the rows of Im2 that picks

the m(m+1)
2

independent entries. Thus,

RP = AKR,Pλ+NP ,

where RP
def
= PR, AKR,P

def
= PAKR, and NP

def
= PN . Further, we approximate the distri-

bution of NP by N (0,MP ), where MP = PMP> and M is the noise covariance matrix

derived in the previous section. This Gaussian approximation is motivated from the fact

that the noise vector N is a sum of i.i.d. random vectors, i.e.,

N =
1

n

(
n∑
i=1

vec
(
YiY

>
i − E

[
YiY

>
i

])) def
=

1

n

n∑
i=1

Ui,

which implies, from the central limit theorem, that as n→∞, 1
n

∑n
i=1 Ui

d.→ N (0,M).

Using this, the approximate ML estimate of λ, which we denote λML, can be found by

solving the following optimization problem:

λML = arg max
λ≥0

p(rP ;λ), (2.15)

where

p(rP ;λ) =
1

(2π)
m(m+1)

4 |MP |
1
2

exp

(
−(rP − AKR,Pλ)>M−1

P (rP − AKR,Pλ)

2

)
,

and rP denotes an instantiation of RP . Simplifying (2.15), we get

λML = arg min
λ≥0

log |MP |+ (rP − AKR,Pλ)>M−1
P (rP − AKR,Pλ). (2.16)

The objective function in (2.16) is nonconvex in λ since MP also depends on λ, and
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Algorithm 1: Modified Reweighted NNQP (MRNNQP)

1: Input: Measurement matrix Φ, vectorized version rP of upper triangular entries of

sample covariance matrix of {Yi}ni=1, initial value λ(0) = (1, . . . , 1)>,

K
(0)
λ = diag(λ(0)), i = 1

2: While (not converged) do

3: M
(i)
P ← 1

n
P (Φ⊗ Φ)B(K

(i−1)
λ ⊗K(i−1)

λ )(Φ⊗ Φ)>P>

4: b(i) = −A>KR,PM
(i)−1

P rP

5: Q(i) = A>KR,PM
(i)−1

P AKR,P

6: λ(i) = NNQP(Q(i), b(i))

7: K
(i)
λ = diag(λ(i))

8: i = i+ 1

9: end While

10: Output: Support of λ(i)

is difficult to optimize directly. In the next section, we propose a heuristic technique to

solve the optimization problem.

2.3.2.3 Modified Reweighted Minimization

In this section, we propose a modified reweighted minimization approach to solve (2.16).

We fix MP , solve the resulting convex non-negative quadratic problem, re-compute MP

using the new λ, and iterate.

Now, to solve the convex non-negative quadratic program (NNQP)

arg min
λ≥0

(rP − AKR,Pλ)>M−1
P (rP − AKR,Pλ),

we use the iterative technique of [70], which gives the following entry-wise update for λ

in the (i+ 1)th iteration:

λ
(i+1)
j = λ

(i)
j

−bj +
√
b2
j + 4(Q+λ(i))j(Q−λ(i))j

2(Q+λ(i))j

 ,
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Figure 2.1: Support recovery performance of different algorithms.

where b = −A>KR,PM−1
P rP , Q = A>KR,PM

−1
P AKR,P , Q+ = max(Q, 0), Q− = max(−Q, 0), with

max(Q, 0) representing the entry-wise maximum of the elements of Q and 0.

Thus, our approach is as follows: we approximate the noise covariance MP by its

zeroth-order Taylor expansion around a previous estimate of λ and then minimize the

resulting cost function over λ keeping MP fixed. This can be viewed as an iterative

reweighted minimization [16] technique where we only consider the zeroth order term in

the Taylor expansion, since gradient computation is difficult. The steps are summarized

in Algorithm 1. The computational complexity of the algorithm is dominated by the

computation of MP , which requires O(m4d2) operations. However, increasing the number

of samples only affects the computation of r (which can be computed in O(n) operations).

We point out some important aspects of the model (2.11) and differences between our

algorithm and existing algorithms in the literature. The statistics of the error term N

depends on n as well as on the parameter λ that has to be estimated, as can be seen

from (2.13). As a result of this parameter-dependent noise, the maximum likelihood cost

function is nonconvex in λ and difficult to optimize. The Co-LASSO algorithm [54], which

also uses the sample covariance matrix to estimate λ, does not account for the statistics

of the noise/error arising because of the difference between the true covariance and its

finite sample based estimate. Therefore, the algorithm performs well only when n is large,



Chapter 2. Recovering a Single Support: Estimators 33

i.e., when the error term is negligible. As we illustrate in the next section, the proposed

algorithm performs well at a much smaller n. Also, under our generative model for the

inputs, the `1,2 penalty algorithm [44] and simultaneous OMP [78] perform poorly in the

m < k regime.

Another interesting feature of our algorithm is that the key step, namely, Step 6 in

Algorithm 1, involves solving a nonnegative quadratic program. In particular, no sparsity-

promoting penalty is required. Similar observations were made in [29], where the authors

note that a non negative least squares program can be used for recovering nonnegative

sparse vectors without explicit sparsity-inducing regularization.

2.3.2.4 Simulation Results

In this section, we study the support recovery performance of the proposed algorithm

through simulations.

For a given set of (m, k, d, n) values, we generate the following: an m×d measurement

matrix Φ with entries Φij
iid∼ N (0, 1/m), a support S ⊂ [d] with |S| = k chosen uniformly

at random from
(
d
k

)
possibilities, λ ∈ {0, 1}d with support S, {Xi}ni=1 drawn indepen-

dently from N (0, diag (λ)). For each trial, The algorithm is provided with Φ and {Yi}ni=1

generated according to the linear model. We run the algorithm 200 times, and a trial is

declared successful if the algorithm exactly recovers the true support. The objective value

decreases as the iterations proceed and stabilizes after about 20 iterations.

Figure 2.1 shows the probability of successful recovery of the proposed algorithm, the

Co-LASSO approach from [54], the M-SBL algorithm [88], simultaneous OMP (SOMP)

[78], and the `1,2 penalty algorithm [44], as a function of n and k, respectively. Both the

proposed algorithm and M-SBL, which use a maximum likelihood based approach to esti-

mate λ show similar performance, with the proposed algorithm performing slightly better

in the low n regime. The Co-LASSO approach requires much larger n for reliable support

recovery, while SOMP and `1,2 minimization perform well only in the m > k regime. Thus,

our proposed algorithm provides competitive performance with the attractive benefit that

its complexity scales linearly with n.
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2.4 The case of deterministic inputs

In this section, we analyze the closed form estimator for deterministic, worst case inputs

and derive an upper bound on the sample complexity that matches with the result in

Theorem 2.3.6 with respect to dependence on the problem dimensions. In particular, let

vectors x1, . . . , xn in Rd have a common support S ⊂ [d] of cardinality k. For each of these

vectors, we have access to noisy linear measurements of the form Yi = Φixi +Wi, i ∈ [n].

Here, Φi ∈ Rm×d with m < d are called the measurement matrices and Wi
iid∼ N (0, σ2I)

is noise. The goal is to recover the support S using {Yi,Φi}ni=1. An estimator for S is

a mapping Ŝ : Rm×n × Rm×d×n →
(

[d]
k

)
, where

(
[d]
k

)
denotes the set of all subsets of [d]

of cardinality k. We assume that the estimator has knowledge of k and consider the

probability of exact recovery, Pr
(
Ŝ 6= S

)
, as our recovery criterion. We note that one

could also consider the setting where |S| ≤ k. The estimator that we consider here would

output an Ŝ that contains the true support with high probability. In this work, however,

we assume that the true support has cardinality exactly k.

We will assume that the measurement matrices satisfy Assumption 2.3.4. For the

inputs, we make the following assumption.

Assumption 2.4.1. The d-dimensional inputs x1, . . . , xn are such that supp(xi) = S, for

all i ∈ [n], where S ⊂ [d] is a fixed set of cardinality k. Further, |xiu| ∈ [xmin, xmax], for

all i ∈ [n], u ∈ S, where xmin, xmax ∈ R.

As before, our focus will be on the measurement-constrained setting where we obtain

only m < k measurements per sample, although we will provide results for both m ≥ k

and m < k. We now define the fundamental quantity of interest for us.

Definition 2.4.1. For m, k, d ∈ N, the sample complexity of common support recovery

n∗C,w(m, k, d) is the minimum number of samples n for which we can find an estimator that

satisfies

Pr
(
Ŝ 6= S

)
≤ δ, ∀S ∈

(
[d]

k

)
. (2.17)

Our main result is the following.
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Theorem 2.4.1. The sample complexity of common support recovery under Assumptions

2.3.4 and 2.4.1, for m ≥ 2 log(d/δ) satisfies

n∗C,w(m, k, d) = O

(
x4

max

x4
min

max

{(
k

m
+

σ2

x2
max

)
log

d

δ
,

(
k

m
+

σ2

x2
max

)2

log
d

δ

})
.

As a special case, in the noiseless setting with m < k and for constant error probability,

we have the following corollary.

Corollary 2.4.2. In the noiseless setting, with m ≥ 2 log 3d, m < k ≤ d−1, and δ = 1/3,

we have,

n∗C,w(m, k, d) = O

(
x4

max

x4
min

k2

m2
log d

)
.

We provide the proof of Theorem 2.4.1 in the next section.

2.4.1 Analysis of the closed-form estimator

We will analyze the closed form estimator from Section 2.3.1, but instead of random

inputs, here we will consider deterministic inputs x1, . . . , xn. To see why the analysis

from the random input case does not extend in a straightforward way to this case, we

first recall the form of the estimator. Let Φiu ∈ Rm denote the uth column of Φi. We first

compute proxy samples X̂1, . . . , X̂n with entries

X̂iu
def
= Φ>iuYi = Φ>iuΦixi + Φ>iuWi, u ∈ [d], (2.18)

and then the compute sample variance along each coordinate as

λ̃u
def
=

1

n

n∑
i=1

X̂2
iu, u ∈ [d]. (2.19)

The support estimate S̃ consists of the k indices of λ̃ with the largest value. Analyzing the

estimator would basically involve obtaining tail bounds for the random variable above.

Considering the noiseless case first, note that each summand in (2.19) is of the form
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(Φ>iuΦixi)
2, and can be viewed as a quadratic in either xi or Φ>iuΦi.

When xis are random and subgaussian with independent coordinates, we can exploit

the quadratic form in xi to obtain a tail bound using standard subexponential concen-

tration (after conditioning on Φi) as we did in the proof of Theorem 2.3.6. On the other

hand, when xi are deterministic, the summands in (2.19) are quadratic in Φ>iuΦi, resulting

in a heavy-tailed random variable, and standard methods based on bounding the MGF

do not work.

We explain in the next section how a careful analysis involving conditioning on a

certain column of Φi followed by a moment based bound can be used to get exponential

tail bounds for heavy-tailed random variables. The analysis in Section 2.3 also deals

with heavy-tailed random variables that are functions of Φi, but uses a more elementary

approach which would not work here.

2.4.1.1 A separation condition for support recovery

We will analyze the error probability of the threshold-based version of the closed-form

estimator as before. In particular, we will use the estimate λ̂
def
= 1{λ̃≥τ}, for an appropriate

threshold τ , since Pr
(
S̃ 6= S

)
≤ Pr

(
Ŝ 6= S

)
, where S̃ and Ŝ denote, respectively, the

supports of λ̃ and λ̂. The error probability Pr
(
Ŝ 6= S

)
will essentially be determined by

the tail behaviour of the variance estimate λ̃. Recall from the last section that variance

estimate is an average of random variables of the form (Φ>iuΦixi + Φ>iuWi)
2. The Φ>iuΦixi

term will be indicative of whether the coordinate u lies in the support or not, since it will

have a ‖Φiu‖2
2 term only when u ∈ S.

The analysis is greatly simplified once we condition on Φiu, because then the summands

in (2.19) are noncentral chi-square distributed, for which tail bounds can be obtained using

standard methods. The error probability can be made small provided these tail proba-

bilities (parameterized by Φiu) can be made small, which eventually leads to a condition

on the measurement ensemble. We will show using tail bounds for heavy-tailed random

variables that this condition is satisfied with high probability for the Gaussian ensemble

when the parameters (n,m, k, d) scale as indicated in Theorem 2.4.1, thus finishing the
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proof.

The probability of error can be bounded as

Pr
(
Ŝ 6= S

)
≤
∑
u∈S

Pr
(
λ̃u < τ |E

)
+
∑
u′∈Sc

Pr
(
λ̃u′ ≥ τ |E

)
+ Pr (Ec) , (2.20)

where E denotes the event that the measurement ensemble satisfies a certain condition,

which we will describe shortly. For the right hand side to remain below δ, we require

the summands in the first two terms to be at most δ/(3 max{k, d − k}). For simplicity,

we will work with a requirement of δ/3d. Now, using (2.18) and (2.19), we can see that

X̂iu|Φiu ∼ N (µi, ν
2
i ) for u ∈ S with

µi = ‖Φiu‖2
2xiu,

and

ν2
i =
‖Φiu‖2

2

m

∑
v∈S\{u}

x2
iv + σ2‖Φiu‖2

2.

Similarly, we have X̂iu′ |Φiu′ ∼ N (0, ν ′2i ), for u′ ∈ Sc, where

ν ′2i =
‖Φiu′‖2

2

m

∑
v∈S

x2
iv + σ2‖Φiu′‖2

2.

A direct application of Lemma 2.6.11 then yields, for every u ∈ S,

Pr
(
λ̃u < τ |{Φiu}ni=1

)
≤ exp

(
−n2(µ− τ)2

4(
∑n

i=1 ν
4
i + ν2

i µ
2
i )

)
,

where µ
def
= E

[
λ̃u|{Φiu}ni=1

]
. For u′ ∈ Sc, we can obtain in a similar manner from Lemma

2.6.11,

Pr
(
λ̃u′ ≥ τ |{Φiu′}ni=1

)
≤ exp

(
−min

{
n2(τ − µ′)2

16
∑n

i=1 ν
′4
i

,
n(τ − µ′)

8 maxi∈[n] ν ′2i

})
,
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where µ′
def
= E

[
λ̃u′ |{Φiu}ni=1

]
. For the missed detection and false alarm probabilities above

to remain bounded above by δ/3d, we require

τ ≤ µ−

√√√√ 4

n2

n∑
i=1

(ν4
i + µ2

i ν
2
i ) log

3d

δ
,

and

τ ≥ µ′ + max


√√√√16

n2

n∑
i=1

ν ′4i log
3d

δ
,

8

n
max
i∈[n]

ν ′2i log
3d

δ

 .

Therefore, for the existence of a threshold τ , we can see upon simplification that it suffices

to have

µ− µ′ >

√√√√ 4

n2

n∑
i=1

(ν4
i + ν2

i µ
2
i ) log

3d

δ
+ max


√√√√16

n2

n∑
i=1

ν ′4i log
3d

δ
,

8

n
max
i∈[n]

ν ′2i log
3d

δ

 .

(2.21)

A simple calculation shows that the conditional mean of the estimator under the u ∈ S

and u′ ∈ Sc cases are separated roughly by a constant term (after averaging over the

measurement matrices), which makes the distinction between the two cases possible. In

particular,

µ =
1

n

n∑
i=1

(
x2
iu‖Φiu‖4

2 + ‖Φiu‖2
2

(
1

m

∑
v∈S\{u}

x2
iv + σ2

))
,

and

µ′ =
1

n

n∑
i=1

‖Φiu‖2
2

(
1

m

∑
v∈S

x2
iv + σ2

)
.
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Substituting this into (2.21) and simplifying, we can rewrite the condition as

x2
min

x2
max

1

n

n∑
i=1

(
‖Φiu‖4

2 −
1

m
‖Φiu‖2

2

)
>

√√√√ 4

n2

(
k − 1

m
+

σ2

x2
max

)2 n∑
i=1

‖Φiu‖4
2 log

3d

δ

+

√√√√ 4

n2

(
k − 1

m
+

σ2

x2
max

) n∑
i=1

‖Φiu‖6
2 log

3d

δ
+

√√√√16

n2

(
k

m
+

σ2

x2
max

)2 n∑
i=1

‖Φiu′‖4
2 log

3d

δ

+
8

n

(
k

m
+

σ2

x2
max

)
max
i∈[n]
‖Φiu′‖2

2 log
3d

δ
, (2.22)

for every (u, u′) ∈ S × Sc.

2.4.1.2 Separation condition for the Gaussian ensemble

We will show that when the measurement ensemble is Gaussian as described in Assump-

tion 2.3.4, the separation condition in (2.22) is satisfied with high probability for a certain

regime of the parameters (n,m, k, d). We will derive upper and lower bounds on the right

hand side and left hand side respectively in (2.22), that hold with high probability, which

after simplification will finally result in a condition on the parameters as stated in The-

orem 2.4.1. Note that this translates to obtaining tail bounds for the random variable

(1/n)
∑n

i=1 ‖Φiu‖2q
2 with q = 2, 3. It is easy to see that ‖Φiu‖2

2 is chi-square distributed

(after scaling by m), and ‖Φ‖2q
2 is therefore a heavy-tailed random variable, and so MGF

based methods cannot be used here. We will see that a bound on the moments can be

used to get exponential tail bounds, even when the MGF is unbounded.

The proofs for results in this section can be found in Section 2.6.2.

We will fix q = 3 and derive our results; the same arguments can be used for the q = 2

case as well. Define Z
def
= |(1/n)

∑n
i=1(‖Φiu‖6

2 − E [‖Φiu‖6
2] | and note that for all p ≥ 1,

Pr
(
Z ≥ e(E [Zp])

1
p

)
= Pr (Zp ≥ epE [Zp]) ≤ e−p. (2.23)

Further, for all p ≥ 2, if we can show that (E [Zp])
1
p ≤ cpβ for some β > 0, then together

with the previous inequality it implies that Pr
(
Z ≥ ecpβ

)
≤ e−p, or, equivalently, for
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t > 0, that

Pr (Z ≥ t) ≤ exp(−(t/ec)
1
β ). (2.24)

We now need to determine an upper bound on ‖Z‖Lp
def
= (E [Zp])

1
p . We show such a

moment bound, resulting in the following lemma.

Lemma 2.4.3. For every t > 0, there exists an absolute constant C such that

Pr

(∣∣∣∣ 1n
n∑
i=1

(‖Φiu‖6
2 − E

[
‖Φiu‖6

2

]
)

∣∣∣∣ ≥ t

)
≤ exp

(
− C min

{
nt, (m3nt)

1
4 , nt2

})
.

A similar result can be obtained for the (1/n)
∑n

i=1 ‖Φiu‖4
2 term in (2.22) using the

same technique, and we omit the proof for this result.

Lemma 2.4.4. For every t > 0, there exists an absolute constant C such that

Pr

(∣∣∣∣ 1n
n∑
i=1

(‖Φiu‖4
2 − E

[
‖Φiu‖4

2

]
)

∣∣∣∣ ≥ t

)
≤ exp

(
− C min

{
nt, (m2nt)

1
3 , nt2

})
.

Together with the fact that E [‖Φiu‖4
2] = 1 + 2/m and E [‖Φiu‖6

2] = 1 + 6/m + 8/m2,

the results above give upper and lower bounds that hold with high probability on all but

the maxi∈[n] ‖Φiu′‖2
2 term in (2.22). The latter can be bounded with high probability using

concentration for chi-squared random variables and a union bounding step, as given by

the following lemma.

Lemma 2.4.5. Let µmax
def
= E

[
maxi∈[n] ‖Φiu‖2

2

]
. Then, for every t > 0,

Pr

(
max
i∈[n]
‖Φiu‖2

2 ≥ µmax + t

)
≤ n exp

(
−m

8
min

{
(µmax + t− 1)2, µmax + t− 1

})
.

To ensure that the random variable on the left hand side of (2.22) exceeds the one on

the right hand side with large probability, we can substitute the bounds we derived for

each term, and check when the inequality holds. This results (up to some constant loss

in the δ factor) in a condition on the problem parameters under which (2.22) holds for



Chapter 2. Recovering a Single Support: Estimators 41

a fixed (u, u′) ∈ S × Sc. Applying a union bound over all k(d − k) pairs gives the final

requirement on n.

Note that the leading terms on the right hand side of (2.22) would roughly be√
(k2/m2n) log d/δ or

√
(k/mn) log d/δ (assuming m ≥ 2 log(d/δ), see the proof in Sec-

tion 2.6.2 for details), while the left hand side would roughly be a constant, leading to

the following result.

Lemma 2.4.6. The separation condition (2.22) holds for every (u, u′) ∈ S × Sc, with

probability at least 1− δ, provided m ≥ 2 log(d/δ) and

n ≥ c
x4
max

x4
min

max

{(
k

m
+

σ2

x2
max

)
log

d

δ
,

(
k

m
+

σ2

x2
max

)2

log
d

δ

}
,

for an absolute constant c.

By defining E as the event that the measurement matrices satisfy condition (2.22) for

every (u, u′) ∈ S × Sc, we can see that the probability of error in (2.20) is at most δ,

provided n satisfies the condition in Lemma 2.3.8. This completes the proof of Theorem

2.4.1.

We make a few observations before moving to simulation results. The squaring step in

(2.19) in the variance-based estimator is done to ensure that the averaging does not lead

to cancellations for coordinates that lie in the true support. In fact, if the inputs are all

nonnegative, then a mean-based estimator would suffice, and it would lead to a smaller

sample complexity upper bound. In particular, inputs with both positive and negative

values lead to the increased sample complexity of k2/m2 · log d, as we will see in the lower

bound result also where Gaussian inputs constitute the difficult case.

2.5 Simulation results

In this section, we numerically evaluate the performance of the closed-form estimator in

(2.3). Our focus will be on exact support recovery and we will study the performance

of our estimator over multiple trials. For our experiments, we use measurement matrices
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Figure 2.2: Support recovery performance of the closed-form estimator for Gaussian and

Rademacher priors.

that are independent across samples and have i.i.d. N (0, 1/m) entries. To generate

measurements, we first pick a support uniformly at random from all possible supports

of size k. Next, the data vectors are generated according to one of two methods. In

the first method, the nonzero entries of the data have i.i.d. N (0, 1) entries. In the

second method, the nonzero entries are i.i.d Rademacher (i.e., {+1,−1}-valued with equal

probability). Both these distributions are subgaussian with variance parameters that are

a constant multiple of the respective variances. We generate noiseless measurements Y n
1

according to the linear model described before. For a fixed value of d, k, m and n,

we generate multiple instances of the problem and provide it as input to the estimator.

For every instance, we declare success or failure depending on whether the support is

exactly recovered or not and the success rate is the fraction of instances on which the

recovery is successful. For our experiments, we performed 200 trials for every set of

parameters. We can see from Figure 2.2 that the experimental results closely agree with

our predictions. Also, the constant of proportionality is small, roughly between 15 and 20.

We also perform simulations for the case when the measurements are noisy. In particular,

we consider noise vectors Wi
iid∼ N (0, σ2I) for different values of σ2, and Xn

1 Gaussian

distributed as described before. We plot the probability of exact support recovery against

the normalized number of samples for different noise levels, while the other parameters

are kept fixed at d = 100, m = 2, and k = 10. It can be seen from Figure 2.3 that the four



Chapter 2. Recovering a Single Support: Estimators 43

5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

n

(k/m+ σ
2)2 log(k(d− k))

P
ro

b
a

b
ili

ty
 o

f 
e

x
a

c
t 

s
u

p
p

o
rt

 r
e

c
o

v
e

ry

 

 

σ
2 = 1

σ
2 = 3

σ
2 = 5

σ
2 = 10

Figure 2.3: Performance of the closed-form

estimator for different noise levels with d =

100, m = 2, k = 10.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

nLB

P
ro

b
a

b
ili

ty
 o

f 
e

x
a

c
t 

s
u

p
p

o
rt

 r
e

c
o

v
e

ry

 

 

d=60,k=2,m=6

d=100,k=9,m=3

d=300,k=9,m=3

Figure 2.4: Performance of MSBL in the

noiseless case for different parameter val-

ues.

curves overlap, indicating that the scaling of n with respect to the noise variance is tight.

Finally, Figure 2.4 shows the performance of MSBL [88], where we plot the probability

of exact support recovery against the normalized number of samples (the normalization

factor nLB = (k2(1−m/k)4/m2) log(k(d− k)) is from the lower bound established in the

next chapter). It can be seen that the curves do not overlap, indicating that MSBL has

a different scaling of n with respect to the parameters m, k, d than what is obtained by

our lower bound.

