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Abstract

In this thesis, we develop novel low-complexity algorithms for massive multiple-input

multiple-output (MIMO) systems under practical non-idealities and theoretically analyze

their performance. The first problem we consider is that of joint channel estimation and

data decoding in uplink massive multiple-input-multiple-output (MIMO) systems with

low-resolution analog-to-digital converters (ADCs) at the base station. The nonlinearities

introduced by the ADCs make the problem challenging: in particular, the existing linear

detectors perform poorly. Also, the channel coding used in commercial wireless systems

necessitates soft symbol detection to obtain satisfactory performance. In this part of

the thesis, we present a low-complexity variational Bayesian (VB) inference procedure

to jointly solve the (possibly correlated) channel estimation and soft symbol decoding

problem. We present the approach in progressively more complex scenarios, including

the case where even the channel statistics are not available at the receiver. Then, we

combine the VB procedure with a belief propagation (BP) based channel decoder, which

further enhances the performance without any additional complexity. We numerically

evaluate the bit error rate (BER) and the normalized mean squared error (NMSE) in the

channel estimates obtained by our algorithm as a function of various system parameters,

and benchmark the performance against genie-aided and state-of-the-art receivers. The

results show that the VB procedure is a promising approach for developing low-complexity

advanced receivers in low-resolution ADC based systems.

In the second problem, we consider the delay-domain sparse channel estimation and

data decoding problems in a massive MIMO orthogonal frequency division multiplexing

(MIMO-OFDM) wireless communication system with low-resolution ADCs. The high
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non-linear distortion due to coarse quantization leads to severe performance degradation

in conventional OFDM receivers, which necessitates novel receiver techniques. Firstly,

we derive the Bayesian Cramér-Rao lower bound (CRLB) on the mean squared error

(MSE) in recovering jointly compressible vectors from quantized noisy underdetermined

measurements. Secondly, we formulate the pilot-assisted channel estimation as a multiple

measurement vector (MMV) sparse recovery problem, and develop a VB algorithm to

infer the posterior distribution of the channel. We benchmark the MSE performance

of our algorithm with that of the CRLB, and numerically show that the VB algorithm

meets the CRLB. Thirdly, we present a soft symbol decoding algorithm that infers the

posterior distributions of the data symbols given the quantized observations. We utilize

the posterior statistics of the detected data symbols as virtual pilots, and develop an

iterative soft symbol decoding and data-aided channel estimation procedure. Finally, we

present a variant of the iterative algorithm that utilizes the output bit log-likelihood-ratios

(LLRs) of the channel decoder to adapt the data prior to further improve the performance.

We provide interesting insights into the impact of the various system parameters on the

MSE and BER of the developed algorithms, and benchmark them against the state-of-

the-art.

In the third problem, we present a novel model-and-data-driven channel estimation

procedure in a millimeter-wave MIMO-OFDM wireless communication system. The

transceivers employ a hybrid analog-digital architecture. We adapt techniques from a

wide range of signal processing methods, such as compressed sensing and Bayesian in-

ference, to learn the unknown sparsifying dictionary in the beamspace domain, as well

as the delay-and-beamspace sparse channel. We train the model-based algorithm with a

site-specific training dataset generated using a realistic ray tracing-based wireless channel

simulation tool. We assess the performance of the developed channel estimation algorithm

with the same site’s test data. We benchmark the performance of our procedure in terms

of NMSE error against an existing fast greedy method and two state-of-the-art algorithms,

and empirically show that model-based approaches combined with data-driven customiza-

tion outperform purely model based techniques by a large margin. This algorithm was
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selected as one of the top three solutions in the “ML5G-PHY Channel Estimation Global

Challenge 2020” organized by the International Telecommunication Union.

In the last problem considered in this thesis, we study the problem of downlink (DL)

sum rate maximization in codebook-based multiuser (MU) MIMO systems. The user

equipments (UEs) estimate the DL channels using pilot symbols sent by the access point

(AP) and feedback the estimates to the AP over a control channel. We present a closed

form expression for the achievable sum rate of the MU-MIMO broadcast system with code-

book constrained precoding based on the estimated channels, where multiple data streams

are simultaneously transmitted to all users. Next, we present novel, computationally ef-

ficient, minorization-maximization (MM) based algorithms to determine the selection of

beamforming vectors and power allocation to each beam that maximizes the achievable

sum rate. Our solution involves multiple uses of MM in a nested fashion. Based on this

approach, we present and contrast two algorithms, which we call the square-root-MM

(SMM) and inverse-MM (IMM) algorithms. The algorithms are iterative and converge

to a locally optimal beamforming vector selection and power allocation solution from any

initialization. We evaluate the performance and complexity of the algorithms for vari-

ous values of the system parameters, compare them with existing solutions, and provide

further insights into how they can be used in system design.



Contents

Acknowledgments i

Abstract i

Glossary xiii

Notation xv

1 Introduction 1

1.1 Problems Addressed in this Thesis . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Joint Channel Estimation and Soft Symbol Decoding in Massive

MIMO Single Carrier Systems with Low-Resolution ADCs . . . . . 9

1.1.2 Sparse Channel Estimation and Soft Symbol Decoding in Massive

MIMO-OFDM Systems with Low-Resolution ADCs . . . . . . . . . 11

1.1.3 Compressive Channel Estimation in Millimeter-Wave

MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Sum-Rate Maximization in Codebook based Multi-user MIMO Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Contributions and Outline of the Thesis . . . . . . . . . . . . . . . . . . . 19

1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Massive MIMO Single Carrier Systems with Low Resolution ADCs 26

iv



CONTENTS v

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 System Model and Problem Statement . . . . . . . . . . . . . . . . . . . . 31

2.3 Bayesian Estimation: An Overview . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Variational Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Variational Bayes Joint Channel Estimation and Soft Symbol Decoding . . 38

2.5.1 Perfect CSIR and Unquantized Observations . . . . . . . . . . . . . 39

2.5.2 Statistical CSIR and Unquantized Observations . . . . . . . . . . . 44

2.5.3 Statistical CSIR and Quantized Observations . . . . . . . . . . . . 48

2.5.4 No CSIR and Quantized Observations . . . . . . . . . . . . . . . . 52

2.5.5 VB-BP Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Massive MIMO-OFDM Systems with Low Resolution ADCs 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Quantized Compressed Sensing and Bayesian Cramér-Rao Lower Bound . . 76

3.2.1 Infinite-bit Quantized Compressed Sensing . . . . . . . . . . . . . . 81

3.2.2 1-bit Quantized Compressed Sensing . . . . . . . . . . . . . . . . . 82

3.3 Description of Massive MIMO-OFDM System and Problem Statements . . 83

3.3.1 Delay-Domain Sparse Channel Estimation Model . . . . . . . . . . 85

3.3.2 MIMO-OFDM Data Detection Model . . . . . . . . . . . . . . . . . 87

3.3.3 Virtual Pilots-Aided MIMO-OFDM Channel Estimation . . . . . . 89

3.4 Channel Estimation And Data Detection As Statistical Inference . . . . . . 90

3.5 Quantized VB Channel Estimation . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Quantized VB Soft Symbol Decoding . . . . . . . . . . . . . . . . . . . . . 98



CONTENTS vi

3.7 Iterative Quantized VB Channel Estimation and Soft Symbol Decoding . . 101

3.7.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 102

3.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8.1 Cramér-Rao Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . 105

3.8.2 QVB Channel Estimation and Soft Symbol Decoding . . . . . . . . 107

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.10 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.10.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.10.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.10.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.10.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.10.5 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.10.6 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.10.7 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Site-Specific Millimeter-Wave Hybrid MIMO Compressive Channel Es-

timation 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.1 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 MLGS-SBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3.1 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.2 Multi-level Greedy Search . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.3 Noise Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.4 Sparse Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.5 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



CONTENTS vii

5 Codebook Based Precoding in Downlink MU-MIMO Systems 142

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 System Model & Problem Statement . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Downlink Training and Channel Estimation . . . . . . . . . . . . . 147

5.2.2 Derivation of the Achievable Rate . . . . . . . . . . . . . . . . . . . 148

5.3 Minorization-Maximization Algorithms for Sum Rate Maximization . . . . 150

5.3.1 Square-Root Minorization Maximization Procedure . . . . . . . . . 153

5.3.2 Inverse Minorization Maximization Procedure . . . . . . . . . . . . 156

5.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 159

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.6 Derivations and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.6.1 Derivation of Equation (5.8) . . . . . . . . . . . . . . . . . . . . . . 173

5.6.2 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.6.3 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.6.4 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.6.5 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.7 SMM and IMM Pseudocodes . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Conclusions and Future Work 181

6.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 184



List of Figures

1.1 Block diagram of a massive MIMO system. . . . . . . . . . . . . . . . . . . 2

1.2 Organization and Chapter-wise Outline of the Thesis. . . . . . . . . . . . . 20

2.1 Massive MIMO system model with low-resolution ADCs. . . . . . . . . . . 33

2.2 Bayesian network graphical model for the quantized massive MIMO wire-

less communication system. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Coded BER vs. SNR (dB), with Nr = 200, K = 50, τd = 450, τp = 50,

and 3 bits quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Coded BER vs. SNR (dB), with Nr = 200, K = 50, τd = 450, τp = 50,

and 3 bits quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Coded BER vs. SNR (dB), with Nr = 100, K = 25, τp = 25, 3 bits

quantization; comparing QVB with statistical CSIR and no CSIR when

the channel correlation matrix is set to INr . . . . . . . . . . . . . . . . . . 59

2.6 Coded BER vs. ADC resolution (bits), with K = 25, τd = 100, and

Rk = INr ∀k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 NMSE vs. SNR (dB) for Nr = 200, K = 50, τd = 450, τp = 50, 3 bits

quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Convergence of VB algorithm. Nr = 100, K = 25, τd = 200, 3 bits

quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9 Coded BER vs. τd for Nr = 100, K = 25, SNR=−13.5 dB, τp = 25, and

3 bits quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



LIST OF FIGURES ix

2.10 NMSE vs. τd for Nr = 100, K = 25, SNR=−13.5 dB, τp = 25, and 3 bits

quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.11 Coded BER vs. SNR (dB), with Nr = 100, K = 25, 3 bits quantization,

pilot power boosting and increased τp. . . . . . . . . . . . . . . . . . . . . 62

2.12 Run-time (s) vs. K for Nr = 100, τd = 250, 3 bits quantization. . . . . . . 63

2.13 Run-time (s) vs. τd for Nr = 100, K = 25, 3 bits quantization. . . . . . . . 63

3.1 Massive MIMO-OFDM wireless communication system model. . . . . . . . 84

3.2 Bayesian network model for the channel estimation problem (3.24). . . . . 91

3.3 Bayesian network model for the data detection problem (3.28). . . . . . . . 92

3.4 Bayesian network graphical model for the data-aided channel estimation

problem in (3.30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Quantized VB Iterative Channel Estimation and Soft Symbol Decoding

with data prior adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6 Magnitude decay profile of the sorted magnitudes of i.i.d. samples drawn

from a complex normal distribution parameterized by a Gamma distributed

precision matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 NMSE (dB) vs. the shape parameter of the Gamma hyperprior of the

precision matrix, with M = 250, N = 512, T = 20, SNR = 40 dB. . . . . . 107

3.8 NMSE (dB) as a function of the number of quantized measurements. N =

512, T = 20, shape = 0.55, SNR = 30 dB. . . . . . . . . . . . . . . . . . . 108

3.9 CRLB (dB) as a function of ADC resolution (bits) for Nr = 64, K = 16,

L = 64, Lsp = 8, SNR = 1 dB. . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.10 NMSE (dB) as a function of SNR (dB) for Nr = 40, K = 10, Nc = 256,

L = 64, Lsp = 8, 3 bits quantization. . . . . . . . . . . . . . . . . . . . . . 110

3.11 Coded BER as a function of SNR (dB) for Nr = 32, K = 8, Nc = 256,

L = 32, Lsp = 8, τd = 10, 3-bits quantization. The conventional OFDM re-

ceiver (curves labelled “UQOFDM” and “QOFDM”) uses the soft-detection

procedure from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF FIGURES x

3.12 Coded BER as a function of SNR (dB) for Nr = 32, K = 8, Nc = 256,

L = 32, Lsp = 8, τd = 10 with a square root raised cosine pulse shaping

transmit and receive filters. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.13 CRLB (dB) as a function of τp for Nr = 32, K = 8, L = 64, Lsp = 16,

Nc = 256, 3-bits quantization. . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.14 NMSE (dB) as a function of τd for Nr = 64, K = 16, L = 64, Lsp = 8,

Nc = 256, SNR = 1 dB, 3-bits quantization. . . . . . . . . . . . . . . . . . 113

3.15 Coded BER as a function of τd for Nr = 64, K = 16, L = 64, Lsp = 8,

SNR=0 dB, 3-bits quantization. . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1 Millimeter-wave (mmWave) MIMO system based on a hybrid analog-digital

architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Flow diagram of MLGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Flow diagram of MSBL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1 CCDF comparison between SMM and IMM for data SNR = 10 dB, Nr =

2, Nt = 16. The distribution of the sum rates achieved by SMM and IMM

are similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Convergence behavior of the SMM procedure, K = 4, Nr = 2, Nt = 16,

Data SNR = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Convergence behavior of the IMM procedure, K = 4, Nr = 2, Nt = 16,

Data SNR = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Sum rate vs. K, N = 512, Nr = 2, Nt = 16, data SNR = 20 dB. The sum

rate improves with the number of CSI quantization bits, but beyond 6 bits,

the performance improvement is negligible. . . . . . . . . . . . . . . . . . 165

5.5 Sum rate vs. K, N = 512, Nr = 2, Nt = 16, CSI quantized to 6 bits. The

sum rate improves with pilot SNR, but the improvement is marginal once

the pilot SNR exceeds the data SNR. . . . . . . . . . . . . . . . . . . . . . 166



LIST OF FIGURES xi

5.6 Sum rate vs. pilot SNR for K = 8, N = 512, Nr = 2, Nt = 16, CSI

quantized to 6 bits. We observe a monotonic increase in the sum rate with

pilot and data SNR. Eventually, the sum rate saturates beyond a certain

level of the pilot SNR but the saturation point moves to the right as the

data SNR increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.7 Sum rate vs. data SNR for K = 8, N = 512, Nr = 2, Nt = 16, CSI

quantized to 6 bits. We observe a monotonic increase in the sum rate

with pilot and data SNR. The sum rate performance for the values of pilot

SNRs 10 dB and 20 dB are almost the same till the data SNR reaches

10 dB beyond which they diverge. . . . . . . . . . . . . . . . . . . . . . . . 168

5.8 Sum rate vs. codebook size for K = 10, Nr = 2, Nt = 16, CSI quantized

to 6 bits. We observe a monotonic increase in the sum rate with pilot

and data SNR. As the codebook size increases, the AP has more number

of beamforming vectors to choose resulting in an increase in the sum rate

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.9 Sum Rate vs. K with Nr = 1, Nt = 32, Pilot SNR=20 dB, N = 1024 for

SMM, IMM and CVX. We see that the MM based algorithms and CVX

converge to almost same sum rate for various values of data SNR. . . . . . 170

5.10 Ratio of run times of CVX and IMM with respect to K. Pilot SNR =

20 dB, Nr = 1, N = 1024. We see that IMM converges much faster than

CVX in the interference limited regime. . . . . . . . . . . . . . . . . . . . . 171

5.11 Ratio of run times of CVX and IMM with respect to Nt. Pilot SNR =

20 dB, Nr = 1, N = 512, K = 8. . . . . . . . . . . . . . . . . . . . . . . . . 172



List of Tables

2.1 Per-iteration Complexity of the QVB Algorithm 3 . . . . . . . 57

3.1 Per-iteration Complexity of the QVB Algorithm 8 . . . . . . . 104

4.1 Normalized Mean Squared Error (NMSE) Table for Training Data . . . . . 138

4.2 NMSE Table for Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1 Flop count order of SMM per iteration . . . . . . . . . . . . . . . 159

5.2 Flop count order of IMM per iteration . . . . . . . . . . . . . . . 160

xii



Glossary

3GPP Third Generation Partnership Project

AMP Approximate Message Passing

AWGN Additive White Gaussian Noise

BiGAMP Bilinear Generalized Approximate Message Passing

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CP Cyclic Prefix

CRLB Cramér Rao Lower Bound

CS Compressed Sensing

EM Expectation Maximization

FIM Fisher Information Matrix

IMM Inverse Minorization Maximization

LLR Log-Likelihood Ratio

LTE-A Long Term Evolution - Advanced

MAP Maximum a Posteriori

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

ML Maximum Likelihood

MLGS Multi-level Greedy Search

MM Minorization Maximization

MMSE Minimum Mean Squared Error

xiii



Glossary xiv

MMV Multiple Measurement Vector

MSE Mean Squared Error

NMSE Normalized Mean Squared Error

OFDM Orthogonal Frequency Division Multiplexing

OMP Orthogonal Matching Pursuit

PC-OMP Projection Cuts Orthogonal Matching Pursuit

PCSBL Pattern Coupled Sparse Bayesian Learning

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RZF Regularized Zero Forcing

SBL Sparse Bayesian Learning

SMM Square-root Minorization Maximization

SMV Single Measurement Vector

SNR Signal-to-Noise Ratio

SWOMP Simultaneously Weighted Orthogonal Matching Pursuit

VB Variational Bayes

WMMSE Weighted Minimum Mean Squared Error

ZF Zero Forcing



Notation

Sets

R The set of real numbers

C The set of complex numbers

[n] The set {1, . . . , n}

Vectors and matrices

In Identity matrix of size n× n

AT Transpose of a matrix A
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Chapter 1

Introduction

Massive multiple-input-multiple-output (MIMO) antenna systems is one of the most spec-

trally efficient wireless communication technologies devised to date, and plays an integral

role in the 5G wireless standard [2–6]. In massive MIMO, a base station (BS) is equipped

with tens or hundreds of antennas and serves large number of single antenna users in

the same time-frequency resource. It provides high beamforming and spatial multiplex-

ing gains due to the large number of antennas used. When combined with millimeter-

wave (mmWave) communications, which enables bandwidths of the order of GigaHertz

(GHz), it can potentially offer a 1000-fold improvement in the system throughput [7, 8].

Further, massive MIMO assists in combating the large attenuation caused by mmWave

frequencies, thereby improving the coverage area. Due to these advantages, both massive

MIMO and mmWave technologies are expected to play a vital role in the sixth generation

wireless technology as well [9–13]. Fig. 1.1 shows a block diagram of a typical uplink (UL)

massive MIMO system where multiple users transmit data to the BS or access point (AP)

in the same time-frequency resource.

Despite the advantages mentioned above, massive MIMO systems also pose new chal-

lenges in practical implementation, which need to be addressed in order to make them

commercially viable. First, the massive number of antennas results in huge power con-

sumption at the BS, which could make the system energy-inefficient. Second, in a massive

1
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MIMO system, each antenna is connected to a radio frequency (RF) chain, which con-

sists of components such as low noise amplifiers, analog filters, automatic gain control,

etc. Each RF chain is connected to two ADCs, one each for the in-phase and quadrature

components, whose power consumption increases exponentially with the bit-widths. For

example, the power consumption of a commercial 20 Giga-samples per second, 8-12 bits

ADC is around 500 mW. Therefore, for a massive MIMO system with 100 RF chains and

200 ADCs, the total power consumption will be as high as 100 W, which is unaffordable

in a practical massive MIMO system [8].

Figure 1.1: Block diagram of a massive MIMO system.

Low-resolution ADC based Massive MIMO Systems

A promising solution to the high power consumption of massive MIMO systems is to use

low-resolution ADCs at the BS [8]. Coarse quantization also enables the use of less ex-

pensive components in the RF chain, which further contributes to cost savings. However,

a major demerit of using low-resolution ADCs is the non-linear distortion they intro-

duce, which results in suboptimal performance of conventional receiver algorithms. For

instance, channel estimation and data detection algorithms such as zero-forcing (ZF),

minimum mean squared error (MMSE), etc. are designed for full precision inputs, so
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applying them directly for coarsely quantized inputs leads to severe performance degra-

dation [14, 15]. There are several approaches to handle the nonlinearities introduced by

low-resolution quantization; we list two of them here. First, we can model the nonlinearity

as an additive noise term using the Bussgang theorem [16]. That is, the output after the

nonlinear distortion introduced by the ADC is equal to a scaled version of the input plus

an uncorrelated distortion term [17]. Second, we can utilize the information of the specific

quantizer used, and adopt a principled approach to develop receive-processing algorithms

that explicitly account for the nonlinear distortion introduced by the ADCs. This second

approach is the primary focus of this thesis.

In addition to the power and cost advantages due to the low-resolution ADCs, the

existing literature on their capacity analysis in the context of MIMO systems provide

further motivation to adopt them in future wireless technologies [18–23]. In [18, 19], it

is shown that, under the assumption of perfect channel state information (CSI) at the

receiver, at low signal-to-noise ratio (SNR) and up to a first order approximation in SNR,

the mutual information of a MIMO system employing 1-bit ADCs is 2/π times that of

a MIMO system without quantization. Also, quardrature phase shift keying (QPSK) is

the optimal modulation scheme in terms of the achievable rate at low SNRs, and under

i.i.d. Rayleigh fading, the ergodic capacity of a 1-bit quantized system increases linearly

with the number of receive antennas. Reference [20] obtains the number of mass points in

an input distribution to achieve the capacity of a discrete input Gaussian channel under

an average power constraint for a particular choice of the quantizer. It is shown that a

quantizer withM bins needs no more thanM+1 mass points to achieve the capacity. Also,

reference [21] derives the capacity of real valued Gaussian channels using the cutting plane

algorithm in multi-bit quantized systems. They infer that low-resolution ADCs incur a

small loss in spectral efficiency compared to infinite precision ADC based systems. For

instance, a 2 to 3 bits quantization results in at most 20% reduction in spectral efficiency

at high SNRs. Accurate expressions for the channel capacity at high and infinite SNR

with 1-bit ADCs in frequency flat MIMO and SIMO channels have been obtained in [22,

23]. These studies also develop a convex optimization based computationally efficient
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algorithm to design the input alphabet that achieves the infinite SNR capacity.

With this motivation, we next discuss the architectural changes in the air interface that

may be needed for designing efficient receiver algorithms for low-resolution ADC based

massive MIMO systems. In wireless technologies such as long term evolution (LTE),

LTE-advanced (LTE-A) or 5G-NR, pilot symbols are embedded within a resource block

in specific subcarriers and OFDM symbols, along with the data symbols [24, 25]. The

number of pilot symbols depend on various factors such as the number of layers, anten-

nas, etc. These pilot symbols are used for channel estimation at those subcarriers, and

interpolation is done in time and frequency to estimate the channels across all the other

OFDM symbols and subcarriers. In full resolution ADC based MIMO-OFDM systems,

after RF downconversion, we quantize the inphase and quadrature components of the

complex baseband signal, and separate the subcarriers using a discrete Fourier trans-

form (DFT) operation. This generates orthogonal frequency-flat fading channels, which

enables the use of linear channel estimators. The inter-carrier interference (ICI) due to

RF impairments, local oscillator mismatches, etc are usually corrected using frequency

correction loops, which run once in many sub-frames. However, in low-resolution ADC

based systems, the coarse quantization of the time-domain signal results in ICI in every

sub-frame and OFDM symbol, which cannot be compensated using the frequency or gain

correction loops. Moreover, the random nature of the input signal to the quantizers makes

it difficult to exactly characterize the ICI. Due to this, one cannot separate the pilot and

data subcarriers using a simple DFT operation. Hence, conventional frequency domain

channel estimation and interpolation fail to perform well in low-resolution ADC based

MIMO systems.

Data Symbols as Virtual Training Symbols

To overcome the effect of ICI mentioned above, an alternate approach is to employ sep-

arate pilot and data OFDM symbols within a coherence interval of the channel. The

channel estimated using the pilot symbols are then used for data detection. Here, the

quality of channel estimates depends on the number of pilot OFDM symbols used. One
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of the major drawbacks of using low-resolution ADC based architecture is the increase in

training overhead in both massive MIMO and MIMO-OFDM systems. This reduces the

data transmission duration, in turn adversely impacting the spectral efficiency of the sys-

tem. Therefore, we need novel solutions to overcome the challenge of channel estimation

and data detection in low-resolution ADC based systems.