2.6 Remaining proofs

2.6.1 Proofs from Section 2.3.1

Proof of Lemma 2.3.5. By independence of {Xi}ni=1 and {Φi}ni=1, we have that

varX,Φ

(
λ̃i

)
=

1

n2

n∑
j=1

varX,Φ
(
X>j BjiXj

)
. (2.25)
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where Bji = Φ>j ΦjiΦ
>
jiΦj. Consider one term in the summation and let X>j BjiXj ≡

X>BiX. The variance calculation is based on the following useful decomposition

varX,Φ
(
X>BiX

)
= EΦ

[
varX

(
X>BiX|Φ

)]
+ varΦ

(
EX
[
X>BiX|Φ

])
. (2.26)

We first look at the term varΦ

(
EX
[
X>BiX|Φ

])
and note that

EX
[
X>BiX|Φ

]
= Tr

(
EX
[
BiXX

>|Φ
])

= Tr (BiKλ)

=
∑
j∈S

(Bi)jj. (2.27)

Now, note that

∑
j∈S

(Bi)jj =

‖Φi‖4
2 +

∑
j∈S\{i}(Φ

>
j Φi)

2, if i ∈ S,∑
j∈S(Φ>j Φi)

2, otherwise,

(2.28)

This gives

varΦ

(
E
[
X>BiX|Φ

])
= var

(∑
j∈S

(Bi)jj

)

=

var
(
‖Φi‖4

2 +
∑

j∈S\{i}(Φ
>
j Φi)

2
)
, if i ∈ S,

var
(∑

j∈S(Φ>j Φi)
2
)
, otherwise.

(2.29)

Subsequent calculations mostly rely on moments of inner products and norms of

Gaussian random vectors which are stated in Section 2.6.3. In particular, consider

var
(∑

j∈S(Φ>j Φi)
2
)

for the i ∈ Sc case in (2.29). We have using Lemma 2.6.12,

var

(∑
j∈S

(Φ>j Φi)
2

)
= E

(∑
j∈S

(Φ>j Φi)
2

)2
− (E[∑

j∈S

(Φ>j Φi)
2

])2

=
k2

m2
+

2k2

m3
+

2k

m2
+

4k

m3
− k2

m2
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=
2k

m2
+

4k

m3
+

2k2

m3
. (2.30)

We now consider the i ∈ S case. Using Lemma 2.6.14, we get

var

‖Φi‖4
2 +

∑
j∈S\{i}

(Φ>j Φi)
2

 =
8

m
+

12

m2
+

50

m3
+

10k

m2
+

2k2

m3
+

16k

m3
. (2.31)

Finally, from (2.29), (2.30) and (2.31), we have

varΦ

(
E
[
X>BiX|Φ

])
=


8
m

+ 12
m2 + 50

m3 + 10k
m2 + 2k2

m3 + 16k
m3 , if i ∈ S,

2k
m2 + 2k2

m3 + 4k
m3 , otherwise.

(2.32)

We now compute the first term in (2.26), EΦ

[
var(X>BiX|Φ)

]
. Note that

var(X>BiX|Φ) = var(X>S (Bi)S,SXS |Φ)

= 2 Tr((Bi)
2
S,S), (2.33)

where the second step follows from Lemma 2.6.15. Let us consider the i ∈ S case first.

Also, for ease of notation, let S = {1, . . . , k − 1} ∪ {i}. Then,

EΦ

[
var(X>BiX|Φ)

]
=2E

‖Φi‖8 +
∑

j∈S\{i}

(Φ>j Φi)
4 + 2

∑
u∈S\{i}

‖Φu‖4(Φ>uΦi)
2



+ E

2
∑

v,w∈S\{i}
v 6=w

(Φ>v Φi)
2(Φ>wΦi)

2

 . (2.34)

Using Lemmas 2.6.13 and 2.6.12, we get for i ∈ S,

E
[
var(X>BiX|Φ)

]
= 2E

[
Tr((Bi)

2
S,S)
]

= 2

[(
1 +

12

m
+

44

m2
+

48

m3

)
+ (k − 1)

(
3

m2
+

6

m3

)
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+ 2(k − 1)

(
1

m
+

6

m2
+

8

m3

)
+ 2(k − 1)(k − 2)

(
1

m2
+

2

m3

)]
(2.35)

When i ∈ Sc,

2Tr((Bi)
2
S,S) = 2

∑
j∈S

(Φ>j Φi)
4 + 4

∑
v,w∈S
v 6=w

(Φ>v Φi)
2(Φ>wΦi)

2

= 2k

(
3

m2
+

6

m3

)
+ 4k(k − 1)

(
2

m3
+

1

m2

)
,

which gives

E
[
var(X>BiX|Φ)

]
=

2k

m2
+

4k

m3
+

8k2

m3
+

4k2

m2
. (2.36)

Thus, from (2.32), (2.35) and (2.36), we have the variance in (2.26):

var(λ̃i) ≤


c
n

(
1 + k

m
+ k2

m2 + k
m2 + k2

m3

)
, if i ∈ S

c′

n

(
k
m2 + k2

m3 + k2

m2

)
, otherwise.

, (2.37)

where c and c′ are absolute constants.

We recall the statement of Lemma 2.3.8 here for easy reference.

Lemma 2.6.1. For all pairs (i, i′) ∈ S × Sc, the separation condition

1

n

n∑
j=1

α2
ji −

1

n

n∑
j=1

α2
ji′ ≥max

{√√√√ c1

n2

n∑
j=1

α4
ji log

1

δ′
,
c2

n
max
j∈[n]

α2
ji log

1

δ′

}

+ max

{√√√√ c1

n2

n∑
j=1

α4
ji′ log

1

δ′
,
c2

n
max
j∈[n]

α2
ji′ log

1

δ′

}
(2.38)

holds with probability at least 1− δ if n ≥ c(k/m+ σ2)2 log(1/δ′) and m ≥ (log k)2, where

δ′ = δ/(4 max{k, d− k}).

Proof. The proof involves studying the tail behaviour of each term in (2.38). In particular,

we derive a lower bound on the first term and upper bounds on the remaining terms that
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hold with high probability over the subgaussian measurement ensemble, and establish

conditions under which the separation in (2.38) holds for a fixed pair (i, i′). A union

bound over all k(d − k) pairs then gives us the result claimed in the lemma. The key

technicality is to keep track of the leading term that is contributed by each of the terms

in (2.38). To get a rough idea of the behaviour of these terms, recall that αji depends

on inner products between the columns Φj. In particular, it involves the sum of O(k)

inner product squared terms, and this scales as O(k/m) in expectation. The right side

in (2.38) thus effectively leads to a O(1) term. The left side, on the other hand, gives

rise to a O(
√

1/n · (k/m)2) term in expectation, leading to the overall requirement of

n = O(k2/m2). In what follows, we make these arguments precise using tail bounds for

each of the terms in (2.38).

For clarity of presentation, details of the tail bounds for each term in (2.38) are

presented in Section 2.6.3, which in turn build on standard concentration bounds for

subgaussian and subexponential random variables reviewed as preliminaries in Section

2.6. Also, while analyzing each term in (2.38), we use the same symbol µ to denote the

expectation of that term to keep notation simple. Similarly, the definitions of terms like

µ1, µ2 and µ3 will be clear from the context.

For the first term on the left side of (2.38), we study the behaviour of its left tail.

That is, we look at Pr

(
1
n

n∑
j=1

α2
ji ≤ µ− t

)
, where recall

α2
ji = ‖Φji‖4

2 +
∑

l∈S\{i}

(Φ>jlΦji)
2 + σ2‖Φji‖2

2, (2.39)

and µ = E
[
(1/n)

∑n
j=1 α

2
ji

]
. Further, let µ1, µ2 and µ3 denote the mean of each of the

three terms. By a union bound argument, it suffices to bound the normalized sum of

each of the three terms separately. Notice that all these terms essentially depend on the

lengths of the columns or the inner products between the columns of the measurement

matrix, and our goal will be obtain concentration bounds for these terms. While ‖Φji‖2
2

is clearly subexponential, ‖Φji‖4
2 and (Φ>jlΦji)

2 have heavier tails. In Section 2.6.3, we

provide results on the tail behaviour of these terms. Using Lemma 2.6.7, we have for any
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t > 0,

Pr

(
1

n

n∑
j=1

‖Φji‖4
2 ≤ µ1 − t

)
≤ ε

3

for

µ1 − t = min

{(
1−

√
c1

mn
log

3

ε

)2

,

(
1− c2

mn
log

3

ε

)2}
.

Further, from Lemma 2.6.9, we have that when n ≥ (c2
2/c1) log(12/ε),

Pr

 1

n

n∑
j=1

∑
t∈S\{i}

(Φ>jtΦji)
2 ≤ µ2 − t

 ≤ ε

3

for

µ2 − t =
k − 1

m

(
1−

√
c1

mn
log

12

ε

)
−
√

1

mn
log

12

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

12n

ε

)
,

(
1 +

c1

m
log

12n

ε

)}
.

Finally, from Lemmas 2.6.4 and 2.6.5, we can see that ‖Φji‖2
2 is subexponential with

parameters (c1/m, c2/m) and that (σ2/n)
∑n

j=1 ‖Φji‖2
2 is subexponential with parameters

(c1σ
4/mn, c2σ

2/mn). Using the subexponential concentration bound from Lemma 2.6.6

gives

Pr

(
σ2

n

n∑
j=1

‖Φji‖2
2 ≤ µ3 − t

)
≤ ε

3

for

µ3 − t = σ2

(
1−max

{√
c1

mn
log

3

ε
,
c2

mn
log

3

ε

})
.
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Combining these results using a union bound step, we see that

Pr

(
1

n

n∑
j=1

α2
ji ≤ µ− t

)
≤ ε,

for

µ− t =

(
1−

√
c1

mn
log

3

ε

)2

+
k − 1

m

(
1−

√
c1

mn
log

12

ε

)
−
√

1

mn
log

12

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

12n

ε

)
,

(
1 +

c2

m
log

12n

ε

)}
+ σ2

(
1−

√
c1

mn
log

3

ε

)
,

when n ≥ (c2
2/c1) log(12/ε).

We now consider the second term on the left side of (2.38), and observe that it consists

of terms similar to the ones we encountered in the previous calculation. Our focus will be

on the right tail this time, i.e., we will study Pr

(
1
n

n∑
j=1

α2
ji′ ≥ µ+ t

)
for i′ ∈ Sc, where

α2
ji′ =

∑
l∈S

(Φ>jlΦji′)
2 + σ2‖Φji′‖2

2.

We use Lemma 2.6.6 to get

Pr

(
σ2

n

n∑
j=1

‖Φji′‖2
2 ≥ µ2 + t2

)
≤ ε

2

for

µ2 + t2 = σ2

(
1 + max

{√
c1

mn
log

2

ε
,
c2

mn
log

2

ε

})
,

and Lemma 2.6.10 to get

Pr

(
1

n

n∑
j=1

∑
l∈S

(Φ>jlΦji′)
2 ≥ µ1 + t1

)
≤ ε

2
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for

µ1 + t1 =
k

m

(
1 +

√
c1

mn
log

8

ε

)
+

√
1

mn
log

8

ε
max

{√
c1
k

m
, c2

}
max

{(
1 +

√
c1

m
log

8n

ε

)
,

(
1 +

c2

m
log

8n

ε

)}
,

when n ≥ (c2
2/c1) log(8/ε). Putting these results together, we get

Pr

(
1

n

n∑
j=1

α2
ji′ ≥ µ+ t

)
≤ ε,

for

µ+ t =
k

m

(
1 +

√
c1

mn
log

8

ε

)
+

√
1

mn
log

8

ε
max

{√
c1
k

m
, c2

}
max

{(
1 +

√
c1

m
log

8n

ε

)
,

(
1 +

c2

m
log

8n

ε

)}
+ σ2

(
1 +

√
c1

mn
log

2

ε

)
,

when n ≥ (c2
2/c1) log(8/ε).

For the third term in (2.38), namely, max

{√
c1
n2

∑n
j=1 α

4
ji log 1

δ′
, c2
n

maxj∈[n] α
2
ji log 1

δ′

}
,

we consider the possibility of either argument attaining the maximum and study the

respective right tails.

First, we look at Pr

(√
1
n2

n∑
j=1

α4
ji ≥ µ+ t

)
for i ∈ S. We note that by the union

bound,

Pr

√√√√ 1

n2

n∑
j=1

α4
ji ≥ µ+ t

 ≤ n∑
j=1

Pr
(
α4
ji ≥ n(µ+ t)2

)
≤ nPr

(
‖Φ1i‖4

2 ≥
√
n

3
(µ+ t)

)

+ nPr

 ∑
l∈S\{i}

(Φ>1iΦ1l)
2 ≥
√
n

3
(µ+ t)
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+ nPr

(
σ2‖Φ1i‖2

2 ≥
√
n

3
(µ+ t)

)
. (2.40)

We use Lemma 2.6.3 for the first and third terms and Lemma 2.6.10 for the second term.

A direct application of Lemma 2.6.10 with n = 1 for the second term however requires

the assumption that m ≥ (c2
2/c1) log(12n/ε) (note that the second term in (2.40) needs to

be upper bounded by ε/3n). While in our setting such an assumption on n is acceptable,

we would like to avoid making this assumption on m at this stage. We therefore omit the

simplification done at the end of Lemma 2.6.10 to get

Pr

√√√√ 1

n2

n∑
j=1

α4
ji ≥ µ+ t

 ≤ ε

for

µ+ t =
3√
n

(
1 + max

{√
c1

m
log

3n

ε
,
c2

m
log

3n

ε

})2

+
3√
n

(
k − 1

m
+ max

{
c2

m
log

9n

ε
,

√
c1
k − 1

m2
log

9n

ε

})
×
(

1 + max

{√
c1

m
log

9n

ε
,
c2

m
log

9n

ε

})
+

3σ2

√
n

(
1 + max

{√
c1

m
log

3n

ε
,
c2

m
log

3n

ε

})
.

Next, we look at Pr
(
maxj∈[n] α

2
ji ≥ µ+ t

)
for i ∈ S. We notice that by the union

bound, we have

Pr

(
max
j∈[n]

α2
ji ≥ µ+ t

)
≤

n∑
j=1

Pr
(
α2
ji ≥ µ+ t

)
≤

n∑
j=1

[
Pr

(
‖Φji‖4

2 ≥
µ+ t

3

)
+ Pr

 ∑
l∈S\{i}

(Φ>jiΦjl)
2 ≥ µ+ t

3


+ Pr

(
σ2‖Φji‖2

2 ≥
µ+ t

3

)]
. (2.41)



Chapter 2. Recovering a Single Support: Estimators 52

We now handle each of the three terms on the right-side of (2.6.1) separately. We will

use Lemma 2.6.6 for the first and third terms and Lemma 2.6.9 for the second term. In

particular, for every j ∈ [n], we have that

Pr

(
‖Φji‖4

2 ≥
µ+ t

3

)
≤ ε,

for

µ+ t = 3

(
1 + max

{√
c1

m
log

1

ε
,
c2

m
log

1

ε

})2

,

and that

Pr

(
‖Φ1i‖2

2 ≥
µ+ t

3σ2

)
≤ ε

for

µ+ t = 3σ2

(
1 + max

{√
c1

m
log

1

ε
,
c2

m
log

1

ε

})
.

For the second term, we have that for every j ∈ [n],

Pr

 ∑
l∈S\{i}

(Φ>jiΦjl)
2 ≥ µ+ t

3

 ≤ ε,

for

µ+ t = 3

(
k − 1

m
+

√
c2
k − 1

m2
log

3

ε

)(
1 + max

{√
c1

m
log

3

ε
,
c2

m
log

3

ε

})
.

Substituting those bounds into (2.6.1), we get

Pr

(
max
j∈[n]

α2
ji ≥ µ+ t

)
≤ 3nε,
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for

µ+ t = 3(1 + f(m, ε)) ·max

{
σ2, 1 + f(m, ε),

k − 1

m
+

√
c2
k − 1

m2
log

3

ε

}
where f(m, ε) = max{

√
c1
m

log 3
ε
, c2
m

log 3
ε
}. That is,

Pr

(
1

n
max
j∈[n]

α2
ji ≥ µ+ t

)
≤ ε

for

µ+ t =
3

n
(1 + f(m, ε/3n)) ·max

{
σ2, 1 + f(m, ε/3n),

k − 1

m
+

√
c2
k − 1

m2
log

9n

ε

}
. (2.42)

Comparing (2.41) and (2.42), we see that 1
n

maxj∈[n] α
2
ji is O(k/mn+ σ2/n) which decays

faster with respect to n compared to

√
1
n2

n∑
j=1

α4
ji, which is O(k/m

√
n + σ2/

√
n). Thus,

the third term in (2.38) is dominated by the O(k/m
√
n+σ2/

√
n) term, which is what we

retain in our subsequent calculations.

Finally, for the fourth term in (2.38), we first look at Pr

(√
(1/n2)

n∑
j=1

α4
ji′ ≥ µ+ t

)
for i

′ ∈ Sc. Using similar arguments as in the previous calculation, we get

Pr

√√√√ 1

n2

n∑
j=1

α4
ji′ ≥ µ+ t

 ≤ ε,

for

µ+ t =
2√
n

(
k

m
+ max

{
c2

m
log

6n

ε
,

√
c1
k

m2
log

6n

ε

})(
1 + max

{√
c1

m
log

6n

ε
,
c2

m
log

6n

ε

})
+

2σ2

√
n

(
1 + max

{√
c1

m
log

2n

ε
,
c2

m
log

2n

ε

})
.

The 1
n

maxj∈[n] α
2
ji′ term, as we discussed before, will lead to a O(k/mn) factor, which can

be ignored.

The foregoing calculations provide bounds on each of the four terms occuring in (2.38),
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that hold with high probability. We note that the left-side of (2.38) is lower bounded by

1− 1

m
− 2

√
c1

mn
log

24

ε

(
1 + σ2 +

k

m

)
+

c1

mn
log

6

ε
(2.43)

−2

√
c1k

m2n
log

24

ε

(
1 +

c2

m
log

24n

ε

)
(2.44)

with probability at least 1− ε, and that the right-side is upper bounded by

5

√
c1

n
log

1

δ′

[(
1 + max

{√
c1

m
log

6n

ε
,
c2

m
log

6n

ε

})2

+

(
k

m
+ max

{
c2

m
log

18n

ε
,

√
c1
k

m2
log

18n

ε

})(
1 + max

{√
c1

m
log

18n

ε
,
c2

m
log

18n

ε

})
+ σ2

(
1 + max

{√
c1

m
log

6n

ε
,
c2

m
log

6n

ε

})]
, (2.45)

with probability at least 1− ε. To ensure that (2.38) holds with probability at least 1− ε

for a fixed (i, i′) ∈ S × Sc, we need that (2.43) exceeds (2.6.1). For further simplification,

we assume m to be sufficiently large to handle the log n terms. This assumption on m

can possibly be removed by handling the sum in Lemma 2.6.8 and (2.40) directly and not

using the union bound. Choosing ε = δ/(4 k(d− k)) to account for the union bound over

all (i, i′) pairs and focusing on the n = O((k/m + 1 + σ2)2 log(1/δ′)) regime, we see that

(2.43) exceeds (2.6.1) and separation holds if3 m ≥ (log k)2.

Thus,

n ≥ c

(
k

m
+ 1 + σ2

)2

log
1

δ′

samples suffice to ensure separation between the typical values and to guarantee that

(2.38) holds with probability at least 1− δ.

3We use this condition to show that (1/
√
m) log(k/m) ≤ 1 and the dominating term on the right-side

of (2.6.1) is k/m.
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2.6.2 Proofs from Section 2.4

Proof of Lemma 2.4.3. We first note that

∥∥∥∥ 1

n

n∑
i=1

(‖Φiu‖6
2 − E

[
‖Φiu‖6

2

]
)

∥∥∥∥
Lp

=
1

nm3

∥∥∥∥ n∑
i=1

(V 3
i − E

[
V 3
i

]
)

∥∥∥∥
Lp
, (2.46)

where Vi
def
= m‖Φiu‖2

2 ∼ χ2
m, and χ2

m denotes the chi-square distribution with m degrees

of freedom. To bound the moment of the sum, we use the following form of Rosenthal’s

inequality stated in [56].

Lemma 2.6.2 ([56]). Let Z1, . . . , Zn be independent and identically distributed random

variables with mean zero. Then, for every p ≥ 2,

∥∥∥∥ n∑
i=1

Zi

∥∥∥∥
Lp
≤ c

(
pn

1
p‖Z1‖Lp +

√
pn‖Z1‖L2

)
,

for an absolute constant c.

In view of Lemma 2.6.2, we now upper bound the Lp norm of each summand on the

right side of (2.46) as follows:

‖V 3
i − E

[
V 3
i

]
‖Lp ≤ ‖V 3

i ‖Lp + E
[
V 3
i

]
= (E

[
V 3p
i

]
)
1
p + E

[
V 3
i

]
=

(
23pΓ(3p+m/2)

Γ(m/2)

) 1
p

+ 23 Γ(3 +m/2)

Γ(m/2)

≤ 23

(
e

1
p (3p+m/2)3 + e(3 +m/2)3

)
≤ 26(3p+m/2)3,

where we used the fact that Vi ∼ χ2
m in the third step and Γ(x+ a)/Γ(x) ≤ e(x+ a)a for

all x ≥ 1, a > 0 in the fourth step. Together with Lemma 2.6.2, this yields for p ≥ 2,

∥∥∥∥ 1

n

n∑
i=1

(‖Φiu‖6
2 − E

[
‖Φiu‖6

2

]
)

∥∥∥∥
Lp
≤ c26

nm3

(
pn

1
p (3p+m/2)3 +

√
pn(6 +m/2)3

)
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≤ c26

(
p

n1− 1
p

max

{
1,

(6p)3

m3

}
+ 73

√
p

n

)
≤ c′max

{
p

n1− 1
p

,
p4

m3n1− 1
p

,

√
p

n

}
. (2.47)

Note that from (2.23), we expect p to be of the form nc
′′

for some constant c′′, in which

case p/n1− 1
p = (p/n)e

1
ec′′ . We focus on this regime, and obtain using (2.24) and (2.47),

Pr

(∣∣∣∣ 1n
n∑
i=1

(‖Φiu‖6
2 − E

[
‖Φiu‖6

2

]
) ≥ t

∣∣∣∣
)
≤ exp

(
− C min

{
nt, (m3nt)

1
4 , nt2

})
,

for every t > 0.

Proof of Lemma 2.4.5. Let µmax = maxi∈[n] ‖Φiu‖2
2. The proof follows by noting that for

every t > 0,

Pr

(
max
i∈[n]
‖Φiu‖2

2 ≥ µmax + t

)
≤

n∑
i=1

Pr
(
‖Φiu‖2

2 − 1 ≥ t′
)
,

where t′ = µmax + t− 1, and using the fact that m‖Φiu‖2
2 ∼ χ2

m to get

Pr

(
max
i∈[n]
‖Φiu‖2

2 ≥ t

)
≤ exp

(
− m

8
min{t′2, t′}

)
.

Proof of Lemma 2.4.6. The proof involves finding upper and lower bounds, respectively,

on the left-hand side and right-hand side of (2.22) that hold with high probability, and

then simplifying to obtain the condition on n stated in the lemma. Note that there are

two probability of error parameters here, one from the criterion in (2.20), and another

required for (2.22). To avoid confusion, will use δ for the former and δ′ for the latter (we

will eventually set δ′ = δ/(k(d− k))).

For the left-hand side of (2.22), it follows from Lemma 2.4.4 that

Pr

(
1

n

n∑
i=1

‖Φiu‖4
2 ≥ 1 +

2

m
− t

)
≤ δ′,
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when

t ≥ 1

C
max

{
1

n
log

1

δ′
,

1

nm2

(
log

1

δ′

)3

,

√
1

n
log

1

δ′

}
,

where the maximum in th expression above is the third term provided m > log(1/δ′).

Further, since m‖Φiu‖2
2 ∼ χ2

m, we have

Pr

(
1

mn

n∑
i=1

‖Φiu‖2
2 ≥

1

m
− t

)
≤ δ′,

when

t ≥ 2

m

(√
1

mn
log

1

δ′
+

1

mn
log

1

δ′

)
.

It follows that the left-hand side of (2.22) is at least cx2
min/x

2
max with probability at least

2δ′, for an absolute constant c, provided m > log(1/δ′).