One promising approach to reduce the training overhead is to exploit the unknown

data symbols themselves as virtual pilot symbols. In this, we first obtain initial channel

estimates using a reduced number of pilot symbols, use them to detect the data, and

then reuse them as virtual pilots to refine the channel estimates. An obvious drawback

of using the detected data as virtual pilots is the error propagation when there are data

detection errors. In the approach explored in this thesis, the detected data symbols are

not directly used for channel estimation. Instead, we account for the probability that

the data symbols take on the different possible values, and use these probabilities in

computing the channel estimates. To elaborate, instead of using the hard data decisions,

we use the bit LLRs or the posterior beliefs of the data symbols obtained from an initial

channel estimate for refining the channel estimates in subsequent iterations. Moreover,

the channel decoder that follows the data detector offers better performance when their

inputs are soft decisions or bit LLRs, rather than hard-detected data bits. In this context,

developing computationally and analytically tractable solutions to estimate the bit LLRs

is important in massive MIMO and MIMO-OFDM systems to reduce the training overhead

and improve the spectral efficiency.

Sparsity of Wireless Channels in OFDM Systems

Another approach to reduce the training overhead that has received significant research at-

tention is to utilize any inherent structure in the wireless channels. This side-information

about the channels can be used to reduce the number of measurements or training sym-

bols needed for channel estimation and/or improve the estimation accuracy. Channel

sounding experiments have shown that wireless channels exhibit sparsity in either de-

lay/lag domain, beamspace domain or both [26–28]. Exploiting sparsity enables us to use
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compressed sensing based approaches to estimate a high dimensional sparse signal from

an underdetermined system of noisy linear or non-linear equations [29, 30]. Although

this is an NP-hard problem in general, under certain conditions on the measurement

matrix (e.g., when it satisfies the restricted isometry property), convex relaxation based

methods, greedy methods, or Bayesian inference can be used to obtain polynomial-time

algorithms [31]. Extensive research has been carried out in recovering sparse signals from

lower dimensional compressive measurements. Some of the key references on compressed

sensing and sparse signal recovery are [32–44].

In this thesis, we utilize the delay domain as well as beamspace domain sparsity of

the channel in the sub-6 GHz and mmWave frequencies, respectively, and design high

performing polynomial time algorithms for massive MIMO-OFDM channel estimation

with both infinite resolution and low-resolution ADCs. We also derive a Bayesian Cramér-

Rao lower bound on the MSE performance of an estimator of sparse signals from quantized

compressive measurements. This serves as a benchmark to evaluate the performance of

the novel Bayesian sparse channel estimation algorithm developed in this thesis.

Millimeter-Wave MIMO-OFDM Systems

In the previous subsections, we discussed the use of low-resolution ADCs to address the

high power consumption and cost issues in massive MIMO and MIMO-OFDM systems.

We now discuss another promising technology for future generations of wireless communi-

cation systems. Due to the large and ever-increasing demand for various communication

services, there is a tremendous need for high bandwidth and data rates. This motivates

the usage of mmWave frequencies, from 30 to 300 GHz, where the use of bandwidths

exceeding 2 GHz is feasible. The mmWave communications are used in a wide variety of

applications such as wireless local and personal area networks, automotive radar, vehic-

ular communications, wearables, internet of things, etc., where data rate and stringent

latency requirements need to be met [45–48].

Millimeter-wave channel models are different from the sub-6 GHz channels due to the

signal propagation characteristics at smaller wavelengths. For example, diffraction effects
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are lower due to the reduced Fresnel zone, scattering effects are higher and depend on

type of the surface of different materials, penetration and propagation losses are higher,

blockage effects (e.g., due to the human body) are higher, etc. [49]. Also, the antenna

aperture and size decreases with the center frequency, which in turn limits the amount

of signal energy a single antenna can capture. These factors necessitate the use of large

antenna arrays in mmWave communications in order to achieve reliable communication

at high data rates. Also, the presence of line-of-sight, non-line-of-sight, and clustered

paths due to highly directional antennas at mmWave frequencies lead to structure in the

channels such as sparsity in the lag/delay or beamspace domains. Considering all the

aspects, several research papers have discussed the design of novel signal processing al-

gorithms to improve the data rate and spectral efficiency of a mmWave communication

system equipped with large antenna arrays [50–54]. Moreover, new hardware constraints

arise due to the power consumption at mmWave frequencies. A popular approach to ad-

dress the power consumption in large antenna array mmWave communication system is to

employ the so-called hybrid analog-digital beamforming architecture. Here, we partition

the antennas into sub-arrays and connect only one RF chain to each sub-array, thereby

reducing the number of RF chains that need to be deployed. In a hybrid beamforming

based transceiver, the signal at each transmit/receive antenna is phase shifted and con-

nected to an RF chain [55, 56]. There are several architectures in a hybrid beamforming

system, such as fully connected or partially connected networks, which provide different

tradeoffs between the complexity and performance. Each of these architectures come with

their own design challenges, some of which are discussed below.

One of the most important engineering problems to solve in a hybrid mmWave MIMO

systems is the design of digital and analog precoders/combiners for data transmission

and reception. To do that, we need reliable channel state information at the transmitter

and receiver. So, designing novel channel estimation algorithms is a crucial task to be

done to obtain high data rate and spectral efficiency in a mmWave MIMO communication

system. In this thesis, we consider a site-specific channel estimation algorithm, where the

channel statistics such as the angles of arrival and departure distributions, delay domain
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and beamspace domain sparsity can be potentially learnt from a training dataset. This

information can be used to estimate the channel for a test dataset. We numerically show

that utilizing the information learned from a training dataset leads to improvement in the

NMSE performance of our channel estimator compared to state-of-the-art [57].

In the next subsection, we discuss the problems addressed in this thesis. More detailed

mathematical discussion of each problem and its solution is provided in the corresponding

chapter.

1.1 Problems Addressed in this Thesis

In this thesis, we primarily focus on channel estimation and data decoding problems when

low-resolution ADCs are employed at the BS of massive MIMO and MIMO-OFDM wire-

less communication systems [58–62]. We also consider mmWave MIMO-OFDM channel

estimation when we have prior information of the angles-of-departure (AoD), angles-of-

arrival (AoA), and multipath intensity profiles (MIPs) of multiple channel instantiations

in a specific target environment [63]. The overall theme is to develop Bayesian techniques

to solve the channel estimation and data decoding problems in both full resolution and

low-resolution ADC based MIMO and MIMO-OFDM systems. The novelty in our so-

lutions lies in the formulation of statistical inference problems to obtain the posterior

distributions of the channel and data symbols as non-convex optimization problems. We

then derive a concave surrogate function to bound the non-convex objective function from

below at every point of the feasible set and is tight at the current iterate. Furthermore,

the surrogate function is relatively easy to optimize. We maximize this surrogate func-

tion to find a local optimum, which becomes the new iterate.1 We again find a new

surrogate function which is tight at the new iterate, and repeat this process iteratively

till a suitable convergence criterion is satisfied. This approach falls into the category

of minorization-maximization (MM) (or majorization-minimization in the case of non-

convex minimization problems), which provides a general and flexible framework to solve

1We seek a convex upper bound surrogate function in the case of minimization problems.
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non-convex optimization problems [64,65].

Another important problem in multiuser MIMO communications, apart from channel

estimation and data decoding, is the precoding/beamforming in UL or downlink (DL) to

maximize a metric such as sum rate or minimum rate under a set of given constraints.

Along with the development of MM based algorithms for channel estimation and data

detection, we also explore the application of this framework for beamforming problems as

well. In this direction, we consider a single cell DL multiuser MIMO system with finite

rate downlink control channels, and formulate a codebook based sum rate maximization

problem [66, 67]. The finite rate downlink control channel limits the feedback of channel

state information to a finite number of bits. So, once the AP optimizes the sum-rate, it

feeds back only the beamforming vector indices to the users to set their precoding matrices

for data reception. In this context, we focus on the codebook based precoding for sum rate

maximization in a multiuser MIMO broadcast system to select the beamforming vectors

and allocate powers to each of them.

We provide an overview of the problems addressed in this thesis below.

1.1.1 Joint Channel Estimation and Soft Symbol Decoding in

Massive MIMO Single Carrier Systems with Low-Resolution

ADCs

In this part of the thesis, we consider an UL massive MIMO single carrier (MIMO-SC)

system equipped with low-resolution ADCs at the BS. Multiple single transmit antenna

user equipments (UE) transmit their pilot symbols followed by data symbols within a

channel coherence interval. The UEs encode their raw information bits using a channel

code, modulate them to data symbols, upconvert to RF, and transmit them over flat

fading wireless channels to the BS. Upon receiving the signal, the BS downconverts the

signal to baseband, quantize the inphase and quadrature (IQ) components using low-

resolution ADCs to obtain the complex baseband signal. Our aim is to estimate the

UEs’ channel using the received signal during the pilot phase, and use them to decode

the information bits using the received signal in the data phase. Conventional receivers
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in high resolution ADC based systems use linear processing using algorithms such as

ZF, regularized zero-forcing (RZF), MMSE to detect the data [1, 15]. However, in low-

resolution ADC based systems, these conventional receivers perform poorly due to the

severe non-linearities introduced by the coarse quantization [68].

Mathematically, we represent the quantized received signal at the Nr antennas during

the pilot and data phases as

Yp = Q (HXp +Wp) ∈ CNr×τp ,

Yd = Q (HXd +Wd) ∈ CNr×τd ,
(1.1)

respectively, where τp and τd are the pilot and data durations, respectively, and Xp ∈

CK×τp and Xd ∈ CK×τd are the pilot and data symbols, respectively. Here, Wp and Wd

denote the complex additive white Gaussian noise (AWGN) during the pilot and data

phases, respectively. The quantization operation denoted by Q(·) is applied element-

wise on the real and imaginary parts of its argument separately. Our goal is to estimate

H ∈ CNr×K and decode Xd ∈ CK×τd using Yp and Yd. More specifically, in coded com-

munications, we need to provide the bit LLRs as input to the channel decoder. Therefore,

our goal is not only to perform channel estimation and data detection, but also to ob-

tain high-quality estimates of the bit LLRs to be input to the channel decoder, given the

quantized received pilot and data signals.

Typically, in low-resolution analog-to-digital converter (ADC) based multiuser MIMO

communication systems, we need to transmit a large number of pilot symbols (large τp),

to obtain reliable channel estimates [69, 70]. This overhead severely impacts the spectral

efficiency of the system. One way to address this issue is to increase the resolution of the

ADCs, but this again leads to increase in power consumption and hardware cost. An al-

ternative approach is to utilize the decoded data symbols to re-estimate the channels in an

iterative fashion. Further, we can jointly estimate both the channel and data symbols si-

multaneously by including both as unknown random parameters, and derive an algorithm

to estimate them. In a Bayesian formulation, we include the channel and data symbols

as latent variables, and infer their posterior distributions, given the quantized received
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pilot and data signals Yp and Yd. Due to the massive number of antennas employed at

the BS, it is computationally intractable to find the exact posterior distributions of the

channels and the data symbols. Therefore, our goal is to develop novel signal processing

techniques of polynomial complexity for channel estimation and soft symbol decoding.

1.1.2 Sparse Channel Estimation and Soft Symbol Decoding

in Massive MIMO-OFDM Systems with Low-Resolution

ADCs

In the first problem discussed in subsection 1.1.1, we considered a massive MIMO-SC sys-

tem in which the pilot and data signals undergo flat fading. However, in many commercial

wireless technologies such as WiFi and LTE/LTE-A, multicarrier communication is used

to improve the spectral efficiency and network capacity. Therefore, it is important to ex-

tend the idea of employing low-resolution ADCs to multicarrier MIMO systems also. In

wideband orthogonal frequency division multiplexing (OFDM) communication systems,

the transmit signals undergo frequency selective fading, which results in intersymbol inter-

ference (ISI). In conventional receivers operating in lag/delay domain, we use equalization

algorithms such as maximum likelihood sequence estimation (MLSE), decision feedback

equalization (DFE) etc., to remove the effects of the frequency selective channel and de-

code the data [71]. These are computationally expensive procedures which need dedicated

hardware to meet the timing requirements. In full precision ADC based OFDM receivers,

we adopt frequency domain equalization to convert the frequency selective channel to

multiple orthogonal flat fading channels, and use single tap linear equalizers such as least-

squares (LS) or MMSE for data detection.

In this part of the thesis, we consider a UL multiuser massive MIMO-OFDM commu-

nication system in which each user embeds the pilot and modulated data symbols onto

multiple subcarriers, converts the frequency domain signal to time domain using an in-

verse DFT operation, adds cyclic prefix (CP), upconverts to RF, and transmits to the BS.

At the BS, the pilot and data signal is downconverted and quantized using low-resolution



Chapter 1. Introduction 12

ADCs to obtain the complex baseband received signal. In full precision ADC based sys-

tems, we remove the CP, transform the time domain signal to frequency domain using a

DFT operation. This decouples the subcarriers, resulting in multiple orthogonal flat fad-

ing channels, which simplifies both the channel estimation and data decoding problems.

Mathematically, when K single antenna users transmit separate pilot and data OFDM

symbols, the unquantized received signals at the nth
r BS antenna during the tth pilot and

data OFDM symbols are represented as

z(p)nr
[t] =

K∑
k=1

FH
Nc
X

(p)
k [t]FNc,Lhnr,k +w(p)

nr
[t], (1.2)

z(d)nr
[t] =

K∑
k=1

FH
Nc
Hfreq

nr,k
x
(d)
k [t] +w(d)

nr
[t], (1.3)

respectively, where Nr is the number of receive antennas, Nc is the number of subcarriers,

L is the maximum delay spread in symbol intervals of all the users, FNc ∈ CNc×Nc is the

DFT matrix, FNc,L ∈ CNc×L is the L column truncated DFT matrix, X
(p)
k [t] ∈ CNc×Nc is

a diagonal matrix containing the pilot symbols of the kth user transmitted during the tth

pilot OFDM symbol, x
(d)
k [t] ∈ CNc×1 is the data transmitted by the kth user during the

tth data OFDM symbol duration, hnr,k ∈ CL×1 is the delay/lag domain channel between

the kth user and the nth
r BS antenna, Hfreq

nr,k
∈ CNc×Nc is a diagonal matrix containing the

DFT of hnr,k. Also, w
(p)
nr and w

(d)
nr denote the complex AWGN during the pilot and data

phases, respectively.

In full resolution ADC based receivers, we left multiply (1.2) and (1.3) by FNc to

decouple the subcarriers, and obtain Nc orthogonal flat fading MIMO multiple access

channels (MAC). We can potentially use any linear receiver to estimate the channels and

detect the data. However, in low-resolution ADC based systems, we quantize (1.2) and

(1.3) to obtain the quantized complex baseband pilot and data received signals as

y(p)
nr
[t] = Q

(
z(p)nr

[t]
)
, (1.4)

y(d)
nr
[t] = Q

(
z(d)nr

[t]
)
, (1.5)
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where Q denotes an element-wise quantization operation of the real and imaginary parts

of its argument. If we apply DFT to (1.4) and (1.5), it results in severe ICI, which leads

to suboptimal performance of linear receivers. This necessitates novel signal processing

procedures for channel estimation and data detection. Similar to the discussion in sub-

section 1.1.1 in the context of massive MIMO-SC systems, our goal is to obtain the soft

outputs or bit LLRs of the information bits here also. We solve the channel estimation

and soft symbol decoding in this part of the thesis.

As discussed in the subsection 1.1.1, another crucial aspect to address is the large

training overhead associated in low-resolution ADC based massive MIMO-OFDM sys-

tems, to obtain reliable channel estimates. One way to address this issue in frequency

selective channels is to utilize the inherent delay (or lag) domain or angle domain sparsity

in the wireless channels [27, 45, 72]. In our system model, the number of measurements

available for estimating the users’ channels is directly proportional to the number of pilot

OFDM symbols. Thus, by reducing the number of measurements, we reduce the number

of pilot symbols needed, but this leads to large channel estimation errors if conventional

linear channel estimation schemes are used. Accounting for the sparsity of the channels in

the channel estimation procedure enables us to use the theory of compressed sensing and

sparse signal recovery [29] to obtain excellent performance with reduced training over-

head. Moreover, across the receive antennas, the time-domain channels are independent

but have the same support, which leads to a joint row sparse structure of the estimand.

We use this structure to improve the support recovery performance of the sparsity-based

channel estimation algorithm.

Along with deriving a solution for MIMO-OFDM channel estimation algorithm, we

also analyze the NMSE performance of our algorithm, by deriving a Bayesian CRLB on

the NMSE of an estimator of quantized MMV sparse signals [61].
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1.1.3 Compressive Channel Estimation in Millimeter-Wave

MIMO-OFDM Systems

In this part of the thesis, we consider a hybrid MIMO-OFDM system with a multi antenna

transmitter and receiver communicating in mmWave frequencies ranging from 30 GHz to

300 GHz. At these frequencies, the large path loss due to factors such as blockages and

oxygen absorption makes the received signal strength very low. One way to address this

issue is to employ beamforming, which focuses the energy towards the intended receiver.

To do this, we need reliable channel estimates, which are used to design the transmit

precoders or beamformers. In mmWave transceivers, a large number of antennas are

packed within a small area to obtain the array gain required to close the communication

link. The high cost associated with employing a separate RF chain per antenna (i.e., a

fully digital architecture) in this large MIMO scenario motivates one to adopt an alternate

hybrid (digital+analog or fully analog) architecture. This results in a lower dimensional

complex baseband signal at the receiver, which in turn necessitates the development

of novel signal processing techniques to obtain high quality channel estimates, mainly

because the channel is observable only through the lens of the analog beams used for

signal transmission and reception [45].

Most of the current solutions for wireless communication problems such as channel

estimation, beamforming and data detection follow a model driven approach, where a

mathematical system model is used to develop an algorithm that optimizes a particular

metric of interest. With the availability of large datasets, it is interesting to explore the

option of using a data-driven approach to further improve the performance of a model

driven algorithm. The primary benefit of such an approach is that it can potentially

address model mismatches and result in more robust, better performing systems in real-

world situations. In this direction, we consider a site-specific mmWave channel estimation

problem, where a BS transmits pilot symbols to a user equipment (UE) via a mmWave

channel. The channel is generated using a wireless channel generation tool called “Ray-

mobtime”, which uses raytracing and 3D scenarios to simulate a realistic mmWave wireless

environment [73]. As the channels are generated in a specific environment, their statistics
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are typically invariant within the measurement interval. So, if we can use the available

information based on a training dataset, we can potentially design a channel estimation al-

gorithm which outperforms a purely model driven algorithm. The solution to this problem

was presented as part of an “ML5G-PHY Channel Estimation Global Challenge

2020” organized by the International Telecommunication Union (ITU).2 Our algorithm

was selected as one of the top three solutions in this challenge [63].

We present the receive signal model to introduce the problem here, and discuss more

details in the corresponding chapter. In the mmWave OFDM receiver, after RF combin-

ing, down-conversion, cyclic/zero prefix removal and DFT, the complex baseband signal

received during the mth training frame for the kth subcarrier, denoted by y(m)[k] ∈ CLr×1,

can be mathematically expressed as

y(m)[k] = W
(m)
tr

∗(
H[k]F

(m)
tr q(m)t(m)[k] + n(m)[k]

)
, m = 1, . . . ,M, k = 1, . . . , K, (1.6)

where Lt and Lr are the number of RF chains at the transmitter and receiver, respec-

tively, K is the number of subcarriers, M is the number of training frames, W
(m)
tr is

the RF combining matrix during the mth training frame, H[k] ∈ CNr×Nt represents the

frequency domain MIMO channel matrix for the kth subcarrier, Nt and Nr are the num-

ber of transmit and receive antennas, respectively. We choose the mth training signal

as s(m)[k] = q(m)t(m)[k], where t(m)[k] ∈ C is a subcarrier-dependent pilot symbol, and

q(m) ∈ CLt×1 is a frequency-flat vector whose entries are chosen as 1√
2Lt

(a + jb), where

a, b ∈ {−1, 1} and are uniformly distributed. The noise vector n(m)[k] is independently

and identically distributed across K subcarriers as CN (0, σ2INr). After compensating for

t(m)[k] and vectorizing (1.6), we obtain

vec(y(m)[k]) =
(
q(m)TF

(m)T
tr ⊗W

(m)
tr

∗)︸ ︷︷ ︸
Φ(m)

vec(H[k]) +W
(m)
tr

∗
n(m)[k]. (1.7)

Here,H[k] is the frequency domain representation of the frequency selective channel whose

2https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx
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dth delay domain tap is denoted by Hd, and Nc is the length of the channel. We adopt

the extended virtual channel model in [74] to represent H[k] as

H[k] ≈ ÃR∆
v[k]Ã∗

T, k = 1, . . . , K, (1.8)

where ∆v[k] contains the complex channel gains, and the dictionary matrices ÃR ∈

CNr×Gr and ÃT ∈ CNt×Gt contain the Rx and Tx array steering vectors evaluated on

a grid of size Gr for the AoA and a grid of size Gt for the AoD, respectively. With

appropriate choices of Gr and Gt, ∆
v[k] ∈ CGr×Gt becomes a sparse matrix containing

the channel path gains on the locations that match with the actual Angle Of Depar-

tures (AoDs) and Angle Of Arrivals (AoAs). By concatenating the RF combined signals

of M training frames, we get the receive equation for the kth subcarrier as
y(1)[k]

...

y(M)[k]


︸ ︷︷ ︸

y[k]

=


Φ(1)

...

Φ(M)


︸ ︷︷ ︸

Φ

Ψhv[k] +


n
(1)
c [k]
...

n
(M)
c [k]


︸ ︷︷ ︸

nc[k]

, (1.9)

where Φ contains the pilot symbols, Ψ is the sparsifying dictionary, and hv[k] is the sparse

vector to be estimated. Now, by stacking the received signals of K subcarriers, we get

the final system equation

Y =
[
y[1] . . . y[K]

]
= ΦΨ

[
hv[1] . . . hv[K]

]
+
[
nc[1] . . . nc[K]

]
= ΦΨHv +Nc. (1.10)

Our goal is to learn the sparsifying dictionary Ψ and any other learnable parameters

from the training dataset, and use them to estimate the channel H[k], k = 1, . . . , K. We

provide complete details of all the variables in (1.10) in the corresponding chapter.
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1.1.4 Sum-Rate Maximization in Codebook based Multi-user

MIMO Systems

In the last part of this thesis, we consider a single cell DL frequency division duplex-

ing (FDD) multiuser MIMO system where the AP or BS equipped with Nt transmit

antennas communicates with K user equipments with Nr receive antennas each, via a

MIMO broadcast channel. In the DL training phase, the AP transmits τp orthogonal

pilot signals to the users for channel estimation. The received pilot sequence at the kth

user, Y
(p)
k ∈ CNr×τp , is given by

Y
(p)
k =

√
ρ
(p)
dl τpHkXp +Wk, (1.11)

where ρ
(p)
dl is the pilot signal to noise ratio (SNR), andWk ∈ CNr×τp is the complex AWGN

whose columns are i.i.d. with mean 0 and covariance matrix INr , denoted CN (0, INr).

The users estimate the CSI and feed them back to the AP via error free links in the UL.

Upon receiving the CSI, the AP computes the precoding matrices to be used for DL data

transmission.

In our problem, we consider a finite rate downlink control channel where the AP

can transmit only limited information about the precoding matrices to the users [75].

Therefore, we limit the choice of beamforming vectors to a codebook, and choose them

from this set to maximize a suitable performance metric. The AP then transmits only

the precoding vector indices to the users to be used for their data reception [76]. We set

the sum rate achieved by the system as our performance metric. One potential approach

to maximize the sum rate is for the AP to compute the precoding matrices assuming

an infinite precision feedback link, and then quantize them to the nearest beamforming

vectors using any chosen distance metric. But this may result in suboptimal system

performance. To alleviate this issue, we need to include the precoding codebook right

from the problem formulation phase, and design algorithms to select the beamforming

vectors from the codebook.
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The received signal yk ∈ CNr at the kth user is given by

yk = Hk

(
√
ρdl

K∑
j=1

CΦ
1
2
j sj

)
+wk, (1.12)

where Hk ∈ CNr×Nt is the channel between the AP and kth user, wk ∈ CNr is the complex

AWGN at the kth user with distribution CN (0, INr). In (1.12), C is the codebook of

beamforming vectors, which is known both to the users and AP. Details of the notation

used will be explained in the corresponding chapter of this thesis.

Once the user estimates the channel Ĥk, the received signal can be rewritten as

yk =
√
ρdlĤkCΦ

1
2
k sk︸ ︷︷ ︸

Desired signal

+
√
ρdlĤk

K∑
j=1
j ̸=k

CΦ
1
2
j sj +

√
ρdlH̃k

K∑
j=1

CΦ
1
2
j sj +wk. (1.13)

Our initial goal in this problem is to derive an expression for the achievable rate of

each user. Subsequently, we use the derived achievable rate expressions as a performance

metric to design algorithms to select the beamforming vectors to transmit the users’ data

in the downlink, and allocate powers to them, given a transmit power budget. Denoting

the covariance matrix of the noise and interference of the kth user by Vk (which we will

derive later), we write the achievable rate of the kth user as

Rk = log

∣∣∣∣INr +V−1
k
̂̂HkΦk

̂̂HH

k

∣∣∣∣ , (1.14)

where ̂̂Hk ≜
√
ρdlĤkC. Now, we need to maximize the sum rate Rtot =

∑K
k=1Rk under a

total power constraint. The optimization problem we solve is given by

maximize
Φ1,Φ2,...,ΦK

Φk diagonal, p.s.d.

K∑
k=1

log

∣∣∣∣INr +V−1
k
̂̂HkΦk

̂̂HH

k

∣∣∣∣ , (1.15)

subject to tr
( K∑

k=1

Φk

)
= 1.
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where Φ1,Φ2, . . . ,ΦK are the transmit covariance matrices of the users need to be op-

timized. The interference and noise covariance matrices {V1, . . . ,VK} in the objective

function tie the power allocation of all the users together, which makes the problem dif-

ficult to solve. Moreover, the beamforming vector selection to maximize the sum rate

makes it also a combinatorial problem, which complicates it further. Therefore, our sub-

sequent goal in this problem is to design polynomial time optimization algorithms to solve

(1.15), to obtain a locally optimal solution for the beamforming vector selection and power

allocation problem.

1.2 Contributions and Outline of the Thesis

In this section, we provide a chapter-wise outline of the thesis. We divide the thesis into

three parts. The first part deals with the channel estimation and data decoding problems

in massive MIMO and MIMO-OFDM communication systems with low-resolution ADCs.

The second part consists of the site-specific mmWave channel estimation problem, whereas

the last part contains the codebook based precoding problem in multiuser MIMO systems.

We provide a flow diagram of the contents of this thesis in Fig. 1.2.

1. In the second chapter, we solve the channel estimation and data decoding problems

in the context of a massive MIMO-SC system discussed in the section 1.1.1. The

contents of this chapter is published in [58–60]. We list our contributions in this

chapter below:

(a) We derive the posterior distributions of the channel and the data symbols ob-

tained from the received pilot and data observations. Due to the analytical

intractability caused because of the high dimensional nature of the problem,

we resort to approximate inference methods to compute them. More specifi-

cally, we adopt a framework called variational Bayes (VB), which provides a

principled approach to solve statistical inference problems.

(b) We consider both the spatially correlated and uncorrelated Rayleigh fading

channels in our problem setup. In the spatially correlated case, we exploit
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Figure 1.2: Organization and Chapter-wise Outline of the Thesis.

the channel correlation to improve the channel estimation and data detection

performance. On the other hand, in the spatially uncorrelated scenario, we do

not assume any knowledge of the channel statistics while deriving our solution.

We also learn the channel statistics in the spatially uncorrelated case, which

can be potentially used for link adaptation and downlink precoding.
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(c) We combine the channel estimator and data detector with a channel decoder

to improve the system performance further. We study the bit error rate (BER)

and channel NMSE performance with respect to the various system parameters,

and provide insights into system design. We evaluate the performance as a

function of channel parameters, and benchmark against the state-of-the-art.

2. In the third chapter, we solve the channel estimation and data decoding problems in

a massive MIMO-OFDM system with low-resolution ADCs discussed in the section

1.1.2. The contents of this chapter have been published in [61, 62]. We list our

contributions in this chapter below:

(a) We derive the Bayesian CRLB for the MSE incurred by an estimator for re-

covering jointly compressible vectors from quantized compressed sensing mea-

surements. Specifically, we impose a hierarchical circularly symmetric complex

Gaussian prior on the estimand, parameterized by a diagonal precision matrix.

The precision matrix is in turn hyper-parameterized by a Gamma distribution.

Although the CRLB is not available in closed-form, it can be evaluated by

numerical methods.

(b) We consider both deterministic and random cases for the precision matrix to

obtain two different CRLBs on the MSE of jointly compressible vectors. Also,

in the case of exactly-sparse signals, we derive a support-aware CRLB, which

assumes the knowledge of the support set, to compute the bound.

(c) We exploit the lag/delay domain sparsity of the channels to formulate channel

estimation in a massive MIMO-OFDM system as a quantized MMV sparse

signal recovery problem. We develop a VB algorithm to infer the posterior

distributions of the channels. We benchmark the MSE performance of the VB

channel estimator with the derived Bayesian CRLB, and empirically show that

the estimator meets the CRLB.

(d) We then develop a quantized VB soft symbol decoding algorithm that uses the

estimated channels to obtain the posterior beliefs of the data symbols. We use
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these posterior statistics to generate virtual pilots, and present a data-aided

channel estimation procedure to refine the initial channel estimates. Based on

this, we develop an iterative algorithm that alternately runs the soft symbol

decoder and data-aided channel estimator steps.

(e) We also develop a variant of the iterative channel estimation and data decoding

algorithm, which utilizes the aposteriori bit LLRs output from the channel

decoder to adapt the prior used by the data detector. The resulting combined

channel estimator, data detector and channel decoder further improves the

system performance.

3. In the fourth chapter, we consider the site-specific mmWave channel estimation

problem discussed in the section 1.1.3. The contents of this chapter has been pub-

lished in [63]. We list our contributions in this chapter below:

(a) We formulate the mmWave channel estimation problem in a MIMO-OFDM

setting as a MMV sparse signal recovery problem. We integrate a fast greedy

search with a high-performing Bayesian inference method in the first approach.

(b) We present a multi-level greedy search (MLGS) procedure to learn the spar-

sifying virtual beamspace dictionary which reduces the dimensionality of the

problem. We then use the learned dictionary to estimate the channel using a

reduced dimensional sparse Bayesian learning (SBL) method.

(c) We finally exploit the delay-domain sparsity learnt from the training dataset

to de-noise the estimated channels. We compare the NMSE of our algorithm

with the state-of-the-art simultaneously weighted orthogonal matching pursuit

(OMP), pattern-coupled sparse Bayesian learning for channel estimation with

dominating delay taps (PCSBL-DDT) and projection cuts OMP (PC-OMP).

4. In the fifth chapter, we solve the sum-rate maximization problem discussed in section

1.1.4. The contents of this chapter have been published in [66,67]. The contributions

in this chapter are as follows:
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(a) We derive the achievable sum rate of a codebook based precoding MU-MIMO

broadcast system with minimum mean squared error (MMSE) channel estima-

tion at the receiver and imperfect CSI at the transmitter. The achievable sum

rate expression provides us with the objective function for beamforming vector

selection and power allocation.

(b) We present two iterative algorithms for solving the non-convex and combi-

natorial sum rate maximization problem using MM procedure, which provide

analytical expressions for the surrogate optimization problems. We show that

the closed-form solutions are optimal with respect to their corresponding sur-

rogate optimization problems.

(c) We empirically study the performance of the algorithms with respect to various

system parameters. Further, we illustrate the performance advantage offered

by the algorithms compared to the state-of-the-art approaches as well as a

single-user-optimal codebook based precoding approach. The results demon-

strate that jointly choosing beamforming vectors is necessary to realize the full

potential of MU-MIMO transmission.
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Chapter 2

Variational Bayes’ Joint Channel

Estimation and Soft Symbol

Decoding for Uplink Massive MIMO

Systems with Low Resolution ADCs

2.1 Introduction

Massive multiple input multiple output (MIMO) wireless communication systems, where

the base station (BS) or access point (AP) is equipped with hundreds or thousands of

antennas, and simultaneously serves tens or hundreds of users, is one of the key enabling

technologies to meet the increasing demand for the data rate and energy efficiency [77,78].

However, the advantages of massive MIMO come at the cost of increased power consump-

tion and hardware complexity due to the large number of RF chains, high precision

analog-to-digital converters (ADCs), etc. In particular, the power consumption of ADCs

grow exponentially with the number of quantization bits per sample [69, 79, 80]. For

example, a commercial 1 Gsamp/s 12-bit ADC from Texas Instruments consumes over

1 W of power [81]. Also, full precision ADCs require correspondingly high rate data

processing at the receiver (for example, with 100 antennas, 500 Msamp/s, the data rate

26
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at the remote radio head is more than 1 Tb/s.) This motivates the need for employ-

ing low-resolution ADCs in the BS of a massive MIMO system [8, 82–85]. On the other

hand, the capacity analysis of coarsely quantized MIMO systems shows that, under the

assumption of perfect channel state information at the receiver (CSIR), at low signal to

noise ratio (SNR) and up to a first order approximation in SNR, the mutual information

of a MIMO system employing 1-bit ADCs is 2/π times that of a MIMO system without

quantization. Also, quardrature phase shift keying (QPSK) is the optimal modulation

scheme in terms of the achievable rate at low SNRs, and under i.i.d. Rayleigh fading, the

ergodic capacity of a 1-bit quantized system increases linearly with the number of receive

(rx) antennas [18,20,23,86]. Due to this promise of close to optimal performance despite

the coarse quantization introduced by the ADCs, the receiver design in multiuser massive

MIMO systems with low-resolution ADCs is of great practical interest.

The nonlinearities introduced by low resolution quantization leads to three challenges

in receiver design. First, linear receive processing techniques like zero forcing (ZF), reg-

ularized ZF (RZF), and minimum mean square error (MMSE) become highly subopti-

mal [68]. Second, the received training symbols are also subject to low resolution quanti-

zation, leading to poor channel estimates. In practice, a large training overhead is needed

to obtain reliable channel estimates [69, 70]. We note that although the primary task of

the receiver is to correctly decode the data symbols, obtaining accurate CSIR is impor-

tant for other tasks such as link adaptation. Third, practical channel decoders exhibit

significantly lower codeword error rates when they are provided soft symbol estimates

(i.e., log likelihood ratios of the coded data bits) as input, compared to the case where

hard decisions are performed on the data symbols prior to channel decoding. Obtaining

high-quality soft symbol estimates from coarsely quantized samples is challenging. These

considerations motivate the need to devise novel techniques for joint channel estimation

and soft symbol decoding with low-resolution ADCs, which is the focus of this chapter.
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2.1.1 Prior Art

The problem of data detection in massive MIMO systems with low-resolution ADCs has

been studied in the literature [87–99]. Most of these studies assume the availability of

perfect CSIR, and perform data decoding in multiuser massive MIMO systems with low-

resolution ADCs [87–93]. Techniques for joint channel estimation and data detection

with low-resolution ADCs have been developed based on convex optimization [94] and

approximate message passing (AMP) [95,96]. Under the assumption of perfect CSIR, [97]

and [98] explore weighted Hamming distance based soft detection and minimum mean

square error (MMSE) detection, respectively, along with successive interference cancella-

tion (SIC) under 1-bit quantization, while [99] proposes approximate belief propagation

(BP) based MIMO detection in coarsely quantized systems. Variational Bayesian infer-

ence (VBI) has been used to develop high-performing algorithms for channel estimation

and data decoding, without considering the nonlinearities introduced by the low-resolution

ADCs [100,101]. It is worth noting that algorithms based on AMP or expectation propa-

gation (EP) are not numerically stable, requiring heuristic modifications to address such

issues [100]. In contrast, in this work, we employ a more principled VBI based approach

that is globally convergent to a local optimum.

To the best of our knowledge, most of the existing studies on massive MIMO systems

do not consider joint channel estimation and soft symbol decoding, spatial correlation,

and coarse quantization together. Our solution allows us to intrinsically learn the channel

statistics from the quantized observations, which is potentially useful for power control

and/or link adaptation also. Moreover, using VBI to compute the posterior distributions

of the data leads to low complexity, high performing receivers. Preliminary versions of

this work have appeared in [58,59]. Both these works were restricted to independent and

identically distributed (i.i.d.) channels. While [58] considered soft symbol decoding with

perfect CSIR, [59] extended the approach to joint channel estimation and soft symbol

decoding. We present several advances in this work, including the extension to correlated

Rayleigh fading channels, unknown channel statistics, etc. We also merge the VB receiver

with a BP based LDPC channel decoder and utilize its extrinsic information to adapt the
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data prior, which further improves the performance.

We formulate the channel estimation and data decoding as a statistical inference prob-

lem in a directed probabilistic graphical model and solve it using a VBI approach. The

quantized received signal is the observed variable, while the wireless channel and the

M−QAM modulated data symbols are the latent variables. The goal is to jointly infer

the posterior distributions of both the channel state and the data symbols given the quan-

tized received signal consisting of pilot and data symbols. Since direct computation of

the posterior distribution is intractable, we approximate the posterior with a factorized

variational approximation over the latent variables, and compute the factors by maxi-

mizing the evidence lower bound (ELBO). The ELBO is maximized by minimizing the

Kullback-Leibler (KL) divergence between the exact and the factorized distributions. The

resulting iterative algorithm converges to a stationary point of the ELBO. This method of

using factorized distributions originates from the mean-field approximation in statistical

physics; we refer the reader to [102] for an excellent introduction to VBI. A key novelty in

our solution lies in the introduction of appropriately chosen latent variables. This leads

to closed-form, computationally simple updates, and the resulting iterative algorithm has

low complexity and is also fast.

2.1.2 Main Contributions

Our main contributions in this chapter are:

1. We model the channel estimation and data decoding problems in the uplink of a

massive MIMO system with low-resolution ADCs as a statistical inference problem.

We derive the posterior distributions of the channel and the data symbols obtained

from the pilot and data observations using the VB framework. We consider the

following two cases:

(a) The correlated Rayleigh fading case, where UEs’ channels are independent of

each other, but the entries of the channel vector between a UE and the BS

are correlated. In this case, our algorithm exploits the channel correlation
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to improve the channel estimation and data detection performance. In the

absence of correlation, the algorithm becomes computationally very simple,

with no matrix inversions.

(b) The no CSIR case, in which the BS is unaware of the large scale fading co-

efficients (LSFCs) between the UEs and the BS. We infer the LSFCs using a

non-informative inverse Gamma prior. We empirically show that the resulting

receiver is only marginally inferior to a receiver that has perfect knowledge of

the LSFCs. Learning the LSFCs is potentially useful for downlink precoding

and link adaptation.

2. We provide theoretical insights on the structure of the solution by relating it to the

MMSE channel estimation and successive interference cancellation based receiver.

We show that, when the interference is perfectly cancelled, the resulting channel

estimate is the Bayes’ optimal MMSE estimator.

3. We merge the VB receiver with a (BP) channel decoder and utilize its extrinsic

information to adapt the data prior, which further improves the performance.

4. We study the bit error rate (BER) and channel normalized mean squared error

(NMSE) performance of the VB algorithms with respect to different system pa-

rameters such as the ADC resolution, data power, pilot power boosting etc. and

provide key insights into system design. We also evaluate the performance for both

the correlated and uncorrelated fading cases as a function of channel parameters

such as the coherence interval, and benchmark it against state-of-the-art bilinear

generalized approximate message passing (BiGAMP) based joint channel and data

estimator [95] and MMSE soft decoder [1]. Our numerical results show that the VB

soft symbol decoder offers excellent performance and fast convergence, and even

outperforms an unquantized BiGAMP joint channel estimator and data detector,

making it an attractive choice for high data rate applications.

One of the main takeaways from our work is that VBI is a powerful and flexible

technique for designing receivers for massive MIMO systems, particularly when the BS
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employs low-resolution ADCs. Using VBI to infer the required posterior distributions

helps to reduce the pilot overhead required to achieve a given BER. Further, since the

algorithm yields soft symbol estimates, it is well suited for coded communications. An-

other crucial takeaway is that the assumption of perfect CSI at the receiver significantly

overestimates the system performance, which we illustrate through empirical studies in

Sec. 2.6. Therefore, in a low-resolution ADC setup, since both the pilots and data are

coarsely quantized, it is crucial to account for channel estimation errors while designing

receivers and evaluating performance.

Notation

Matrices and vectors are denoted by boldface uppercase and boldface lowercase letters.

A⊗B denotes the Kronecker product of A and B. E denotes the expectation operator.

⟨f(X)⟩ denotes the expectation of f(X) with respect to an approximate distribution q(X).

ϕ(x) and Φ(x) denote the probability density and cumulative distribution functions of a

standard normal random variable evaluated at x. IM ,0M denote an identity and a zero

matrix of size M × M , respectively. Qb(·) denotes an elementwise b-bit quantization

operation of the real and imaginary components of the argument.

2.2 System Model and Problem Statement

We consider the uplink (UL) of a single cell massive MIMO system with Nr rx antennas

at the BS and K single transmit antenna user equipments (UEs), where Nr ≥ K. The

UEs encode their raw data bits using a channel code, interleave the coded bits, map the

interleaved data bits to the signal constellation, insert the pilot symbols, then up-convert

the signal to the carrier frequency and transmit it to the BS. The signal received at the

BS is down-converted to the baseband, sampled, and quantized using a b-bit ADC before

passing it to the digital front-end of the receiver, as shown in Fig. 2.1.

The UEs transmit data simultaneously over a frame consisting of τp known pilot sym-

bols (τp ≥ K) followed by τd unknown data symbols. The complex baseband pilot and
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data symbols received at the BS, denoted by Zp ∈ CNr×τp and Zd ∈ CNr×τd , respectively,

are given by

Zp = [zp,1, . . . , zp,τp ] = HXp +Wp,

Zd = [zd,1, . . . , zd,τd ] = HXd +Wd,
(2.1)

where H = [h1, . . . ,hK ] ∈ CNr×K , Xp =
[
xp,1, . . . ,xp,τp

]
∈ CK×τp ,

and Xd = [xd,1, . . . ,xd,τd ] ∈ MK×τd denote the channel matrix, pilots, and the M−QAM

modulated transmit data symbols of the K users, respectively. Here, hk ∈ CNr is the

channel between the kth UE and the BS, and xp,t ∈ CK and xd,t ∈ MK the pilot and

data symbols transmitted by the K UEs at the tth symbol, respectively, where M denotes

the M -QAM constellation. Also, Wp ∈ CNr×τp ,Wd ∈ CNr×τd are the additive white

Gaussian noise at the receiver during the pilot and data phases, with i.i.d. CN (0, σ2
w)

entries, where CN (µ, σ2) denotes the circularly symmetric complex normal distribution

with mean µ and variance σ2.

We assume that the data symbols are i.i.d. and are drawn from a uniform probability

distribution PX defined on the signal constellation M. The average data transmit power

E(|xd,kt|2) of the kth UE is set to PT,k. The pilot transmission power is set to be the same

as the data transmit power. Mathematically, PXd
(Xd) =

∏K
k=1

∏τd
t=1 PX(xd,kt).

The channel hk is modeled as a correlated Rayleigh flat fading channel, which remains

constant over a frame consisting of τp pilot symbols and τd data symbols. That is, hk is

distributed as CN (0,Rk), whereRk ∈ CNr×Nr is a positive semidefinite covariance matrix.

Also, without loss of generality, we include the path loss component in Rk. We denote

R ≜ {R1, . . . ,RK}, and thus, PH(H;R) =
∏K

k=1
1

πNr det(Rk)
exp

(
−hH

k R
−1
k hk

)
. The LSFC

of the channel from the kth UE to the BS (i.e., the diagonal entries of Rk) is denoted by

βk. We define the SNR of the system as
∑

k PT,kβk

Kσ2
w

, where PT,k is the transmit power of

the kth UE.

Under the low-resolution ADC architecture, the signals Zp and Zd are quantized using
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Figure 2.1: Massive MIMO system model with low-resolution ADCs.

a b−bit ADC to obtain the baseband observations Yp and Yd as follows:

Yp = Qb (Zp) = Qb (HXp +Wp)

Yd = Qb (Zd) = Qb (HXd +Wd) .
(2.2)

The function Qb(·) denotes a b-bit quantizer operated element-wise on both the real and

imaginary parts of the complex input. A b-bit quantizer on a real valued input z is defined

as Qb(z) = Li, z ∈ [zi, zi+1), i = 0, 1, . . . , B − 1, where B = 2b is the number of quan-

tization levels, z0 < z1 < · · · < zB are the quantization thresholds, and L0, L1, . . . , LB−1

are the quantizer outputs. In this work, for simplicity and concreteness, we consider a

uniform quantizer, where zl = (−B/2 + l)∆, l = 0, . . . , B, ∆ is the quantization step

size, and Ll = (zl + zl+1)/2, l = 0, . . . , B − 1. We set the dynamic range of the real

and imaginary parts of the quantizer using the expected received signal power, PR, as

z0 = −2.5
√

PR/2, zB = 2.5
√

PR/2.
1 Our choice of z0 and zB is motivated by the fact

that the absolute value of a Gaussian distributed zero mean real-valued random variable

with variance PR/2 exceeds 2.5
√

PR/2 with probability less than 0.01, i.e., the quantizer

1In practice, we quantize any value below z0 to L0, and any value above zB to LB−1. Also, in practical
wireless systems, an automatic gain control (AGC) and a variable gain amplifier (VGA) are used to ensure
that the power in the analog baseband signal is approximately equal to a predefined value, PR, before
quantization.
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Xp
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w

R

Figure 2.2: Bayesian network graphical model for the quantized massive MIMO wireless

communication system.

gets overloaded with low probability. However, the design of quantizers for low-resolution

ADC based systems is an interesting problem for future research.

Our goal is to recover the posterior probabilities of the transmitted data symbols from

the quantized received signal Yp and Yd. The posterior beliefs are fed to the channel

decoder to obtain the decoded data bits. In practice, the equalizer (or detector) and

channel decoder can be designed either jointly or as separate blocks. We adopt both

approaches to obtain a decoder that is flexible, and comment on their relative merits.

2.3 Bayesian Estimation: An Overview

Before explaining our approach to the joint channel estimation and soft symbol decoding,

we provide a brief overview about Bayesian estimation and discuss the challenges involved.

We represent the quantized received signal model in (2.2) as a Bayesian network graphical

model shown in Fig. 2.2. We treat the data symbols and channel as the latent variables

and the quantized received samples as the observations. The pilot and data observations

Yp and Yd are represented by shaded circles, while the latent variables Zp, Zd, Xd, H

are represented by transparent circles, and deterministic variables Xp, R, and σ2
w are

represented by squares. Our goal is to infer the posterior distribution of the channel H

and the data Xd given the observations Yp,Yd and the pilots Xp.

The posterior distribution of the channel H and the data Xd given the quantized
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observations Yp,Yd and the pilots Xp is given by2

P (H,Xd|Yd,Yp,Xp) =
P (Yp|Xp,H)P (Yd|Xd,H)P (H)P (Xd)

P (Yp)P (Yd)
(2.3)

where

P (Yp) =

∫
P (Yp|Xp,H)P (H) dH, (2.4)

P (Yd) =

∫
P (Yd|Xd,H)P (H)P (Xd) dH dXd (2.5)

are the marginal likelihoods of Yp and Yd, respectively.

Exact computation of the posterior distributions using the above is computationally

intractable, as it requires solving high dimensional integrals over H and Xd to obtain the

partition functions P (Yp) and P (Yd). To circumvent this problem, we explore alterna-

tive approximate inference approaches, which provide analytically and computationally

tractable methods to solve the statistical inference problem.

There are two broad categories of approximate inference techniques: stochastic and

deterministic. Stochastic approximate inference is based on sampling methods such as

Markov chain Monte Carlo. Though they give exact solutions with sufficiently many

samples, they are computationally demanding and therefore impractical for high dimen-

sional statistical inference problems. Another drawback is the difficulty in assessing the

convergence, which makes them less amenable for use in the high dimensional inference

problems that arise in wireless communications. Deterministic approximate inference

provides analytical approximations to the posterior distributions which may also have

guaranteed convergence. Examples of deterministic approximate inference approaches

include variational Bayes (VB), expectation propagation (EP), belief propagation (BP),

loopy BP (LBP), Laplace approximation, etc [102].

Laplace approximation finds a mode of the posterior distribution and approximates it

with a Gaussian distribution using a second order Taylor expansion. Since the Laplace

2Xd comes from a discrete M -QAM constellation, but we use integrals here for convenience. In the
actual derivation, the integrals are replaced by summations.
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approximation only considers the properties of the true posterior distribution around one

of its modes, it can fail to capture the global properties. EP involves approximating the

posterior with another distribution from an exponential family. It imposes a factorized

structure on the posterior over the latent variables, and iteratively computes each factor.

It minimizes the KL divergence between the original and approximate posterior distri-

butions using a moment matching approach. A major demerit of EP is that it is not

guaranteed to converge in general. Moreover, since it relies on moment matching, it is

only limited to the models where it is possible to compute the required moments. BP

is a message passing based approximate inference procedure which provides an efficient

framework in tree-structured probabilistic graphical models. It can also be applied to

graphs with loops (loopy BP), but there is no guaranteed convergence to a fixed point.

We approach the joint channel estimation and data detection using an approximate

inference framework called VB, in which the posterior distributions of the latent variables

are obtained by solving an optimization problem. We approximate the exact posterior

using a structured factorized distribution that can be computed in polynomial time in

each iteration. We explain this in detail in the forthcoming sections. In the next section,

we provide a brief overview of VB.