We now proceed to find a high probability upper bound on the right-hand side of

(2.22). Lemmas 2.4.3 and 2.4.4 can be used to upper bound the first three terms, and

Lemma 2.4.5 can be used for the last term. In particular, we have

Pr

(
1

n

n∑
i=1

‖Φiu‖6
2 ≥ 1 +

6

m
+

8

m2
+ t

)
≤ δ′,

when

t ≥ 1

C
max

{
1

n
log

1

δ′
,

1

nm3

(
log

1

δ′

)4

,

√
1

n
log

1

δ′

}
.

Further,

Pr

(
1

n

n∑
i=1

‖Φiu‖4
2 ≥ 1 +

2

m
+ t

)
≤ δ′,
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when

t ≥ 1

C
max

{
1

n
log

1

δ′
,

1

nm2

(
log

1

δ′

)3

,

√
1

n
log

1

δ′

}
,

and

Pr

(
max
i∈[n]
‖Φiu‖2

2 ≥ 1 + max

{√
8

m
log

n

δ′
,

8

m
log

n

δ′

})
≤ δ′.

To simplify the right-hand side of (2.22), note that after substituting the bounds above,

the leading terms arise from the mean of Φi dependent terms (i.e. normalized sum and

the normalized maximum), which is roughly 1. In particular, we see that the leading

terms are roughly k/mn · log(1/δ) and k2/m2 · log(d/δ), provided m ≥ log(1/δ′) (this

condition ensures that the deviation terms for the Φi dependent terms are small). Using

this observation and recalling that the left-hand side in (2.22) is a constant gives, after

simplification, that (2.22) holds for a fixed (u, u′) ∈ S×Sc with probability at least 1−δ′,

provided m ≥ log(1/δ′) and

n ≥ c
x4
max

x4
min

max

{(
k

m
+

σ2

x2
max

)
log

d

δ
,

(
k

m
+

σ2

x2
max

)2

log
d

δ

}
,

for an absolute constant c. We now apply a union bound over all pairs (u, u′) and choose

δ′ = δ/(k(d − k)). Finally, noting that log(1/δ′) ≤ 2 log(d/δ) , gives us the result stated

in the lemma.

2.6.3 Useful lemmas

Definition 2.6.1. A random variable X is subgaussian with variance parameter σ2, de-

noted X ∼ subG(σ2), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2,

for all θ ∈ R.

Definition 2.6.2. A random variable X is subexponential with parameters σ2 and b > 0,
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denoted X ∼ subexp(σ2, b), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2,

for all |θ| < 1/b.

Lemma 2.6.3. Let X be a subexponential random variable with parameters v2 and b > 0

(denoted X ∼ subexp(v2, b)), that is,

E [exp(θ(X − E [X]))] ≤ exp

(
θ2v2

2

)
, |θ| < 1

b
.

Then,

Pr (|X − E [X] | ≥ t) ≤ 2 exp

(
−min

{
t2

2v2
,
t

2b

})
.

Proof. See [82, Proposition 2.2].

Lemma 2.6.4. Let X ∼ subG(σ2) with E [X] = 0. Then X2 ∼ subexp(128σ4, 8σ2).

Proof. Let Y = X2. We start by upper bounding the moment generating function (MGF)

of Y . For θ > 0,

E
[
eθ(Y−E[Y ])

]
= E

[
∞∑
q=0

(θ(Y − E [Y ]))q

q!

]

≤ 1 +
∞∑
q=2

(2θ)qE [Y q]

q!

= 1 +
∞∑
q=2

(2θ)q

q!
E
[
X2q

]
,

where in the second step we used (E [|Y − E [Y ] |q])
1
q ≤ (E [|Y |q])

1
q + µ ≤ 2(E [Y q])

1
q .

Now, for X ∼ subG(σ2), we have the following upper bound on the moments of X

from [13, Theorem 2.1] : E [X2q] ≤ 2q!2qσ2q. This gives

E
[
eθ(Y−E[Y ])

]
≤ 1 + 2

∞∑
q=2

θq

q!
q!22qσ2q
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= 1 +
32θ2σ4

1− 4θσ2
, θ <

1

4σ2
.

For θ ≤ 1/8σ2, we get

E
[
eθ(Y−E[Y ])

]
≤ 1 + 64θ2σ4 ≤ e64θ2σ4

,

that is, Y ∼ subexp(128σ4, 8σ2).

Lemma 2.6.5. Let Xi ∼ subexp(v2
i , bi) be independent subexponential random variables

for i ∈ [n]. Then, for a constant a ∈ R, we have that aX1 ∼ subexp(a2v2
1, |a|b1) and∑n

i=1Xi ∼ subexp(
∑n

i=1 v
2
i ,maxi∈[n]bi).

Proof. The proof involves bounding the MGF of the transformed random variables and

noting that it has the same form as the MGF of a subexponential random variable with

the parameters appropriately transformed. Specifically, for 0 < θ < 1/|a|b1, we have

E [exp(aθ(X1 − E [X1]))] ≤ exp

(
a2θ2v2

1

2

)
,

that is, aX1 ∼ subexp(a2v2
1, |a|b1).

Similarly, bounding the MGF of the sum Y =
∑n

i=1Xi, we get

E [exp(θ(Y − E [Y ]))] =
n∏
i=1

E [exp(θ(Xi − E [Xi]))]

≤
n∏
i=1

exp

(
θ2v2

i

2

)
,

when |θ| < 1/bi for all i ∈ [n]. That is, for |θ| < 1/(maxi∈[n]bi),

E [exp(θ(Y − E [Y ]))] ≤ exp

(
θ2

n∑
i=1

v2
i

2

)

which shows that Y ∼ subexp(
∑n

i=1 v
2
i ,maxi∈[n]bi).

Lemma 2.6.6. Let Z1, . . . , Zn be independent, mean-zero random vectors in Rm with

independent strictly subgaussian entries with variance 1/m. Then, there exist absolute
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constants c1 and c2 such that for any t > 0,

Pr

(∣∣∣∣ 1n
n∑
j=1

‖Zj‖2
2 − 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−min

{
mn

c1

t2,
mn

c2

t

})
.

Equivalently, for any ε > 0,

Pr

(∣∣∣∣ 1n
n∑
j=1

‖Zj‖2
2 − 1

∣∣∣∣ ≥ max

{√
c1

mn
log

2

ε
,
c2

mn
log

2

ε

})
≤ ε.

Proof. Since Zjl ∼ subG(1/m) for any j ∈ [n] and l ∈ [m], we have from Lemma 2.6.4

that Z2
jl ∼ subexp(c1/m

2, c2/m) for some absolute constants c1 and c2. Using properties

of subexponential random variables from Lemma 2.6.5, we can show that the normalized

sum 1
n

∑n
j=1 ‖Zj‖2

2 is also subexponential with parameters (c1/mn, c2/mn). Noting that

E
[

1
n

∑n
j=1 ‖Zj‖2

2

]
= 1 and using the tail bound from Lemma 2.6.3 we get for t > 0,

Pr

(∣∣∣∣ 1n
n∑
j=1

‖Zj‖2
2 − 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−min

{
mn

c1

t2,
mn

c2

t

})
. (2.48)

For the right side to be at most ε > 0, we see that it suffices to have

t ≥ max

{√
c1

mn
log

2

ε
,
c2

mn
log

2

ε

}
.

Substituting the above into (2.48) gives us the result.

Lemma 2.6.7. Let Z1, . . . , Zn be independent, mean-zero random vectors in Rm with

independent strictly subgaussian entries with variance 1/m. Then, there exist absolute

constants c1 and c2 such that for any ε > 0,

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≤ min

{(
1−

√
c1

mn
log

1

ε

)2

,

(
1− c2

mn
log

1

ε

)2})
≤ ε.

Proof. Let µ = E
[

1
n

∑n
j=1 ‖Zj‖4

2

]
= 1 + 2/m, and t < µ. Then, using Jensen’s inequality,
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we have

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≤ µ− t

)
≤ Pr

(
1

n

n∑
j=1

‖Zj‖2
2 ≤
√
µ− t

)

= Pr

(
1

n

n∑
j=1

‖Zj‖2
2 − 1 ≤ −t′

)
,

where t′ = 1 −
√
µ− t. Using Lemma 2.6.6 and reparameterizing with respect to ε > 0

gives the result.

Lemma 2.6.8. Let Z1, . . . , Zn be independent, mean-zero random vectors in Rm with

independent strictly subgaussian entries with variance 1/m. Then, there exist absolute

constants c1 and c2 such that for any ε > 0,

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≥ max

{(
1 +

√
c1

m
log

n

ε

)2

,

(
1 +

c2

m
log

n

ε

)2})
≤ ε.

Proof. Let µ = E
[

1
n

∑n
j=1 ‖Zj‖4

2

]
and note as we did in Lemma 2.6.6 that ‖Zj‖2

2 ∼

subexp(c1/m, c2/m). We have by union bound that

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≥ µ+ t

)
≤

n∑
j=1

Pr
(
‖Zj‖2

2 − 1 ≥
√
µ+ t− 1

)
≤ n exp

(
−min

{
m(t′)2

c1

,
mt′

c2

})

where the last inequality follows from Lemma 2.6.3 with t′ =
√
µ+ t − 1. Equating the

expression on the right to ε and reparameterizing gives the result.

Lemma 2.6.9. Let Zj, Yj1, . . . , Yj,k−1, j ∈ [n], be independent, mean-zero random

vectors in Rm with independent strictly subgaussian entries with variance 1/m. Let

µ = E
[

1
n

∑n
j=1

∑k−1
l=1 (Y >jl Zj)

2
]
. Then, there exist absolute constants c1 and c2 such that
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for any ε > 0,

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≤ µ− t

)
≤ ε,

for

µ− t =
k − 1

m

(
1−

√
c1

mn
log

4

ε

)
−
√

1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

4n

ε

)
,

(
1 +

c2

m
log

4n

ε

)}
,

when n ≥ (c2
2/c1) log(4/ε).

Proof. Note that conditioned on Zj, the random variable Y >jl Zj is subgaussian with pa-

rameter ‖Zj‖2
2/m, for any j ∈ [n] and l ∈ [k− 1]. Using Lemmas 2.6.4 and 2.6.5, we have

that the normalized sum (1/n)
∑n

j=1

∑k−1
l=1 (Y >jl Zj)

2, conditioned on {Zj}nj=1, is subexpo-

nential with parameters v2 and b where

v2 =
c1

m2n2
(k − 1)

n∑
j=1

‖Zj‖4
2, b =

c2

mn
maxj∈[n]‖Zj‖2

2.

Let µ′ = E
[

1
n

∑n
j=1

∑k−1
l=1 (Y >jl Zj)

2

∣∣∣∣{Zj}nj=1

]
. Since the variance and the variance param-

eter are equal, we have

µ′ =
k − 1

mn

n∑
j=1

‖Zj‖2
2.

From Lemma 2.6.3 we have that for t > 0,

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≤ µ− t

∣∣∣∣{Zj}nj=1

)

= Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 − µ′ ≤ µ− t− µ′

∣∣∣∣{Zj}nj=1

)

≤ exp

(
−min

{
m2n2(t′)2

c1(k − 1)
∑n

j=1 ‖Zj‖4
2

,
mnt′

c2maxj∈[n]‖Zj‖2
2

})
(2.49)

where t′ = µ′ + t − µ. We now handle the Zj-dependent terms in the exponent. In
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particular, we require upper bounds on the terms in the denominator and a lower bound

on µ′ that hold with high probability. Recall that from Lemma 2.6.8, we have

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≤ max

{(
1 +

√
c1

m
log

n

ε

)2

,

(
1 +

c2

m
log

n

ε

)2})
≥ 1− ε.

Also, from Lemma 2.6.6, we have that

Pr

(
1

n

n∑
j=1

‖Zj‖2
2 ≥ 1−max

{√
c1

mn
log

1

ε
,
c2

mn
log

1

ε

})
≥ 1− ε.

Finally, by independence of Zj,

Pr
(
maxj∈[n]‖Zj‖2

2 ≤ µ+ t
)

=
n∏
j=1

Pr
(
‖Zj‖2

2 ≤ µ+ t
)

≥
(

1− exp

(
−min

{
m(µ+ t− 1)2

c1

,
m(µ+ t− 1)

c2

}))n
≥ 1− n exp

(
−min

{
m(µ+ t− 1)2

c1

,
m(µ+ t− 1)

c2

})
,

which gives

Pr

(
maxj∈[n]‖Zj‖2

2 ≤ 1 + max

{√
c1

m
log

n

ε
,
c2

m
log

n

ε

})
≥ 1− ε.

Using these results together with (2.6.3), we have

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≤ µ− t

)
≤ exp

(
−min

{
m2n(k−1

m
β1 + t− µ)2

c1(k − 1)β2

,
mn(k−1

m
β1 + t− µ)

c2β3

})
+

3ε

4
, (2.50)

where

β1 = 1−max

{√
c1

mn
log

4

ε
,
c2

mn
log

4

ε

}
,

β2 = max

{(
1 +

√
c1

m
log

4n

ε

)2

,

(
1 +

c2

m
log

4n

ε

)2}
,
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β3 = 1 + max

{√
c1

m
log

4n

ε
,
c2

m
log

4n

ε

}
.

Now, the first term on the right side of (2.6.3) equals ε/4 if

µ− t =
k − 1

m
β1 −max

{√
c1β2(k − 1)

m2n
log

4

ε
,
c2β3

mn
log

4

ε

}
. (2.51)

The expression above can be simplified under some mild assumptions on n. In particular,

when mn ≥ (c2
2/c1) log(4/ε) and m ≥ (c2

2/c1) log(4n/ε), then (2.51) simplifies to

µ− t =
k − 1

m

(
1−

√
c1

mn
log

4

ε

)
−
√

1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}(
1 +

√
c1

m
log

4n

ε

)
.

On the other hand, when mn ≥ (c2
2/c1) log 4/ε and m < (c2/

√
c1) log(4n/ε), we have

µ− t =
k − 1

m

(
1−

√
c1

mn
log

4

ε

)
−
√

1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}(
1 +

c2

m
log

4n

ε

)
,

which gives us the following simplified version of (2.51) when n ≥ (c2
2/c1) log(4/ε):

µ− t =
k − 1

m

(
1−

√
c1

mn
log

4

ε

)
−
√

1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

4n

ε

)
,

(
1 +

c2

m
log

4n

ε

)}
.

This completes the proof.

Lemma 2.6.10. Let Zj, Yj1, . . . , Yj,k−1, j ∈ [n], be independent, mean-zero random

vectors in Rm with independent strictly subgaussian entries with variance 1/m. Let

µ = E
[

1
n

∑n
j=1

∑k−1
l=1 (Y >jl Zj)

2
]
. Then, there exist absolute constants c1 and c2 such that

for any ε > 0,

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≥ µ+ t

)
≤ ε,
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for

µ+ t =
k − 1

m

(
1 +

√
c1

mn
log

4

ε

)
+

√
1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

4n

ε

)
,

(
1 +

c2

m

4n

ε

)}
,

when n ≥ (c2
2/c1) log(4/ε).

Proof. The proof is similar to that of Lemma 2.6.9. We start by noting that conditioned on

{Zj}nj=1, the normalized sum (1/n)
∑n

j=1

∑k−1
l=1 (Y >jl Zj)

2 is subexponential with parameters

v2 and b where

v2 =
c1

m2n2
(k − 1)

n∑
j=1

‖Zj‖4
2, b =

c2

mn
maxj∈[n]‖Zj‖2

2.

Again, using the tail bound for subexponential random variables, we get

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≥ µ+ t

∣∣∣∣{Zj}nj=1

)

= Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 − µ′ ≥ µ+ t− µ′

∣∣∣∣{Zj}nj=1

)

≤ exp

(
−min

{
m2n2(t′)2

c1(k − 1)
∑n

j=1 ‖Zj‖4
2

,
mnt′

c2maxj∈[n]‖Zj‖2
2

})
(2.52)

where

µ′ = E

[
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2

∣∣∣∣{Zj}nj=1

]
=
k − 1

mn

n∑
j=1

‖Zj‖2
2,

and t′ = µ + t− µ′. To handle the Zj-dependent terms in the exponent, we require high

probability upper bounds on the terms in the denominator and on µ′. Proceeding as in

the proof of Lemma 2.6.9, we have the following bounds on the terms in the denominator

in (2.6.3):

Pr

(
1

n

n∑
j=1

‖Zj‖4
2 ≤ max

{(
1 +

√
c1

m
log

n

ε

)2

,

(
1 +

c2

m
log

n

ε

)2})
≥ 1− ε.
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and

Pr

(
maxj∈[n]‖Zj‖2

2 ≤ 1 + max

{√
c1

m
log

n

ε
,
c2

m
log

n

ε

})
≥ 1− ε. (2.53)

Also, from Lemma 2.6.6,

Pr

(
1

n

n∑
j=1

‖Zj‖2
2 ≤ 1 + max

{√
c1

mn
log

1

ε
,
c2

mn
log

1

ε

})
≥ 1− ε. (2.54)

We note that although a high probability upper bound on maxj∈[n]‖Zj‖2
2 implies a high

probability upper bound on (1/n)
∑n

j=1 ‖Zj‖2
2, we specifically use the bound in (2.54)

since the deviation term has better dependence on n (which is lost in (2.53) due to a

union bound step). A
√

(1/m) log(n/ε) or (1/m) log(n/ε) type dependence, on the other

hand, would lead to constraints on m.

Using these results along with (2.6.3), we have

Pr

(
1

n

n∑
j=1

k−1∑
l=1

(Y >jl Zj)
2 ≥ µ+ t

)
≤ exp

(
−min

{
m2n(µ+ t− k−1

m
β1)2

c1(k − 1)β2

,
mn(µ+ t− k−1

m
β1)

c2β3

})
+

3ε

4
, (2.55)

where

β1 = 1 + max

{√
c1

mn
log

4

ε
,
c2

mn
log

4

ε

}
,

β2 = max

{(
1 +

√
c1

m
log

4n

ε

)2

,

(
1 +

c2

m
log

4n

ε

)2}
,

and

β3 = 1 + max

{√
c1

m
log

4n

ε
,
c2

m
log

4n

ε

}
=
√
β2.

Simplifying as we did in Lemma 2.6.9 under the assumption that n ≥ (c2
2/c1) log(4/ε), we
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see that if

µ+ t =
k − 1

m

(
1 +

√
c1

mn
log

4

ε

)
+

√
1

mn
log

4

ε
max

{√
c1
k − 1

m
, c2

}
max

{(
1 +

√
c1

m
log

4n

ε

)
,

(
1 +

c2

m

4n

ε

)}
,

then the first term on the right side of (2.6.3) is less than ε/4, which completes the proof.

Lemma 2.6.11. Let X1, . . . , Xn be drawn i.i.d. from N (µi, σ
2
i ). Then, for every t > 0,

Pr

(
1

n

n∑
i=1

X2
i ≤

1

n

n∑
i=1

(σ2
i + µ2

i )− t

)
≤ exp

(
−n2t2

4
∑n

i=1(σ4
i + σ2

i µ
2
i )

)
,

and

Pr

(
1

n

n∑
i=1

X2
i ≥

1

n

n∑
i=1

(σ2
i + µ2

i ) + t

)
≤ exp

(
−min

{
n2t2

16
∑n

i=1(σ4
i + σ2

i µ
2
i )
,

nt

8max
i∈[n]

σ2
i

})
.

Proof. The proof is similar to that of [11] for σ2 = 1, and follows by upper bounding the

MGF of a noncentral chi-squared random variable and then using the Chernoff method.

We include the proof here for completeness. We will first show the left tail bound. To

that end, we note that for t > 0 and λ < 0, the following holds for Y
def
= (1/n)

∑n
i=1X

2
i :

Pr (Y ≤ E [Y ]− t) ≤ eλtE
[
eλ(Y−E[Y ])

]
. (2.56)

To upper bound the MGF, first note that for X ∼ N (µ, σ2),

E
[
eλ(X2−E[X2])

]
= e−λ(σ2+µ2) 1√

2πσ

∫ ∞
−∞

eλx
2

e
−(x−µ)2

2σ2 dx

=
e−λ(σ2+µ2)

√
1− 2λσ2

e
λµ2

1−2λσ2 ,
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for all λ < 1/2σ2. Taking logarithms we have

logE
[
eλ(X2−E[X2])

]
=

1

2

(
− log(1− 2λσ2 − 2λσ2)

)
+

2λ2µ2σ2

1− 2λσ2
(2.57)

≤ λ2σ4 +
2λ2µ2σ2

1− 2λσ2

≤ λ2(σ4 + 2µ2σ2), (2.58)

where we used − log(1− x)− x ≤ x2/2 for x < 0 in the second step. This gives

logE
[
eλ(Y−E[Y ])

]
≤ λ2

n2

n∑
i=1

(σ4
i + σ2

i µ
2
i )

which upon substituting into (2.56) and optimizing over λ < 0 gives λ =

−n2t/(2
∑n

i=1(σ4
i + σ2

i µ
2
i ))) resulting in the left tail bound claimed in the lemma.

For the right tail bound, we continue from (2.57) and note that for 0 ≤ λ ≤ 1/4σ2,

logE
[
eλ(X2−E[X2])

]
≤ 2λ2σ4

1− 2λσ2
+

2λ2µ2σ2

1− 2λσ2

≤ 4λ2(σ4 + µ2σ2),

where in the first step we used − log(1−x)−x ≤ x2/2(1−x) for all x ∈ [0, 1). Extending as

before to the normalized sum (1/n)
∑n

i=1X
2
i , substituting into (2.56) and optimizing over

λ ∈ [0, 1/4σ2), it can be seen that the minimum is attained at λ = nt/(8
∑n

i=1(σ4
i +µ2

iσ
2))

if t < 2
∑n

i=1(σ2+µ2), and at λ = 1/(4
∑n

i=1 σ
2
i ) otherwise. This gives the right tail bound

claimed in the lemma.

Lemma 2.6.12. Let U1, . . . , Uk, V,W,Z,
iid∼ N (0, 1

m
Im). Then

(i) E
[
Z>W

]2
= 1

m

(ii) E
[
Z>W

]4
= 3

m2 + 6
m3 ,

(iii) E
[
‖Z‖4(Z>W )2

]
= 1

m

(
1 + 6

m
+ 8

m2

)
,

(iv) E
[
(Z>W )2(Z>V )2

]
= 1

m4

(
1 + 2

m

)
,
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(v) E

[(∑k
i=1(Z>Ui)

2

)2
]

= k2

m2 + 2k2

m3 + 2k
m2 + 4k

m3 .

Proof. For the proof, we use the fact that (Z>W )|Z ∼ N (0, ‖Z‖
2

m
).

(i)

E
[
Z>W

]2
= EZ

[
(Z>W )2|Z

]
= E

[
‖Z‖2

m

]
=

1

m
.

(ii)

E
[
Z>W

]4
= EZ

[
(Z>W )4|Z

]
= E

[
3
‖Z‖4

m2

]

(iii)

E
[
‖Z‖4(Z>W )2

]
= EZ

[
E
[
‖Z‖4(Z>W )2|Z

]]
= EZ

[
‖Z‖4E

[
(Z>W )2|Z

]]
= E

[
‖Z‖6

m

]
, (2.59)

(iv)

E
[
(Z>W )2(Z>V )2

]
= EZ

[
(Z>W )2(Z>V )2|Z

]
= E

[
‖Z‖2

m

‖Z‖2

m

]
= E

[
‖Z‖4

m2

]
,
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(v)

E

( k∑
i=1

(U>i Z)2

)2
 = EZ

[
E

[
k∑
i=1

(U>i Z)4 +
∑
i 6=j

(U>i Z)2(U>j Z)2

∣∣∣∣Z
]]

= 3k
‖Z‖4

m2
+ k(k − 1)

‖Z‖4

m2
.

To complete the proof, we use Lemma 2.6.13.

Lemma 2.6.13. Let W and Z be m-dimensional random vectors having independent

zero-mean entries with variance 1/m and fourth moment 3/m2. Then,

E
[
‖Z‖4

2

]
= 1 +

2

m
, and E

[
(Z>W )2

]
=

1

m
.

Proof. The proof is based on a straightforward calculation. We have

E
[
‖Z‖4

2

]
=

m∑
i=1

E
[
Z4
i

]
+
∑
i 6=j

E
[
Z2
i Z

2
j

]
= 1 +

2

m
,

and

E
[
(Z>W )2

]
= EZ

[
E

[( m∑
i=1

Z2
iW

2
i +

∑
i 6=j

ZiWiZjWj

)∣∣∣∣Z
]]

=
1

m
.