2.4 Variational Bayesian Inference

VB inference is an iterative procedure to compute the approximate joint posterior dis-

tributions of the latent variables in a probabilistic graphical model. Consider a proba-

bilistic graphical model with observations Z = {Z1, . . . ,ZN} and latent variables X =

{X1, . . . ,XN}. Our goal is to find the posterior distribution p(X|Z) and model evidence

p(Z). We write the logarithm of the model evidence as the sum of two terms as follows:

ln p(Z) = L(q) + KL(q ∥ p) ≥ L(q), (2.6)
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where

L(q) ≜
∫

q(X) ln

{
p(Z,X)

q(X)

}
dX, (2.7)

KL(q∥p) ≜ −
∫

q(X) ln

{
p(X|Z)
q(X)

}
dX ≥ 0 (2.8)

are the ELBO and the KL divergence terms. Here, q(X) is the approximate posterior

distribution which is arbitrary, and can be approximated and optimized. Note that q(X)

may depend on the observations Y, but we do not explicitly include it here for the sake

of notational brevity.

In the above, maximizing the ELBO L(q) would render an approximate distribu-

tion q that is close to the original model evidence, because the KL divergence is non-

negative. The maximum of L(q) occurs when q(X) = p(X|Z), but p(X|Z) is computa-

tionally intractable. Therefore, we impose a fully factorized posterior structure on q, i.e.,

q(X) =
∏N

i=1 qi(Xi). Substituting this into the ELBO, and considering the optimization

over one of the factors, say qj, we get

L(q) =
∫ ∏

i

qi

(
ln p(Z,X)−

∑
l

ln ql

)
dX

= −KL (qj∥p̃(Z,Xj)) + const. (2.9)

where the constant terms do not depend on qj, and p̃(Z,Xj) is defined using ln p̃(Z,Xj) ≜

Ei ̸=j [ln p(Z,X)] + const., where the notation Ei ̸=j[.] denotes the expectation with respect

to the distributions q1(X1), . . ., qN(XN) except qj(Xj). Now, L(q) is maximized with

respect to qj when the KL divergence term in (2.9) is minimized, which in turn occurs

when qj(Xj) = p̃(Z,Xj). Therefore, the optimal marginal distribution is

qj(Xj) = const× exp (Ei ̸=j [ln p(Z,X)]) , (2.10)

where the constant is chosen such that qj becomes a probability distribution. From (2.10),

the optimal qj depends on the distributions {qi}i ̸=j, which also need to be evaluated. The
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VBI algorithm proceeds by initializing N − 1 latent distributions {qi}Ni=1, ̸=j and finding

the other distribution qj in an iterative manner. This recipe falls in the category of

minorization-maximization (MM), which solves a maximization problem by iteratively

obtaining a lower bound to the objective function and maximizing it [64]. It is known

that MM based optimization is guaranteed to converge to a stationary point of the original

optimization problem from any initialization.

In addition to data detection, the soft input channel decoder also involves information

bits as latent variables, which adds to the complexity of the channel estimation and

symbol detection. We include the belief propagation based channel decoder as a separate

block which seamlessly integrates with our solution via the extrinsic information. This

architecture provides the flexibility of allowing different combinations for scheduling the

exchange of messages between the VB (for channel estimation and symbol detection) and

BP (for channel decoding) algorithms. For e.g., one can run several iterations of VB after

which the BP can be scheduled, or both can run one after another after executing only

one iteration each, etc. We now proceed to develop a VBI based algorithm for our joint

channel estimation and data decoding problem in the uplink of a massive MIMO system

with low-resolution ADCs.

2.5 Variational Bayes Joint Channel Estimation and

Soft Symbol Decoding

In this section, we derive the joint channel estimation and soft symbol decoding algorithm

for an uplink massive MIMO system with low-resolution ADCs. Typically, in iterative

detection and decoding methods, point estimates of the channel and data symbols are

computed and converted to bit LLRs using the input-output relationships of wireless

channels. These LLRs are input to the channel decoder to obtain the decoded informa-

tion bits. Iterative channel estimation and data decoding in unquantized MIMO systems

has been well-studied in the literature. However, this thesis addresses the channel esti-

mation and data decoding in massive MIMO systems with low-resolution ADCs being
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employed at the receivers (and in addition, considering spatially correlated channels be-

tween the users and the base station.) We provide a unified framework for joint channel

estimation and data decoding in massive MIMO single-carrier systems, in contrast to

the conventional iterative approach. Moreover, the developed solution directly infers the

posterior distributions of the channel and data symbols rather than only point estimates,

and in a computationally and analytically tractable manner, using which bit-LLRs are

computed. This method of obtaining the LLRs improves their quality, which translates to

better channel decoding performance. Moreover, the guaranteed convergence compared to

other approximate inference approaches makes it appealing from a practical standpoint.

Therefore, the combined benefits of inferring the posterior distributions of the channel and

data symbols using a unified framework, its guaranteed and fast convergence, motivates

the use of a VB procedure for solving channel estimation and data decoding problems in

massive MIMO systems.

We first present our algorithm in the simplest case of perfect CSIR with unquantized

received data signal (Sec. 2.5.1), followed by the case with statistical CSIR and unquan-

tized pilot and data signals (Sec. 2.5.2), then the case of statistical CSIR with quantized

received signals (Sec. 2.5.3), and finally no CSIR with quantized pilot and data signals

(Sec. 2.5.4). In Sec. 2.5.5, we combine the VB receiver with a belief propagation (BP)

based channel decoder to further improve the coded BER. As explained earlier, this gives

flexibility in configuring the VB and BP either jointly or separately. Our approach of

presenting our VB based algorithms by adding each imperfection one after the other not

only eases the exposition, it also allows us to benchmark results, analytically interpret

the algorithms, and makes it convenient to apply the algorithms in a variety of settings.

In Sec. 2.5.6, we elucidate the computational complexity of the variational Bayesian al-

gorithm in the quantized case, and discuss ways to further reduce the complexity.

2.5.1 Perfect CSIR and Unquantized Observations

We assume that the receiver has perfect knowledge of the channel and has access to

unquantized observations Zd = HXd +Wd. Here, the transmit data symbols Xd are the
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latent variables whose posterior distribution needs to be inferred. The logarithm of the

joint distribution of the observations and the latent variables can be written as

ln p(Zd,Xd|H, σ2
w) = ln p(Zd|Xd,H, σ2

w) + ln p(Xd). (2.11)

Since the additive noise is complex Gaussian distributed,

p
(
Zd|Xd,H;σ2

w

)
=

1

(πσ2
w)

τd Nr
× exp

(
− 1

σ2
w

τd∑
t=1

∥zd,t −Hxd,t∥22

)
, (2.12)

and since Xd is uniformly distributed over the M -QAM constellation, p(Xd) = 1
M(τd K) .

Our goal is to find the posterior distribution p(Xd|Zd,H, σ2
w). We write the logarithm of

the model evidence, ln p(Zd), as follows:

ln p(Zd) = L(q) + KL(q ∥ p) ≥ L(q), (2.13)

where

L(q) ≜
∫

q(Xd) ln

{
p(Xd,Zd)

q(Xd)

}
dXd, (2.14)

KL(q∥p) ≜ −
∫

q(Xd) ln

{
p(Xd|Zd)

q(Xd)

}
dXd ≥ 0 (2.15)

are the ELBO and the KL divergence terms, respectively. Here, q(Xd) is an approximate

posterior distribution, which is arbitrary and can be optimized. We formally state the

ELBO optimization problem as

qopt = argmax
q∈P

L(q)

= argmin
q∈P

KL(q ∥ p), (2.16)

where P is the space of probability distributions.

In the above, maximizing the ELBO L(q) would render an approximate distribution

q that is close to the original model evidence, because the KL divergence is non-negative.
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The maximum of L(q) occurs when q(Xd) = p(Xd|Zd), but p(Xd|Zd) is computationally

intractable. Therefore, we impose a factorized posterior structure on q, i.e., q(Xd) =∏K
k=1

∏τd
t=1 qkt(xd,kt). Substituting this into the ELBO, and considering one of the factors,

say qkt ≜ q(xd,kt), we get

L(q) = −KL (qkt∥p̃(Zd, xd,kt)) + const. (2.17)

where the const. terms do not depend on qkt, and p̃(Zd, xd,kt) is defined using

ln p̃(Zd, xd,kt) ≜ E(i,l)̸=(k,t) [ln p(Zd,Xd)] + const., where the notation E(i,l)̸=(k,t)[·] denotes

the expectation with respect to the distributions q11(xd,11), . . ., qKτd(xd,Kτd) except qkt(xd,kt).

Now, L(q) is maximized with respect to qkt when the KL divergence term in (2.17) is

minimized, which in turn occurs when qkt(xd,kt) = p̃(Zd, xd,kt). Therefore, the optimal

marginal distribution is

qkt(xd,kt) = const.× exp
(
E(i,l)̸=(k,t) [ln p(Zd,Xd)]

)
, (2.18)

where the constant is chosen such that qkt becomes a probability distribution. From

(2.18), the optimal qkt depends on the distributions {qiℓ}(i,ℓ)̸=(k,t), which also need to be

evaluated. The VBI algorithm proceeds by initializing latent distributions {qiℓ}(i,ℓ)̸=(k,t)

and finding qkt in an iterative manner across all k and t. This recipe falls in the category

of minorization-maximization (MM), which solves a maximization problem by iteratively

obtaining a lower bound to the objective function and maximizing it [64]. It is known that

MM based optimization is guaranteed to converge to a stationary point of the original

optimization problem from any initialization.

Thus, based on the above discussion, we impose a fully factorized structure on the ap-

proximate posterior, namely, p (Xd|Zd,H, σ2
w) ≈

∏K
k=1

∏τd
t qxd,kt

(xd,kt). Now, we compute

the approximate posterior q(xd,kt), k = 1, . . . , K, t = 1, . . . , τd. To this end, we compute

the following expectation using the joint distribution in (2.11):

ln qxd,kt
(xd,kt) =

〈
ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (Xd)

〉
, (2.19)
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where ⟨·⟩ denotes the expectation with respect to all the latent variables except xd,kt, and

is computed using the approximate posterior distribution q(X). Taking the exponential

on both sides of (2.19) and normalizing to obtain a probability distribution, after some

algebra, we get

qxd,kt
(sm) =

exp
(
fk,t(sm)

)
∑

s′∈M exp
(
fk,t(s′)

) , m = 1, . . . ,M, (2.20)

with fk,t(s) defined in (2.21).

fk,t(s) ≜ − 1

σ2
w

(
∥hk∥2 |s|2 − 2ℜ

[
hH
k

(
zd,t −

K∑
k′=1
k′ ̸=k

hk′
〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s). (2.21)

soptk,t = argmin
s∈M

1

σ2
w

(
∥hk∥2 |s|2 − 2ℜ

[
hH
k

(
zd,t −

K∑
k′=1
k′ ̸=k

hk′
〈
xd,k′t

〉)
s∗
])

− ln p(xd,kt = s).

(2.22)

From (2.20), we see that qxd,kt
is Boltzmann distributed (it is also known as the softmax

function and is widely used in machine learning applications as an output activation

function.) The mean and mean squared values of xd,kt under the distribution qxd,kt
can be

computed as ⟨xd,kt⟩ =
∑M

m=1 sm qxd,kt
(sm), ⟨|xd,kt|2⟩ =

∑M
m=1 |sm|2 qxd,kt

(sm).

The distribution qxd,kt
depends only on the means of the other latent variables {xd,k′t}k′ ̸=k

taken with respect to their approximate distributions. Therefore, we initialize the means

of the distributions qxd,kt
, k = 1, . . . , K and t = 1, . . . , τd arbitrarily and apply (2.20)

iteratively across k and t till the log likelihood in (2.19) converges for all k and t. As men-

tioned earlier, this procedure converges to a stationary point of the original optimization

problem of choosing q to maximize the model evidence in (2.13). The pseudocode for the

VB procedure for the soft symbol decoding is shown in Algorithm 1.

Remark 1. In an uncoded system, the receiver decodes the transmitted symbol by solving

an optimization problem mentioned in (2.22). Given the aprori distribution of the data
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Algorithm 1: VB Soft Symbol Decoding with Perfect CSIR

Input: Zd, {h1, . . . ,hK},M,M = {s1, . . . , sM}, τd, σw

Output: qxd,kt
, ⟨xd,kt⟩ ∀k ∈ [K], t ∈ [τd]

1: Initialize qxd,kt
(xd,kt), ⟨xd,kt⟩ = 0,∀k ∈ [K], t ∈ [τd]

2: repeat

3: for k = 1 to K, t = 1 to τd do

4: for m = 1 to M do

5: Compute qxd,kt
(sm) using (2.20) and (2.21).

6: end for

7: ⟨xd,kt⟩ =
∑

s∈M s qxd,kt
(s).

8: ⟨|xd,kt|2⟩ =
∑

s∈M |s|2 qxd,kt
(s).

9: end for

10: until a stopping condition is met.

symbols p(xd,kt = s), the above equation can be interpreted as successive interference can-

cellation followed by maximum aposteriori probability (MAP) decoding of a single user’s

data symbol. This reduces the exponential complexity of a MAP receiver to linear com-

plexity in the number of UEs. However, in low resolution quantized systems (discussed

later), the analog input to the receiver is not observed, and the above approach may lead

to suboptimal performance. In this case, VBI provides a systematic approach to updat-

ing the soft symbol estimates by incorporating the posterior distribution induced by the

quantization.

In the next subsection, we remove the perfect CSIR assumption and infer the pos-

terior distributions of the channel as well as the data symbols given the unquantized

observations.
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2.5.2 Statistical CSIR and Unquantized Observations

In this subsection, we solve the joint channel estimation and soft symbol decoding problem

in an unquantized setup. Therefore, the unquantized received signals

Zp = [zp,1, . . . , zp,τp ] = HXp +Wp (2.23)

Zd = [zd,1, . . . , zd,τd ] = HXd +Wd (2.24)

are the observations. The channel H and the data symbols Xd are the latent variables

whose posterior distributions need to be inferred. For this problem, a message passing

based approach is adopted in [100, 101] in a MIMO OFDM setup where the channel has

a diagonal structure, whereas we use an iterative VBI framework which can be used for

arbitrary channels. Similar to the perfect CSIR case, we impose a factorized structure

on the posterior as follows: p (Xd,H|Zp,Zd,Xp;R, σ2
w) ≈ q (Xd) q (H) ,3 where q (H) =∏K

k=1 q (hk) , q (Xd) =
∏K

k=1

∏τd
t=1 qxd,kt

(xd,kt) .

Using the structure of the model in Fig. 2.2, we factorize the joint distribution of the

observations and latent variables as

P
(
Zp,Zd,H,Xd|Xp;R, σ2

w

)
= P

(
Zp|Xp,H;σ2

w

)
P
(
Zd|Xd,H;σ2

w

)
P (H|R)P (Xd) .

(2.25)

The likelihood functions of the pilot and data observations Zp and Zd given the channel

H, the pilots Xp, and the data Xd are

P
(
Zp|Xp,H;σ2

w

)
=

1

(πσ2
w)

τp Nr
exp

(
− 1

σ2
w

τp∑
t=1

∥zp,t −Hxp,t∥2
)
, (2.26)

P
(
Zd|Xd,H;σ2

w

)
=

1

(πσ2
w)

τd Nr
exp

(
− 1

σ2
w

τd∑
t=1

∥zd,t −Hxd,t∥2
)
, (2.27)

3We drop the subscripts on q for notational simplicity.
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respectively. Also, the prior distribution on the channel H is

p (H|R) =
K∏
k=1

1

πNr det(Rk)
exp

(
−

K∑
k=1

hH
k R

−1
k hk

)
. (2.28)

As before, the data symbolsXd are drawn i.i.d. uniformly from theM -QAM constellation.

Our goal is to compute the approximate posterior distributions q(Xd) and q(H). As

mentioned in the previous section, we optimize the distributions by minimizing the KL di-

vergence between the original and approximate posterior. We present the steps associated

in obtaining the approximate posterior distributions q(Xd) and q(H) below.

2.5.2.1 Computation of q(hk)

We compute the approximate posterior distribution q(hk) of the channel between the kth

user and the BS using the joint distribution in (2.25), as follows:

ln q (hk) ∝
〈
ln p

(
Zp|Xp,H;σ2

w

)
+ ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (H|R)

〉
, (2.29)

where ⟨·⟩ denotes the expectation of the joint distribution over all the latent variables

excluding hk. In (2.29), we only include the terms involving hk. Upon simplification, we

get (2.30).

ln q (hk) ∝ −
[
hH
k

{∑τp
t=1 |xp,kt|2 +

∑τd
t=1⟨|xd,kt|2⟩

σ2
w

INr +R−1
k

}
hk

− 2ℜ
{
hH
k

(
1

σ2
w

( τp∑
t=1

(
zp,t −

K∑
k′=1
k′ ̸=k

⟨hk′⟩xp,k′t

)
x∗
p,kt

+

τd∑
t=1

(
zd,t −

K∑
k′=1
k′ ̸=k

⟨hk′⟩⟨xd,k′t⟩
)
⟨x∗

d,kt⟩
))}]

. (2.30)

Σhk
=

(∑τp
t=1 |xp,kt|2 +

∑τd
t=1⟨|xd,kt|2⟩

σ2
w

INr +R−1
k

)−1

, (2.31)
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⟨hk⟩ =
1

σ2
w

Σhk

( τp∑
t=1

(
zp,t −

K∑
k′=1
k′ ̸=k

⟨hk′⟩xp,k′t

)
x∗
p,kt +

τd∑
t=1

(
zd,t −

K∑
k′=1
k′ ̸=k

⟨hk′⟩⟨xd,k′t⟩
)
⟨x∗

d,kt⟩
)
.

(2.32)

Taking the exponential on both sides of (2.30), we see that the structure is that of a

complex normal distribution with covariance and mean given by (2.31) and (2.32), re-

spectively.

Remark 2. We provide an interesting interpretation of the channel estimate in (2.32).

Consider a single user MIMO channel estimation problem with pilots xp ∈ Cτp×1 trans-

mitted over a duration of τp symbols. The received pilot symbols are given by Yp =

hxH
p + Wp ∈ CNr×τp, where h ∈ CNr×1 is the channel distributed as CN (0,R) and

Wp ∈ CNr×τp is the additive noise whose entries are i.i.d. CN (0, σ2
w). Post-multiplying

Yp with xp, we get Ypxp = h∥xp∥22 +Wpxp. The MMSE estimate of h can be computed

to be

ĥMMSE =
(
∥xp∥22INr + σ2

wR
−1
)−1

Ypxp. (2.33)

Now, comparing the solution obtained in (2.32) and (2.31) with (2.33), we see that the

channel estimate ⟨hk⟩ of the kth user in (2.32) is an MMSE estimate assuming the inter-

ference caused by the remaining K − 1 users is cancelled successfully. Therefore, by using

a factorized structure on the posterior distribution, and assuming successful interference

cancellation, the channel estimate obtained in (2.32) matches with the Bayes’ optimal

MMSE estimator.

2.5.2.2 Computation of qxd,kt
(xd,kt)

In this subsection, we present the steps involved in the computation of the approximate

posterior distribution qxd,kt
(xd,kt) of the k

th user’s data symbol transmitted during the tth

symbol interval. Similar to the computation of q(hk), we use the joint distribution (2.25)
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to compute the expectation in (2.34) with respect to all the latent variables except xd,kt.

ln qxd,kt
(xd,kt) ∝ − 1

σ2
w

(〈
∥hk∥2

〉
|xd,kt|2 − 2ℜ

[〈
hk

〉H(
zd,t −

K∑
k′=1
k′ ̸=k

〈
hk′
〉〈
xd,k′t

〉)
x∗
d,kt

])

+ ln p(xd,kt). (2.34)

fk,t(s) = − 1

σ2
w

(〈
∥hk∥2

〉
|s|2 − 2ℜ

[〈
hk

〉H(
zd,t −

K∑
k′=1
k′ ̸=k

〈
hk′
〉〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s).

(2.35)

We substitute the values of xd,kt from the M−QAM constellation in the above equation

to get qxd,kt
(xd,kt = s) in the same form as (2.20), with fk,t(s) defined in (2.35), where s

belongs to a symbol from the M−QAM constellation. Similar to the perfect CSIR case,

qxd,kt
(xd,kt) is Boltzmann distributed. We compute the mean and mean squared values of

xd,kt in the same manner as in the previous subsection. We present the pseudocode for

the above procedure in Algorithm 2.

Remark 3. Both the channel estimate in (2.32) and the soft symbol estimator in (2.35)

depend on all the data symbols. Since the channel remains constant over the entire frame,

iterative channel estimation and data detection entails using all the data symbols. Symbol-

by-symbol detection is not optimal here, unlike the case where either perfect CSIR is

assumed to be available or pilot-only based channel estimates are used for data detection.

Note that the approximate marginal posterior distributions of the latent variables are

dependent on each other. The algorithm runs by randomly initializing the statistics of the

factorized distributions of the latent variables, and cycling through to iteratively update

the distributions.



Chapter 2. Massive MIMO Single Carrier Systems with Low Resolution ADCs 48

Algorithm 2: VB Joint Channel Estimation and Soft Symbol Decoding with

Statistical CSIR
Input: Zp,Zd, {R1, . . . ,RK},Xp,M , M = {s1, . . . , sM}, τp, τd, σw

Output: {⟨h1⟩, . . . , ⟨hK⟩}, qxd,kt
, ⟨xd,kt⟩ ∀k ∈ [K], t ∈ [τd]

1: Initialize qxd,kt
(xd,kt), ⟨xd,kt⟩ = 0,∀k ∈ [K], t ∈ [τd]

2: repeat

3: for k = 1 to K, t = 1 to τd do

4: for m = 1 to M do

5: Compute qxd,kt
(sm) using (2.20) and (2.35).

6: end for

7: ⟨xd,kt⟩ =
∑

s∈M s qxd,kt
(s).

8: ⟨|xd,kt|2⟩ =
∑

s∈M |s|2 qxd,kt
(s).

9: end for

10: for k = 1 to K do

11: Compute Σhk
and ⟨hk⟩ using (2.31) and (2.32), respectively.

12: end for

13: until a stopping condition is met.

2.5.3 Statistical CSIR and Quantized Observations

In this subsection, we infer the marginal posterior distributions of the data symbols

and the channel given the quantized observations Yp = Qb(Zp) = Qb (HXp +Wp),

Yd = Qb(Zd) = Qb (HXd +Wd) and the pilot symbols Xp. The joint distribution of

the observations and latent variables is factorized as

p
(
Yp,Yd,H,Xd|Xp;σ

2
w,R

)
= p

(
Yp|Xp,H;σ2

w

)
p
(
Yd|Xd,H;σ2

w

)
p (H|R) p (Xd) .

The conditional distribution of the quantized observations Yd given H,Xd is given by

p
(
Yd|Xd,H;σ2

w

)
=

∫
Zd

p (Yd |Zd) p
(
Zd|Xd,H;σ2

w

)
dZd
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=

∫ Z
(hi)
d

Z
(lo)
d

1

(πσ2
w)

Nrτd
exp

(
− 1

σ2
w

∥Zd −HXd∥2F
)
dZd, (2.36)

where Z
(lo)
d and Z

(hi)
d are the lower and upper thresholds of the quantizer corresponding

to the observation Yd. The conditional distribution of the quantized pilot observations

also has a similar structure as (2.36). Now, to obtain a closed form expression for the

approximate posterior distributions of the latent variables using VBI, it is necessary to

compute the expectation of the logarithm of the difference of two cumulative distribu-

tion functions of a complex normal random vector, which is not straightforward. We

circumvent this problem by introducing the unquantized pilot and data observations as

latent variables. We will see that this leads to a convenient analytical expression for the

posterior distribution.

The conditional distributions of the unquantized observations and the channel are as

derived in Sec. 2.5.2. The conditional distributions of the quantized observations, given

the unquantized received signals, are given by

p (Yd|Zd) = 1
(
Zd ∈ [Z

(lo)
d ,Z

(hi)
d ]
)
,

p (Yp|Zp) = 1
(
Zp ∈ [Z(lo)

p ,Z(hi)
p ]
)
,

(2.37)

where 1(·) is the indicator function and the arguments of the indicator function Z
(lo)
d ,Z

(hi)
d

and Z
(lo)
p ,Z

(hi)
p are the lower and upper limits of the quantizer corresponding to the ob-

servations Yd and Yp, respectively. To elaborate, let us take an example of quantization

of a scalar z (z(lo) ≤ z ≤ z(hi)) to a value y that takes values from a discrete set Q with

cardinality 2b, where b is the number of bits of the quantizer. Note that this discrete

set depends on the choice of the quantizer. For example, a uniform quantizer contains

uniformly spaced values. Now, the value to be quantized fully specifies the output of the

quantizer, i.e., the probability mass function of the quantizer output is a Kronecker delta

function.
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We impose a factorized structure on the posterior distribution of the latent variables:

p
(
Zp,Zd,Xd,H|Yp,Yd,Xp,R, σ2

w

)
≈ q (Zp) q (Zd) q (Xd) q (H) , (2.38)

where

q (H) =
K∏
k=1

q (hk) , q (Xd) =
K∏
k=1

τd∏
t=1

qxd,kt
(xd,kt) , (2.39)

q (Zd) =

τd∏
t=1

q (zd,t) , q (Zp) =

τp∏
t=1

q (zp,t) . (2.40)

We compute the approximate marginal posterior distributions of the latent variables in a

similar manner as in Sections 2.5.1 and 2.5.2, and outline the differences below.

2.5.3.1 Computation of q(hk)

We compute the approximate posterior distribution q(hk) of the channel between the kth

user and the BS by taking expectation of the natural logarithm of the joint probability

distribution with respect to the approximate distributions of all the latent variables ex-

cluding hk. This computation is similar to that in Sec. 2.5.2, except that the unquantized

observations Zp and Zd are latent variables. The final expression is as shown in (2.41).

ln q (hk) ∝ −

[
hH
k

{∑τp
t=1 |xp,kt|2 +

∑τd
t=1⟨|xd,kt|2⟩

σ2
w

INr +R−1
k

}
hk

− 2ℜ

{
hH
k

(
1

σ2
w

( τp∑
t=1

(
⟨zp,t⟩ −

K∑
k′=1
k′ ̸=k

⟨hk′⟩xp,k′t

)
x∗
p,kt

+

τd∑
t=1

(
⟨zd,t⟩ −

K∑
k′=1
k′ ̸=k

⟨hk′⟩⟨xd,k′t⟩
)
⟨x∗

d,kt⟩
))}]

. (2.41)

Σhk
=

(∑τp
t=1 |xp,kt|2 +

∑τd
t=1⟨|xd,kt|2⟩

σ2
w

INr +R−1
k

)−1

, (2.42)
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⟨hk⟩ =
1

σ2
w

Σhk

( τp∑
t=1

(
⟨zp,t⟩ −

K∑
k′=1
k′ ̸=k

⟨hk′⟩xp,k′t

)
x∗
p,kt +

τd∑
t=1

(
⟨zd,t⟩ −

K∑
k′=1
k′ ̸=k

⟨hk′⟩⟨xd,k′t⟩
)
⟨x∗

d,kt⟩
)
.

(2.43)

fk,t(s) = − 1

σ2
w

(〈
∥hk∥2

〉
|s|2 − 2ℜ

[〈
hk

〉H(〈
zd,t
〉
−

K∑
k′=1
k′ ̸=k

〈
hk′
〉〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s).

(2.44)

Taking the exponential on both sides of (2.41), we see that the structure is that of a

complex normal distribution with covariance and mean given by (2.42) and (2.43), re-

spectively.

2.5.3.2 Computation of qxd,kt
(xd,kt)

Following a similar approach as in Sections 2.5.1 and 2.5.2, qxd,kt
(xd,kt), k = 1, . . . , K,

t = 1, . . . , τd is given by the Boltzmann distribution in (2.20), where s is an M−QAM

symbol, with fk,t(s) defined in (2.44). We compute the mean and mean square values of

qxd,kt
in a similar manner as in Sec. 2.5.1.

2.5.3.3 Computation of q(zd,t) and q(zp,t)

We obtain the distribution q(zd,t) as follows:

ln q (zd,t) =
〈
ln p (Yp|Zp) + ln p (Yd|Zd) + ln p

(
Zp|Xp,H;σ2

w

)
+ ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (H|R) + ln p (Xd)⟩

∝
〈
ln1
(
zd,t ∈ [z

(lo)
d,t , z

(hi)
d,t ]
)
− 1

σ2
w

∥zd,t −Hxd,t∥2
〉
.
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Thus, we see that q (zd,t) is a truncated complex normal distribution with mean

⟨zd,t⟩ = µzd,t +

ϕ

(
z
(lo)
d,t −µzd,t

σw/
√
2

)
− ϕ

(
z
(hi)
d,t −µzd,t

σw/
√
2

)
Φ

(
z
(hi)
d,t −µzd,t

σw/
√
2

)
− Φ

(
z
(lo)
d,t −µzd,t

σw/
√
2

) σw√
2
, (2.45)

where µzd,t = ⟨H⟩ ⟨xd,t⟩. The division operation is a scalar element-wise division operated

individually on real and imaginary components. We compute the approximate posterior

distribution q(zp,t) of the unquantized received pilot symbols in the same manner as q(zd,t),

and its mean is given by

⟨zp,t⟩ = µzp,t +

ϕ

(
z
(lo)
p,t −µzp,t

σw/
√
2

)
− ϕ

(
z
(hi)
p,t −µzp,t

σw/
√
2

)
Φ

(
z
(hi)
p,t −µzp,t

σw/
√
2

)
− Φ

(
z
(lo)
p,t −µzp,t

σw/
√
2

) σw√
2
, (2.46)

where µzp,t = ⟨H⟩xp,t. Note that computing q(zp,t) and q(zd,t) does not involve an

expectation of the logarithm of integrals, as mentioned earlier.

The pseudocode for the VB procedure for the joint channel estimation and soft symbol

decoding is shown in Algorithm 3. The VBI algorithm starts by randomly initializing the

latent variables and maximizing the ELBO by fixing all but one hidden variable. Once

the probabilities qxd,kt
are obtained, we choose the symbol with the highest probability as

the decoded symbol for each k ∈ {1, . . . , K} and t ∈ {1, . . . , τd} in the case of uncoded

communication. For coded communication applications, it is straightforward to compute

the LLRs of the data bits from qxd,kt
and pass them as inputs to the channel decoder [1].

Also, the mean of the marginal posterior of the channel can be used as a channel estimate

for SNR computation, CSI feedback etc.

2.5.4 No CSIR and Quantized Observations

In this subsection, we extend the VB approach to the case where there is no information

about the channel statistics also. This situation may arise in massive machine type

communication applications where a large number of low power UEs sporadically wake
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Algorithm 3: QVB Joint Channel Estimation and Soft Symbol Decoding with

Statistical CSIR
Input: Yp,Yd, {R1, . . . ,RK},Xp,M , M = {s1, . . . , sM}, τp, τd, σw

Output: {⟨h1⟩, . . . , ⟨hK⟩}, qxd,kt
, ⟨xd,kt⟩ ∀k ∈ [K], t ∈ [τd]

1: Initialize ⟨Zp⟩, ⟨Zd⟩, qxd,kt
(xd,kt), ⟨xd,kt⟩ = 0,∀k ∈ [K], t ∈ [τd]

2: repeat

3: for k = 1 to K, t = 1 to τd do

4: for m = 1 to M do

5: Compute qxd,kt
(sm) using (2.20) and (2.44).

6: end for

7: ⟨xd,kt⟩ =
∑

s∈M s qxd,kt
(s).

8: ⟨|xd,kt|2⟩ =
∑

s∈M |s|2 qxd,kt
(s).

9: end for

10: for k = 1 to K do

11: Compute Σhk
and ⟨hk⟩ using (2.42) and (2.43), respectively.

12: end for

13: for t = 1 to τp do

14: Compute ⟨zp,t⟩ using (2.46).

15: end for

16: for t = 1 to τd do

17: Compute ⟨zd,t⟩ using (2.45).

18: end for

19: until a stopping condition is met.

up and transmit data to the BS or AP. In such scenarios, the assumption of knowledge of

channel statistics at the BS or AP may not be appropriate. We assume that the channels

between a UE and the different antennas at the BS are uncorrelated and that the LSFCs

are the same across all BS antennas. We impose a non-informative conjugate Gamma

prior for the inverse of the LSFCs. Let αk denote the inverse of the LSFC between the
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kth UE and the BS and let α = [α1, . . . , αK ]
T . The prior on αk is given by

p(αk; a, r) =
ra

Γ(a)
αa−1
k exp(−rαk), (2.47)

where a and r are the parameters of the Gamma distribution. Conditioned on αk, the

channel hk of the kth UE is distributed as CN (0, α−1
k INr). The joint distribution of the

observed and the latent variables is given by

p
(
Yp,Yd,Zp,Zd,H,Xd,α;Xp, σ

2
w, a, r

)
= p (Yp|Zp) p (Yd|Zd) p

(
Zp|Xp,H;σ2

w

)
p
(
Zd|Xd,H;σ2

w

)
p (H|α) p (Xd) p (α; a, r) .

(2.48)

We impose a factorized structure on the posterior distribution:

p
(
Zp,Zd,Xd,H,α|Yp,Yd;Xp, σ

2
w, a, r

)
≈ q (Zp) q (Zd) q (Xd) q (H) q (α) , (2.49)

where

q (H) =
K∏
k=1

q (hk) , q (Xd) =
K∏
k=1

τd∏
t=1

q (xd,kt) , (2.50)

q (Zd) =

τd∏
t=1

q (zd,t) , q (Zp) =

τp∏
t=1

q (zp,t) , q (α) =
K∏
k=1

q (αk) . (2.51)

The computation of q(Zp), q(Zd), q(H) and q(Xd) is the same as in Sec. 2.5.3. We

obtain q(α) by taking the expectation of the logarithm of the joint distribution in (2.48)

with respect to all the latent variables except α to get

ln q(αk) ∝ (a+Nr − 1) lnαk − αk(r + ⟨∥hk∥2⟩). (2.52)

Taking the exponential on both sides, we observe that q(αk) is Gamma distributed with
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Algorithm 4: QVB Joint Channel Estimation and Soft Symbol Decoding with

No CSIR
Input: Yp,Yd,Xp,M ,M = {s1, . . . , sM},τp,τd,σw,a, r,Nr

Output: {⟨h1⟩, . . . , ⟨hK⟩}, qxd,kt
, ⟨xd,kt⟩ ∀k ∈ [K], t ∈ [τd]

1: Initialize ⟨Zp⟩, ⟨Zd⟩, qxd,kt
(xd,kt), ⟨xd,kt⟩ = 0,∀k ∈ [K], t ∈ [τd], {⟨α1⟩, . . . , ⟨αK⟩}

2: repeat

3: Computation of qxd,kt
, ⟨xd,kt⟩, ⟨|xd,kt|2⟩: Follow steps 3 to 8 of Algorithm 3.

4: for k = 1 to K do

5: Compute

Σhk
=
(∑τp

t=1 |xp,kt|2+
∑τd

t=1⟨|xd,kt|2⟩
σ2
w

+ ⟨αk⟩
)−1

INr .

6: Compute ⟨hk⟩ using (2.43).

7: Compute ⟨∥hk∥2⟩ = Trace(Σhk
) + ∥⟨hk⟩∥2 and ⟨αk⟩ = a+Nr

r+⟨∥hk∥2⟩
.

8: end for

9: Computation of ⟨zp,t⟩ , ⟨zd,t⟩ ∀t: Follow steps 13 to 18 of Algorithm 3.

10: until a stopping condition is met.

shape and rate parameters (a+Nr) and (r+ ⟨∥hk∥2⟩), respectively. The mean of q(αk) is

⟨αk⟩ =
a+Nr

r + ⟨∥hk∥2⟩
. (2.53)

If we denote the LSFC of the kth UE by βk, then ⟨βk⟩ = 1/⟨αk⟩ = (r + ⟨∥hk∥2⟩)/] (a+Nr).

We set a = 0 and r = 10−4 in our simulations. The pseudocode for joint channel estimation

and soft symbol decoding with no CSIR is similar to Algorithm 3; we highlight the changes

in Algorithm 4. Note that the QVB with no CSIR algorithm does not have any matrix

inverse operations, which makes it computationally attractive. Also, the estimation of

⟨αk⟩ involves only K scalar divisions and does not add much complexity to the procedure.
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2.5.5 VB-BP Receiver

In order to improve the BER of a communication system, a typical engineering approach

is to employ an iterative receiver architecture where the posterior beliefs of the output bits

of the channel decoder (belief propagation (BP) decoder in our case) are fed back to the

detector block. However, in commercial wireless systems, the stringent time requirements

to complete the detection and channel decoding task within the transmission interval

needs fast detection and decoding. Our VB approach makes it convenient to implement

such a receiver without additional complexity. Instead of running the VB algorithm

till convergence, we execute only one iteration of Algorithms 2, 3 or 4 and feed the

LLRs obtained to the channel decoder. The BP decoder also runs only one iteration and

outputs the aposteriori LLRs that are used to compute the extrinsic information.4 We

use this to adapt the data prior probability distribution in the next VB iteration. This

approach is also guaranteed to converge as the VB converges to a stationary point from

any initialization, and BP also converges if the associated factor graph is cycle-free. We

illustrate this using an LDPC code with a cycle-free sparse parity check matrix. We find

that the approach converges fast and also leads to a performance improvement of around

0.5 dB compared to performing soft symbol estimation and channel decoding one after

the other. Hence, we use this receiver architecture in our simulations.

2.5.6 Computational Complexity

In this subsection, we analyze the per-iteration computational complexity of the varia-

tional Bayesian algorithms. We provide the complexity of the VB algorithm with sta-

tistical CSIR and quantized observations, as the algorithms for the perfect CSIR and

unquantized observations are special cases with lower complexity. Table 2.1 shows the

order (O) of the per-iteration computational complexity of the steps involved in one iter-

ation of the VB algorithm. The per-iteration complexity of the overall algorithm scales

cubically with the number of rx antennas, quadratically with the number of users, and

4The extrinsic information is obtained by subtracting the LLRs output by the VB receiver from the
LLRs output by the channel decoder.
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Table 2.1:

Per-iteration Complexity of the QVB Algorithm 3

Matrix Order Complexity

⟨Xd⟩ MK2Nrτd

{Σhk
}Kk=1 K(N3

r + τd)

⟨H⟩ KN2
r +K2Nr(τp + τd)

⟨Zp⟩ KNrτp

⟨Zd⟩ KNrτd

linearly with the constellation size and number of pilot and data symbols. In particular,

the complexity is linear in the number of data symbols τd, unlike maximum likelihood

approaches where the complexity grows exponentially with τd. The total time taken by

VB algorithm is low due to its fast and guaranteed convergence to a local optimum. In

our experiments, we find that the VB algorithm typically converges within 16 iterations,

and the improvement from running further iterations is negligible.

2.6 Simulation Results

In this section, we evaluate the normalized mean square error (NMSE) in channel estima-

tion and the data bit error rate (BER) of the VBI algorithms in an uplink massive MIMO

wireless communication system with low-resolution ADCs at the BS. We use an LDPC

channel code from 3GPP 5G NR specifications [103]. We use the parity check matrix

from LDPC base graph 0 with a lifting size Zc set to 8 and set index 0, which results in

176 message bits and 544 coded bits per block. We set Nr = {100, 200}, K = {25, 50}.

We vary τd from 100 to 450 and set the ADC resolution to 3 bits. We also evaluate the

performance with pilot power boosting in which pilots are transmitted at a slightly higher

power level to improve the channel estimation (see Fig. 2.11). Throughout this section,
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the data symbols are drawn i.i.d. from a 4-QAM constellation with unit energy. With

higher order constellations, the performance is similar, with an expected shift in the SNR
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required to achieve a given BER. Except in Fig. 2.8, we fix the maximum number of

iterations to 16, as the BER improvement beyond 16 iterations is marginal.
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pilot power boosting and increased τp.

The channel coefficient between the kth UE and the nth rx antenna at the BS is denoted

by hnk, and hk ≜ [h1k, h2k, . . . , hNrk]
T . We assume that the LSFCs between the kth UE and

each antenna at the BS are the same due to the close spacing between the BS antennas.

We also assume that the transmit antennas at each UE are spatially uncorrelated. We

model the spatial correlation between the rx antennas at the BS using a Kronecker spatial

fading correlation model [104–106]. The channel vector hk is expressed as hk = R
1
2
kh

iid
k ,

where hiid
k is distributed as CN (0, INr), and Rk ∈ CNr×Nr is the spatial correlation matrix

of the kth UE’s channel. The (m,n)th element of Rk is given in (2.54),

[Rk]mn =
βk√
vk

exp

(
− 1

2vk

[
a2kcos

2 (θk
az)− 2jck cos (θ

az
k ) + νaz

k c2ksin
2 (θazk )

])
, (2.54)

where βk is the LSFC of the kth UE, ak =
2πd
λ

√
νel
k (n−m) cos

(
θelk
)
, vk = 1+νaz

k a2sin2 (θazk )

and ck =
2πd
λ

(n−m) sin
(
θelk
)
. Here, λ is the carrier wavelength, d is the antenna spacing;

θazk and θelk are the means of horizontal angle of arrival (AoA) and vertical AoA, respec-

tively; νaz
k and νel

k are the variances of horizontal AoA and vertical AoA, respectively.
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We consider a uniform linear antenna array with the spacing between its elements set

to λ. We set the mean and standard deviation of the horizontal and vertical AoA to

be uniformly distributed between −π/3 and π/3 radians, and 0 and π/6 radians, respec-

tively. The UEs adopt path loss inversion based transmit power control that compensates

for the LSFCs,5 i.e., the diagonal entries of the channel covariance matrix are close to

1 [107,108]. Without power control, if the LSFCs of the UEs’ channels are very different,

the UEs that have small LSFCs will suffer high quantization noise. This leads to low

signal to quantization noise ratio and therefore poor BER. Taking into account possibly

imperfect power control, we assume that the diagonal entries of the channel covariance

matrix are uniformly distributed between 1 and 1.2. For the uncorrelated case, we set the

channel covariance to be INr .

We benchmark the coded BER and NMSE performance of the quantized VB algorithm

with that of a genie channel aided unquantized VB algorithm, an unquantized BiGAMP

based joint channel and data estimator [95] and a unquantized linear MMSE soft-decoder

[1]. We set the maximum number of iterations for the BiGAMP receiver to 500. The

unquantized VB algorithm with perfect CSIR serves as a lower bound for the BER of the

quantized algorithm. We note that there are variants of MMSE decoder such as MMSE-

SIC, but their computational complexities are much higher due to the matrix inversions

involved in every iteration of SIC [98]. Hence, we do not compare against these methods.

Figure 2.3 shows the coded BER when SNR (dB) is varied for Nr = 200, K = 50, τd =

450 and 3 bits quantization when the channel covariance matrix is set to INr . We compare

the performance of the VB algorithm with perfect CSIR (labeled UQVB-CSIR, QVB-

CSIR for the unquantized and quantized cases, respectively) with the performance with

statistical CSIR (labeled UQVB-StCSIR, QVB-StCSIR in the unquantized and quantized

cases, respectively) and no CSIR case (labeled QVB-NoCSIR).

There are three groups of curves. The best performance is achieved by the genie-aided

receivers that have perfect CSIR (QVB-CSIR and UQVB-CSIR). With 3-bit quantization

in the ADCs, the gap between QVB-CSIR and UQVB-CSIR is less than 0.4 dB. The next

5The LFSCs can be estimated at the UEs, for example, using the primary synchronization signals that
are periodically transmitted by the BS.
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set of curves correspond to the VB algorithm with statistical CSIR and no CSIR. There

is almost no performance gap between the quantized VB algorithm with and without

statistical CSIR. Further, as in the perfect CSIR case, the loss due to 3-bit quantization

compared to the unquantized VB algorithm is less than 0.4 dB. We also note that the

performance gap between the first and second set of curves is around 2.5 dB, in both

the quantized and unquantized cases. This illustrates that it is important to account for

the effect of channel estimation errors, in order to realistically estimate the performance.

The performance gap can be reduced by employing pilot power boosting or longer pilot

sequences. UQVB-StCSIR outperforms unquantized BiGAMP (labeled UQ-BiGAMP) by

more than 0.5 dB. Moreover, with only 3 bits quantization, both QVB-StCSIR and QVB-

NoCSIR marginally outperform UQ-BiGAMP. Finally, the worst performance is achieved

by the MMSE based receivers [1], with the gap between the quantized MMSE receiver

and the quantized VB algorithm with no CSIR being nearly 3 dB at a BER of 10−4. The

significantly better performance achieved by the VB algorithms is clear from the plot. In

addition, the gap between the quantized MMSE and the unquantized MMSE receivers

shows that linear receivers can result in suboptimal performance, even if the channel state

is made available to the receiver. For the quantized and unquantized MMSE detectors,

the channels are estimated using the quantized and unquantized pilot received signals,

respectively.

Figure 2.4 shows the BER vs. SNR performance of the VB algorithm with correlated

channels with and without CSIR (curves labeled Kron). We also show the performance

under i.i.d. channels (curves labeled iid). We observe that, in a spatially correlated

scenario, the algorithm that has the knowledge of the channel covariance matrices (Cov-

Kron) performs around 1 dB better at a BER of 10−3 than the algorithms that do not

have the knowledge of the channel covariance matrices (NoCSIR-Kron and LSFC-Kron).

Note that the VB algorithm with NoCSIR assumes i.i.d. channels, which results in a

degraded performance under spatially correlated scenarios. This shows the importance of

utilizing the correlation information when designing receiver schemes. We observe that

the performance of the VB algorithm when the BS has the knowledge of only the LSFCs
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of the UEs’ channels (LSFC-Kron) is poor compared to Cov-Kronecker. Thus, utilizing

only the knowledge of LSFCs is not sufficient, and the full correlation information is

necessary to obtain better performance. Also, under an i.i.d. channel scenario, VB with

NoCSIR (NoCSIR-iid) performs very close to VB with complete knowledge of channel

covariance matrices (Cov-iid). This shows that VB with NoCSIR is able to estimate the

LSFCs accurately with very little additional computational complexity. We see an error

floor in the spatially correlated case at high SNRs. This is because, the channel AoAs are

spread within a narrow range (standard deviation of π/6), which results in non-negligible

multiuser interference at high SNRs. We also observe that, in the spatially correlated

scenario, the unquantized BiGAMP based receiver (labeled UQ-BiGAMP-Kron) performs

about 1 dB worse than Cov-Kron with 3 bit ADCs, and marginally worse than LSFC-Kron

with 3 bit ADCs. The BiGAMP receiver assumes i.i.d. channels but has the knowledge of

the LSFCs. Finally, the NoCSIR-Kron curve, which is obtained without knowledge of the

channel covariance matrices or the LSFCs, but 3 bits quantization, performs the same as

UQ-BiGAMP-Kron.

Figure 2.5 compares the BER of the QVB algorithms with and without the knowledge

of statistical CSIR for various values of τd, for uncorrelated channels (Rk = INr). The

performance of QVB with no CSIR is only marginally worse than that of QVB with

statistical CSIR. Also, we see a roughly 10-fold improvement BER when the number of

data symbols is doubled. This shows that the VB algorithm is able to effectively use

the data symbols to improve the channel estimates. We recall that the computational

complexity of the receiver for uncorrelated channels is lower than the correlated channel

case, as the channel covariance matrix is diagonal and all the matrix operations can be

computed using scalar computations.

Figure 2.6 shows the BER vs. ADC resolution (in bits) for various rx antenna and

SNR configurations. We set τd = 100, K = 25 and the spatial correlation matrices to INr .

The BER improves as the ADC resolution increases, as expected, but the slope of the

BER curve decreases and becomes almost 0 beyond 4−bits resolution. This illustrates

that low-resolution ADCs are relevant in wireless communication systems, especially in
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massive MIMO systems where the number of antennas are large compared to the number

of users. For example, in order to achieve a BER of 10−3, UEs have to expend twice the

transmit power if the BS is equipped with 100 antennas and 3 bit ADCs compared to

a system with 200 antennas at the BS and 5 bit ADCs. Thus, a 3 dB higher transmit

power at the UEs can lead to significant power savings at the BS. On the other hand,

if a UE does not have the power budget to increase its transmit power, using additional

antennas at the BS can provide the required rx antenna gain. Such tradeoff analyses can

be used by a system designer to configure the system parameters based on the bit budget

and power constraints at the BS and UEs.

We now turn to the channel estimation performance of the VB algorithms. Figure

2.7 shows the NMSE of channel estimation as a function of the SNR (dB), for Nr =

200, K = 50, τd = 450 and 3 bits quantization. The VBI algorithms with quantized

observations provide around 8 dB improvement at an NMSE of −10 dB compared to the

MMSE estimation based on unquantized observations. We also see that the NMSE of the

unquantized VB (UQVB) is almost the same as the 3-bit quantized VB (QVB) algorithm.

This is because the VBI algorithms refine the channel estimates based on the posterior

beliefs of the data symbols. This feature can be directly translated to a reduction in

the training overhead required in massive MIMO systems with low-resolution ADCs, and

thereby improve the achievable spectral efficiency.