Lemma 2.6.14. Let Z, Y1, . . . , Yk−1
iid∼ N (0, 1

m
Im) and W =

∑k−1
i=1 (Z>Yi)

2. Then

var(‖Z‖4 +W ) =
8

m
+

12

m2
+

50

m3
+

10k

m2
+

2k2

m3
+

16k

m3
. (2.60)
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Proof. Let V = ‖Z‖4 +W and note that

var(V ) = EZ [var(V |Z)] + varZ(E [V |Z]). (2.61)

We start by noting that

E [V |Z] = E

[
‖Z‖4 +

k−1∑
j=1

(Z>Yj)
2|Z

]

= ‖Z‖4 +
k−1∑
j=1

E
[
(Z>Yj)

2|Z
]

= ‖Z‖4 +
k − 1

m
‖Z‖2, (2.62)

which gives

var (E [V |Z]) = E

[(
‖Z‖4 +

k − 1

m
‖Z‖2

)2
]
−
(
E
[
‖Z‖4 +

k − 1

m
‖Z‖2

])2

. (2.63)

Consider the first term:

E

[(
‖Z‖4 +

k − 1

m
‖Z‖2

)2
]

= E
[
‖Z‖8

]
+

2(k − 1)

m
E
[
‖Z‖6

]
+

(
k − 1

m

)2

E
[
‖Z‖4

]
.

(2.64)

Using Lemma 2.6.13 we get

E

[(
‖Z‖4 +

k − 1

m
‖Z‖2

)2
]

=1 +
12

m
+

44

m2
+

48

m3
+

2(k − 1)

m

(
1 +

6

m
+

8

m2

)
+

(
k − 1

m

)2(
1 +

2

m

)
. (2.65)

Now consider the second term in (2.63):

E
[
‖Z‖4 +

k − 1

m
‖Z‖2

]
=

(
1 +

2

m

)
+
k − 1

m

= 1 +
k + 1

m
. (2.66)



Chapter 2. Recovering a Single Support: Estimators 73

Combining the above terms, (2.63) becomes

varZE [V |Z] = 1 +
12

m
+

26

m2
+

66

m3
+

2(k − 1)

m

(
1 +

6

m
+

8

m2

)
+

(
k − 1

m

)2(
1 +

2

m

)
−
(

1 +
k + 1

m

)2

=
8

m
+

32

m2
+

34

m3
+

8k

m2
+

2k2

m3
+

12k

m3
. (2.67)

This gives us one component of the variance in (2.61). We now compute the other com-

ponent, E [Z] var(V |Z). Recall that

V = ‖Z‖4 +
k−1∑
j=1

(Z>Yj)
2. (2.68)

Note that

var(V |Z) = var

(
‖Z‖4 +

k−1∑
j=1

(Z>Yj)
2|Z

)

=
k−1∑
j=1

var
(
(Z>Yj)

2|Z
)

=
k−1∑
j=1

(
3

m2
‖Z‖4 − 1

m2
‖Z‖4

)
=

2(k − 1)

m2
‖Z‖4.

where we used the same argument as in Lemma 2.6.12 to get the third step. And so, this

gives

EZ [var(V |Z)] =
2(k − 1)

m2

(
1 +

2

m

)
=

2(k − 1)

m2
+

4(k − 1)

m3
. (2.69)
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Combining (2.61), (2.67) and (2.69), we get

var(‖Z‖4
2 +W ) =

8

m
+

12

m2
+

50

m3
+

10k

m2
+

2k2

m3
+

16k

m3
. (2.70)

Lemma 2.6.15. Let X ∼ N (0, Id) and B ∈ Rd×d be a symmetric matrix. Then

var(X>BX) = 2 Tr(B2). (2.71)

Proof. We start by noting that E
[
X>BX

]
= Tr(B), which gives

var(X>BX) = E
[
(X>BX − Tr(B))2

]
= E

( d∑
i=1

Bii(X
2
i − 1) +

∑
i 6=j

BijXiXj

)2


= E

( d∑
i=1

Bii(X
2
i − 1)

)2
+ E

(∑
i 6=j

BijXiXj

)2


+ 2E

[
d∑
i=1

Bii(X
2
i − 1)

∑
i 6=j

BijXiXj

]
.

We evaluate each of the three terms separately. For the first term,

E

( d∑
i=1

Bii(X
2
i − 1)

)2
 = E

[
d∑
i=1

B2
ii(X

2
i − 1)2 +

∑
i 6=j

BiiBjj(X
2
i − 1)(X2

j − 1)

]

= 2
d∑
i=1

B2
ii,

where we used E [X2
i ] = 1 and E [X4

i ] = 3. Similar calculations for the second and third

terms give

E

(∑
i 6=j

BijXiXj

)2
 = 4E

[∑
i<j

B2
ijX

2
iX

2
j +

∑
i,j,k

BijBikX
2
iXjXk +

∑
i,j,k,l

BijBklXiXjXkXl

]
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= 4
∑
i<j

B2
ij,

and

E

[
d∑
i=1

Bii(X
2
i − 1)

∑
i 6=j

BijXiXj

]
= 0.

Combining everything, we get

var(X>BX) = 2
d∑
i=1

B2
ii + 4

∑
i<j

B2
ij

= 2
d∑

i,j=1

B2
ij

= 2 Tr(B2),

where the last step uses the fact that B is symmetric.



Chapter 3

Recovering a Single Support: Lower

bound

In this chapter, we derive a lower bound on the sample complexity of common support

recovery that matches the upper bound obtained in the previous chapter, thus determining

the optimal tradeoff between m and n in the m < k regime. Our result shows a phase

transition that occurs at k/m = 1 for the problem of support recovery when there is a

single unknown support. In particular, the dependence of the sample complexity on k/m

undergoes a sharp change from linear to quadratic as we move from the k/m ≤ 1 regime

to the k/m > 1 regime.

3.1 Lower bound

Theorem 3.1.1. For 1 ≤ m < k/2, 1 ≤ k ≤ d− 1, and σ2 = 0, the sample complexity of

support recovery satisfies

n∗C,avg(m, k, d) = Ω

(
k2

m2
log(k(d− k))

)
.

Proof. We work with the Gaussian setting, with the samples and measurement matrices

The work in this chapter is based on [60], [58].

76
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satisfying Assumptions 2.3.3 and 2.3.4. Denote by S0 the set {1, . . . , k} and by Si,j,

1 ≤ i ≤ k < j ≤ d, the set obtained by replacing the element i in S0 with j from Sc0. Let

U be distributed uniformly over the pairs {(i, j) : 1 ≤ i ≤ k, k+1 ≤ j ≤ d}. The unknown

support is set to be SU ; the random variables Xn
1 and linear measurements Yi = ΦiXi are

generated as before.

We consider the Bayesian hypothesis testing problem where we observe Y n and seek

to determine U . Given any support estimator Ŝ, we can use it to find an estimate for

the support, which in turn will give an estimate Û for U . Clearly, Pr
(
Û 6= U

)
equals

Pr
(
Ŝ 6= SU

)
, which must be less than 1/3 by our assumption. On the other hand, by

Fano’s inequality, we get

Pr
(
Û 6= U

)
≥ 1− I(Y n

1 ;U) + 1

log(k(d− k))

≥ 1−
maxuD(PY n|Su‖PY n|S0) + 1

log(k(d− k))
,

where PY n|S denotes the distribution of the measurements when the support of λ is S (a

proof for the second inequality can be found in [23, Theorem 21]). Note that PY n|S =∏n
i=1 PYi|S with each PYi|S having the same distribution which we denote by PY |S . Thus,

D(PY n|Su‖PY n|S0) = nD(PY |Su‖PY |S0).

Next, we bound D(PY |Su‖PY |S0). Denote by ΦS the m × k submatrix of Φ obtained

by restricting to the columns in S and by AS the Gram matrix ΦSΦ>S of ΦS . Further, let

ν1 ≥ . . . ≥ νm > 0 and ν ′1 ≥ . . . ≥ ν ′m > 0 be the respective eigenvalues of ASu and AS0 .

Note that νm > 0 and ν ′m > 0 hold with probability 1 since m ≤ k.

Denoting by PY |S,Φ the conditional distribution of the measurement when the mea-

surement matrix is fixed to Φ, we get

D
(
PY |Su,Φ‖PY |S0,Φ

)
=

1

2

(
log
|AS0|
|ASu|

+ Tr(A−1
S0ASu)−m

)
≤ 1

2

m∑
i=1

(
log

ν ′i
νi
−
(

1− νi
ν ′i

))
≤ 1

2

m∑
i=1

(νi − ν ′i)2

νiν ′i
,
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where in the first inequality holds by Lemma 3.4.2 and the second inequality holds since

log x+ (1−x)/x ≤ (x− 1)2/x for all x > 0. Using convexity of the KL divergence, we get

D
(
PY |Su‖PY |S0

)
≤ 1

2
E

[
m∑
i=1

(νi − ν ′i)2

νiν ′i

]

≤ 1

2
E

[
m∑
i=1

(νi − ν ′i)2

νmν ′m

]
.

Note that the expression on the right does not depend on our choice of u; we fix u =

(1, k + 1). With an abuse of notation, we denote by Φj the jth column of a random

matrix Φ with independent N (0, 1/m) distributed entries. Using the Cauchy-Schwarz

inequality twice, we get

E

[
m∑
i=1

(νi − ν ′i)2

νmν ′m

]
≤

√
E
[

1

ν2
mν
′2
m

]√√√√E

[( m∑
i=1

(νi − ν ′i)2

)2
]

≤

√
E
[

1

ν4
m

]√√√√E

[( m∑
i=1

(νi − ν ′i)2

)2
]
,

where in the second inequality we also used the fact that ai and bi are identically dis-

tributed. The Hoffman-Wielandt inequality1 [33] can be used to handle the second term

on the right-side. In particular, we have
∑m

i=1(νi − ν ′i)2 ≤ ‖AS0 −ASu‖2
F where the right-

side coincides with ‖Φ1Φ>1 −Φk+1Φ>k+1‖2
F since u = (1, k+1). Using the triangle inequality

for Frobenius norm and noting that ‖ΦiΦ
>
i ‖F equals ‖Φi‖2

2 for a vector Φi, we get

E

[
m∑
i=1

(νi − ν ′i)2

νmν ′m

]
≤

√
E
[

1

ν4
m

]√
E [(‖Φ1‖2

2 + ‖Φk+1‖2
2)4].

Recall that Φ1 and Φk+1 are independent N (0, 1
m
Im) distributed random vectors, and

thereforem(‖Φ1‖2
2+‖Φk+1‖2

2) is a chi-squared random variable with 2m degrees of freedom.

1For normal matrices A and B with spectra {νi} and {ν′i}, there exists a permutation π of [n] such
that

∑
i(νπ(i) − ν′i)2 ≤ ‖A−B‖2F . When A and B are p.s.d, the left-side is minimum when both sets of

eigenvalues are arranged in increasing (or decreasing) order.
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Using the expression for the fourth moment of a chi-squared random variable gives us

E

[
m∑
i=1

(νi − ν ′i)2

νmν ′m

]
≤

√
E
[

1

ν4
m

]√
1

m4

(m+ 3)!

(m− 1)!

≤ c′

√
E
[

1

ν4
m

]

where c′ is an absolute constant.

It only remains to bound E [1/ν4
m], where νm is the minimum eigenvalue of the (m×m)

Wishart matrix ASu . Using Lemma 3.4.1, we can obtain

E
[
ν−4
m

]
≤ c′′m4

k4(1−m/k)8
.

By combining all the steps above, we get

1

3
≥ Pr

(
Ŝ 6= SU

)
≥ 1−

cnm2

k2(1−m/k)4
+ 1

log k(d− k)
,

for a constant c. Observing that the (1−m/k)4 term can be absorbed into c when m < k/2

yields the desired bound.

Remark 3.1.2. We note that our lower bound proof requires some separation between

k and m; namely, it requires k/m > γ for some γ > 1. While the lower bound of

n = Ω((k/m) log(d/k)) from previous work [55] continues to hold for m < k, it is not

clear if a tighter lower bound on sample complexity in the regime 1 < k/m ≤ γ can be

obtained. Such a separation between k and m is, however, not required when deriving the

upper bound.
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3.1.1 Extension to nonbinary variances

Theorem 3.1.3. When σ2 = 0, we have for an absolute constant c the lower bound

n∗C,avg(m, k, d) ≥ c
λ2
max

λ2
min

k2

m2
log(d− k + 1).

We assume that the unknown λ is uniformly distributed over the set {λ(0), λ(1), . . . , λ(d−k)},

with λ(i) ∈ Rd. The jth entry of λ(i), denoted λ
(i)
j , is given by

λ
(i)
j =


λmax, if j ∈ [k − 1],

λmin, if j = k + i,

0, otherwise,

for any i ∈ {0, 1, . . . , d− k}.

Our goal is to characterize the KL divergence between distributions on the measure-

ments arising from two different λs in the set we described above, one of which we fix as

λ(0). Computing this divergence as before, we see that

D
(
PY |λ‖PY |λ(0)

)
≤ 1

2
E

[
m∑
i=1

(κi − κ′i)2

κmκ′m

]
, (3.1)

where {κi}mi=1 and {κ′i}mi=1 denote the eigenvalues of Aλ
def
= ΦKλΦ

> and Aλ(0)
def
= ΦKλ(0)Φ

>

respectively. Noting that
∑m

i=1(κi − κ′i)2 ≤ ‖Aλ − Aλ(0)‖2
F = λ2

min‖Φ1Φ>1 − Φk+1Φ>k+1‖2
F ,

an application of the Hoffman-Wielandt inequality yields

E

[
m∑
i=1

(κi − κ′i)2

κmκ′m

]
≤ cλ2

min

√
E
[

1

(κm)4

]
. (3.2)

Recall that from Lemma 3.4.1, we have a bound on the fourth moment of the smallest

eigenvalue νm of AS = ΦSΦS for S ⊆ [d]. We now try to relate κm and νm. We start by
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noting that

Aλ = λmax

k−1∑
i=1

ΦiΦ
>
i + λminΦk+1Φ>k+1

< λmax

k−1∑
i=1

ΦiΦ
>
i ,

where A < B if A−B is a positive semi-definite matrix. The above inequality in turn gives

a relation between the eigenvalues of Aλ and those of λmax

∑k−1
i=1 ΦiΦ

>
i . In particular, for

the minimum eigenvalue, we have κm ≥ λmaxνm. Combining this fact with the inequalities

in (3.1) and (3.2), and using Lemma 3.4.1, we get

D
(
PY |λ‖PY |λ0

)
≤ c′

λ2
min

λ2
max

√
E
[

1

ν4
m

]
≤ c′′

λ2
min

λ2
max

m2

(k − 1)2

(
1− m

k

)−4

.

This is the same bound as in the binary case, except for an additional scaling by a factor

of λ2
min/λ

2
max. As a consequence of this, we can show, using similar calculations as before,

that if

n ≤ c
λ2

max

λ2
min

k2

m2

(
1− m

k

)4

log(d− k + 1),

then the error probability Pr
(
Ŝ 6= supp(λ0)

)
≥ 1/3.

3.2 A phase transition for support recovery

The lower bound from Theorem 3.1.1 for Gaussian inputs implies a lower bound for worst-

case inputs as well, since an instantiation in the Gaussian case can be thought of as a

deterministic input. In particular, we have n∗C,w(m, k, d) ≥ n∗C,avg(m, k, d). In fact, the

dependence of our upper bounds derived in Chapter 2 and the lower bound from previous

section on the problem dimensions (m, k, d) coincides. We will use n∗(m, k, d) to denote

this common scaling. Combining Theorems 2.3.1 and 3.1.1, we obtain the following tight
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Figure 3.1: Sample complexity of support recovery as a function of k/m.

characterization of n∗(m, k, d).

Theorem 3.2.1 (Characterization of sample complexity). For (log k)2 ≤ m < k/2 and

1 ≤ k ≤ d/2, the sample complexity of common support recovery is given by

n∗(m, k, d) = Θ

(
k2

m2
log d

)
.

Remark 3.2.2. We expect the scaling in Theorem 3.2.1 to hold good even when m <

(log k)2. In fact, our lower bound result continues to hold for m = 1. The current upper

bound proof, however, requires m ≥ (log k)2.

Remark 3.2.3. As long as the noise variance is sufficiently small, i.e., σ2 < k/m, our

estimator is sample-optimal and achieves the same scaling as the lower bound.

In summary, our results settle the question of tradeoff between m and n in the m < k

regime, and show that there exists a phase transition for the sample complexity of this

problem at k/m = 1 as depicted in Figure 3.2. Roughly, around this point, the sample

complexity for support recovery undergoes a change from being linear in the ratio k/m

to being quadratic in k/m (up to a factor of log d).
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3.3 Discussion

We showed a phase transition for the problem of support recovery from multiple samples.

While the closed form estimator that we analyzed here is sample-optimal, it would be

interesting to design other estimators that can work in the measurement-constrained

regime without knowledge of the support size, and for which guarantees can be obtained

with worst-case inputs. Finally, extending the lower bound on n∗ to include the 1 <

k/m ≤ γ regime for γ > 1 would provide a better understanding of the problem.

3.4 Remaining Proofs

Lemma 3.4.1. Let Φ ∈ Rm×k with independent N (0, 1) entries and let A = ΦΦ>. If Z

denotes the minimum eigenvalue of A, then for k −m > 7,

E
[
Z−4

]
≤ c

k4(1−m/k)8
.

Proof. Since Z is a nonnegative random variable, we have for θ > 0,

E
[
Z−4

]
≤ θ +

∫ ∞
θ

Pr
(
Z ≤ u−

1
4

)
du

≤ θ +
8

k4

∫ θ
− 1

8√
k

0

Pr
(
Z ≤ kε2

) 1

ε9
dε,

where we used u−
1
4 = kε2. The density of the smallest eigenvalue of a Wishart matrix

with parameters k and m (A in this case) is known in closed form [22, Lemma 4.1], which

we restate here:

Pr
(
Z ≤ kε2

)
≤ 1

Γ(k −m+ 2)
(εk)k−m+1

≤
(

e

k −m+ 1

)k−m+1

(εk)k−m+1,

where Γ(·) denotes the gamma function and Γ(n) = (n− 1)! for integer n. Using this, we
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get

E
[
Z−4

]
≤ θ +

8

k4

(
ek

k −m+ 1

)k−m+1 ∫ θ
− 1

8√
k

0

(ε)k−m−8dε

= θ +
8

k4

(
ek

k −m+ 1

)k−m+1
1

k −m− 7

(
θ−

1
4

k

) k−m−7
2

.

Choosing θ =

(
e
√
k

k−m+1

)8

and simplifying gives

E
[
Z−4

]
≤ 9e8k4

(k −m− 7)8
≤ c

k4

(
1− m

k

)8 .

Lemma 3.4.2. Let A,B ∈ Rm×m be symmetric, positive definite matrices and let a1 ≥

· · · ≥ am and b1 ≥ · · · ≥ bm denote their respective ordered eigenvalues. Then,

Tr(AB) ≤
m∑
i=1

aibi.

Proof. Let γ1, · · · , γm and s1 ≥ · · · ≥ sm denote the eigenvalues and singular values of AB,

respectively. Note that γi’s can be complex in general since AB need not be symmetric.

We start by noting that

Tr(AB) =
m∑
i=1

γi ≤
m∑
i=1

|γi| ≤
m∑
i=1

si, (3.3)

where the last inequality follows from [34] [Theorem 3.3.13]. The next step is to relate

the sum of the singular values of AB to the eigenvalues of A and B. We use the following

two results from [34] [Theorem 3.3.4, Corollary 3.3.10]:

(i) the product of singular values of AB can be upper bounded as

m∏
i=1

si ≤
m∏
i=1

aibi; (3.4)
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(ii) for nonnegative real numbers α1 ≥ · · · ≥ αm and β1 ≥ · · · ≥ βm, if

m∏
i=1

αi ≤
m∏
i=1

βi, (3.5)

then
m∑
i=1

αi ≤
m∑
i=1

βi. (3.6)

From the results above, we have that

m∑
i=1

si ≤
m∑
i=1

aibi, (3.7)

which together with (3.3) gives the result.



Chapter 4

Recovering Multiple Supports

In this chapter, we study the problem of multiple support recovery, where we are given

access to linear measurements of multiple sparse samples in Rd. These samples can be

partitioned into ` groups, with samples having the same support belonging to the same

group. For a given budget of m measurements per sample, the goal is to recover the

` underlying supports, in the absence of the knowledge of group labels. We study this

problem with a focus on the measurement-constrained regime where m is smaller than

the support size k of each sample. We design a two-step procedure that estimates the

union of the underlying supports first, and then uses a spectral algorithm to estimate

the individual supports. Our proposed estimator can recover the supports with m < k

measurements per sample, from Õ(k4`4/m4) samples. Our guarantees hold for a general,

generative model assumption on the samples and measurement matrices. We also provide

results from experiments conducted on synthetic data and on the MNIST dataset.

4.1 Introduction

In the problem of multiple support recovery, there are n random samples X1, . . . , Xn

taking values in Rd, such that for each i ∈ [n], supp(Xi) ∈ {S1, . . . ,S`} almost surely,

with Si ⊂ [d] and Si ∩ Sj = ∅ for all i 6= j. We assume that the samples Xi are sparse

The work in this chapter is based on [61].

86
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and that |Si| = k � d, i ∈ [`]. We are given low dimensional projections of these samples

using m × d matrices Φ1, . . . ,Φn. In our setting, we focus on the regime where we have

access to very few measurements per sample, namely, when m < k. Given access to

the projections Yi = ΦiXi, i ∈ [n], and the projection matrices, we seek to recover the

underlying supports {S1, . . . ,S`}.

This is a generalization of the well-studied problem of recovering a single unknown

support from multiple linear measurements which has been widely studied [72], [26], [88],

[48], [55], [60]. It is also related to the study of sparse random effects in mixed linear

models [6, 8]. Mixed linear models are a generalization of linear models where an addi-

tional additive correction component is included to model a class-specific correction to

the average behavior. This residual correction term is commonly known as the random

effect term. It is often assumed to be generated from an unknown prior distribution with

zero-mean, coming from a parametric family whose parameters are estimated by using the

class-specific data. The problem of multiple support recovery is also discussed in [46, 80]

under the assumption of slowly varying supports.

There are two sets of unknowns in the setting described above – the labels, indicating

which support was chosen for each sample, and the ` supports S1, . . . ,S`. Note that given

the knowledge of the labels, one could group together samples with the same support,

and use standard algorithms to recover the support. However, in the absence of labels,

the problem of recovering the supports is much harder. A naive scheme could be to just

estimate each support individually, which requires m = O(k log(d−k)) measurements per

sample [81], [4]. But can we do better if we exploit the joint structure present across the

samples, since there will be several samples that have the same support? In this chapter,

we will show that one can operate in the measurement-constrained regime of m < k, when

a sufficiently large number of samples is available.

4.1.1 Prior work

For the special case with n = ` = 1, when there is a single k-sparse sample of length d, it is

known that m = Θ(k log(d−k)) measurements are necessary and sufficient to recover the
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support [81] with noisy measurements, when the inputs are worst-case. For the case with

a single common support across multiple samples (i.e., ` = 1 and n > 1), several previous

works have studied the question of support recovery in the m > k setting [72], [26], [55].

On the other hand, in the m < k regime, we know from the previous chapters and

from [58], [60] that n = Θ((k2/m2) log d) samples are necessary and sufficient, assuming

a subgaussian generative model on the samples and measurement matrices and that the

measurement matrices are drawn independently across samples. In fact, as we saw, the

lower bound from Chapter 3 applies to the worst-case setting as well, showing that while

k overall measurements suffice when m exceeds k, at least (roughly) k2/m measurements

are required when m < k.

In [51], the problem of recovering the union of supports from linear measurements

is considered. The setting allows for overlaps in the supports, but otherwise places no

constraints. The results when applied to the case of disjoint supports lead to a require-

ment of m = O(k log d) measurements per sample, and therefore are not applicable to

our setting. Another line of related works is on multi-task learning/multi-task sparse

estimation [86], [57], [5] that use hierarchical Bayesian models and focus on recovering

the samples, rather than the supports, and so still require at least k measurements per

sample. However, none of these results shed light on how to recover multiple supports

when we are constrained to observe less than k measurements per sample.

We note that there has been some recent work in the literature on mixture of sparse

linear regressions that considers the related problem of recovering multiple sparse vectors

from linear measurements [89], [41], [43], [19], [5], [50]. The model shares some similarities

with the m = 1 case in our setting, but there are some important differences. Unlike our

setting, these works consider the samples to be deterministic and do a worst-case analysis.

Further, when ` = 1 in the mixture of sparse linear regressions setting, we have multiple

observations from the same unknown sparse vector, thus reducing the problem to the

standard compressed sensing problem. On the other hand, with ` = m = 1 in our setting,

we obtain a single observation from different sparse vectors sharing a common support.

The latter setting is harder as we saw in Chapter 2 and requires Ω(k2 log d) samples to
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recover the common support.

4.1.2 Contributions and techniques

Our approach builds on the following simple but crucial observation: since each sample

is k-sparse with support equal to one of the Si (with the Si being disjoint), the sample

covariance matrix (1/n)
∑n

i=1XiX
>
i exhibits a block structure under an unknown per-

mutation of rows and columns. This motivates the use of spectral clustering to recover

the underlying supports. However, we only have access to low-dimensional projections of

the data. To circumvent this difficulty, we compute Φ>i Yi and use these as a proxy for

the data, and form an estimate of the diagonal entries of the covariance matrix of the

samples. We build further on this idea and propose an estimator that first determines

the union of the ` supports from Φ>i Yi using the closed-form estimator from Chapter 2.

We then construct an affinity matrix using the variance estimates from the first step and

apply spectral clustering to estimate individual supports from the union.

This clustering based approach to support recovery is new, and very different from

traditional approaches to sparse recovery in the multiple sample setting. It reduces the

support recovery problem to that of recovering the structure of a certain block matrix, a

question which has been studied in the literature on community detection on graphs [45],

[49], [32], [1], and for which many algorithms are known. However, unlike the community

detection problem where an instance of the adjacency matrix is available as an observation,

the affinity matrix constructed in our case has a more complicated structure and requires

a different analysis.

We show that using our algorithm, it is possible to recover all the supports with

fewer than k measurements per sample. Our algorithm is easy to implement and has

computational complexity that scales linearly with ambient dimension d and number of

samples n. Our main result is an upper bound on the sample complexity of the multiple

support recovery problem, stated in Theorem 4.2.1. In similar spirit to Chapter 2, which

studied the case of a single unknown support in the measurement-constrained regime of

m < k, our work provides an algorithm for the multiple support recovery problem in
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this regime. The analysis of our algorithm involves studying spectral properties of the

(random) affinity matrix that has dependent and heavy-tailed entries. We characterize

these spectral quantities for the expected affinity matrix, which we show has a block

structure, and then use results from matrix perturbation and matrix concentration to

obtain performance guarantees for our algorithm.

Also, we provide experimental results on synthetic and real datasets, and show that the

proposed algorithm is able to recover the unknown supports with very few measurements

per sample. While our guarantees are for the case of disjoint supports, some simple

heuristics can be used to handle the case of overlapping supports in practice, as we show

in Section 4.5. For the case of two supports, we provide an analysis for intersecting

supports.

In the next section, we formally state the problem and the assumptions we make in

our generative model setting. This is followed by a statement of our main result, which

provides an upper bound on the sample complexity of multiple support recovery. We

describe the estimator in Section 4.3, and analyze its performance in Section 4.4. We

provide experimental results in Section 4.5. The technical results required for the proofs

in Section 4.4 are available in the appendices.

4.2 Problem formulation and main result

We consider a Bayesian setup for modeling samples X1, . . . , Xn taking values in Rd with

supp (Xi)
def
= {j ∈ [d] : Xij 6= 0} ∈ {S1, . . . ,S`}, where Si ⊂ [d] are unknown sets such

that |Si| = k. Specifically, we consider distributions P(1), . . . ,P(`) with1

supp
(
P(i)
)

= {x ∈ Rd : supp(x) = Si}, i ∈ [`],

1We consider distributions P with densities fP with respect to the Lebesgue measure and define
supp (P) = {x ∈ Rd : fP(x) > 0}.
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and n i.i.d. samples X1, . . . , Xn taking values in Rd and generated from a common mixture

distribution

PS1,...,S` =
1

`

∑̀
i=1

P(i), (4.1)

parameterized by the tuple (S1 . . . ,S`). In fact, we assume that P(i) is a multivariate sub-

gaussian distribution (see Section 4.9 for the definition of a subgaussian random variable)

with zero mean and diagonal covariance matrix Kλi = diag (λi), where the parameter λi

is a d-dimensional vector for which supp (λi) = Si, i ∈ [`]. More concretely, we make the

following assumption.

Assumption 4.2.1. For a sample Xj ∼ P(i), j ∈ [n], i ∈ [`], and an absolute constant c,

EP(i)

[
XjX

T
j

]
= diag (λi) with λi ∈ Rd

+, supp (λi) = Si, and Xj has independent entries

with its tth entry Xjt satisfying Xjt ∼ subG(cλit), t ∈ [d]. Furthermore, for each i ∈ [`]

and t ∈ Si, λit = λ0 > 0, and EP(i)

[
X4
jt

]
= ρ.

For samples X1, . . . , Xn generated as above, we are given access to projections Yi =

ΦiXi, i ∈ [n], where the matrices Φi ∈ Rm×d are random and independent for differ-

ent i ∈ [n]. Our analysis requires handling higher order moments of the entries of the

measurement matrices, which motivates the following assumption.

Assumption 4.2.2. The m× d measurement matrices Φ1, . . . ,Φn are independent, with

entries that are independent and zero-mean. Furthermore, Φi(u, v) ∼ subG(c′/m), and the

moment conditions E [Φi(u, v)2] = 1/m and E [Φi(u, v)2q] = cq/m
q hold for q ∈ {2, 3, 4},

where cq and c′ are absolute constants.

The assumption above holds, for example, when Φi(u, v) ∼ N (0, 1/m) or when Φi(u, v)

are Rademacher, i.e., take values from {1/
√
m,−1/

√
m} with equal probability. Also,

these moment assumptions can be relaxed to hold up to constant factors from above and

below, i.e., E [Φi(u, v)2q] = Θ(1/mq).

Our goal is to recover the supports {S1, . . . ,S`} using {Yi,Φi}ni=1. The error criterion

will be the average of the per support errors, measured using the set difference between
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the true and estimated supports. Specifically, denote by Σ′`,d the set consisting of all `

tuples of subsets (S1, . . . ,S`) such that Si ⊂ [d], i ∈ [`], and Si ∩Sj = ∅, for all i 6= j. Let

Σk,`,d ⊂ Σ′`,d be such that |Si| = k, for all i ∈ [`]. Denote by G`
def
= {σ : [`] → [`]} the set

of all permutations on [`]. We have the following definition.

Definition 4.2.1. An (n, ε, δ)-estimator for Σk,`,d is a mapping e : (Y n
1 ,Φ

n
1 ) 7→ (Ŝ1, . . . , Ŝ`) ∈

Σ′`,d for which

PS1,...,S`

(
∃σ ∈ G` s.t.

∑̀
i=1

∣∣∣Si∆Ŝσ(i)

∣∣∣ < kε`2

)
≥ 1− δ, (4.2)

for all (S1, . . . ,S`) ∈ Σk,`,d, where S1∆S2 denotes the symmetric difference between sets

S1 and S2.

We seek an (n, ε, δ)-estimator using a small number of samples of n. For fixed

m, k, d, `, ε, and δ, the least n such that we can find an (n, ε, δ)-estimator for Σk,`,d

is termed the sample complexity of multiple support recovery, which we denote by

n∗M,avg(m, k, d, `, ε, δ). In our main result stated below, we provide an upper bound on

this quantity.

Theorem 4.2.1. Let m, k, d, ` ∈ N with log k ≥ 2. Further, let (log k`)2 ≤ m < k, and

1/k` ≤ ε ≤ 1/`. Then, under Assumptions 4.2.1 and 4.2.2, the sample complexity of

multiple support recovery satisfies

n∗M,avg(m, k, d, `, ε, δ) = O

(
max

{
1

ε

(
k`

m

)4

(log k)4 log k` log
1

δ
,
k2`2

m2
log

k`(d− k`)
δ

})
.

Remark 4.2.2. For values of ε lower than 1/k`, the result from Theorem 4.2.1 continues

to hold with ε set to 1/k`. This is because ε = 1/k` corresponds to exact recovery of the

supports.

We present the algorithm that attains this performance in the next section, and prove

the theorem in Section 4.4.3.

Our estimator works in two steps by estimating the union of supports first and then

estimating each support, and the sample complexity bound above is obtained by analyzing
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each of the two steps. To the best of our knowledge, this is the first estimator that can

recover multiple supports under the constraint of m < k linear measurements per sample.

We also note that for the problem of recovering a single support exactly, it was shown in

Chapter 2 that roughly Ω((k/m)2 log k(d − k)) samples are necessary. Thus, our sample

complexity upper bound above matches this lower bound quadratically. However, there

is a gap between the lower bound and the upper bound, which is an interesting problem

for future research.

4.3 The estimator

Our first step will be to recover the union of the ` underlying supports, and then refine

this estimate to finally recover the individual supports. To estimate the union, we use

the estimator described in Chapter 2. Following this, we use a spectral clustering based

approach to recover the individual supports. We provide more details in the next two

subsections.

4.3.1 Recovering the union of supports

We first observe that the samples Xi have an effective covariance matrix whose diagonal

has support equal to the union of the supports, which allows us to use the results from

Chapter 2 to recover the union. Specifically, we form “proxy samples” X̂i = Φ>i Yi =

Φ>i ΦiXi and use the diagonal of the sample covariance matrix of X̂i as an estimate for

the diagonal of the covariance matrix for Xi. We will show that the k` largest entries of

the recovered diagonal correspond to the union of the supports.

Formally, define Sun
def
= ∪`i=1Si to be the union of the ` unknown disjoint supports and

note that |Sun| = k`. We use the closed-form estimator and form the statistic λ̃ ∈ Rd as

follows. First, define vectors a′1, . . . , a
′
n with entries

a′ji
def
= (Φ>jiYj)

2, i ∈ [d]. (4.3)

Each a′j, j ∈ [n], can be thought of as a crude estimate for the variances along the d
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coordinates obtained using the jth sample. We then define the average of these vectors

as

λ̃
def
=

1

n

n∑
j=1

a′j. (4.4)

This statistic captures the variance along each coordinate of Xi. Due to the averaging

across samples, we expect a larger value of the statistic along coordinates that are present

in at least one of the supports. On the other hand, coordinates that are not present any

support should result in a smaller value of the statistic. As shown in Chapter 2, such a

separation between the estimate values indeed occurs when n is sufficiently large. The

algorithm declares the indices of the k` largest entries of λ̃ as the estimate for Sun. Letting

λ̃(1) ≥ · · · ≥ λ̃(k`) represent the sorted entries of λ̃, the estimate Ŝun for the union is

Ŝun = {(1), . . . , (k`)}, (4.5)

where we assume the size of the union to be known. In practice, λ̃ can be used to estimate

the size of the union as well by sorting the entries of λ̃ and using the index where there

is a sharp decrease in the values as the estimate for k`, similar to the approach of using

scree plots to determine model order in problems such as PCA [92].

4.3.2 Recovering individual supports

We now describe the main step of our algorithm where we partition the coordinates in Ŝun

recovered in the first step into disjoint support estimates Ŝ1, . . . , Ŝ`. We will use a′1, . . . , a
′
n

described in (4.3) for this purpose. Since we now have an estimate for the union, we will

restrict a′i to coordinates in Ŝun, and denote them as ai ∈ Rk`
+ . Also, without loss of

generality, we set Ŝun = [k`].2

Our approach is the following: we construct a k`× k` affinity matrix T and perform

2This is to keep notation simple. For a general Ŝun, we can have a function g : [k`] → Ŝun that
provides the mapping of each coordinate of ai to its corresponding value in Ŝun as indicated in step 7 of
Algorithm 2.



Chapter 4. Recovering Multiple Supports 95

E [T ] =

µ0 µs µd µd

µs µ0 µd µd

µd µd µ0 µs

µd µd µs µ0





}
S1

}
S2

Figure 4.1: Block structure of the expected affinity matrix when ` = 2 and the supports

are disjoint, under appropriate permutation of rows and columns.

spectral clustering using this matrix, which will partition the coordinates in [k`] into `

groups. The main step here is to construct an affinity matrix T that can provide reliable

clustering, and we will use the per-sample variance estimates a1, . . . , an for this purpose.

The idea is that for any coordinate pair (u, v) ∈ [k`] × [k`], if both u and v belong to

the same support, then we expect the product aiuaiv to have a “large” value for most of

the sample indices i ∈ [n]. On the other hand, if u and v belong to different supports,

then aiuaiv will be close to zero for most i ∈ [n]. Although each ai individually is not a

good estimate for the support of Xi, the averaging over n makes the estimate reliable.

Formally, we construct the k`× k` matrix T with entries

Tuv
def
=

1

n

n∑
j=1

ajuajv, (u, v) ∈ [k`]× [k`]. (4.6)

The key observation here is that the expected value of the random matrix T has a block

structure when the rows and columns are appropriately permuted, and this block structure

corresponds to memberships of each of the indices in [k`] to one of the underlying supports.

This is illustrated in Figure 4.1 for ` = 2, and we will examine this structure in detail

in the next section. A well-known method to find these memberships is to use spectral

clustering [49, 65], which uses properties of the eigenvectors of block-structured matrices

to determine the partition. For instance, when ` = 2, the sign of the second leading

eigenvector of E [T ] provides a way to partition the coordinates in [k`] into two groups.

When ` > 2, spectral clustering makes use of multiple eigenvectors and a nearest neighbor
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step to identify the partition. A full description of the solution in the general case is

provided in Algorithm 2.

In practice, we only have access to T , and not E [T ] to which the discussion above

applies. In what follows, we show that the eigenvectors of T itself suffice, provided we have

sufficiently many samples. At a high level, our analysis follows that of spectral clustering

in the stochastic block model (SBM) setting and the goal is to show that the eigenvectors

of E [T ] and its “perturbed” version T are close to each other. This can be shown using

the Davis-Kahan theorem from matrix perturbation theory, which states that the angle

between any two corresponding eigenvectors of T and E [T ] is small provided the error

matrix T − E [T ] has small operator norm, which for symmetric matrices is the largest

eigenvalue in magnitude. The key challenge, therefore, is to control ‖T − E [T ] ‖op.

Unlike typical settings, the entries of the affinity matrix T in our case are not indepen-

dent, in addition to being heavy tailed. Standard methods based on the ε-net argument

are, therefore, difficult to apply in this setting. One strategy could be to show exponential

concentration around the mean for each entry of T . Once each entry of T is bounded

with high probability, one can bound the Frobenius norm and therefore the spectral norm

of the error matrix. However, the moment generating function (MGF) of each summand

in (4.6) is unbounded, so deriving a tail bound for the sum requires a more careful tail

splitting method (see, for example, [73, Exercise 2.1.7]), and leads to measurement matrix

dependent quantities that are difficult to handle. As we will see shortly, the matrix T

can be expressed as a sum of rank one matrices, and so one approach could be to apply

techniques from matrix concentration to obtain tail bounds for ‖T−E [T ] ‖op. These tech-

niques, however, either require the summands to be bounded almost surely in spectral

norm or to have subexponential-type moments [76, Theorem 6.1, 6.2], neither of which is

true in our case.

To circumvent this difficulty, we turn to a beautiful result by Rudelson [66], that

characterizes the expected value of the quantity ‖T − E [T ] ‖op, when T is a sum of

independent rank-one matrices and only requires certain moment assumptions on the

summands. This is exactly our setting since (4.6) can equivalently be represented as
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Algorithm 2: Multiple support recovery: General case

Input: Measurements {Yi}ni=1, Measurement matrices {Φi}ni=1, k, `

Output: Support estimates Ŝ1, . . . , Ŝ`
1 Form variance estimates a′1, . . . , a

′
n with entries

a′ji = (Φ>jiYj)
2, i ∈ [d].

2 Compute

λ̃ =
1

n

n∑
i=1

a′i.

Sort entries of λ̃ to get λ̃(1) ≥ · · · ≥ λ̃(d) and output estimate for union

Ŝun = {(1), . . . , (k`)}.

3 Restrict a′1, . . . , a
′
n to the coordinates in Ŝun, to get a1, . . . , an. Also, let

g : [k`]→ Ŝun denote the mapping from the coordinates of ai to the true

coordinate in Ŝun.

4 Construct affinity matrix T ∈ Rk`×k` as

T =
1

n

n∑
i=1

aia
>
i .

5 Compute the ` leading eigenvectors v̂1, . . . , v̂` of T and let these be the columns

of V̂ ∈ Rk`×l.

6 (The `-means step) Find C = arg minU∈U` ‖U − V̂ ‖2
F , where U` is the set of all

k`× ` matrices with at most ` distinct rows.

7 Denote the indices of identical rows of C as sets Ŝ ′1, . . . , Ŝ ′`. Declare

Ŝi = {g(j) ∈ Ŝun : j ∈ Ŝ ′i}.
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T = (1/n)
∑n

i=1 aia
>
i . An application of Markov inequality followed by the Davis-Kahan

theorem then shows that the eigenvectors of T and E [T ] are close to each other. We

provide more details about the analysis in the next section. Although Rudelson’s result

characterizes the expected operator norm, it has since been extended to handle higher

moments and tails, see [67], [52] for more details.

4.4 Analysis of the estimator

We will first analyze the performance of the union recovery step. Then, conditioned on

the union being exactly recovered, we analyze the second step of our estimator.

4.4.1 Recovering the union: Analysis

Our analysis of the probability of exactly recovering Sun using the estimator in (4.5)

follows the approach in Chapter 2. The key difference is that the samples are now drawn

from a mixture of subgaussian distributions. In the next result, we show that if X is

drawn from the mixture described in (4.1), then it is subgaussian with covariance matrix

Kλun where λun = λ1 ∨ · · · ∨ λ`, where ∨ denotes entrywise maximum. This helps us to

determine the effective parameter that characterizes the input distribution, after which we

can use the result from Chapter 2. We prove this result for the two component mixture;

it can be extended easily to the general case.

Lemma 4.4.1. Let X and Y be zero-mean subgaussian random variables with parameters

a2 and b2, respectively. Further, let PX and PY denote the distributions of X and Y .

Then, the random variable Z with distribution given by the mixture qPX + (1− q)PY with

q ∈ [0, 1] is subgaussian with parameter max{a2, b2}.

Proof. Upon bounding the MGF of Z, we see that

E
[
eθZ
]

= qE
[
eθX
]

+ (1− q)E
[
eθY
]

≤ qe
θ2a2

2 + (1− q)e
θ2b2

2
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≤ e
θ2c2

2 ,

where c = max{a, b}.

Thus, the samples X1, X2, . . . , Xn have entries that are independent and subgaussian

with covariance matrix Kλun , where λun = λ1∨· · ·∨λ`. Therefore, results from Chapter 2

imply that we can recover Sun from the variance estimate (4.4) by retaining the k` largest

entries. In particular, a direct application of [60, Theorem 3] with support size set to k`,

gives us the following result.

Theorem 4.4.2. Let Ŝun described in (4.5) be the estimate for the union Sun. Then, for

every δ > 0,

Pr
(
Ŝun 6= Sun

)
≤ δ,

provided m ≥ (log k`)2 > 1, and

n ≥ c

(
k2`2

m2
log

k`(d− k`)
δ

)
,

for an absolute constant c.

As we discussed in the introduction, if we had labels for each sample indicating which

support it belongs to, we could directly use the closed-form estimator after grouping the

samples with the same support together. This would require O((k2`/m2) log k(d − k))

samples. On the other hand, when the labels are unknown, the number of samples

required even to estimate the union of the supports is higher, as seen from the theorem

above.

4.4.2 Recovering individual supports: Analysis

Our analysis is based on the fact that the expected affinity matrix has a block structure

(under an appropriate permutation of its rows and columns), which we prove in the next

lemma.
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Lemma 4.4.3 (Block structure of E [T ]). Under Assumptions 4.2.1 and 4.2.2, for the

matrix T ∈ Rk`×k` in (4.6), E [T ] has entries given by

E [Tuv] =


µ0, if u = v,

µs, if u 6= v, (u, v) ∈ Si × Si for any i ∈ [`],

µd, otherwise,

where the parameters µ0, µs, and µd depend on k, m, and ` and can be explicitly calculated.

The proof of Lemma 4.4.3 appears in Section 4.8.5 and involves computing the ex-

pected values of random variables that contain higher order terms in Φi and Xi. Be-

fore we proceed, we note the following extension of the “median trick” (see, for exam-

ple, [18]) which shows that the dependence of sample complexity on δ is at most a factor

of O(log 1/δ), provided we can find an (n, ε, 1/4)-estimator.

Lemma 4.4.4 (Probability of error boosting). For δ ∈ (0, 1) and ` ∈ N, if we can find an

(n, ε, 1/4)-estimator for Σk,`,d, then we can find an
(
nd8 log 1

δ
e, 3ε, δ

)
-estimator for Σk,`,d.

We provide the proof in Section 4.8.1.

Thus, from here on, we fix our error requirement to δ = 1/4 and seek (n, ε, 1/4)-

estimators with the least possible n. We characterize the performance of the clustering

step in the following theorem. The analysis of this step is conditioned on exact recovery

of the union Sun in the first step.

Theorem 4.4.5. Let ν1 ≥ · · · ≥ νk` denote the ordered eigenvalues of E [T ] ∈ Rk`×k`, and

define ∆` = ν` − ν`+1 when ` ≥ 2. For every ε ∈ [1/`k, 1/`), we can find an (n, ε, 1/4)-

estimator for Σk,`,k` provided

n ≥ c
max{1, ‖E [T ] ‖op}

ε∆2
`

· E
[
max
i∈[n]
‖ai‖2

2

]
· log k`,

for an absolute constant c.

The result above applies to any setting where we have i.i.d. samples a1, . . . , an whose
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covariance has a block structure under permutation, and the goal is to group the coor-

dinates of ai based on the unknown block structure. We provide the proof of Theorem

4.4.5 at the end of this section.

The next two results provide us with bounds on the spectral quantities ‖E [T ] ‖op and

∆`, and on E
[
maxi∈[n] ‖ai‖2

2

]
appearing in Theorem 4.4.5.

Lemma 4.4.6. Under Assumptions 4.2.1 and 4.2.2, we have

‖E [T ] ‖op ≤ ρ
k2`

m2
+ λ2

0

k3`

m2
, and ∆` ≥

λ2
0k

`
.

Lemma 4.4.7. For every q ∈ N and i ∈ [n], we have E [‖ai‖q2] ≤ cq0(Γ(q))2λq0

(
k
√
k`

m

)q
.

Further, when log k ≥ 2, it follows that E
[
maxi∈[n]‖ai‖2

2

]
≤ n

2
log kE

[
‖a1‖log k

2

] 2
log k

.

The proof of Lemma 4.4.6 is provided in Section 4.8.6 and the proof of Lemma 4.4.7

appears in Section 4.8.2.

We close this section with the proof of Theorem 4.4.5.

Proof of Theorem 4.4.5. Recall that the proof is conditioned on exact recovery of the

union Sun. Further, for notational simplicity, we set Sun = [k`]. We divide the proof into

two steps.

Step 1. Relating probability of error to perturbation.

Denote the event that Algorithm 2 labels more than εk` coordinates incorrectly by E .

An upper bound on Pr (E) would imply an upper bound on the probability of the error

event implied by (4.2). The per support errors across the ` labels can have significant

overlap or even be equal, so the criterion in (4.2) is a good indicator of the number of

misclustered coordinates determined by E . Additionally, it satisfies the triangle inequality,

a property we will use later in proving Lemma 4.4.4.

The following result relates the error probability to a perturbation bound.

Lemma 4.4.8 (Error to perturbation bound). Let V and V̂ , respectively, be k`× ` ma-

trices with ith column given by vi and v̂i, 1 ≤ i ≤ `, where v1, . . . , v` and v̂1, . . . , v̂` denote
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the normalized eigenvectors of E [T ] and T , respectively, corresponding to their ` largest

eigenvalues. Then,

Pr (E) ≤ Pr

(
‖V̂ − V O‖F ≥

1

2

√
ε`

2

)
, (4.7)

where O ∈ R`×` is a random orthonormal matrix and the probability on the right hand

side is over the joint distribution of V̂ and O.

The proof of this lemma builds on the analysis in [65] and requires us to use some

properties of V , which we note in the lemma below.

Lemma 4.4.9 (Properties of V ). For 1 ≤ i ≤ k`, denote by vi the ith row of V . Then,

the following properties hold:

1. (Identity of rows of V capture the partition) vi = vj if and only if i and j belong to

the same support, i.e., i, j ∈ St for some t ∈ [`].

2. (Minimum distance property) For any two distinct rows vi and vj, ‖vi−vj‖2
2 ≥ 2/k.

We provide the proof of Lemma 4.4.9 in Section 4.8.3.