Figure 2.8 shows the convergence behavior of the VB algorithms, with Nr = 100,

K = 25, τd = 200 for both unquantized and 3 bits quantization cases. The convergence

behaviors for both the unknown CSIR and genie aided case (with legend suffixed with

CSIR) are shown. We use the means of the estimated data symbols and channel to compute

the normalized error for the perfect CSIR and the unknown CSIR cases, respectively. We

see that the VBI algorithms converge to a normalized error below −20 dB within about 20

iterations. This illustrates that the developed VB algorithms are of polynomial complexity

with fast convergence.

Figures 2.9 and 2.10 show the coded BER and NMSE performance of the VB algo-

rithms, respectively, with Nr = 100, K = 25, SNR = −13.5 dB and 3 bits quantization,
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as a function of the data duration τd. As τd increases, the BER and NMSE of the VBI

algorithms improves, unlike the MMSE receivers. Again, this is because the VBI algo-

rithm uses the posterior beliefs of the data symbols to refine its channel estimates, which

in turn improves the quality of the posterior beliefs of the data symbols. Therefore, the

performance can be dramatically improved by jointly decoding a larger number of data

symbols (up to the coherence time of the channel), leading to a reduced training overhead

even in the presence of low-resolution ADCs.

Figure 2.11 compares the BER across different algorithms when the pilot transmit

power is boosted (PPB) by a certain amount above that of the data transmit power,

and with τp set to K, 2K and 4K. We see that, as the pilot duration increases, the

BS is able to estimate the channels better, resulting in improved performance. A similar

performance improvement occurs with PPB. For example, PPB of 3 dB results in nearly

the same performance as the case when the pilot duration is doubled. We also show the

BER when τd = {250, 300, 350}. If the coherence interval is large, the VBI approach

provides a system designer the option to avoid PPB or increasing τp while still meeting

the QoS requirements.

Figures 2.12 and 2.13 compare the average run times of the QVB algorithm based on

quantized observations with that of unquantized BiGAMP procedure for various values

of the number of users K and the data duration τd, respectively. The simulations were

executed using MATLAB R2020b in an Intel core i7, 3 GHz × 8 CPU with 64 GB

RAM running an Ubuntu 18.04 LTS 64 bits operating system. We use the normalized

mean squared difference in the channel estimate between two successive iterations as

the convergence metric, and set it to 10−5. We see that the total run time taken by

quantized VB algorithm is far less than that of unquantized BiGAMP, even though the

per iteration complexity of BiGAMP scales linearly with system dimensions. This shows

that our quantized VB-BP based joint channel estimation and soft symbol decoding not

only performs better than unquantized BiGAMP, but is also faster.
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2.7 Conclusions

In this chapter, we considered joint channel estimation and soft symbol decoding in a single

carrier uplink massive multiple input multiple output (MIMO) receiver with low-resolution

ADCs. We presented a novel, low-complexity VB procedure that directly outputs the

posterior beliefs of the data symbols. The channel estimates obtained can potentially

be used for signal to interference noise (SINR) computation and link adaptation. We

provided a flexible approach to integrate the VB receiver with a BP channel decoder

via extrinsic information feedback. We evaluated the coded data BER and the NMSE

in the channel estimates obtained by our algorithm using Monte Carlo simulations and

benchmarked it against the state-of-the-art receivers.



Chapter 3

Massive MIMO-OFDM Systems

with Low Resolution ADCs:

Cramér-Rao Lower Bound, Sparse

Channel Estimation, and Soft

Symbol Decoding

3.1 Introduction

Recent research in wireless communications has investigated the use of a massive number

of antennas at the base station (BS) to increase the network capacity and data rates [77].

While the benefits of massive multiple input multiple output (MIMO) communications

are now very well understood, they come at the expense of high power consumption and

hardware cost, which needs to be addressed to make it commercially viable. One potential

solution is to employ low-resolution analog-to-digital converters (ADCs) in the receivers [8,

82, 85]. The power consumption of an ADC increases exponentially with its bit-width.

Hence, in massive MIMO systems with tens or hundreds of antennas and one RF chain

per antenna, employing low-resolution ADCs can result in dramatic power savings [79,80].

70
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Further, low-resolution ADCs relax the stringent linearity range requirements on the RF

circuitry, which in turn reduces the hardware cost [109]. However, they also bring new

challenges in the design of receivers, as advanced signal processing techniques need to be

used to counter the large quantization noise introduced by them. This chapter investigates

several key aspects of receiver design, and presents novel receiver architectures in the

context of multiuser massive MIMO orthogonal frequency division multiplexing (OFDM)

communication with low-resolution ADCs.

Three main challenges arise in the use of low-resolution ADCs in multi-user MIMO-

OFDM systems. First, the non-linearities introduced by coarse quantizers lead to sub-

optimal performance of conventional receivers such as (regularized) zero-forcing (ZF/RZF)

and minimum mean square error (MMSE) detectors [68]. In a conventional OFDM re-

ceiver, we remove the cyclic prefix (CP), decouple the subcarriers using a discrete Fourier

transform (DFT), and perform frequency domain equalization on a per-subcarrier basis.

However, in low-resolution ADC based systems, we obtain the complex baseband time-

domain samples after being coarsely quantized by the ADC, and it is not possible to

decouple the subcarriers by a DFT operation, resulting in inter-carrier interference (ICI).

Due to this, conventional receivers may perform poorly when low-resolution ADCs are

employed.

Second, the pilot signals transmitted by the user equipment (UE) for channel estima-

tion at the base station (BS) are also received through the low-resolution ADCs. This

necessitates the use of long pilot sequences for accurate channel estimation, leading to a

loss in spectral efficiency [69,70,82].

Third, a channel encoder and decoder are integral parts of any commercial wireless

communication system, and are used to correct for errors introduced by the channel.

The channel decoders require the bit log-likelihood ratios (LLRs), rather than hard bit-

decisions, to provide good performance. The bit LLRs are a function of the posterior

beliefs (probabilities) of the data symbols. Therefore, the aim of the receiver is not only

to detect the data symbols, but also to obtain their posterior beliefs (also known as soft

symbols), based on the quantized observations obtained from the low-resolution ADCs.
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3.1.1 Prior Art

We now briefly review the existing literature on channel estimation and data detection

in low-resolution ADC based multi-user MIMO systems, before presenting the key con-

tributions in this chapter. Channel estimation in massive MIMO systems was considered

in [51, 82, 85], while [89, 93, 94, 99, 110–113] develop data detection methods in massive

MIMO single carrier (SC) and multi-carrier systems. Joint/iterative channel estimation

and data detection was considered in [95, 96, 109, 114–116]. In [109], the authors develop

a single iteration mutiuser MIMO-OFDM channel estimator using convex optimization

techniques, and a data detector using a suboptimal soft-output MMSE algorithm. A bi-

linear generalized approximate message passing (BiGAMP) algorithm to solve the joint

channel estimation and data detection problem is developed in [95,96]. The authors in [95]

also analyze the performance of the BiGAMP algorithm using the replica method. Re-

cently, a variational Bayesian (VB) channel estimation and data detection algorithm was

developed in [116], in the context of a single-user single input single output (SU-SISO)

OFDM system. While [116] restricts to a single OFDM symbol, we consider a more

general multiple pilot and data symbols model in a multi-user massive MIMO-OFDM

system.

An angular domain joint sparse channel estimation and data detection algorithm using

the sparse Bayesian learning (SBL) framework in a hybrid millimeter wave communication

system was proposed in [114]. The idea here is to utilize the decoded data symbols as

virtual pilots for channel estimation. The receiver starts by forming an initial estimate

of the channel using the pilot symbols, which is used to detect the data symbols. Then,

in subsequent iterations, the detected data symbols are used as virtual pilots to refine

the channel estimates and re-estimate the data symbols. This process is repeated until a

suitable convergence condition is satisfied [60]. In [115], the authors adopt a supervised

learning framework to solve the joint channel estimation and data decoding problem in a

single carrier massive MIMO system. These approaches usually require careful parameter

tuning for fast convergence and accurate data detection. Moreover, several heuristics are

required to transform the detected data symbols into soft outputs which are required
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for the subsequent channel decoding. Furthermore, none of the above mentioned papers

directly address all three challenges mentioned in the preceding paragraphs.

In this chapter, we develop an iterative delay-domain sparse channel estimation and

soft symbol decoding algorithm for a massive MIMO-OFDM system with low-resolution

ADCs. As a first step, we develop a benchmark to evaluate the performance of any sparse

channel estimator with measurements acquired using low-resolution ADCs. To this end,

we consider a general quantized compressed sensing problem, and derive different types

of Cramér-Rao lower bounds (CRLBs) on the mean squared error (MSE) performance of

an estimator [117,118]. We impose a two-stage hierarchical circularly symmetric complex

Gaussian prior on the estimand (in our case, the channel) parameterized by a diagonal

precision matrix. We further impose a non-informative conjugate Gamma hyperprior on

the diagonal elements of the precision matrix. This results in a Student’s t marginalized

prior on the estimand, which is heavy-tailed and hence promotes sparse solutions.

It is worth mentioning that CRLBs for the compressed sensing problem with unquan-

tized measurements have been derived in [119]. In [120, 121], the CRLB on the MSE of

an estimator with 1-bit measurements is derived under a non-sparse setting. While [120]

derives the CRLB in a deterministic setup, [121] obtains the Bayesian CRLB. To the

best of our knowledge, different types of CRLBs for the estimation of jointly compress-

ible vectors [122] from multi-bit quantized noisy underdetermined measurements does not

exist in the literature. We develop a CRLB for this case in Sec. 3.2. It turns out that

the expectations required to obtain the Bayesian information matrix (BIM) are compu-

tationally intractable, and, consequently, the CRLB cannot be obtained in closed form.

We therefore resort to numerical methods for evaluating the bound. While our CRLB

for the quantized compressed sensing problem is of independent interest, we empirically

illustrate its utility in the context of sparse massive MIMO-OFDM channel estimation by

comparing it with the MSE performance of our algorithm.

Next, we use a statistical inference framework to compute the posterior distributions

of the UEs’ channels and data symbols given the quantized received pilot and data obser-

vations. We adopt a minorization-maximization based procedure called variational Bayes
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(VB) inference, which is a principled approach for developing low-complexity algorithms

for high-dimensional inference problems with guaranteed convergence from any initial-

ization. The key novelty lies in how we construct the underlying probabilistic graphical

models and how we identify and group the latent variables. The latent variables can also

be used to compute side information such as the signal to noise ratio (SNR), which can,

in turn, be used for link adaptation.

3.1.2 Main Contributions

Our main contributions in this chapter are as follows:

� We derive the Bayesian CRLB for the MSE incurred by an estimator for recover-

ing jointly compressible vectors from quantized compressed sensing measurements.

Specifically, we impose a hierarchical circularly symmetric complex Gaussian prior

on the estimand, parameterized by a diagonal precision matrix. The precision ma-

trix is in turn hyper-parameterized by a Gamma distribution. Although the CRLB

is not available in closed-form, it can be evaluated by numerical methods.

� We consider both deterministic and random cases for the precision matrix to obtain

two different CRLBs on the MSE of jointly compressible vectors. Also, in the

case of exactly-sparse signals, we derive a support-aware CRLB, which assumes the

knowledge of the support set, to compute the bound. We analytically show that our

derived CRLB subsumes both the unquantized and 1 bit CRLBs as special cases.

� We exploit the lag/delay domain sparsity of the channels to formulate channel es-

timation in a massive MIMO-OFDM system as a quantized MMV sparse signal

recovery problem. We develop a VB algorithm to infer the posterior distributions

of the channels. We benchmark the MSE performance of the VB channel estimator

with the derived Bayesian CRLB, and empirically show that our estimator meets

the CRLB.

� We then present a quantized VB soft symbol decoding algorithm that uses the

estimated channels to obtain the posterior beliefs of the data symbols. We use
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these posterior statistics to generate virtual pilots, and develop a data-aided channel

estimation procedure to refine the initial channel estimates. Based on this, we

develop an iterative algorithm that alternately runs the soft symbol decoder and

data-aided channel estimator steps. Finally, we generate the bit LLRs from the

posterior symbol probabilities, and input them to the channel decoder.

� We also develop a variant of the iterative channel estimation and data decoding

algorithm, which utilizes the aposteriori bit LLRs output from the channel decoder

to adapt the prior used by the data detector. The resulting combined channel esti-

mator, data detector and channel decoder further improves the system performance.

We evaluate the normalized MSE (NMSE) and coded bit-error-rate (BER) perfor-

mance of the VB algorithms, and bechmark it against the state-of-the-art BiGAMP based

joint channel estimator and data detector [95] and the conventional soft MMSE detec-

tor. Further, we study the impact of the system parameters on the performance of our

algorithm, and provide several interesting insights.

One of the main takeaways from our work is that VB is a powerful and flexible tech-

nique for designing receivers in massive MIMO-OFDM systems, particularly when the

BS employs low-resolution ADCs. This is because the subcarriers are no longer orthog-

onal after the quantization step. Due to this, conventional subcarrier-by-subcarrier data

detection performs poorly (See Fig. 3.11). Also, our choice of latent variables and ap-

proximate posterior distributions is crucial for obtaining analytically and computationally

tractable solutions. Another key takeaway is that the assumption of perfect CSI at the

receiver significantly overestimates the system performance, which we illustrate through

empirical studies in Sec. 3.8. Therefore, it is important to account for channel estimation

errors while designing receivers, especially when both received pilots and data are coarsely

quantized.

Notation

We denote matrices, vectors and scalars by boldface upper case, boldface lower case, and

lowercase letters, respectively. AT ,AH and |A| denote the transpose, conjugate transpose,
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and determinant of A, respectively. A ⊗B denotes the Kronecker product of A and B.

diag(x) returns a diagonal matrix with the entries of x on the diagonal. E and ⟨·⟩ both

denote the expectation operation. f(x) ≜ 1√
2π

exp(−x2

2
) and F (x) ≜ 1√

2π

∫ x

−∞ exp(− t2

2
)dt

denote the probability density and cumulative distribution functions of a standard normal

random variable evaluated at x. Γ(a) ≜
∫∞
0

ta−1 exp(−t) dt denotes the Gamma function

evaluated at a > 0. IM , 0M and 1M denote an M × M identity matrix, M × M zero

matrix and all-ones vector of size M×1, respectively. ℜ and ℑ are the real and imaginary

part operators, respectively.

3.2 Quantized Compressed Sensing and Bayesian Cramér-

Rao Lower Bound

We consider the estimation of high-dimensional jointly compressible vectors

X = [x1, . . . ,xT ] ∈ CN×T from quantized low-dimensional measurements

Y = [y1, . . . ,yT ] ∈ CM×T , where M < N . The measurements are obtained as

Y = Qb (ΦX+W) , (3.1)

where Φ ∈ CM×N is a known measurement matrix, and W ∈ CM×T is the additive

noise matrix whose entries are independent and identically distributed (i.i.d.) circularly

symmetric complex Gaussian random variables with mean 0 and variance σ2
w. Qb(·)

denotes an element-wise scalar b-bit quantizer of both real and imaginary components of

its argument. We assume a common support structure on the columns of X. In many

applications, the signals are not exactly sparse, i.e., many entries may not be exactly

equal to zero. An example is the effective wireless channel with the non-ideal transmit

and receive filters. Therefore, we consider compressible signals [122] instead, where there

are only a few entries with high magnitude and the remaining entries have very low

magnitude. Here, by common support structure, we mean that the indices of the large

magnitude entries are the same in each column of X.
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A b-bit quantizer on a real valued input z is defined as Qb(z) = Li, z ∈ [δi, δi+1),

i = 0, 1, . . . , B − 1, where B = 2b is the number of quantization levels, −∞ = δ0 < δ1 <

· · · < δB = ∞ are the quantization thresholds, and L0, L1, . . . , LB−1 are the quantizer

outputs. The quantizer is deterministic and the quantization thresholds of Qb(·) are

known. We now derive the Bayesian CRLB on the MSE of any estimator of X.

To develop the CRLB, we impose a two-stage hierarchical prior on X [123]. That is,

xℓ ∼ CN (xℓ;0,P
−1)∀ ℓ, where P is a diagonal precision matrix containing the hyperpa-

rametersα = [α1, . . . , αN ]
T . As mentioned earlier, we assume a non-informative conjugate

Gamma hyperprior on αn, ∀n with shape and rate parameters a and r, respectively:

p(X |P) =
T∏

ℓ=1

|P|
πN

exp(−xH
ℓ Pxℓ), (3.2)

p(α; a, r) =
N∏

n=1

ra

Γ(a)
αa−1
n exp(−rαn), (3.3)

where |P| denotes the determinant of P and Γ(a) denotes the Gamma function.

Now, we compute the BIM for the above model. For this, we need the joint probability

distribution p(Y,X,P;Φ, σ2
w). Denoting the unquantized measurements by Z, we write

(3.1) as Y = Qb(Z), where Z = [z1, . . . , zT ] ∈ CM×T . It is convenient to transform the

system from the complex field to the real field as follows:

Φ̃ =

ℜ(Φ) −ℑ(Φ)

ℑ(Φ) ℜ(Φ)

 , x̃ℓ =

ℜ(xℓ)

ℑ(xℓ)

 , ỹℓ =

ℜ(yℓ)

ℑ(yℓ)

 ,

z̃ℓ =

ℜ(zℓ)
ℑ(zℓ)

 , w̃ℓ =

ℜ(wℓ)

ℑ(wℓ)

 , ℓ = 1, . . . , T, (3.4)

where ℜ(·) and ℑ(·) denote the real and imaginary part operators, respectively. Let us

denote σ̃2
w = σ2

w

2
, Ñ = 2N , M̃ = 2M . In (3.4), wℓ is the ℓth column of W. Now, the

system model becomes

Ỹ = Qb(Z̃) = Qb(Φ̃X̃+ W̃). (3.5)
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Let us denote the precision matrix for the real field by P̃ (≜ diag([2αT , 2αT ]T )), where

diag(·) returns a diagonal matrix. Now, the prior becomes

p(X̃ | P̃) =
T∏

ℓ=1

|P̃| 12

(2π)
Ñ
2

exp

(
− x̃T

ℓ P̃x̃ℓ

2

)
. (3.6)

Since the columns of X̃ are independent of each other, the BIM has a block diagonal

structure with the off diagonal blocks as all zero matrices. With this prior, we present

the expression for the BIM in the following theorem.

Theorem 1. The ℓth diagonal block of the BIM required to compute the CRLB for the

MSE of a Bayesian sparse signal estimator using quantized compressive measurements

is given by (3.7), where the expectation E[·] is w.r.t. the joint probability distribution

p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r),

M̃ℓ(Φ̃, a, r, σ̃2
w) = E

[
− ∂2

∂x̃ℓ∂x̃T
ℓ

log p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r)

]

= Φ̃Tdiag

 1

σ̃2
w

E

 η̃(hi)mℓ f(η̃
(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
M̃

m=1

Φ̃+ E[P̃].

(3.7)

η̃
(hi)
mℓ ≜

z̃
(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

, (3.8)

η̃
(lo)
mℓ ≜

z̃
(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

, (3.9)

where ℓ ∈ {1, . . . , T}, z̃(lo)mℓ and z̃
(hi)
mℓ are the lower and upper quantization thresholds cor-

responding to the (m, ℓ)th entry of Ỹ, respectively. Φ̃mn and x̃nℓ denote the (m,n)th and

(n, ℓ)th entries of Φ̃ and X̃, respectively. f(·) and F (·) denote the probability density func-

tion (PDF) and cumulative distribution functions (CDF) of a standard normal random

variable, respectively.

Proof. The result follows from direct computation of the BIM, and is detailed in Section
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3.10.1.

We provide a step by step procedure to compute the Bayesian CRLB using (3.7).

Given a realization of X generated according to a prior distribution p(X|P), we denote

the instance specific BIM at iteration τ as M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w) which is given by (3.10). Here,

we use the law of iterated expectation, and the range of summation over ỹmℓ is the number

of discrete quantization levels.

M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w)

= Φ̃T diag

 1

σ̃2
w

LB−1∑
ỹmℓ=L0

η̃
(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ ) +

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )
)2

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )




M̃

m=1

Φ̃

+ E[P̃]. (3.10)

We provide the procedure to compute the instance specific BIM for the multi-bit quantized

compressed sensing case in Algorithm 5.

Next, we use the chain rule to convert the real valued BIM to a complex valued BIM

as

M
(τ)
ℓ (Φ, a, r, σ2

w) =
1

4

([
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℜℜ

+
[
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℑℑ

)
+

j

4

([
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℜℑ

−
[
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℑℜ

)
,

where M
(τ)
ℓ (Φ, a, r, σ2

w) is the ℓ
th diagonal block of the complex BIM. Finally, the instance

specific CRLB is

CRLB(τ)(Φ, a, r, σ2
w) = blkdiag

[([
M

(τ)
ℓ (Φ, a, r, σ2

w)
]−1
)T

ℓ=1

]
, (3.11)

where blkdiag(·) returns a block diagonal matrix. We use the inverse property of block

diagonal matrices to obtain (3.11), which reduces the complexity in computing the CRLB.

We vary τ from 1 to τmax, compute the instance specific CRLB using independent random
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Algorithm 5: Computation of M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w)

Input: Φ̃, X̃, {z̃(lo)mℓ , z̃
(hi)
mℓ }M̃m=1, a, r, σ̃w.

Output: M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w).

1: Initialize J = 0M̃ .

2: for m = 1 to M̃ do

3: for ỹmℓ = {L0, . . . , LB−1} do

4: Compute η̃
(hi)
mℓ and η̃

(lo)
mℓ using (3.8) and (3.9).

5: Compute

J(m,m) = J(m,m) + η̃
(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )
)2

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

6: end for

7: J(m,m) = σ̃−2
w J(m,m).

8: end for

9: Compute M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w) = Φ̃TJΦ̃+ a
r
IÑ .

realizations of X, and then compute the average Bayesian CRLB as

CRLB(Φ, a, r, σ2
w) =

1

τmax

τmax∑
τ=1

CRLB(τ)(Φ, a, r, σ2
w). (3.12)

The MSE of an estimator is lower bounded by the trace of the CRLB in (3.12). In

the derivation above, we consider that the precision matrix P is random, which leads to a

Bayesian bound. We can also consider the case where the precision matrix is deterministic.

In this context, we contrast three types of bounds:

1. Support-aware Bayesian CRLB: Precision matrix is random, but the support set is

known.

2. Hybrid CRLB: Random X parameterized by a deterministic P.
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3. Bayesian CRLB: Random X parameterized by a random P with a conjugate hyper-

prior.

For the support-aware Bayesian CRLB, the BIM is computed as follows: For the

columns in the support set, the diagonal entries of E[P] in the complex BIM are equal

to a
r
, and the remaining columns are removed from the measurement matrix, to compute

the CRLB. We note that the support-aware Bayesian CRLB provides a lower bound on

the MSE in the estimation of exact sparse vectors.

In the case of hybrid CRLB, the expectation term E[P̃] in (3.7) is replaced by the

deterministic and known P̃. We generate a compressible signal using a generative model

with a circularly symmetric complex normal prior parameterized by the known precision

matrix, and average the CRLB over multiple realizations as in (3.12).

For the Bayesian CRLB, we use the mean of the Gamma hyperprior for E[P] = a
r
IN

in the complex case. Note that this does not require the realization of the precision

parameters; it only depends on the shape and rate parameters.

Next, we consider the two special cases, namely, 1-bit and infinite-bit quantization of

the noisy compressive measurements, and specialize the derived CRLB to these two cases.

It is easy to see that the second term E[P̃] in the BIM given in (3.7) depends only on

the hyperparameters and not on the quantizer. So, we only discuss the first term in the

sequel. The BIMs for the unquantized and 1-bit cases are obtained by careful algebraic

manipulation of the multi-bit BIM, and we provide the details below.

3.2.1 Infinite-bit Quantized Compressed Sensing

The following Lemma is useful for obtaining the BIM in the infinite-bit quantized com-

pressed sensing case.

Lemma 1. For η, δ ∈ R,

lim
δ→0

(η + δ) f(η + δ)− ηf(η)

F (η + δ)− F (η)
= 1− η2, (3.13)
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and

lim
δ→0

(
f(η + δ)− f(η)

F (η + δ)− F (η)

)2

= η2, (3.14)

where f(·) and F (·) are as defined earlier. ■

Proof. Proof is available in the Sec. 3.10.2.

As the number of bits b increases, the difference between the quantization intervals

z̃
(lo)
mℓ and z̃

(hi)
mℓ decreases, and tends to zero as b → ∞. Therefore, if we apply Lemma 1

to each term inside the expectation in (3.7), it becomes unity, which results in the ℓth

diagonal block of the BIM as

M̃ℓ(Φ̃, a, r, σ̃2
w) =

Φ̃T Φ̃

σ̃2
w

+ E[P̃]. (3.15)

Next, we compute the BIM for the 1-bit quantization case.