Proof of Lemma 4.4.8. We begin by observing that it suffices to show that

Pr (E) ≤ Pr

(
‖C − V O‖F ≥

√
ε`

2

)
, (4.8)

where C is the matrix found in Step 6 of Algorithm 2 and is random since V̂ is random.

Indeed, by Lemma 4.4.9, V has ` distinct rows, whereby V O, too, has ` distinct rows

since O is orthonormal. That is, V O ∈ U`. Therefore, by triangle inequality, we get

‖C − V O‖F ≤ ‖C − V̂ ‖F + ‖V O − V̂ ‖F (4.9)

= min
U∈U`
‖U − V̂ ‖F + ‖V O − V̂ ‖F (4.10)

≤ 2‖V O − V̂ ‖F , (4.11)
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where the final bound holds since V O belongs to U`. Thus, (4.8) will imply (4.7). Note

that even if the matrix O were to depend on V and V̂ and therefore be random, the

result above holds with probability one, and the only property we require from O is

orthonormality.

It remains to establish (4.8). To that end, we define

I def
= {i ∈ [k`] : ‖viO − ci‖2 < 1/

√
2k}, (4.12)

where vi and ci are the ith row of V and C, respectively. Our claim is that Algorithm 2

does not make an error in labeling the coordinates in I, unless |Ic| > εk`. To see this,

note that for any two distinct indices i, j ∈ I we have

‖viO − vjO‖2 ≤ ‖viO − cj‖2 + ‖vjO − cj‖2 (4.13)

≤ ‖viO − ci‖2 + ‖ci − cj‖2 + ‖vjO − cj‖2 (4.14)

<

√
2

k
+ ‖ci − cj‖2. (4.15)

Thus, if ci = cj, we must have ‖viO − vjO‖2 <
√

2/k, which by the second property in

Lemma 4.4.9 implies that viO = vjO. Therefore, when the labels given by the algorithm

for coordinates i and j coincide (this happens only when ci = cj), then viO = vjO. But

then, by the first property in Lemma 4.4.9, the coordinates i and j must have been in the

same part of S.

We have shown that the indices in I that are assigned the same label by the algorithm

must come from the same part in S. We still need to verify that coordinates from the

same part in S do not get assigned to different parts. We show this cannot happen

unless |Ic| > εk`, and this is where we use the assumption that ε < 1/`. Indeed, if

|Ic| ≤ εk` < k, then at least one element from each part S1, . . . ,S` must be in I, since

|Si| = k for every i. By our previous observation, elements in each of these parts in I

must be assigned different labels by the algorithm, which means that it must assign at

least ` different labels to the elements in I. Thus, if the algorithm assigns two elements

in the same part Si different labels, it will assign more that ` different labels, which is not
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allowed.

Therefore, all the indices in I are correctly labeled when |Ic| ≤ εk`. Then, clearly, in

this case the error event E does not hold. It follows from the definition of I that

Pr (E) ≤ Pr (|Ic| > εk`) (4.16)

≤ Pr

(∣∣∣∣ {i : ‖ci − viO‖2 ≥
1√
2k

} ∣∣∣∣ > εk`

)
(4.17)

≤ Pr

(
‖C − V O‖2

F >
ε`

2

)
, (4.18)

where in the final step we used the fact that the second step implies ‖C − V O‖2
F =∑k`

i=1 ‖ci − viO‖2
2 ≥ εk`/2k. This completes the proof of (4.8).

Step 2: Controlling the perturbation.

In view of Lemma 4.4.8, we only need to control the perturbation ‖V̂ − V O‖F . We

do this using the following extension of the Davis-Kahan theorem, which also fixes the

choice of O.

Theorem 4.4.10 (Perturbation of eigenspace). [90] Let A and Â be d × d symmetric

matrices with eigenvalues ν1 ≥ · · · ≥ νd and ν̂1 ≥ · · · ≥ ν̂d, respectively. Let V and V̂ be

d×` matrices consisting of the ` leading normalized eigenvectors of A and Â, respectively.

Then, there exists an orthonormal matrix O ∈ R`×` such that

‖V̂ − V O‖F ≤ 2
√

2
min{

√
`‖Â− A‖op, ‖Â− A‖F}

ν` − ν`+1

. (4.19)

By applying this result with T and E [T ] in the role of Â and A, respectively, we get

that there exists an orthonormal matrix O such that

‖V̂ − V O‖F ≤
2
√

2

∆`

min{
√
`‖T − E [T ] ‖op, ‖T − E [T ] ‖F}, (4.20)

where ∆`
def
= ν` − ν`+1. Combining this bound with our earlier bound from Lemma 4.4.8,
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we get

Pr (E) ≤ Pr

(
‖T − E [T ] ‖op ≥

∆`

√
ε

8

)
(4.21)

≤ 8

∆`

√
ε
· E [‖T − E [T ] ‖op] , (4.22)

where the last step uses Markov’s inequality.

To bound the expected value on the right hand side, we use the following extension of

a result of Rudelson [66]. As pointed out earlier, the original bound in [66] was restricted

to isotropic Zis, and we show that it extends to arbitrary i.i.d. Zis with an extra factor.

The proof is provided in Section 4.8.4.

Theorem 4.4.11 (Extension of a result in [66]). Let Z ∈ RN be a random vector such

that A = E
[
ZZ>

]
. Let Z1, . . . , Zn be independent copies of Z. Then, there exists an

absolute constant c such that

E

[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i − A

∥∥∥∥
op

]
≤ 1

2

(
α2 + α

√
α2 + 4‖A‖op

)
, (4.23)

where

α = c

√
E
[
maxi∈[n] ‖Zi‖2

2

]
logN

n
.

Using this bound in (4.22) with N = k`, we obtain

Pr (E) ≤ 4

∆`

√
ε

(
α2 + α

√
α2 + 4‖E [T ] ‖op

)
. (4.24)

The proof is completed upon noting that α can be made smaller than 1/2 using n ≥

cE
[
maxi∈[n] ‖ai‖2

2

]
log k`, in which case α

√
α2 + 4‖E [T ] ‖op ≤ α

√
8 max{1, ‖E [T ] ‖op}.

The error probability above can thus be made less than 1/4 if

n ≥ c

∆2
`ε

(log k`) max{1, ‖E [T ] ‖op}E
[
max
i∈[n]
‖ai‖2

2

]
.
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In the next section, we combine the results from Theorems 4.4.2 and 4.4.5 to show the

sample complexity bound of Theorem 4.2.1.

4.4.3 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 now follows by combining guarantees for the union recovery

step from Theorem 4.4.2 and the clustering step from Theorem 4.4.5.

We begin by applying Theorem 4.4.2 to get that Ŝun coincides with Sun = ∪`i=1Si with

probability close to 1. Throughout, we condition on this event occurring. However, to

avoid technical difficulties, we assume that a different set of independent samples is used

to recover Sun than those used to recover S1, . . . ,S` – thus, the overall number of samples

needed will be the sum of samples needed for union recovery in Theorem 4.4.2 and the

sample complexity determined in our analysis below. In particular, the clustering step

dominates the sample complexity of our algorithm.

Next, upon substituting the bounds from Lemma 4.4.6 and Lemma 4.4.7 into Theorem

4.4.5, we see that for ε-approximate recovery of the supports it suffices to have

n ≥ c

ε
λ2

0

k3`

m2

`2

λ4
0k

2
· n

2
log k ·

(
λ0
k
√
k
√
`

m
(log k)2

)2

· log(k`)

=
c

ε

k4`4

m4
n

2
log k (log k)4 log(k`). (4.25)

For n ≥ c((1/ε)(k`/m)4 · (log k)4 log(k`)), n
1

log k = O(1), which completes the proof in

view of the sufficient condition for n above.

4.5 Simulations

4.5.1 Synthetic data

In this subsection, we evaluate the performance of Algorithm 2 on synthetic data for vari-

ous parameter values. Through these simulations, our goal is to see how the performance

of the algorithm varies as a function of the ratio k/m and ` for a fixed d.



Chapter 4. Recovering Multiple Supports 107

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

P
ro

b
a
b
ili

ty
 o

f 
a
p
p
ro

x
im

a
te

 r
e
c
o
v
e
ry

 

 

k = 10, m = 4

k = 20, m = 5

k = 40, m = 7

(a) d = 100, ε = 0.2, ` = 2.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

P
ro

b
a
b
ili

ty
 o

f 
a
p
p
ro

x
im

a
te

 r
e
c
o
v
e
ry

 

 
ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

(b) d = 100, ε = 0.2, m = 4, k = 10.

Figure 4.2: Probability of approximate support recovery with (a) varying k/m ratios, and

(b) varying `.

We first choose d = 100, ` = 2 and consider three different values of k/m. We generate

two disjoint subsets S1 and S2 of [d], each of size k. Then, for a given n, we generate

n/2 samples with each support, with values on the support drawn from the standard

normal distribution in Rk. Measurement matrices {Φi}ni=1 are generated independently

with i.i.d. N (0, 1/m) entries and multiplied with the samples to obtain measurements

{Yi}ni=1. These measurements are given as input to the support recovery algorithm, which

produces estimates for the union, as well as the individual supports, which we denote by

Ŝ1 and Ŝ2. For each value of (k,m, n), we run 100 trials and declare it a success if the

error
∑2

i=1 |Ŝi∆Sσ(i)| < 2εk. The plot in Figure 4.2(a) shows the success rate over the 100

trials as a function of the number of samples n, with ε set as 0.2. Note that the number

of measurements taken per sample, m, is much smaller than the support size, k, of each

sample. We can see from Figure 4.2(a) that for a fixed probability of success, the number

of samples required increases with k/m, which agrees with the result in Theorem 4.2.1.

In Figure 4.2(b), we show the variation in the probability of approximate recovery as a

function of n for the number of supports ` = {2, 3, 4, 5}, with k and m (and hence their

ratio) held fixed. We can see that the number of samples required to achieve a given

probability of recovery increases with `. Our current experiments however do not reveal

whether the dependence on these parameters is tight.
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4.5.2 MNIST dataset

As an application involving natural data, we consider the problem of reconstructing hand-

written images from very few linear measurements. We apply the multiple support recov-

ery algorithm to the MNIST dataset [42], which consists of 60, 000 images of handwritten

digits, each of size 28 × 28. Each (grayscale) image is a sample in our setting, and the

support of the sample essentially identifies the digit. This dataset fits well into our hy-

pothesis that there is a small set of unknown supports underlying the data – handwritten

images corresponding to the same digit can be thought of as having roughly the same

pattern (support) in the pixel domain. Thus, the vectorized version of images of the same

digit will have approximately the same support. We note that the task here is to recover

the images of the digits from low dimensional projections, and not to learn a classifier

using the dataset.

In our experiments, the vectorized version of each image (a 784×1 vector) is projected

onto m = 100, 200 or 500 dimensions using Gaussian measurement matrices described in

Assumption 4.2.2. Given these low dimensional projections, the goal is to identify the

underlying digits. We fix ` = 2 and consider the example of digits 1 and 5 as shown in

Figure 4.3. The support size of each digit is roughly in the range 150 − 200. It can be

seen that Algorithm 2 can identify the distinct digits even when m < k. For comparison,

we used the Group LASSO algorithm on the projected samples, which tries to recover

the individual samples (images) itself. However, it requires a much larger number of

measurements per sample (for example, about m = 500 in this case). In fact, previously

known algorithms for sparse recovery do not perform well in the low measurement regime

of m < k, and we have used Group LASSO as an example to illustrate this fact.

We note that since these are handwritten digits, the support of samples coming from

the same digit can also vary to some extent. However, the averaging across samples in our

estimator takes care of this problem. Further, the supports from different digits need not

be disjoint. To handle overlaps, we use the observation that λ̃ can provide an estimate

for the intersection of supports as well. The plot of sorted entries of λ̃ shows a sharp drop

in values at two locations, one around the intersection and another around the union.
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We include this estimate of intersection of supports into our final estimate. This method

performs well in practice, as can be seen in the results of Figure 4.3, where digits 1 and

5 have significant overlap.

(a) m = 100 (b) m = 100

(c) m = 200 (d) m = 200

(e) m = 500 (f) m = 500

Figure 4.3: Recovery performance of Algorithm 2 ((a),(c),(e)), and Group LASSO

((b),(d),(f)), with n = 2000 and varying m.

4.5.3 Computational complexity

The first step in our algorithm for estimating the union involves computing the average

variance along each of the d coordinates and requires O(mnd) operations. The cluster-

ing step involves computing the T matrix and its ` leading eigenvectors which requires

O(k3`3 + k2`2n) operations, followed by the `-means step which requires O(k`3) opera-

tions per iteration. Other algorithms for recovering multiple supports do not perform well

when m < k, and have computational complexity that scales quadratically or worse with

d. For instance, the sparse Bayesian learning based algorithm from [86] has a complexity

of O(d2) per iteration, and LASSO-based procedures have a complexity of O(d2) or O(d3)

per iteration, depending on the specific algorithm used.
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E [T o] =

µ0 µs µs µs µd µd

µs µ0 µs µs µd µd

µs µs µs0 µ′ µs µs

µs µs µ′ µs0 µs µs

µd µd µs µs µ0 µs

µd µd µs µs µs µ0






S1
S2

Figure 4.4: Block structure of the expected affinity matrix when the supports overlap,

under appropriate permutation of rows and columns.

4.6 Overlapping supports

Our discussion till now focused on the case of disjoint supports. In this section, we describe

an extension of our algorithm to handle intersecting supports when ` = 2. In this setting,

the expected affinity matrix has an overlapping block structure as shown in Figure 4.4,

and the key step is to characterize the eigenvectors and eigenvalues of this matrix. In the

` = 2 case, as we describe below, the sign pattern of the second leading eigenvector of T o3

determines the performance of the algorithm. In particular, the number of misclustered

coordinates can be related to the eigenvalues of E [T o] and an error term ‖T o−E [T o] ‖op.

We characterize both these quantities and provide the performance guarantee in Theorem

4.6.1.

Let kun
def
= |S1 ∪ S2| and kint = |S1 ∩ S2| denote the sizes of the union and intersection

of the underlying supports, respectively. When S1 and S2 have a non empty intersection,

the expected affinity matrix E [T o] has a block structure under an unknown permutation

of the rows and columns as depicted in Figure 4.4. It is well-known that the sign of the

second leading eigenvector of E [T o] can reveal the grouping of indices into the underlying

blocks. In particular, the entries of the eigenvector at indices that belong exclusively

to one of the supports will be strictly positive or strictly negative. For indices that lie

3To avoid confusion with the case of disjoint supports, we will denote the affinity matrix by T o here.
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Algorithm 3: Multiple support recovery: ` = 2 case

Input: Measurements {Yi}ni=1, Measurement matrices {Φi}ni=1, kun, kin

Output: Support estimates Ŝ1, Ŝ2

1 If S1 and S2 disjoint, set τ = 0, otherwise set τ = 1
2
√
k

2 Form variance estimates a1, . . . , an with entries

aji = (Φ>jiYj)
2, i ∈ [d],

for j ∈ [n].

3 Compute

λ̃ =
1

n

n∑
i=1

ai

Sort entries of λ̃ to get λ̃(1) ≥ · · · ≥ λ̃(d) and output estimate for union

Ŝun = {(1), . . . , (kun)}

4 Construct affinity matrix T ∈ Rkun×kun as

T =
1

n

n∑
i=1

aia
>
i .

5 Compute (normalized) second leading eigenvector v̂2 of T . Declare

Ŝ1 = {i ∈ Ŝun : v̂2,i > −τ}

Ŝ2 = {i ∈ Ŝun : v̂2,i < τ}
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in the intersection of the two supports, the entries will be zero. Since we will be using

the eigenvector of the sample version T o instead of E [T o], we relax the requirement of

entries being exactly zero and look for values in a small interval around zero, whereby our

estimates for the two supports are

Ŝ1 = {i ∈ Ŝun : v̂2,i > −τ} (4.26)

Ŝ2 = {i ∈ Ŝun : v̂2,i < τ}, (4.27)

for an appropriate threshold τ > 0. Thus coordinates for which v̂2,i ∈ [−τ, τ ] are included

in both supports. The full algorithm is described in Algorithm 3, for which we have the

following performance guarantee. For simplicity, we state our guarantee considering the

total number of mislabeled coordinates as the recovery criterion and for fixed probability

of error. As we saw before, it can be converted to a guarantee in terms of the sum metric

for arbitrary error probability.

Theorem 4.6.1. Let Ŝ1 and Ŝ2 be the estimates in (4.26), with τ chosen as c/
√
kun for

c < 1. Then, for every ε > 0,

Pr
(
∃σ ∈ G2 s.t. |(S1∆Ŝσ(1)) ∪ (S2∆Ŝσ(2))| ≤ 2εkun

)
≥ 2

3
(4.28)

provided kint/m ≤ c′ < 1 and

n ≥ C

ε

(
1− kint

kun

)
k4

m4
(log k)4 log kun. (4.29)

Proof. Let νo1 ≥ · · · ≥ νokun be the eigenvalues of E [T o]. Also, let v̂2 and v2 denote the

normalized second leading eigenvectors of T o and E [T o], respectively. From the Davis-

Kahan theorem (stated in Section 4.8), we have

sin(∠(v̂2, v2)) ≤ 2‖T o − E [T o] ‖op
∆o

min

, (4.30)

where sin(∠(x, y))
def
=
√

1− (x>y)2/‖x‖2
2‖y‖2

2 and ∆o
min

def
= min{νo1 − νo2 , ν

o
2 − νo3}. This
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result can be quickly translated to a bound on ‖v̂2−v2‖2. Indeed, for any two unit vectors

x and y such that sin(∠(x, y)) ≤ c, we have |x>y| ≥ (x>y)2 ≥ 1 − c2. Using this, one

can show that either ‖x − y‖2
2 ≤ 2c2 or ‖x + y‖2

2 ≤ 2c2 is guaranteed to hold. Thus, the

Davis-Kahan theorem essentially states that

min{‖v̂2 − v2‖2, ‖v̂2 + v2‖2} ≤ 2
√

2
‖T o − E [T o] ‖op

∆o
min

, (4.31)

that is, the true eigenvector and the sample eigenvector are close upto sign. Our goal

will be to show that the quantity on the right is small, which would show that the error

between the eigenvectors is also small. But first, we will relate the error between the

eigenvectors to the error in the recovered supports.

We will identify events that lead to false alarm and missed detection errors. Towards

that, we define

EFA/MD
1 = {i ∈ Sun : v2,i > 0, v̂2,i < −τ} (4.32)

EFA/MD
2 = {i ∈ Sun : v2,i < 0, v̂2,i > τ}, (4.33)

as events that lead to both false alarm and missed detection errors. In a similar way, we

define the events

EMD
3 = {i ∈ Sun : v2,i = 0, v̂2,i 6∈ [−τ, τ ]} (4.34)

EFA4 = {i ∈ Sun : v2,i > 0, v̂2,i ∈ [−τ, τ ]} (4.35)

EFA5 = {i ∈ Sun : v2,i < 0, v2,i ∈ [−τ, τ ]}. (4.36)

Then, the error event is E = EFA/MD
1 ∪ EFA/MD

2 ∪ EMD
3 ∪ EFA4 ∪ EFA5 . Now, note that the

entries of v2 are either 1/
√
k′, −1/

√
k′ or zero, where k′ = kun − kint. The minimum on

the left of (4.31) depends on the signs of entries of v2 relative to S1 and S2. Note that

from the description of the estimator, the entries of v̂2 are always positive on S1\S2 and

negative on S2\S1. Assuming without loss of generality that S1 and S2 are such that the

entries of v2 are positive on S1\S2, negative on S2\S1, and zero on S1 ∩ S2, we see that
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the minimum in (4.31) is achieved by ‖v̂2 − v2‖2, since the values add up on the error

set E due to opposite signs. In particular, note that if i ∈ EFA/MD
1 or i ∈ EFA/MD

2 , then

(v2,i − v̂2,i)
2 ≥ 1/k′, since the entries have opposite signs. On the other hand, if i ∈ EFA3 ,

then (v2,i−v̂i)2 ≥ τ 2. Finally, for i ∈ EFA4 or i ∈ EFA5 , (v2,i−v̂i)2 ≥ (1/
√
k′−τ)2. Choosing

τ = c/
√
k′ for c < 1, we get

‖v2 − v̂2‖2
2 ≥

∑
i∈E

(v2,i − v̂2,i)
2 ≥ |E| c

′

k′
,

where c′ < 1.

Similarly, when S1 and S2 are such that the entries of v2 are negative on S1\S2,

positive on S2\S1, and zero on S1 ∩S2, the minimum is achieved by ‖v̂2 + v2‖2
2 ≥ c′|E|/k′.

Combining these facts with (4.31), we see that if

‖T o − E [T o] ‖op
∆min

≤
√
kun

k′
ε (4.37)

with probability at least 2/3, then it implies that |E| ≤ cεkun with probability at least

2/3. As before, we will use Theorem 4.4.11 to control ‖T o − E [T o] ‖op by characterizing

the spectrum of E [T o]. Using similar arguments as in the proof of Theorem 4.2.1, and

letting ε′ =
√
εkun/k′, we get

Pr

(
‖T o − E [T o] ‖op

∆o
min

≥ ε′
)
≤ 1

3
, (4.38)

provided

n ≥ c

ε′2
‖E [T o] ‖op

(∆o
min)2

(
E
[
‖a1‖log k

2

]) 2
log k

log kun. (4.39)

We now use the following lemma which characterizes the spectrum of E [T o]. The proof

is provided in Section 4.8.7.
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Lemma 4.6.2. Under Assumptions 4.2.1 and 4.2.2, we have

‖E [T o] ‖op ≤ cλ2
0

k3

m2
.

Further, assuming kint/m ≤ c′ for some c′ < 1, we have

∆o
min ≥ c′′λ2

0k.

Plugging the results from Lemma 4.6.2 into (4.39) and using Lemma 4.4.7 gives

n ≥ c

ε′2
k4

m4
k

2
log k (log k)4 log kun. (4.40)

Substituting ε′ =
√
εkun/k′, and using similar arguments as in the proof of Theorem

4.2.1, we get

n ≥ c

ε

(
1− kint

kun

)
k4

m4
(log k)4 log kun. (4.41)

4.7 Discussion and Extensions

In our results in the initial part of this chapter, we assumed that the distinct supports were

pairwise disjoint sets. In the case of overlapping supports, the structure of the expected

affinity matrix, and consequently its spectrum, changes. For the special case of ` = 2,

we showed that overlapping supports can be handled by a modification of the sign-based

estimate. Given our current algorithm, a simple way to handle overlapping supports

for general ` would be to use fuzzy `-means, which returns scores for each coordinate

indicating how likely it is to belong to a certain support. However, choosing a threshold

to decide the supports using the scores is difficult in general. Some other approaches

have been explored in the graph clustering literature, but these do not apply directly

to our setting. Other extensions of our work include studying the performance of the
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algorithm under different support sizes, and prior distribution with non-uniform mixing

weights. Also, our work shows a sufficient condition on the number of samples required

for multiple support recovery; obtaining the necessary condition is a challenging task in

general and requires characterizing the distance between mixture distributions. Using a

component wise distance bound leads to the same lower bound as in Chapter 3 (with an

additional 1/` factor), and obtaining a better lower bound seems difficult.

4.8 Remaining proofs

4.8.1 Proof of Lemma 4.4.4 (Probability of error boosting)

Given an (n, ε, 1/4)-estimator for Σk,`,d, we apply it to L independent blocks of data.

Specifically, denoting this estimator by e, consider independent copies (Y n(t),Φn(t)),

1 ≤ t ≤ L, of (Y n,Φn). For t ∈ [L], let

(Ŝ1,t, . . . , Ŝ`,t) := e(Y n(t),Φn(t))

denote the output for the estimator applied to the tth block.

We now describe a procedure to output a final estimate for the supports using the

estimates (Ŝ1,t, . . . , Ŝ`,t) from the L blocks of samples. For each t ∈ [L], we check if there

is a set I ⊆ [L]\{t} of cardinality N ≥ L/2 satisfying

min
σt∈G`

∑̀
i=1

|Ŝi,t∆Ŝσt(i),t′| ≤ 2εk`2, ∀ t′ ∈ I. (4.42)

That is, we look for a t for which (Ŝ1,t, . . . , Ŝ`,t) are close to L/2 other estimates. This

indicates “robustness” of the estimate from the tth block, making it an appropriate proxy

for the median. Our final estimate is (S̄1, . . . , S̄`) = (Ŝ1,t, . . . , Ŝ`,t), where t is an index

which satisfies the property above.

We show that for L ≥ d8 log 1
δ
e the estimator above constitutes an (nL, 3ε, δ)-estimator
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for Σk,`,d. Indeed, denoting

Zt = 1

(
∃σ ∈ G` s.t.

∑̀
i=1

|Si∆Ŝσ(i),t| ≤ εk`2

)
,

by our assumption for the estimator e we have

EP(S1,...,S`)
[Zt] ≥

3

4
.

Furthermore, Zt are independent for different t ∈ [L]. Thus, by Hoeffding’s inequality,

P(S1,...,S`)

(
L∑
t=1

Zt ≤
L

2

)
≤ e−

L
8 , ∀ (S1, . . . ,S`) ∈ Σk,`,d.

In particular, for L ≥ d8 log 1
δ
e, with probability exceeding 1−δ there exist4 M ≥ L/2+1

indices t1, . . . , tM ∈ [L] and permutations σ1, . . . , σM ∈ G` such that

∑̀
i=1

|Si∆Ŝσj(i),tj | ≤ εk`2, ∀ j ∈ [M ]. (4.43)

Note that since |A∆B| is a metric for subsets of [d], the estimate (Ŝ1,t, . . . , Ŝ`,t) for t = t1

satisfies (4.42) when (4.43) holds; in fact, any index among {t1, ..., tM} can serve this pur-

pose. However, the estimate described earlier need not select any of these indices. Yet, we

now show that any other index chosen by the procedure will work as well, provided (4.43)

holds.

To that end, denote by I ′ the set {t1, . . . , tM} of indices satisfying (4.43), and recall

the set I found by our estimation procedure earlier. Then, when |I ′| ≥ L/2 + 1, which

holds with probability exceeding 1− δ,

|I ∩ I ′| ≥ |I|+ |I ′| − L ≥ 1,

4Without loss of generality, we assume L to be even.
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whereby there exists an index t ∈ [L] and permutations σ, σ ∈ G` such that

∑̀
i=1

|Si∆Ŝσ(i),t| ≤ εk`2 and
∑̀
i=1

|S i∆Ŝσ(i),t| ≤ 2εk`2.

It follows that the permutation σ′ = σ ◦ σ−1 satisfies

∑̀
i=1

|Si∆Sσ′(i)| ≤ 3εk`2,

which completes the proof.

4.8.2 Proof of Lemma 4.4.7

As noted in the proof of Theorem 4.2.1, the clustering step in our algorithm is analyzed

under the assumption that the union of supports is exactly recovered in the first step,

whereby we can set Ŝun = Sun.

We will first show the bound on E
[
maxi∈[n] ‖ai‖2

2

]
, followed by the moment bound for

E [‖ai‖q2]. We start by noting that for any q ≥ 2,

E
[
max
i∈[n]
‖ai‖2

2

]
= E

[(
max
i∈[n]
‖ai‖q2

) 2
q

]

≤ E

[( n∑
i=1

‖ai‖q2
) 2

q

]

≤
(
E

[
n∑
i=1

‖ai‖q2

]) 2
q

= n
2
q

(
E [‖a1‖q2]

) 2
q

,

where we used Jensen’s inequality in the third step. For log k ≥ 2, upon setting q = log k

in the inequality above, we get

E
[
max
i∈[n]
‖ai‖2

2

]
≤ n

2
log k

(
E
[
‖a1‖log k

2

]) 2
log k

.
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We now proceed to bound E [‖ai‖q2]. In the rest of the proof, we will denote ai ∈ Rd

by a, and with some abuse of notation, denote by Φi the ith column of Φ. By using the

definition of a, we have

‖a‖2q
2 =

( ∑
i∈Sun

a2
i

)q
=

( ∑
i∈Sun

(Φ>i ΦSXS)4

)q
=

( ∑
i∈Sun

(α>i XS)4

)q
=

( ∑
i∈Sun

(X>S AiXS)2

)q
,

where αi = Φ>SΦi as defined before and Ai
def
= αiα

>
i . To compute the expectation of the

term in the last step, we first condition on Φ and note that

E
[( ∑

i∈Sun

(X>S AiXS)2

)q∣∣∣∣Φ] = (k`)qE
[(

1

k`

∑
i∈Sun

(X>S AiXS)2

)q∣∣∣∣Φ]
≤ (k`)q−1

∑
i∈Sun

E
[
(X>S AiXS)2q|Φ

]
, (4.44)

where we used |Sun| = k`, and the convexity of the function xq for x ≥ 0, q ∈ N. The

quantity on the right essentially involves the (2q)th moment of a subexponential random

variable (see Section 4.9 for definition). To see that the quadratic form X>S AiXS is

subexponential, we use the Hanson-Wright inequality (cf. [68]) to get

P(|X>S AiXS − µ| ≥ t|Φ) ≤ 2 exp

(
−min

{
t2

λ2
0‖Ai‖2

F

,
t

λ0‖Ai‖op

})
,

where µ = E
[
X>S AiXS |Φ

]
= λ0‖αi‖2

2. Lemma 4.9.1 in Section 4.9 can now be used to

bound the moment in (4.44). Specifically, we get

E[(X>S AiXS)2q|Φ] ≤ 2q · (16)q
(

Γ(q)λ2q
0 ‖Ai‖

2q
F + Γ(2q)λ2q

0 ‖Ai‖2q
op

)
+ 22qµ2q

≤ 3q · (16)qΓ(2q)λ2q
0 ‖αi‖

4q
2 ,
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where we used ‖Ai‖F = ‖Ai‖op = ‖αi‖2
2. Next, taking expectation over Φ, we obtain

E
[
(X>S AiXS)2q

]
≤ c′qΓ(2q)λ2q

0 E
[
‖αi‖4q

2

]
, (4.45)

where c′q = 3q · (16)q. Thus, combining the result above with (4.44), we get

E
[( ∑

i∈Sun

(X>S AiXS)2

)q]
≤ c′qΓ(2q)λ2q

0 (k`)q
∑
i∈Sun

E
[
‖αi‖4q

2

]
= c′qΓ(2q)λ2q

0 (k`)q
(∑

i∈S

E
[
‖αi‖4q

2

]
+

∑
i∈Sun\S

E
[
‖αi‖4q

2

])
.

(4.46)

When i ∈ S,

E[‖αi‖4q
2 ] = E

(‖Φi‖4
2 +

∑
j∈S\{i}

(Φ>i Φj)
2

)2q


≤ 22q

E
[
‖Φi‖8q

2

]
+ E

( ∑
j∈S\{i}

(Φ>i Φj)
2

)2q
 ,

and when i ∈ Sun\S,

E
[
‖αi‖4q

2

]
≤ E

[(∑
j∈S

(Φ>i Φj)
2

)2q
]
.

Since Φi has independent, subgaussian entries with parameter 1/m, we see that ‖Φi‖2
2 ∼

subexp(c′/m, c′′/m) with c′ = 128 and c′′ = 8 [60, Lemma D.2]. This gives, using Lemma

4.9.1,

E
[
(‖Φi‖2

2)4q
]
≤ 2q(16)q

(
Γ(2q)

c′2q

m2q
+ Γ(4q)

c′′4q

m4q

)
+ (E

[
‖Φi‖2

2

]
)4q

≤ 4q(16)qc′2qΓ(4q)
1

m2q
+ 1,
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where we used c′ > c′′2. Using similar arguments, we note that Φ>i Φj|Φi is subgaus-

sian with parameter ‖Φi‖2
2/m, which implies that, conditioned on Φi,

∑
j∈S\{i}(Φ

>
i Φj)

2 is

subexp(c′(k − 1)‖Φi‖4
2/m

2, c′′‖Φi‖2
2/m). Then, using Lemma 4.9.1 again, we get

E
[( ∑

j∈S\{i}

(Φ>i Φj)
2

)2q]
≤ c′qEΦi

[
Γ(q)c′q

(
k − 1

m2

)q
‖Φi‖4q

2 + Γ(2q)c′′2q
(
‖Φi‖2

2

m

)2q
]

+ 22q

(
E

 ∑
j∈S\{i}

(Φ>i Φj)
2

)2q

≤ c′qc
′qΓ(q)

(
k − 1

m2

)q(
1 + 2c′qc

′2qΓ(2q)
1

mq

)
+ c′qc

′′2qΓ(2q)
1

m2q

(
1 + c′qc

′2qΓ(2q)
1

mq

)
+ 22q

(
k − 1

m

)2q

≤ 5c′qc
′2qΓ(2q)

(
k

m

)2q

.

Combining these results and substituting into (4.46), we get

E
[( ∑

i∈Sun

(X>S AiXS)2

)q]
≤ c′qΓ(2q)λ2q

0 (k`)q−1

(∑
i∈S

E
[
‖αi‖4q

2

]
+

∑
i∈Sun\S

E
[
‖αi‖4q

2

])

≤ 5c′2q c
′2qΓ(2q)λ2q

0 (k`)q−1

(
kΓ(2q)

(
k

m

)2q

+ (k`− k)Γ(2q)

(
k

m

)2q)
= 5c′2q c

′2q(Γ(2q))2λ2q
0

(
k
√
k`

m

)2q

.

Rescaling the exponent, we get

E [‖a‖q2] = E

[( ∑
i∈Sun

(X>S AiXS)2

) q
2

]

≤ 5c2
q/2c

′q(Γ(q))2λq0

(
k
√
k`

m

)q
Noting that c′(5c2

q/2)1/q ≤ 45 · 8c′ = c0, we obtain the result.
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4.8.3 Proof of Lemma 4.4.9

(i) To show the first property, we note that the true covariance matrix can be decom-

posed as E [T ] = WBW> + (µ0 − µs)I, where W ∈ {0, 1}k`×` encodes the block

structure, and B ∈ R`×` contains the distinct values from each block. In particular,

for 1 ≤ i ≤ k` and 1 ≤ j ≤ `, define

Wij =

1, if i ∈ Sj,

0, otherwise,

and, for 1 ≤ i ≤ ` and 1 ≤ j ≤ `, define

Bij =

µs, if i = j,

µd, otherwise.

Since E [T ] and WBW> have the same set of eigenvectors, we will show that the

matrix V ∈ Rk`×` consisting of the ` leading eigenvectors of WBW> has the desired

property. To that end, first note that there are only ` unique rows in W , one unique

row corresponding to each block. We will show that V also consists of ` unique rows,

in exact correspondence with the rows of W . To do so, we will follow [65, Lemma

3.1] and show that V is essentially a row-transformed version of W , i.e., there exists

an invertible matrix H ∈ R`×` such that WH = V . We start by considering the

eigen decomposition

(W>W )
1
2B(W>W )

1
2 = UΛU,

where Λ ∈ R`×` is diagonal and U ∈ R`×` is an orthonormal matrix. Left multiplying

by W (W>W )−
1
2 and right multiplying by (W>W )−

1
2W> in the equation above, we

get,

WBW> = WHΛ(WH)>,
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where H
def
= (W>W )−

1
2U . Finally, right multiplying by WH and noting that

(WH)>WH = I, we have

WBW> ·WH = WH · Λ,

implying that the columns of WH are the normalized eigenvectors of WBW>.

We have thus shown that V = WH. Let vi and wi denote the ith row of V and W ,

respectively. If vi = vj for some i 6= j, then wiH = wjH. Since H = (W>W )−
1
2U

is invertible, this implies wi = wj. Conversely, if wi = wj for some i 6= j, then

wiH = wjH, which implies vi = vj.

(ii) Using the fact that V = WH from (i), we have for vi 6= vj,

‖vi − vj‖2 = ‖(wi − wj)H‖2

≥
√

2νmin(H),

where νmin(H)
def
= min‖x‖2=1 ‖x>H‖2, and we used ‖wi − wj‖2 =

√
2 for wi 6= wj.

Now,

min
‖x‖2=1

‖x>H‖2
2 = min

‖x‖2=1
x>HH>x

= min
‖x‖2=1

x>(WW>)−1x

=
1

k
,

where we used HH> = (W>W )−
1
2UU>(WW>)−

1
2 = (WW>)−1 and the fact that

WW> = k diag (I). Putting everything together, we get

‖vi − vj‖2
2 ≥

2

k
.
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4.8.4 Proof of Theorem 4.4.11

The proof is similar to that of [66], and we highlight the steps needed to extend the result

to general A. In particular, following similar arguments as in [66], it can be shown that

E
[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i − A

∥∥∥∥
op

]
≤ c

√
logN

n

√
E
[
max
i∈[n]
‖Zi‖2

2

]√√√√E

[∥∥∥∥ n∑
i=1

ZiZ>i

∥∥∥∥
op

]
, (4.47)

Now,

E

[∥∥∥∥ n∑
i=1

ZiZ
>
i

∥∥∥∥
op

]
≤ nE

[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i − A

∥∥∥∥
op

+ ‖A‖op

]
= n(β + ‖A‖op), (4.48)

where β
def
= E

[∥∥∥∥ 1
n

∑n
i=1 ZiZ

>
i − A

∥∥∥∥
op

]
. It follows from (4.47) and (4.48) that

β ≤ c

√
logN

n

√
E
[
max
i∈[n]
‖Zi‖2

2

]√
β + ‖A‖op.

Letting α = c
√

(logN)/n
√
E
[
maxi∈[n] ‖Zi‖2

2

]
, we have the solution

β ≤ 1

2

(
α2 + α

√
α2 + 4‖A‖op

)
,

which completes the proof.

4.8.5 Proof of Lemma 4.4.3

Our goal is to compute the expected value of the affinity matrix, denoted E [T ], and we

will do so by first conditioning on the measurement ensemble Φn
1 and noting that each

entry of T is then of the form (X>AX)2, where X is subgaussian and A is a fixed matrix

(given Φn
1 ). This conditional expectation can be calculated using Lemma 4.9.2. The next

step is to average over the distribution of Φn
1 , and our analysis will require the moment
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assumptions on the entries of Φn
1 described in Assumption 2. Although each entry of E [T ]

can be explicitly characterized in terms of the system parameters, we will sometimes only

mention the leading terms. In fact, the analysis of our algorithm in Theorem 1 only

requires an upper bound on the diagonal entries and tight upper and lower bounds on the

off diagonal entries of E [T ].

Specifically, by the definition of T from (4.49), we note that

E [Tuv] =
1

n

n∑
j=1

(Φ>juΦjXj)
2 · (Φ>jvΦjXj)

2, (4.49)

for (u, v) ∈ Sun×Sun. The expectation in the expression above is over the joint distribution

of Xn
1 , Φn

1 and the labels Gn
1 (generating samples from the mixture PS = 1

`

∑`
i=1 P(i)

described in Section II in the main file can be thought of as drawing the label G uniformly

from [`], and conditioned on G = g, drawing a sample from P(g)). We will first condition

on the labels (or, equivalently, on the random subsets {I1, . . . , I`} defined as Ii
def
= {j ∈

[n] : supp(Xj) = Si} and on the measurement matrices. We focus on a single summand in

(4.49), and drop the dependence on the sample index j. With a slight abuse of notation,

we let S = supp(X) denote the support of the sample we focus on and note that

EX
[
(Φ>uΦX)2 · (Φ>v ΦX)2|Φ, G

]
= EX

[
(X>S αuα

>
v XS)2|Φ, G

]
,

where, αu
def
= Φ>SΦu, u ∈ Sun. We can now use Lemma 4.9.2 to get

EX
[
(X>S αuα

>
v XS)2|Φ, G

]
= ρ

∑
i∈S

α2
uiα

2
vi + λ2

0

∑
i 6=j

α2
uiα

2
vj + λ2

0

∑
i 6=j

αuiαviαujαvj, (4.50)

where recall λ0 = E [X2
i ] and ρ = E [X4

i ]. We will first handle the u = v case, which will

be used to compute the diagonal entries of the mean matrix. We have, for every u ∈ Sun,

EX,Φ
[
(X>S αuα

>
uXS)2|G

]
= ρEΦ

[∑
i∈S

α4
ui|G

]
+ 2λ2

0EΦ

[∑
i 6=j

α2
uiα

2
uj|G

]
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= ρEΦ

[∑
i∈S

(Φ>uΦi)
4|G

]
+ 2λ2

0EΦ

[∑
i 6=j

(Φ>uΦi)
2(Φ>uΦj)

2|G

]
.

When u ∈ S,

µs0
def
= EX,Φ

[
(X>S αuα

>
uXS)2|G

]
= ρEΦ

‖Φu‖8
2 +

∑
i∈S\{u}

(Φ>uΦi)
4|G

+ 2λ2
0EΦ

2‖Φu‖4
2

∑
i∈S\{u}

(Φ>uΦi)
2 +

∑
i 6=j

(Φ>uΦi)
2(Φ>uΦj)

2|G


≤ cρ

(
1 +

k − 1

m2

)
+ c′λ2

0

(
k − 1

m
+

(k − 1)(k − 2)

m2

)
, (4.51)

where we used Lemma 4.9.2 in the second step and Lemma 4.9.4 in the third step, and

retained the leading terms.

When u ∈ Sun\S, using Lemmas 4.9.2 and 4.9.4 once again, we have

µd0
def
= EX,Φ

[
(X>S αuα

>
uXS)2|G

]
= ρEΦ

[∑
i∈S

(Φ>uΦi)
4|G

]
+ 2λ2

0EΦ

[∑
i 6=j

(Φ>uΦi)
2(Φ>uΦj)

2|G

]

≤ cρ

(
k

m2

)
+ c′λ2

0

k(k − 1)

m2
. (4.52)

We now use these results to bound the diagonal entries of the mean matrix E [T ]. Using

(4.49), (4.51) and (4.52), we see that for u ∈ S1,

µ0
def
= E [Tuu] = EG

[
EX,Φ

[
1

n

(∑
j∈I1

(Φ>juΦjXj)
4 + · · ·+

∑
j∈I`

(Φ>juΦjXj)
4

)∣∣∣∣G
]]

= EG

[
1

n

(
|I1|µs0 +

∑̀
i=2

|Ii|µd0
)]

=
1

`
µs0 +

`− 1

`
µd0

≤ c

`

{
ρ

(
1 +

k − 1

m2

)
+ λ2

0

(
k − 1

m
+

(k − 1)(k − 2)

m2

)}
+
c(`− 1)

`

{
ρ

(
k

m2

)
+ λ2

0

k(k − 1)

m2

}
, (4.53)
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where we used EG [|Ii|] = n/` for all i ∈ [`], under the uniform mixture assumption. The

same result holds for u ∈ Si for any i ∈ [`].

The next step is to bound the off diagonal entries of E [T ]. Continuing from (4.50),

we will handle each of the three terms separately. For each of these terms, we will

consider the case when both u and v belong to the same support, and when they belong

to different supports. Overall, these calculations highlight the block structure of E [T ],

with the diagonal entries all being equal, and the off diagonal entries taking two different

values based on whether the indices belong to the same support or not.

For the first term in (4.50), when (u, v) ∈ S × S, u 6= v, we have

EΦ

[∑
i∈S

α2
uiα

2
vi|G

]
=EΦ

[
‖Φu‖4

2(Φ>uΦv)
2|G
]

+ EΦ

[
‖Φv‖4

2(Φ>uΦv)
2|G
]

+ EΦ

 ∑
i∈S\{u}∪{v}

(Φ>i Φu)
2(Φ>i Φv)

2

∣∣∣∣G


=
2

m

(
1 +

3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)
+
k − 2

m2

(
1 +

1

m
(c2 − 1)

)
def
= γs1,

(4.54)

using Lemma 4.9.4. On the other hand, when (u, v) ∈ S × Sun\S, we have

EΦ

[∑
i∈S

α2
uiα

2
vi|G

]
=EΦ

[
‖Φu‖4

2(Φ>uΦv)
2|G
]

+ EΦ

 ∑
i∈S\{u}

(Φ>i Φu)
2(Φ>i Φv)

2

∣∣∣∣G


=
1

m

(
1 +

3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)
+
k − 1

m2

(
1 +

1

m
(c2 − 1)

)
def
= γsd1 . (4.55)

The same result holds when (u, v) ∈ Sun\S × S. Finally, when (u, v) ∈ Sun\S × Sun\S,

EΦ

[∑
i∈S

α2
uiα

2
vi|G

]
= EΦ

[∑
i∈S

(Φ>i Φu)
2(Φ>i Φv)

2|G

]

=
k

m2

(
1 +

1

m
(c2 − 1)

)
def
= γd1 . (4.56)
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For the second term in (4.50), when (u, v) ∈ S × S,

EΦ

[∑
i 6=j

α2
uiα

2
vj|G

]
= EΦ

‖Φu‖4
2‖Φv‖4

2 + (Φ>uΦv)
4 + ‖Φu‖4

2

∑
i∈S\{u}∪{v}

(Φ>v Φi)
2

∣∣∣∣G


+ EΦ

‖Φv‖4
2

∑
i∈S\{u}∪{v}

(Φ>uΦi)
2 + (Φ>uΦv)

2
∑

i∈S\{u}∪{v}

(Φ>v Φi)
2

∣∣∣∣G


+ EΦ

(Φ>uΦv)
2

∑
i∈S\{u}∪{v}

(Φ>uΦi)
2 +

∑
i,j∈S\{u}∪{v}

i 6=j

(Φ>uΦi)
2 · (Φ>v Φj)

2

∣∣∣∣G


=

(
1 +

1

m
(c2 − 1)

)2

+

(
2

m2
+

1

m3
(c2

2 − 2)

)
+ 2

(
1 +

1

m
(c2 − 1)

)
k − 2

m

+ 2
(k − 2)

m2

(
1 +

1

m
(c2 − 1)

)
+

(k − 2)(k − 3)

m2

def
= γs2, (4.57)

where we used Lemma 4.9.4 in the second step. When (u, v) ∈ S × Sun\S,

EΦ

[∑
i 6=j

α2
uiα

2
vj|G

]
= EΦ

‖Φu‖4
2

∑
i∈S\{u}

(Φ>v Φi)
2|G

+ EΦ

(Φ>uΦv)
2
∑

i∈S\{u}

(Φ>uΦi)
2|G



+ EΦ

 ∑
i,j∈S\{u}

j 6=i

(Φ>uΦi)
2 · (Φ>v Φj)

2|G


=

(
1 +

1

m
(c2 − 1)

)
k − 1

m
+

(k − 1)

m2

(
1 +

1

m
(c2 − 1)

)
+

(k − 1)(k − 2)

m2

def
= γsd2 , (4.58)

and the same expression holds when (u, v) ∈ Sun\S × S. When (u, v) ∈ Sun\S × Sun\S,

EΦ

[∑
i 6=j

α2
uiα

2
vj|G

]
= EΦ

∑
i,j∈S
j 6=i

(Φ>uΦi)
2 · (Φ>v Φj)

2|G

 =
k(k − 1)

m2

def
= γd2 , (4.59)
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Finally, for the third term in (4.50), when (u, v) ∈ S × S,

EΦ

[∑
i 6=j

αuiαviαujαvj|G

]
=EΦ

[
‖Φu‖2

2Φ>uΦv · ‖Φv‖2
2Φ>uΦv|G

]
+ EΦ

‖Φu‖2
2Φ>uΦv

∑
j∈S\{u}∪{v}

(Φ>uΦj) · (Φ>v Φj)|G


+ EΦ

‖Φv‖2
2Φ>uΦv

∑
j∈S\{u}∪{v}

(Φ>uΦj) · (Φ>v Φj)|G



+ EΦ

 ∑
i,j∈S\{u}∪{v}

j 6=i

(Φ>uΦi)(Φ
>
v Φi)(Φ

>
uΦj)(Φ

>
v Φj)|G


=

1

m

(
1 +

c2 − 1

m

)2

+
2(k − 2)

m2

(
1 +

c2 − 1

m

)
+

(k − 2)(k − 3)

m3

def
=γs3. (4.60)

When (u, v) ∈ S × Sun\S,

EΦ

[∑
i 6=j

αuiαviαujαvj|G

]
=EΦ

‖Φu‖2
2Φ>uΦv

∑
j∈S\{u}

(Φ>uΦj) · (Φ>v Φj)|G



+ EΦ

 ∑
i,j∈S\{u}

j 6=i

(Φ>uΦi)(Φ
>
uΦj)(Φ

>
v Φi)(Φ

>
v Φj)

∣∣∣∣G


=
(k − 1)

m2

(
1 +

c2 − 1

m

)
+

(k − 1)(k − 2)

m3

def
= γsd3 , (4.61)

and the same expression holds when (u, v) ∈ Sun\S × S. When (u, v) ∈ Sun\S × Sun\S,

EΦ

[∑
i 6=j

αuiαviαujαvj|G

]
= EΦ

∑
i,j∈S
j 6=i

(Φ>uΦi)(Φ
>
uΦj)(Φ

>
v Φi)(Φ

>
v Φj)

∣∣∣∣G


=
k(k − 1)

m3

def
= γd3 , (4.62)
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We have thus computed the expected values of each of the three terms in (4.50).