3.2.2 1-bit Quantized Compressed Sensing

For the 1-bit quantized compressed sensing case, we consider the output of the quantizer

as the sign of its input. Thus, if we denote the (m, ℓ)th entry of Ỹ and Z̃ as ỹmℓ and z̃mℓ,

respectively, then ỹmℓ = +1 if z̃mℓ ≥ 0, and ỹmℓ = −1 otherwise. We simplify the BIM in

the Lemma below.

Lemma 2. The ℓth diagonal block of the BIM required to compute the CRLB for the MSE

of a Bayesian sparse signal estimator using 1-bit compressive measurements is given by

M̃ℓ(Φ̃, a, r, σ̃2
w) = Φ̃Tdiag

 1

σ̃2
w

E

 ξ̃mℓf(ξ̃mℓ)

F (ξ̃mℓ)
+

(
f(ξ̃mℓ)

F (ξ̃mℓ)

)2
M̃

m=1

Φ̃+ E[P̃], (3.16)

where E[·] is w.r.t. p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r). Here,

ξ̃mℓ ≜
ỹmℓ

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

, (3.17)
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ℓ ∈ {1, . . . , T}, and the other notations are as in Theorem 1. ■

Proof. Proof is available in the Sec. 3.10.3.

It is worth mentioning that the BIMs for the unquantized compressed sensing in [119]

and 1-bit compressed sensing in [120] (Fisher information matrix in [120]), are special

cases of the BIM for multi-bit compressed sensing. The BIM for the 1-bit compressed

sensing case in (3.16) can be further simplified (along the same lines as in [120]) to get

M̃ℓ(Φ̃, a, r, σ̃2
w) = Φ̃Tdiag

(
1

σ̃2
w

E

[
(f(ν̃mℓ))

2

F (ν̃mℓ) (1− F (ν̃mℓ))

])M̃

m=1

Φ̃+ E[P̃] (3.18)

where

ν̃mℓ =

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

, (3.19)

and the first expectation is w.r.t. p(X̃, P̃).

We now turn to the massive MIMO-OFDM wireless communication system, and

present the system model for the channel estimation and soft symbol decoding problems.

3.3 Description of Massive MIMO-OFDM System and

Problem Statements

We consider the uplink (UL) of a single cell massive MIMO-OFDM system with Nr

antennas at the base station (BS) and K single antenna user equipments (UEs), where

Nr ≥ K. Fig. 3.1 shows a block diagram of the system model. Each UE encodes and

interleaves its information bits, and maps them to constellation symbols. The symbols are

then loaded onto the subcarriers and OFDM modulated using an inverse discrete Fourier

transform (IDFT). After passing the OFDM modulated data symbols through a parallel

to serial converter, a cyclic prefix (CP) is added, RF up-converted to the passband, and

transmitted over a frequency-selective wireless channel to the BS. At the BS, the received
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Figure 3.1: Massive MIMO-OFDM wireless communication system model.

RF signal is down-converted to baseband, the CP is removed, the signal is sampled, and

quantized using b-bit ADCs to obtain the complex baseband signal.

Each UE transmits τp pilot OFDM symbols followed by τd data OFDM symbols. We

assume that the coherence interval of the channel is at least τp + τd OFDM symbols. In

conventional OFDM systems, pilots are embedded in the same OFDM symbol along with

the data, at specific subcarriers. However, due to the quantization errors introduced by

the low-resolution ADCs, this results in severe inter-carrier interference between the pilot

and data subcarriers, which cannot be canceled to obtain channel estimates. So, in this

work, we consider a model where the pilot OFDM symbols are distinct from the data

OFDM symbols. We denote the number of subcarriers by Nc. The unquantized received

pilot and data signals at the nth
r receive antenna in the nth symbol interval (0 ≤ n ≤ Nc−1)

within the tth pilot and data OFDM symbol durations, respectively, are

z(p)nr
[t][n] =

K∑
k=1

L−1∑
ℓ=0

hnr,k[ℓ]x
(p)
k [t][n− ℓ] + w(p)

nr
[t][n],

z(d)nr
[t][n] =

K∑
k=1

L−1∑
ℓ=0

hnr,k[ℓ]x
(d)
k [t][n− ℓ] + w(d)

nr
[t][n], (3.20)

where t ∈ {1, . . . , τp} and t ∈ {τp + 1 . . . τp + τd} for the pilot and data phases, respec-

tively, hnr,k[ℓ] is the complex channel gain of the ℓth delay tap of the channel between

the kth UE and the nth
r receive antenna at the BS, distributed as CN (hnr,k[ℓ]; 0, βkℓ),



Chapter 3. Massive MIMO-OFDM Systems with Low Resolution ADCs 85

where βkℓ is the large scale fading coefficient (LSFC), L is the total number of de-

lay taps of the frequency selective channel, x
(p)
k [t] = [x

(p)
k [t][0], . . . , x

(p)
k [t][Nc − 1]] and

x
(d)
k [t] = [x

(d)
k [t][0], . . . , x

(d)
k [t][Nc − 1]] are the pilot and data symbols transmitted in the

time domain by the kth UE in the tth OFDM symbol, respectively, and w
(p)
nr [t][n] and

w
(d)
nr [t][n] are the complex additive white Gaussian noise during the pilot and data phases,

respectively, with mean 0 and variance σ2
w.

3.3.1 Delay-Domain Sparse Channel Estimation Model

In this subsection, we reformulate the received signal model above to utilize the lag-

domain sparsity for channel estimation. We denote the channel sparsity, i.e., the maximum

number of nonzero delay taps in the channel, by Lsp, where Lsp ≪ L. We vectorize the

unquantized received pilot signal in the tth OFDM symbol at the nth
r receive antenna as

z(p)nr
[t] =

[
z
(p)
nr [t][0] z

(p)
nr [t][1] . . . z

(p)
nr [t][Nc − 1]

]T
=

K∑
k=1

X
(p)

k [t]hnr,k +w(p)
nr
[t] ∈ CNc×1, (3.21)

where hnr,k = [hT
nr,k

,0T
Nc−L]

T ∈ CNc×1, hnr,k = [hnr,k[0], . . . , hnr,k[L−1]]T ∈ CL×1 is the kth

UE’s frequency selective channel, and X
(p)

k [t] ∈ CNc×Nc is a circulant matrix with its first

column as x
(p)
k [t]. Using the fact that any circulant matrix is diagonalized by a unitary

DFT matrix with the frequency domain coefficients as the eigenvalues, we rewrite (3.21) as

z(p)nr
[t] =

K∑
k=1

FH
Nc
X

(p)
k [t]FNc,Lhnr,k +w(p)

nr
[t]

= (1T
K ⊗ FH

Nc
)X(p)[t] (IK ⊗ FNc,L)hnr +w(p)

nr
[t], (3.22)

where ⊗ denotes the matrix Kronecker product operator, X
(p)
k [t] = FNcX

(p)

k [t]FH
Nc

is

a diagonal matrix with its entries as the pilots loaded on the subcarriers, X(p)[t] =

diag(X
(p)
1 [t], . . . ,X

(p)
K [t]) ∈ CKNc×KNc , hnr = [hT

nr,1, . . . ,h
T
nr,K

]T ∈ CKL×1 is the vector-

ized lag domain frequency selective channel between all the users and the nth
r BS antenna.



Chapter 3. Massive MIMO-OFDM Systems with Low Resolution ADCs 86

FNc ∈ CNc×Nc and FNc,L ∈ CNc×L are the DFT and the L column truncated DFT ma-

trices, respectively. Note that hnr is a sparse vector with sparsity KLsp. We stack the

received vector of all the Nr antennas and τp pilot symbols to obtain the unquantized

received pilot matrix as shown in (3.23),

Z(p) =


z
(p)
1 [1] . . . z

(p)
Nr
[1]

...
. . .

...

z
(p)
1 [τp] . . . z

(p)
Nr
[τp]



=


(1T

K ⊗ FH
Nc
)X(p)[1] (IK ⊗ FNc,L)

...

(1T
K ⊗ FH

Nc
)X(p)[τp] (IK ⊗ FNc,L)

H+W(p)

≜ Φ(p)H+W(p). (3.23)

where Z(p) ∈ CτpNc×Nr , Φ(p) ∈ CτpNc×KL, H = [h1, . . . ,hNr ] ∈ CKL×Nr is a row sparse

channel matrix, and W(p) is the additive noise matrix.

Now, we quantize the received signal using low-resolution ADCs. A b-bit quantizer on

a real valued input z is defined as Qb(z) = Li, z ∈ [δi, δi+1), i = 0, 1, . . . , B − 1, where

B = 2b is the number of quantization levels, δ0 < δ1 < · · · < δB are the quantization

thresholds, and L0, L1, . . . , LB−1 are the quantizer outputs. In this chapter, for simplicity

and concreteness, we consider a uniform quantizer, where δl = (−B/2+l)∆, l = 1, . . . , B−

1, ∆ is the quantization step size, and Ll = (δl + δl+1)/2, l = 0, . . . , B − 1. We set the

dynamic range of the real and imaginary parts of the quantizer using the expected received

signal power, PR, as δ0 = −2.5
√

PR/2, δB = 2.5
√
PR/2.

1 Our choice of δ0 and δB is

motivated by the fact that the absolute value of a Gaussian distributed zero mean real-

valued random variable with variance PR/2 exceeds 2.5
√
PR/2 with probability less than

0.01, i.e., the quantizer gets overloaded with low probability. We quantize the received

1In practice, we quantize any value below δ0 to L0, and any value above δB to LB−1. Also, in practical
systems, an automatic gain control unit is used to ensure that the power in the analog baseband signal
is approximately equal to a predefined value, PR, before quantization.
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pilots in (3.23) using the b-bit ADCs to obtain the quantized received pilots as

Y(p) = Qb(Z
(p)) = Qb(Φ

(p)H+W(p)) ∈ CτpNc×Nr . (3.24)

Our first goal is to estimate H given Y(p) and Φ(p) in (3.24). Note that, if τpNc < KL,

(3.24) represents an underdetermined system of linear equations. In order to exploit the

lag-domain sparsity in the channel, as in [124], we use a two stage hierarchical prior on

H i.e., ∀ i, hi ∼ CN (hi;0,P
−1), where the precision matrix P is diagonal and contains

the hyperparameters α = [α1, . . . , αKL]
T as its diagonal elements. Further, we impose a

Gamma hyperprior on α. This results in a Student’s t prior on hi, which is known to

promote sparse channel estimates [123]. After estimating H, our goal is to decode the

data symbols. Next, we describe the signal model in the data transmission phase.

3.3.2 MIMO-OFDM Data Detection Model

We vectorize the unquantized received data at the nth
r receive antenna during the tth

OFDM symbol in (3.20) as

z(d)nr
[t] =

[
z
(d)
nr [t][0] z

(d)
nr [t][1] . . . z

(d)
nr [t][Nc − 1]

]T
=

K∑
k=1

Htime
nr,kF

H
Nc
x
(d)
k [t] +w(d)

nr
[t], (3.25)

where t ∈ {τp+1, . . . , τp+τd} and x
(d)
k [t] =

[
x
(d)
k [t][0] . . . x

(d)
k [t][Nc − 1]

]T
= FNcx

(d)
k [t] ∈

CNc×1 is the M -QAM modulated data symbols loaded on the subcarriers, where x
(d)
k [t] =[

x
(d)
k [t][0] . . . x

(d)
k [t][Nc − 1]

]T
∈ CNc×1 is the time domain transmitted signal of the kth

user. Also, Htime
nr,k

∈ CNc×Nc is a circulant matrix with the first column as hnr,k (from

(3.21)). Using the diagonalizability property of a circulant matrix, we represent (3.25) as

shown in (3.26),

z(d)nr
[t] =

K∑
k=1

FH
Nc
Hfreq

nr,k
x
(d)
k [t] +w(d)

nr
[t]
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= (1T
K ⊗ FH

Nc
)


Hfreq

nr,1 0 . . . 0

0 Hfreq
nr,2 . . . 0

...
...

. . .
...

0 . . . 0 Hfreq
nr,K




x
(d)
1 [t]

x
(d)
2 [t]
...

x
(d)
K [t]

+w(d)
nr
[t]

= (1T
K ⊗ FH

Nc
)Hfreq

nr
x(d)[t] +w(d)

nr
[t]. (3.26)

where Hfreq
nr,k

= FNcH
time
nr,k

FH
Nc

∈ CNc×Nc is diagonal, containing the frequency domain

representation of hnr,k, x
(d)[t] ≜

[
x
(d)T

1 [t] . . . x
(d)T

K [t]
]T

, 1K is the K × 1 all ones vector,

and 0 is an Nc ×Nc all zero matrix. Now, we vectorize and stack the signal received over

the Nr receive antennas and τd OFDM data symbols to obtain Z(d) as shown in (3.27),

Z(d) =


z
(d)
1 [τp + 1] . . . z

(d)
1 [τp + τd]

...
. . .

...

z
(d)
Nr
[τp + 1] . . . z

(d)
Nr
[τp + τd]



=


(1T

K ⊗ FH
Nc
)Hfreq

1

(1T
K ⊗ FH

Nc
)Hfreq

2

...
. . .

...

(1T
K ⊗ FH

Nc
)Hfreq

Nr


[
x(d)[τp + 1] . . . x(d)[τp + τd]

]
+W(d)

= DX(d) +W(d), (3.27)

where D ∈ CNrNc×KNc is the measurement matrix for data detection, X(d) ∈ CKNc×τd is

the transmit data matrix, and W(d) is the additive white Gaussian noise matrix during

the data phase. Now, we quantize the received signal (3.27) using the b-bit ADCs to

obtain

Y(d) = Qb(Z
(d)) = Qb

(
DX(d) +W(d)

)
. (3.28)

Our goal in this part is to decode the data symbols X(d) given Y(d) and D. Next,

we explain the data-aided channel estimation model that is used to refine the channel

estimates.
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3.3.3 Virtual Pilots-Aided MIMO-OFDM Channel Estimation

From section 3.3.1, we write the unquantized pilot received signal as Z(p) = Φ(p)H +

W(p). Similar to the pilot reception phase, if we consider the decoded data as known

virtual pilot symbols, then we can write the received data signal as Z(d)[t] = (1T
K ⊗

FH
Nc
)
〈
X(d)[t]

〉
(IK ⊗ FNc,L)H + W(d)[t], where t = {τp + 1, . . . , τp + τd},

〈
X(d)[t]

〉
=

diag(
〈
X

(d)
1 [t]

〉
, . . . ,

〈
X

(d)
K [t]

〉
) ∈ CKNc×KNc , and

〈
X

(d)
k [t]

〉
= diag(

〈
x
(d)
k [t]

〉
) ∈ CNc×Nc .

Here,
〈
x
(d)
k [t]

〉
are the posterior means of the decoded data symbols of the kth user dur-

ing the tth OFDM symbol. We stack Z(p) and Z(d)[t] to obtain an expression for the

unquantized received signal over one coherence interval as shown in (3.29),

Z =


Z(p)

Z(d)[τp + 1]
...

Z(d)[τp + τd]

 =


Φ(p)

(1T
K ⊗ FH

Nc
)
〈
X(d)[τp + 1]

〉
(IK ⊗ FNc,L)

...
. . .

...

(1T
K ⊗ FH

Nc
)
〈
X(d)[τp + τd]

〉
(IK ⊗ FNc,L)

H+W

=

Φ(p)

Φ(d)

H+W ≜ ΦH+W. (3.29)

where Φ ∈ C(τp+τd)Nc×KL is the augmented measurement matrix and W ∈ C(τp+τd)Nc×Nr

is the additive white Gaussian noise matrix. The b-bit quantized received signal after the

ADCs then reads

Y = Qb(Z) = Qb(ΦH+W) ∈ C(τp+τd)Nc×Nr . (3.30)

Our goal here is to estimate H given Y and Φ. Once we obtain an estimate of H, we use

it to obtain D as mentioned in (3.28), which in turn is used to refine the posterior beliefs

of the M−QAM modulated data symbols in the next iteration of data decoding.

In the subsequent sections, we present our solutions to the above channel estimation

and data detection problems.
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3.4 Channel Estimation And Data Detection As Sta-

tistical Inference

We formulate the received system as probabilistic graphical models, and infer the pos-

terior distributions of the channel and data symbols given the quantized pilot and data

observations. We represent these Bayesian network graphical models in Figures 3.2, 3.3

and 3.4. As our goal is to obtain the posterior beliefs or LLRs of the data symbols that

will be input to a channel decoder, a statistical inference framework is a suitable ap-

proach to solve our problems. We use shaded circles, transparent circles, and squares to

represent the observations, latent variables, and deterministic variables. In our channel

estimation and data detection problem, the quantized received pilot and data signals are

the observations, channel and data symbols are the latent variables, pilot symbols and

noise variance are the deterministic variables.

As mentioned earlier, the computational intractability of joint channel estimation and

data detection problem necessitates us to adopt an iterative algorithm. So, we use separate

Bayesian network models for the channel estimation and data decoding problems. We

explain the intractability issue mathematically here. The posterior distribution of channel

H and data {x(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd]} given the observations Y(p), Y(d) and pilots

X(p)[1], . . . ,X(p)[τp] is given by (3.31), where Y(p) and Y(d) are the marginal likelihoods

as shown in (3.32) and (3.33), respectively.2

p
(
H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd] |Y(p),Y(d);X(p)[1], . . . ,X(p)[τp]

)
=

p(Y(p) |H;X(p)[1], . . . ,X(p)[τp]) p(Y
(d) |H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd])

p(Y(p);X(p)[1], . . . ,X(p)[τp]) p(Y(d))

× p(H)
K∏
k=1

τp+τd∏
t=τp+1

p(x
(d)
k [t]). (3.31)

2X(d) comes from a discrete M -QAM constellation, but we use integrals here for convenience. In the
actual derivation, the integrals are replaced by summations.
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Y(p)Z(p)Φ(p)

σ2
w

H

X(p)[1]

X(p)[τp]

...

Figure 3.2: Bayesian network model for the channel estimation problem (3.24).

p(Y(p)) =

∫
p(Y(p) |H;X(p)[1], . . . ,X(p)[τp]) p(H) dH, (3.32)

p(Y(d)) =

∫
p(Y(d) |H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd]) p(H)

K∏
k=1

τp+τd∏
t=τp+1

p(x
(d)
k [t]) dx

(d)
k [t] dH.

(3.33)

Exact computation of the posterior distributions using the above is computationally in-

tractable, as it requires solving high dimensional integrals over H, x
(d)
1 [τp+1], . . . ,x

(d)
K [τp+

τd] to obtain the partition functions P (Y(p)) and P (Y(d)). Moreover, we estimate the UEs’

channels in their lag domain, and use their frequency domain representation for data detec-

tion, which complicates the joint channel estimation and data detection problems further.

These difficulties motivate the need to employ approximate inference techniques to solve

the channel estimation and data detection problems.

3.5 Quantized VB Channel Estimation

Our goal is to infer the posterior distributions of the channels and the LLRs of the data

symbols, given the quantized pilot and data observations. To this end, we adopt a sta-

tistical inference approach, where we formulate the received pilot and data signals using

probabilistic graphical models. As mentioned in Sec. 3.4, exact computation of the pos-

terior distributions is computationally intractable, as it requires solving high dimensional

integrals over H, x
(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd] to obtain the partition functions P (Y(p))

and P (Y(d)). This motivates the need for alternative approximate inference techniques,
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Y(d)Z(d)D

σ2
w

X(d)

Hfreq
1

Hfreq
Nr

...

Figure 3.3: Bayesian network model for the data detection problem (3.28).

YZΦ

σ2
w

HΦ(p)

Φ(d)

X(p)[1]

X(p)[τp]

...

〈
X(d)[τp + 1]

〉

〈
X(d)[τp + τd]

〉
...

Figure 3.4: Bayesian network graphical model for the data-aided channel estimation prob-

lem in (3.30).

where we replace the exact posterior distribution with a tractable distribution that is

close to the original in a particular distance measure, and is also easy to compute. As

we will show, this leads to computationally tractable algorithms for the problem at hand.

An excellent introduction to approximate inference can be found in [102].

We present Bayesian network graphical models for the channel estimation, data detec-

tion and data-aided channel estimation problems in Figures 3.2, 3.3, and 3.4, respectively.

We use shaded circles, transparent circles, and squares to represent the observations, la-

tent variables, and deterministic variables. In our channel estimation and data detection
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problems, the quantized received pilot and data signals are the observations, and the chan-

nel and data symbols are the latent variables. Also, the pilot symbols and noise variance

are deterministic and known. In the following paragraphs, we briefly describe variational

Bayesian (VB) inference, which is the approximate inference technique adopted in this

work to solve the pilot aided channel estimation problem given in (3.24).

VB is an iterative procedure to compute approximate posterior distributions of the

latent variables given the observations. In this, we first write the logarithm of the obser-

vations Y(p) as the sum of two terms and lower-bound it as

ln p(Y(p)) = L(q) + KL(q ∥ p) ≥ L(q), (3.34)

where L(q) ≜
∫
q(H) ln

{
p(Y(p),H;Φ(p),σ2

w)
q(H)

}
dH and

KL(q∥p) ≜ −
∫
q(H) ln

{
p(H|Y(p),Φ(p),σ2

w)
q(H)

}
dH ≥ 0 are the evidence lower bound (ELBO)

and non-negative Kullback Leibler (KL) divergence terms, respectively. Here, q(H) is

an approximate posterior distribution which is arbitrary, and can be approximated and

optimized. Note that q(H) depends on the observations Y(p), but we do not explicitly

include it in the notation for brevity. In the above, maximizing the ELBO L(q) would

render an approximate distribution q that is close to the original model evidence. We

formally state the ELBO maximization problem as

qopt = argmax
q∈P

L(q) = argmin
q∈P

KL(q ∥ p), (3.35)

where P is the space of probability distributions. The maximum of L(q) occurs when

q(H) = p(H|Y(p),Φ(p), σ2
w), but computing it is intractable. Therefore, we impose a

factorized structure on each column of H i.e., q(H) =
∏Nr

i=1 qi(hi). Substituting this in

the ELBO, and simplifying it by fixing one of the factors, say qj(hj), we get

L(q) = −KL
(
qj∥p̃(Y(p),hj;Φ

(p), σ2
w)
)
+ constant, (3.36)
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where the constant terms do not depend on qj(hj), and p̃(Y(p),hj;Φ
(p), σ2

w) is defined us-

ing ln p̃(Y(p),hj;Φ
(p), σ2

w) ≜ Ei ̸=j

[
ln p(Y(p),H;Φ(p), σ2

w)
]
+ constant, where the notation

Ei ̸=j[.] denotes the expectation with respect to the distributions q1(h1), . . . , qNr(hNr) ex-

cept qj(hj). Now, L(q) is maximized when the KL divergence term in (3.36) is minimized,

which happens when qj(hj) = p̃(Y(p),hj;Φ
(p), σ2

w). Therefore, the optimal marginal dis-

tribution is

qj(hj) = const× exp
(
Ei ̸=j

[
ln p(Y(p),H;Φ(p), σ2

w)
])

, (3.37)

where the constant is chosen such that qj becomes a probability distribution. Thus, VB

is an iterative algorithm that falls in the category of minorization-maximization (MM),

which solves a maximization problem by iteratively obtaining a lower bound on the ob-

jective function as in (3.34), and maximizing it. It is known that MM based optimization

converges to a stationary point of the original optimization problem from any initializa-

tion [64].

Another important factor in our sparse channel estimation problem is the choice of

prior on H. In order to exploit the lag-domain sparsity in the channel, as in [124], we

use a two stage hierarchical prior on H i.e., ∀ i, hi ∼ CN (0,P−1), where the precision

matrix P is diagonal and contains the hyperparameters α = [α1, . . . , αKL]
T as its diagonal

elements. Further, we impose a Gamma hyperprior on α, which results in a Student-t

prior on hi, which is known to promote sparse channel estimates [123].

We note that the marginal distribution in (3.37) is still hard to compute, as

p(Y(p),H;Φ(p), σ2
w) contains terms involving the difference of the CDF of complex Gaus-

sian random vectors, which does not lead to analytical expressions for the approximate

posterior distribution. Hence, we add Z(p) also as a latent variable. This leads to a closed

form solution as described below.