Thus, combining (4.54), (4.57) and (4.60) and using (4.50) and (4.49), we have for

(u, v) ∈ S1 × S1, u 6= v,

E [Tuv] =EG
[

1

n

(∑
j∈I1

ργs1 + λ2
0(γs2 + γs3) +

∑
j∈I2

ργd1 + λ2
0(γd2 + γd3)

+ · · ·+
∑
j∈I`

ργd1 + λ2
0(γd2 + γd3)

)]
=

1

`

(
ργs1 + λ2

0(γs2 + γs3)

)
+
`− 1

`

(
ργd1 + λ2

0(γd2 + γd3)

)
def
= µs, (4.63)

where again we used EG [|Ii|] = n/` for all i ∈ [`]. This holds for (u, v) ∈ Si×Si, for every

i ∈ [`].

For the case when (u, v) ∈ S1 × S2 or when (u, v) ∈ S2 × S1,

E [Tuv] =EG
[

1

n

(∑
j∈I1

ργsd1 + λ2
0(γsd2 + γsd3 ) +

∑
j∈I2

ργsd1 + λ2
0(γsd2 + γsd3 )

+
∑
j∈I3

ργd1 + λ2
0(γd2 + γd3) + · · ·+

∑
j∈I`

ργd1 + λ2
0(γd2 + γd3)

)]
(4.64)

=
2

`

(
ργsd1 + λ2

0(γsd2 + γsd3 )

)
+
`− 2

`

(
ργd1 + λ2

0(γd2 + γd3)

)
def
= µd. (4.65)

Again, the same expression holds for E [Tuv] whenever (u, v) ∈ Si × Sj, i, j ∈ [`], i 6= j.

The mean matrix E [T ] thus has a block structure with µ0 on the diagonal, µs on the

remaining entries in the diagonal blocks and µd on the off diagonal blocks as depicted in

Figure 4.1.

4.8.6 Proof of Lemma 4.4.6

Using the structure of E [T ] derived in Lemma 4.4.3, we have,

‖E [T ] ‖op = µ0 + (k − 1)µs + k(`− 1)µd

≤ ρ
k2`

m2
+ λ2

0

k3`

m2
,
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where we have used the definitions in (4.53), (4.63) and (4.65), and simplified.

For the eigengap computation, we first note from the definitions in (4.63) and (4.65)

that

µs − µd =
ρ

`
(γs1 + γd1 − 2γsd1 ) +

λ2
0

`
(γs2 + γd2 − 2γsd2 + γs3 + γd3 − 2γsd3 )

=
ρ

`
· 0 +

λ2
0

`

{(
1 +

c2 − 1

m

)2

+
1

m2

(
2 +

c2
2 − 2

m

)
+

1

m

(
1 +

c2 − 1

m

)2

− 2

m

(
1 +

c2 − 1

m

)(
1 +

2

m

)
+

4

m2

}
≥λ

2
0

`
.

We therefore have,

∆` = ν` − ν`+1 = k(µs − µd) ≥
λ2

0k

`
.

4.8.7 Proof of Lemma 4.6.2

In this proof, we characterize the spectrum of the expected affinity matrix for ` = 2 when

S1 and S2 have a non empty intersection. We will express the expected clustering ,atrix

E [T o] as the sum of E [T ] in the disjoint case and a “small” perturbation. This will allow

us to use results from the case with disjoint supports.

Using the same calculation as in Lemma 4.4.3, we can show that if u ∈ S1\S2 or

u ∈ S2\S1, then

E [T ouu] =
1

2
(µs0 + µd0) = µ0, (4.66)

whereas if u ∈ S1 ∩ S2, then

E [T ouu] = µs0 = 2µ0 − µd0. (4.67)

Thus, the diagonal entries are not all equal in this case, and have larger value along

coordinates in the intersection (since µs0 ≥ µd0). For the off-diagonal entries, if (u, v) ∈
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Merr =

0 0 0 β2 0 0

0 0 0 β2 0 0

0 0 β0 β1 β2 β2

β2 β2 β1 β0 0 0

0 0 β2 0 0 0

0 0 β2 0 0 0






S1

S2

Figure 4.5: Structure of the error matrix Merr = E [T o] − E [T ]. Here, β0 = µs0 − µ0,

β1 = µ′ − µd, and β2 = µs − µd.

(S1 × S1)\(S1 ∩ S2 × S1 ∩ S2) , then

E [T ouv] = EZ

[
1

n

(∑
j∈I1

νγs1 + λ2
0(γs2 + γs3) +

∑
j∈I2

νγd1 + λ2
0(γd2 + γd3)

)]
(4.68)

= µs, (4.69)

using EZ [|I1|] = EZ [|I2|] = n/2 and the definition in (4.63). The same result holds when

(u, v) ∈ (S2×S2)\(S1∩S2×S1∩S2). On the other hand, when (u, v) ∈ (S1\S2)×(S2\S1),

E [T ouv] = EZ

[
1

n

(∑
j∈I1

νγd1 + λ2
0(γd2 + γd3) +

∑
j∈I2

νγd1 + λ2
0(γd2 + γd3)

)]
(4.70)

= µd. (4.71)

The same result holds when (u, v) ∈ (S2\S1)× (S1\S2). Finally, (u, v) ∈ (S1∩S2)× (S1∩

S2),

E [T ouv] = EZ

[
1

n

(∑
j∈I1

νγs1 + λ2
0(γs2 + γs3) +

∑
j∈I2

νγs1 + λ2
0(γs2 + γs3)

)]
(4.72)

= 2µs − µd def
= µ′. (4.73)

This structure is depicted in Figure 4.4. Our next objective is to study the spectrum
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of this matrix, and to bound its spectral norm and eigengap. We will do so by first

expressing E [T o] as

E [T o] = E [T ] +Merr (4.74)

where Merr represents the error matrix E [T o]−E [T ]. The spectra of E [T o] and E [T ] can

be related using Weyl’s inequality. In particular, for every i ∈ [kun], it holds that

|νoi − νi| ≤ ‖Merr‖op, (4.75)

where νi and νoi represent the ith largest eigenvalues of E [T ] and E [T o], respectively.

Thus, by triangle inequality, we have

‖E [T o] ‖op ≤ ‖E [T ] ‖op + ‖Merr‖op, (4.76)

and using the relation in (4.75) we get

∆o
min = min{νo1 − νo2 , νo2 − νo3} (4.77)

≥ min

{
ν1 − ‖Merr‖op − (ν2 + ‖Merr‖op), ν2 − ‖Merr‖op − (ν3 + ‖Merr‖op)

}
(4.78)

= ∆min − 2‖Merr‖op. (4.79)

It can be seen from the representation in Figure 4.5 that Merr = E [T o] − E [T ] will be a

sparse matrix. In particular, the diagonal is also sparse with non zeros placed only along

indices in S1 ∩ S2 (with value µs0 − µ0). Letting kint = |S1 ∩ S2|, we have

‖Merr‖op ≤ Tr(Merr) = kint(µ
s
0 − µ0) (4.80)

= kint

(
µs0 −

1

2
(µs0 + µd0)

)
(4.81)

≤ kint(µ
s
0 − µd0). (4.82)
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Using the definitions of µs0 and µd0 from (4.51) and (4.52), for arbitrary u 6= i 6= j,

µs0 − µd0 = νE
[
‖Φu‖8

2 − (Φ>uΦi)
4
]

(4.83)

+ 2λ2
0E

2‖Φu‖4
2

∑
i∈S\u

(Φ>uΦi)
2 − (Φ>uΦi)

2(Φ>uΦj)
2

 (4.84)

≤ νc− ν
(

2

m2
+

1

m3
(c2

2 − 2)

)
(4.85)

+ 2λ2
0

2k

m

(
1 +

3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)
− 4λ2

0

m2

(
1 +

1

m
(c2 − 1)

)
(4.86)

≤ c

(
ν + λ2

0

k

m

)
, (4.87)

where c > 1 is an absolute constant. Plugging this into (4.79) gives

∆o
min ≥ ∆min − ckint

(
ν + λ2

0

k

m

)
(4.88)

≥ cλ2
0

(
k − kint

k

m

)
(4.89)

= cλ2
0k

(
1− kint

m

)
, (4.90)

where we used (4.66) and omitted the dependence on the moments λ0 and ν for simplicity.

Assuming kint/m ≤ c′ for some c′ < 1, we have

∆o
min ≥ c′′λ2

0k. (4.91)

Finally, from (4.76) and (4.82), we get

‖E [T o] ‖op ≤ cλ2
0

(
k3

m2
+ kint

k

m

)
≤ cλ2

0

k3

m2
. (4.92)

Theorem 4.8.1 (Davis-Kahan). Let A and Â be d × d symmetric matrices with eigen-

values ν1 ≥ · · · ≥ νd and ν̂1 ≥ · · · ≥ ν̂d, respectively. For a fixed i ∈ [d], let

∆min
def
= min{νi−1 − νi, νi − νi+1} > 0 be the eigengap around the ith largest eigenvalue of
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A. Let vi and v̂i be the normalized eigenvectors corresponding to the ith largest eigenvalues

of A and B, respectively. Then,

sin(∠(vi, v̂i)) ≤
2‖A− Â‖op

∆min

. (4.93)

4.9 Useful lemmas

Lemma 4.9.1. Let X be a subexponential random variable with parameters v2 and b > 0,

i.e., for every t > 0,

Pr (|X − E [X] | ≥ t) ≤ 2 exp

(
−min

{
t2

2v2
,
t

2b

})
.

Then, for q ∈ N, and an absolute constant c,

E
[
|X − E [X] |2q

]
≤ 2q · (16)q

(
Γ(q)v2q + b2qΓ(2q)

)
.

Proof. We first express the tail bound for X in a form that is easier to evaluate, and

then use standard arguments (see, for example, [13, Theorem 2.3]) to derive the moment

bound. We have,

Pr (|X − E [X] | ≥ t) ≤ 2 exp

(
−min

{
t2

2v2
,
t

2b

})
≤ 2 exp

(
−t2

2(v2 + bt)

)
,

that is,

Pr
(
|X − E [X] | ≥ bu+

√
b2u2 + 2v2u

)
≤ e−u.

With this tail bound, we can now derive the stated moment bound by using

E
[
|X − E [X] |2q

]
= 2q

∫ ∞
0

Pr (|X − E [X] | ≥ t) t2q−1dt.
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In particular, upon substituting t = bu+
√
b2u2 + 2v2u, we get

E
[
(X − E [X])2q

]
≤ 2q

∫ ∞
0

e−u(bu+
√
b2u2 + 2v2u)2q−1

×
(
b+

b2u+ v2

√
b2u2 + 2v2u

)
du,

which after simplification yields

E
[
(X − E [X])2q

]
≤ 2q · (16)q

(
b2qΓ(2q) + v2qΓ(q)

)
.

Lemma 4.9.2. Let X ∈ Rd be a mean zero random vector with independent entries such

that E [X2
i ] = λ0 and E [X4

i ] = ρ for all i ∈ [d]. Then, for every a, b ∈ Rd,

E
[
(X>ab>X)2

]
= ρ

d∑
i=1

a2
i b

2
i + λ2

0

∑
i 6=j

(a2
i b

2
j + aibiajbj).

In particular,

E
[
(X>aa>X)2

]
= ρ

d∑
i=1

a4
i + 2λ2

0

∑
i 6=j

a2
i a

2
j .

Remark 4.9.3. If the second and fourth moments are related as ρ = 2λ2
0 = 2c for some

absolute constant c, then the result simplifies to E
[
(X>ab>X)2

]
= c((a>b)2 + ‖a‖2

2‖b‖2
2).

Proof. To start with, we note that the quadratic form X>ab>X is a subexponential ran-

dom variable since X is subgaussian. Although this fact can be used to derive upper

bounds on the moments of X>ab>X, we would like to explicitly compute the second

moment. We have,

E
[
(X>ab>X)2

]
= E

[( d∑
i=1

aibiX
2
i +

∑
i 6=j

aibjXiXj

)2
]

= E

[( d∑
i=1

aibiX
2
i

)2

+

(∑
i 6=j

aibjXiXj

)2

+ 2
d∑
i=1

aibiX
2
i

∑
i 6=j

aibjXiXj

]
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= E

[
d∑
i=1

a2
i b

2
iX

4
i +

∑
i 6=j

aibiajbjX
2
iX

2
j +

∑
i 6=j

a2
i b

2
jX

2
iX

2
j

]
.

Using E [X2
i ] = λ0 and E [X4

i ] = ρ, we get

E
[
(X>ab>X)2

]
= ρ

d∑
i=1

a2
i b

2
i + λ2

0

∑
i 6=j

(a2
i b

2
j + aibiajbj).

Lemma 4.9.4. Let X, Y, Z and W be independent random vectors taking values in Rm,

with independent entries that are zero mean with variance 1/m. Additionally, for every

i ∈ [m], let E
[
Z2q
i

]
= cq/m

q, for q=2, 3, 4 and a constant cq that depends only on q.

Then, the following results hold:

(i) E [‖Z‖4
2] = 1 + 1

m
(c2 − 1)

(ii) E [‖Z‖6
2] = 1 + 3

m
(c2 − 1) + 1

m2 (c3 − 3c2 + 2)

(iii) E [‖Z‖8
2] = 1 + 6

m
(c2− 1) + 1

m2 (11− 18c2 + 6c2
2 + 4c3) + 1

m3 (c4− 4c3− 6c2
2 + 12c2− 6)

(iv) E
[
(X>Y )4

]
= 2

m2 + 1
m3 (c2

2 − 2)

(v) E
[
‖Z‖4

2(Z>W )2
]

= 1
m

(
1 + 3

m
(c2 − 1) + 1

m2 (c3 − 3c2 + 2)

)

(vi) E
[
(X>Z)2(X>W )2

]
= 1

m2

(
1 + 1

m
(c2 − 1)

)

(vii) E
[
‖Z‖2

2‖W‖2
2(Z>W )2

]
= 1

m

(
1 + 1

m
(c2 − 1)

)2

(viii) E
[
‖Z‖2

2(W>Z)(X>Z)(X>W )
]

= 1
m2

(
1 + 1

m
(c2 − 1)

)
(ix) E

[
(Z>X)(Z>Y )(W>X)(W>Y )

]
= 1

m3

(x) E
[
(X>Y )2

]
= 1

m
.
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Proof. (i)

E
[
‖Z‖4

2

]
= E

[
m∑
i=1

Z4
i +

∑
i 6=j

Z2
i Z

2
j

]

=
c2

m
+
m− 1

m
= 1 +

1

m
(c2 − 1).

(ii)

E
[
‖Z‖6

]
= E

[
(Z2

1 + . . .+ Z2
m)2(Z2

1 + . . .+ Z2
m)
]

= E

[( m∑
i=1

Z4
i +

∑
i 6=j

Z2
i Z

2
j

)( m∑
t=1

Z2
t

)]

= E

[
m∑
i=1

Z4
i

m∑
t=1

Z2
t +

m∑
t=1

Z2
t

∑
i 6=j

Z2
i Z

2
j

]
.

For the first term,

E

[
m∑
i=1

Z4
i

m∑
t=1

Z2
t

]
= E

[
m∑
i=1

Z6
i +

∑
i 6=t

Z4
i Z

2
t

]

= m
c3

m3
+m(m− 1)

c2

m2

1

m
=

1

m2
(c3 − c2) +

c2

m
, (4.94)

and for the second term,

E

[
m∑
t=1

Z2
t

∑
i 6=j

Z2
i Z

2
j

]
= E

[
2
∑
t6=i

Z4
t Z

2
i +

∑
t6=i 6=j

Z2
t Z

2
i Z

2
j

]

= 2m(m− 1)
c2

m2

1

m
+m(m− 1)(m− 2)

1

m3

= 1 +
1

m
(2c2 − 3)− 2

m2
(c2 − 1)

Thus,

E
[
‖Z‖6

]
= 1 +

3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2).
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(iii)

E
[
‖Z‖8

]
=E

[
(Z2

1 + · · ·+ Z2
m)4
]

=mE
[
Z8

1

]
+

(
m

2

)
4!

3!
2E
[
Z6

1Z
2
2

]
+

(
m

2

)
4!

2!2!
2E
[
Z4

1Z
4
2

]
+

(
m

3

)
4!

2!
3E
[
Z4

1Z
2
2Z

2
3

]
+

(
m

4

)
4!E

[
Z2

1Z
2
2Z

2
3Z

2
4

]
=1 +

6

m
(c2 − 1) +

1

m2
(11− 18c2 + 6c2

2 + 4c3)

+
1

m3
(c4 − 4c3 − 6c2

2 + 12c2 − 6).

(iv) To compute E
[
(X>Y )4

]
, we first note that

E
[
(X>Y )4|X

]
= E

[
(Y >XX>Y )2|X

]
= E

[
Y 4

1

] m∑
i=1

X4
i + 2(E

[
Y 2

1

]
)2
∑
i 6=j

X2
iX

2
j

=
c2

m2

m∑
i=1

X4
i + 2

(
1

m

)2∑
i 6=j

X2
iX

2
j ,

where we used Lemma 4.9.2 in the second step. This gives

E
[
(X>Y )4

]
=
c2

m
E
[
X4

1

]
+

2(m− 1)

m
(E
[
X2

1

]
)2

=
c2

2

m3
+

2(m− 1)

m3
=

2

m2
+

1

m3
(c2

2 − 2).

(v) Similar to the previous calculation, we first compute the conditional expectation to

get

E
[
‖Z‖4

2(Z>W )2|Z
]

= ‖Z‖4
2

( m∑
i=1

E
[
Z2
iW

2
i |Z
]

+
∑
i 6=j

E [ZiWiZjWj|Z]

)
= ‖Z‖4

2

‖Z‖2
2

m
,

which gives

E
[
‖Z‖4

2(Z>W )2
]

=
1

m
E
[
‖Z‖6

2

]
=

1

m

(
1 +

3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)
.
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(vi) We have

E
[
(X>Z)2(X>W )2|X

]
= E

[
(X>Z)2|X

]
E
[
(X>W )2|X

]
=
‖X‖2

2

m
· ‖X‖

2
2

m
.

Thus,

E
[
(X>Z)2(X>W )2

]
=

1

m2

(
1 +

1

m
(c2 − 1)

)
.

(vii)

E
[
‖Z‖2

2‖W‖2
2(Z>W )2|Z

]
=‖Z‖2

2 E
[
‖W‖2

2(Z>W )2|Z
]

=‖Z‖2
2

( m∑
i=1

E
[
‖W‖2

2Z
2
iW

2
i |Z
]

+
∑
i 6=j

E
[
‖W‖2

2WiWjZiZj|Z
])

=‖Z‖2
2

m∑
i=1

Z2
i E

[
W 4
i +

∑
l 6=i

W 2
i W

2
l

]

+ ‖Z‖2
2

∑
i 6=j

ZiZjE

[
W 3
i Wj +W 3

jWi +
∑

l 6=i, l 6=j

W 2
l WiWj

]

=‖Z‖2
2

m∑
i=1

Z2
i

(
c2

m2
+
m− 1

m2

)
= ‖Z‖4

2

(
1

m
+
c2 − 1

m2

)
.

Thus,

E
[
‖Z‖2

2‖W‖2
2(Z>W )2

]
=

1

m

(
1 +

c2 − 1

m

)2

.

(viii)

E
[
‖Z‖2

2(W>Z)(X>Z)(X>W )|Z,W
]

= ‖Z‖2
2(W>Z)E

[
X>WZ>X|W,Z

]
= ‖Z‖2

2(W>Z)
Z>W

m
.
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Using similar arguments as in the proof of (v),

E
[
‖Z‖2

2(W>Z)(X>Z)(X>W )
]

=
1

m2

(
1 +

c2 − 1

m

)
.

(ix)

E
[
(Z>X)(Z>Y )(W>X)(W>Y )|X, Y,W

]
= (W>X)(W>Y )E

[
Z>XY >Z|X, Y

]
= (W>X)(W>Y )

X>Y

m

Thus,

E
[
(Z>X)(Z>Y )(W>X)(W>Y )

]
=

1

m
EX,Y

[
EW

[
(W>X)(W>Y )(X>Y )|X, Y

]]
=

1

m
EX,Y

[
(X>Y )EW

[
W>XY >W |X, Y

]]
=

1

m2
EX,Y

[
(X>Y )2

]
=

1

m3
.

(x)

E
[
(X>Y )2

]
=

m∑
i=1

E
[
X2
i Y

2
i

]
+
∑
i 6=j

E [XiYiXjYj] =
1

m
.
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Conclusions

5.1 Summary

We studied the problem of support recovery from linear measurements under the con-

straint that we can only obtain very few measurements per sample. For the case of a single

unknown support, we derived tight upper and lower bounds on the sample complexity and

saw that the measurement constraint leads to an increase in the sample complexity com-

pared to the measurement-rich regime. Our upper bound results under both random and

deterministic inputs showed that a simple variance estimation based procedure achieves

the optimal scaling when the measurement matrices satisfy a separation condition. In

summary, our results showed a change in the sample complexity of this problem as we

move from the measurement-rich m > k regime to the measurement-constrained m < k

regime. We then studied the case of multiple supports under similar measurement con-

straints. We used a combination of the variance estimation step and a spectral clustering

step to estimate the underlying supports, and provided an upper bound on the sample

complexity under a mixture model prior on the inputs.

142
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5.2 Directions for further work

We outline some interesting directions that can be studied in the context of the work

presented in this thesis.

1. Multiple support recovery with arbitrary overlaps

Our current result for multiple support recovery in the general ` case is for disjoint

supports in a measurement-constrained setting. It would be interesting to extend

the algorithm to handle overlapping supports. While some simple heuristics work in

practice, we are not aware of any theoretical results for this setting when m < k.

In particular, extending the `-means step to handle overlaps and characterizing the

spectrum of E [T ] with arbitrary overlaps are both challenging in general.

2. Subspace recovery under measurement constraints

Another direction that can be considered is when the samples are sparse in an unknown

basis, namely when the samples are drawn from a union of subspaces, and we are given

access to very few measurements from each sample. Such data can be modeled using

a mixture of degenerate Gaussians with the component Gaussians having a low-rank

covariance matrix, and similar to our setting in the sparse case, one could consider

designing algorithms for recovering the unknown subspaces. The question of labeling

the samples first (as opposed to estimating the subspaces first) is also an interesting

question which has been looked at [85], [74] although these algorithms are not designed

for the measurement-constrained setting.

3. Lower bound for multiple support recovery

A lower bound on the sample complexity of the multiple support recovery problem

is not known in the m < k regime. A key challenge here is to characterize the dis-

tance between mixture distributions, and using a component-wise bound does not yield

tight results. In particular, using an approach similar to the common support case,

we can model the inputs as being drawn from a Gaussian mixture with components

that have zero mean and sparse, diagonal covariance matrices. The KL divergence

between pairs of output distributions cannot be expressed in closed form, and relaxing
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it to component-wise distances leads roughly to the same result as in the ` = 1 case.

One could use other distance measures, however obtaining tight bounds under this

covariance-based prior on the inputs is difficult.

4. Moment-based estimators for measurement-constrained settings

Both our estimators are based on the idea that when the gram matrix of the mea-

surement matrices roughly behaves like the identity matrix, the measurements can be

“inverted” to get proxy samples, and sample averages of their higher moments can be

used to find interesting structure in the data. This approach is able to work with very

few measurements per sample. A more general understanding of this procedure can

help in designing estimators for other problems in measurement-constrained settings.
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[31] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, “Atoms of all channels,

unite! average case analysis of multi-channel sparse recovery using greedy algo-

rithms,” Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 655–687,

Dec 2008.

[32] B. Hajek, Y. Wu, and J. Xu, “Semidefinite programs for exact recovery of a hidden

community,” Journal of Machine Learning Research, vol. 49, no. June, pp. 1051–

1095, Jun 2016, 29th Conference on Learning Theory, COLT 2016.

[33] A. J. Hoffman and H. W. Wielandt, “The variation of the spectrum of a normal

matrix,” Duke Math. J., vol. 20, no. 1, pp. 37–39, 03 1953.

[34] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University

Press, 1991.

[35] M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for

hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 52, no. 1, pp. 341–354, 2014.



BIBLIOGRAPHY 149

[36] Y. Jin and B. D. Rao, “Support recovery of sparse signals in the presence of multiple

measurement vectors,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 3139–3157, May

2013.
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