We use the Bayesian network in Fig. 3.2 to express the logarithm of the joint proba-

bility distribution of the observations and latent variables as

ln p(Y(p),Z(p),H,α;Φ(p), σ2
w, a, b) = ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w)
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+ ln p(H|P) + ln p(α; a, b), (3.38)

where the prior distributions of H and α are

p(H|P) =
Nr∏
n=1

|P|
πKL

exp
(
−hH

n Phn

)
, (3.39)

p(α; a, b) =
KL∏
k=1

ba

Γ(a)
αa−1
k exp (−bαk) , (3.40)

respectively. We set a and b to small values (say, 10−4) such that the hyperprior p(α; a, b) is

non-informative; and Γ(a) ≜
∫∞
0

ta−1 exp(−t) dt. We approximate the posterior distribu-

tion p(Z(p),H,α |Y(p);Φ(p), σ2
w, a, b) of the latent variables as the factorized distribution:

p(Z(p),H,α |Y(p);Φ(p), σ2
w, a, b) ≈ qH(H)qZ(Z

(p))qα(α)

=
Nr∏
n=1

qhn(hn)
Nr∏
n=1

qzn(z
(p)
n )

KL∏
k=1

qαk
(αk), (3.41)

where we define Z(p) ≜ [z
(p)
1 , . . . , z

(p)
Nr
] and H ≜ [h1, . . . ,hNr ]. Next, we express the

conditional probability distributions of the observations and latent variables that are

needed to compute the posterior distributions under the factorized structure as

p(Y(p) |Z(p)) =

τpNc∏
t=1

Nr∏
n=1

1

(
ℜ(z(p)tn ) ∈

(
ℜ(z(lo)tn ),ℜ(z(hi)tn )

))
1

(
ℑ(z(p)tn ) ∈

(
ℑ(z(lo)tn ),ℑ(z(hi)tn )

))
≜

Nr∏
n=1

1
(
z(p)n ∈

(
z(lo)n , z(hi)n

))
, (3.42)

p(Z(p) |H;Φ(p), σ2
w) =

Nr∏
n=1

1

(πσ2
w)

τpNc
exp

(
− 1

σ2
w

∥z(p)n −Φ(p)hn∥2
)
, (3.43)

where z
(p)
tn is the (t, n)th entry of Z(p), 1(·) is the indicator function, z

(lo)
tn and z

(hi)
tn are

the lower and upper quantization thresholds corresponding to the (t, n)th entry of Y(p),

respectively. The approximate posterior distributions of the latent variables are computed
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by finding the expectations of the log of the joint distribution (3.38) with respect to the

latent variables, and are provided in closed form in the following three Lemmas. The

proofs for the Lemmas follow from (3.37), and are provided in the Sec. 3.10.

Lemma 3 (Computation of qH(H)). The posterior distribution qH(H) is complex normal

with the covariance matrix of each of its columns and mean given by

ΣH =

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)−1

, (3.44)

⟨H⟩ = 1

σ2
w

ΣHΦ
(p)H

〈
Z(p)

〉
, (3.45)

respectively. Here, ⟨P⟩ = diag(⟨α⟩), and
〈
Z(p)

〉
and ⟨α⟩ are the means of the approximate

posteriors qZ(Z
(p)) and qα(α), respectively. ■

Lemma 4 (Computation of qZ(Z
(p))). The posterior distribution qZ(Z

(p)) is truncated

complex normal with mean
〈
Z(p)

〉
given by

〈
Z(p)

〉
= Φ(p) ⟨H⟩+ σw√

2

f
(

Z(lo)−Φ(p)⟨H⟩
σw/

√
2

)
− f

(
Z(hi)−Φ(p)⟨H⟩

σw/
√
2

)
F
(

Z(hi)−Φ(p)⟨H⟩
σw/

√
2

)
− F

(
Z
(lo)
n −Φ(p)⟨H⟩

σw/
√
2

) , (3.46)

where Z(lo) and Z(hi) are the lower and upper quantization levels corresponding to the

observation Y(p), respectively, and ⟨H⟩ is the posterior mean of qH(H). Also, f(·) and

F (·) are the PDF and CDF of a standard normal random variable, respectively, computed

element-wise on the real and imaginary parts of the argument. The division operation in

(3.46) is also performed element-wise. ■

Lemma 5 (Computation of qαk
(αk), k = 1, . . . , KL). The posterior distribution qαk

(αk)

follows a Gamma distribution with shape and rate parameters given by

ãk = a+Nr and b̃k = b+
Nr∑
n=1

⟨|hkn|2⟩, (3.47)
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Algorithm 6: Quantized VB Channel Estimation

Input: Y(p), Φ(p), τp, σw, Nr, K, L, Nc

Output: ⟨H⟩

1: Initialize ⟨Z(p)⟩, ⟨α⟩, a, b.

2: repeat

3: ⟨P⟩ = diag(⟨α⟩)

4: Compute ΣH using (3.44).

5: Compute ⟨H⟩ using (3.45).

6: Compute
〈
Z(p)

〉
using (3.46).

7: Compute ⟨αk⟩ using (3.48), k = 1, . . . , KL.

8: until stopping condition is met

respectively. Its mean is given by

⟨αk⟩ =
a+Nr

b+
∑Nr

n=1⟨|hkn|2⟩
, (3.48)

where hkn is the (k, n)th element of H, and ⟨|hkn|2⟩ = |⟨hkn⟩|2 +ΣH[k, k]. ■

Note that we have included the subscript k in ãk for consistency of notation, even

though it is independent of k. From (3.44), (3.45), (3.46), and (3.48), we see that the

statistics of the approximate posterior distributions qH(H), qZ(Z
(p)), and qα(α) depend on

each other. The VB algorithm proceeds iteratively by randomly initializing the posteriors

and alternately computing each of the approximate posterior distributions until a suitable

convergence condition is satisfied. Once the algorithm converges, we use the posterior

mean from (3.45) as the final channel estimate. Then, we compute the DFT of the lag

domain channel estimates, and use them for data decoding. We present VB channel

estimation procedure in Algorithm 6.
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3.6 Quantized VB Soft Symbol Decoding

In this section, we develop a VB algorithm for soft symbol decoding in MIMO-OFDM

systems using the system model in (3.28), reproduced here for convenience:

Y(d) = Qb(Z
(d)) = Qb

(
DX(d) +W(d)

)
, (3.49)

whereY(d) = [y(d)[τp + 1], . . . ,y(d)[τp + τd]] ∈ CNrNc×τd , Z(d) = [z(d)[τp + 1], . . . , z(d)[τp + τd]] ∈

CNrNc×τd , X(d) = [x(d)[τp + 1], . . . ,x(d)[τp + τd]] ∈ CKNc×τd , x(d)[t] = [x
(d)
1t , . . . , x

(d)
KNc,t

]T ,

D ∈ CNrNc×KNc , W(d) ∈ CNrNc×τd . We represent the corresponding Bayesian network in

Fig. 3.3.

Similar to Sec. 3.5, we consider the unquantized received data signal as a latent vari-

able, and express the logarithm of the joint probability distribution of the observations

and the latent variables as

ln p
(
Y(d),Z(d),X(d)|D, σ2

w

)
= ln p(Y(d)|Z(d)) + ln p

(
Z(d)|X(d),D, σ2

w

)
+ ln p(X(d)).

(3.50)

We factorize the posterior distribution of Z(d) and X(d) as

p
(
Z(d),X(d) |Y(d),D, σ2

w

)
≈ qZ

(
Z(d)

) τp+τd∏
t=τp+1

KNc∏
k=1

qxkt

(
x
(d)
kt

)
, (3.51)

where Z(d) = [z
(d)
τp+1, . . . , z

(d)
τp+τd

], and x
(d)
kt is the kth component of x(d)[t]. We write the

conditional probability distributions in (3.50) as follows:

p(Y(d) |Z(d)) = 1
(
Z(d) ∈ (Z(lo),Z(hi))

)
, (3.52)

p(Z(d) |X(d);D, σ2
w) =

τp+τd∏
t=τp+1

1

(πσ2
w)

NrNc
exp

(
− 1

σ2
w

wwz(d)[t]−Dx(d)[t]
ww2

2

)
, (3.53)
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where 1(·) is the indicator function, Z(lo),Z(hi) are the entry-wise lower and upper quan-

tization intervals of the real and imaginary components of Y(d). We present the approxi-

mate posterior distributions that maximize the ELBO in the following two Lemmas. The

computation of the approximate posterior distribution qZ
(
Z(d)

)
is similar to the compu-

tation of the posterior distribution of the unquantized pilot received signal in Lemma 4.

Therefore, we omit the proof of Lemma 7 to avoid repetition. The proof of Lemma 6 is

available in the Sec. 3.10.

Lemma 6 (Computation of qxkt
(x

(d)
kt )). The posterior qxkt

(
x
(d)
kt

)
follows a Boltzmann

distribution with the probability mass function

qxkt

(
x
(d)
kt = sm

)
=

exp
(
fkt(sm)

)
∑

s′∈M exp
(
fkt(s′)

) (3.54)

for m = 1, . . . ,M, where k ∈ {1, . . . , KNc}, t ∈ {τp + 1, . . . , τp + τd}, M = {s1, . . . , sM}

is the signal constellation set of cardinality M , and fkt(s) is shown in (3.55),

fkt(s) = − 1

σ2
w

(
∥D:,k∥2 |s|2 − 2ℜ

[
DH

:,k

( 〈
z(d)[t]

〉
−

KNc∑
k′=1
k′ ̸=k

D:,k′

〈
x
(d)
k′t

〉)
s∗
])

+ ln p(x
(d)
kt = s),

(3.55)

where ℜ and ∗ denote the real part and complex conjugate operators, respectively, D:,k

is the kth column of D,
〈
z(d)[t]

〉
and

〈
x
(d)
k′t

〉
are the posterior means of qzt(z

(d)[t]) and

qxk′t
(x

(d)
k′t), respectively. ■

We compute the mean and mean square value of qxkt
(xd,kt) as follows:

〈
x
(d)
kt

〉
=
∑
s∈M

s qxkt
(s),

〈
|x(d)

kt |
2
〉
=
∑
s∈M

|s|2 qxkt
(s).

Lemma 7 (Computation of qZ
(
Z(d)

)
). The posterior distribution qZ

(
Z(d)

)
is truncated
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Algorithm 7: Quantized VB Soft Symbol Decoding

Input: Y(d),D, M = {s1, . . . , sM}, τp, τd, σw, K, Nc.

Output: qX(X
(d)),

〈
X(d)

〉
1: Initialize

〈
Z(d)

〉
, ⟨X(d)⟩ = 0KNc×τd

2: repeat

3: for k = 1 to KNc do

4: for t = τp + 1 to τp + τd do

5: Compute qxkt

(
x
(d)
kt = s

)
using (3.54) ∀s ∈ M.

6: Compute ⟨x(d)
kt ⟩ =

∑
s∈M s qxkt

(x
(d)
kt = s).

7: end for

8: end for

9: Compute
〈
Z(d)

〉
using (3.56).

10: until stopping condition is met

complex normal, with mean

〈
Z(d)

〉
= D

〈
X(d)

〉
+

σw√
2

f
(

Z(lo)−D⟨X(d)⟩
σw/

√
2

)
− f

(
Z(hi)−D⟨X(d)⟩

σw/
√
2

)
F
(

Z(hi)−D⟨X(d)⟩
σw/

√
2

)
− F

(
Z(lo)−D⟨X(d)⟩

σw/
√
2

) , (3.56)

where Z(lo) and Z(hi) are defined in (3.52),
〈
X(d)

〉
contains the posterior means of qxkt

(x
(d)
kt )

∀k, t as its entries, f(·), F (·), and the division operation are as defined in Lemma 4. ■

As mentioned in Section 3.5, the VB algorithm starts by randomly initializing the

latent variables, and iteratively computes the posterior distributions of data symbols. We

use the posterior distributions of the data symbols in (3.54) to calculate the bit LLRs.

We present the quantized VB soft symbol decoding procedure in Algorithm 7. Next, we

describe the data-aided channel estimation procedure.
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3.7 Iterative Quantized VB Channel Estimation and

Soft Symbol Decoding

In this section, we merge the channel estimation and soft symbol decoding into an it-

erative algorithm that improves on the system performance obtained by only executing

Algorithms 6 and 7. We utilize the data-aided channel estimation system model to refine

the channel estimates in an iterative fashion. Recall our system model (3.30) from section

3.3.3: Y = Qb(Z) = Qb(ΦH+W). We start with the pilot based channel estimation Al-

gorithm 6 followed by the soft symbol decoding Algorithm 7. Now, we utilize the posterior

means of the decoded data symbols to form a new measurement matrix Φ that is input to

the channel estimation block. In a VB procedure, we obtain the posterior distribution of

a given latent variable by computing the expectation of the joint probability distribution

w.r.t. the posterior distributions of all the other latent variables. This in turn means

that its posterior distribution depends only on the posterior statistics of the other latent

variables. Moreover, in the context of soft symbol decoding, the posterior statistics of the

data symbol enter the equivalent measurement equation through their posterior means

(see (3.55) and (3.56)). Therefore, we use the posterior means of the data symbols to

construct a new measurement matrix for iterative channel estimation.

The data-aided channel estimation procedure follows the same steps as in algorithm 6

except that its inputs Y(p) and Φ(p) are replaced by Y and Φ, respectively. The derivation

follows the same procedure as in Sec. 3.5; we provide the final expressions of the posterior

statistics of the latent variables below.

ΣH =

(
1

σ2
w

ΦHΦ+ ⟨P⟩
)−1

, ⟨H⟩ = 1

σ2
w

ΣHΦ
H ⟨Z⟩ , (3.57)

⟨αk⟩ =
a+Nr

b+
∑Nr

n=1⟨|hkn|2⟩
, k = 1, . . . , KL, (3.58)

⟨Z⟩ = Φ ⟨H⟩+ σw√
2

f
(

Z(lo)−Φ⟨H⟩
σw/

√
2

)
− f

(
Z(hi)−Φ⟨H⟩

σw/
√
2

)
F
(

Z(hi)−Φ⟨H⟩
σw/

√
2

)
− F

(
Z(lo)−Φ⟨H⟩

σw/
√
2

) , (3.59)

where Z(lo) and Z(hi) are the lower and upper quantization thresholds corresponding to
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Y. The other notations are as defined in Lemma 4. We repeat this process of channel

estimation and data decoding for a fixed number of iterations. Finally, we use the posterior

distribution of the transmit symbols to obtain the bit LLRs, which are deinterleaved and

input to the channel decoder. We present the iterative VB channel estimation and soft

symbol decoding in Algorithm 8.

Now, we present a variant of the iterative channel estimation and soft symbol decoding

Algorithm 8 that marginally improves the system performance. In this, we merge the

quantized VB algorithms with the channel decoder using a data prior adaptation strategy.

We utilize the aposteriori bit LLRs from the channel decoder to adapt the data prior that

is input to the soft symbol detector in the next iteration. We interleave the posterior bit

LLRs output by the channel decoder, and generate the extrinsic information to compute

the symbol LLRs, which are then used to adapt the data prior. Instead of using a uniform

prior on the data symbols, we bias the data detector by a non-uniform data prior. In every

outer iteration of the iterative channel estimator and soft symbol decoder, we increase the

probability mass on the data symbol output by the extrinsic information progressively by

a judiciously chosen step size. At lower SNRs, such prior adaptation may lead to error

propagation effects, but at SNRs of interest, this leads to performance improvement. We

show the final block diagram for one outer iteration of the iterative channel estimation

and soft symbol decoding algorithm with data prior adaptation in Fig. 3.5. We use this

algorithm in our simulations, unless specified otherwise.

3.7.1 Computational Complexity

In this subsection, we analyze the per-iteration computational complexity of the VB

algorithm. Specifically, we analyze the scaling of the number of floating point operations

(flops) with the system dimensions. Table 3.1 shows the order (O) of the per-iteration

computational complexity of the steps involved in one iteration of Algorithm 8. The per-

iteration complexity scales cubically with the number of subcarriers, as the square of the

number of users and the channel length, and linearly with the number of receive antennas,

constellation size, and number of pilot and data symbols. In particular, the complexity
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Algorithm 8: Iterative Quantized VB Channel Estimation and Soft Symbol

Decoding

Input: Y(p), Y(d), X(p), M = {s1, . . . , sM}, M , τp, τd, σw, Nr, K, L, Nc, MAX ITER.

Output: ⟨H⟩, qX(X(d)), ⟨X(d)⟩

1: Initialize ⟨H⟩, ⟨α⟩, ⟨X(d)⟩ = 0KNc×τd , a, b

2: Initial Channel Estimation: Run Algorithm 6.

3: repeat

4: Soft Symbol Decoding:

5: repeat

6: Compute D using (3.27).

7: for k = 1 to KNc do

8: for t = τp + 1 to τp + τd do

9: Compute qxkt

(
x
(d)
kt = s

)
using (3.54) ∀s ∈ M.

10: Compute ⟨x(d)
kt ⟩ =

∑
s∈M s qxkt

(x
(d)
kt = s).

11: end for

12: end for

13: Compute
〈
Z(d)

〉
using (3.56).

14: until stopping condition is met

15: Data-Aided Channel Estimation:

16: Compute Φ using (3.29), ãk = a+Nr, k = 1, . . . , KL.

17: Initialize ⟨Z⟩, ⟨α⟩.

18: repeat

19: ⟨P⟩ = diag(⟨α⟩)

20: Compute ΣH and ⟨H⟩ using (3.57).

21: Compute ⟨αk⟩ using (3.58), k = 1, . . . , KL.

22: Compute ⟨Z⟩ using (3.59).

23: until stopping condition is met

24: until MAX ITER times
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Table 3.1:

Per-iteration Complexity of the QVB Algorithm 8

Matrix Order Complexity〈
X(d)

〉
MK2N3

cNrτd

ΣH K2L2Nc(τp + τd)

⟨H⟩ KLNc(KL+Nr)(τp + τd)〈
Z(d)

〉
KN2

cNrτd

⟨Z⟩ KLNcNr(τp + τd)

Figure 3.5: Quantized VB Iterative Channel Estimation and Soft Symbol Decoding with

data prior adaptation.

is linear in the number of data symbols τd, unlike maximum likelihood approaches where

the complexity grows exponentially with τd. The complexity of the conventional MIMO-

OFDM MMSE channel estimation algorithm scales cubically with the number of users

and the channel length, whereas the per-iteration complexity of BiGAMP scales linearly

with the pilot and data symbols, subcarriers, number of users and channel length, and

returns hard decisions of the data symbols. Note that, in order to speed up computations,

we can precompute the PDF and CDF of a standard normal variable and store them in

a lookup table.
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3.8 Simulation Results

In the following subsections, we first evaluate the Bayesian and hybrid CRLBs developed

in Sec. 3.2, and then study the NMSE and coded BER performance of the iterative VB

channel estimation and soft symbol decoding algorithm.

3.8.1 Cramér-Rao Lower Bounds

In this subsection, we evaluate the Bayesian and hybrid CRLBs on the NMSE of any

estimator of a compressible signal using quantized measurements. We compute the CRLBs

for the recovery of joint sparse vectors from compressive measurements acquired using a

random underdetermined measurement matrix Φ ∈ CM×N , whose entries are i.i.d. and

complex normal distributed with mean 0 and variance 1. We generate each column of

a compressible signal X ∈ CN×L by sampling from a complex normal distribution with

mean 0 and precision matrix P = diag(α). The precision matrix is generated using a

Gamma distribution with shape and rate parameters a and r, respectively. We show

the decay profile of the sorted magnitudes of compressible signals of length N = 512,

generated using different shape and rate parameters, in Fig. 3.6. The rapid decay of the

coefficients shows that the signals are compressible. We fix N = 512, T = 20, and set the

rate parameter to 10−8 for all the simulations in this subsection. We define the SNR as

1/σ2
w. In this case, since the support set of the jointly compressible signals contains all

the indices, the support-aware CRLB and Bayesian CRLB coincide. Hence, we evaluate

only the Bayesian and hybrid CRLBs.

Figure 3.7 shows the NMSE of the VB algorithm for the unquantized (labeled “UQ”)

and 3 bits quantization (labeled “3 bits”) cases, and the Bayesian (labeled “BCRLB”)

and hybrid CRLBs (labeled “HCRLB”), as a function of the shape parameter of the

Gamma hyperprior of the precision matrix. We set the number of measurements to 250

and the SNR to 40 dB. In the case of hybrid CRLB, we know the generative model of

the compressible signal, which provides extra information. Hence, the hybrid CRLB is a

tight lower bound on the performance of the VB algorithm. The Bayesian CRLB only

uses the parameters for the Gamma hyperprior and is therefore looser. Also, the Bayesian



Chapter 3. Massive MIMO-OFDM Systems with Low Resolution ADCs 106

1 100 200 300 400 500
Index of the Compressible Vector

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

S
o

rt
e

d
 M

a
g

n
it
u

d
e

 o
f 

C
o

e
ff

ic
ie

n
ts

Figure 3.6: Magnitude decay profile of the sorted magnitudes of i.i.d. samples drawn from

a complex normal distribution parameterized by a Gamma distributed precision matrix.

CRLB for the unquantized and 3 bits almost overlap on each other, whereas there is a

small gap between the two in the case of hybrid CRLB. As the shape parameter increases,

the peak value of the compressible signal decreases, and hence the compressibility of the

signal decreases. Due to this, the NMSE and the CRLBs both increase with the shape

parameter.

Figure 3.8 shows the NMSE and hybrid CRLB as a function of the number of mea-

surements for the unquantized and {1, 2, 3} bits quantized cases. We do not include the

Bayesian CRLB in this figure to avoid clutter. The shape parameter is set to 0.55 and

the SNR to 30 dB. We observe that the gap between the NMSE and CRLB for the 1-bit

quantization is higher compared to the {2, 3} bits and the unquantized cases. This shows

that having only sign measurements leads to severe performance loss due to the large

quantization noise, which results in higher NMSE. We also see that the gap between the

unquantized case and the 3 bits quantization is very small, which empirically shows that a

3 bit quantizer provides a good trade-off between the performance and system complexity.

We thus set the ADC resolution to 3 bits in all the further simulations, unless specified
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Figure 3.7: NMSE (dB) vs. the shape parameter of the Gamma hyperprior of the precision

matrix, with M = 250, N = 512, T = 20, SNR = 40 dB.

otherwise.

3.8.2 QVB Channel Estimation and Soft Symbol Decoding

In this subsection, we evaluate the NMSE and coded BER performance of the iterative

VB channel estimation and soft symbol decoding algorithm. We also study the impact of

the various system parameters on the support-aware Bayesian CRLB derived in Section

3.2. The data bits are generated i.i.d. from a uniform distribution. Each UE’s data bits

are encoded with an LDPC channel code from 3GPP 5G NR specifications [103]. We

use the parity check matrix from LDPC base graph 0 with a lifting size Zc set to 8 and

set index 0, which results in 176 message bits and 544 coded bits per block. The coded

bits are interleaved by a random interleaver which is known to both the UE and the BS,

mapped to 4-QAM constellation of unit energy, OFDM modulated, and transmitted over

frequency-selective wireless channels.3 We assume that the LSFCs between the kth UE

3With higher order constellations, the performance is similar, with an expected shift in the SNR
required to achieve a given coded BER.
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Figure 3.8: NMSE (dB) as a function of the number of quantized measurements. N = 512,

T = 20, shape = 0.55, SNR = 30 dB.

and the BS antennas are the same due to the close spacing between the antennas com-

pared to the BS-UE distance. The UEs adopt path loss inversion based transmit power

control that compensates for the LSFCs, and therefore we set them to 1 in all our simula-

tions.4 Each tap of the frequency-selective channels is i.i.d. circularly symmetric complex

normal distributed with mean 0 and variance 1. We include the details of the system

parameters used for simulations in the captions of each simulation plot. We define the

SNR as 1/σ2
w. We use the Frobenius norm of the difference between the channel estimates

(and estimates of the unquantized received data symbols) in consecutive iterations as the

stopping condition for the VB channel estimation (and soft symbol decoding) procedures.

We set the maximum number of iterations for VB channel estimation and data detection

algorithms to 25, and the total number of iterations in Algorithm 8 to 4.

Fig. 3.9 compares the CRLB derived for a quantized system with the analytical CRLB

for an unquantized system (labeled UQ, from [119].) We see that, as the ADC resolution

4The LFSCs can be estimated at the UEs, for example, using the synchronization signals that are
periodically transmitted by the BS.
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Figure 3.9: CRLB (dB) as a function of ADC resolution (bits) for Nr = 64, K = 16,

L = 64, Lsp = 8, SNR = 1 dB.

increases, the gap between the quantized and unquantized Bayesian CRLBs decreases,

and the bounds meet beyond an ADC resolution of 4 bits. In fact, if the ADC resolution

is infinite, our CRLB matches with the analytical expression derived for an unquantized

system. Therefore, our derived Bayesian CRLB captures the effect of low-resolution ADCs

well, and can serve as a benchmark to evaluate the NMSE performance of any estimator

in a quantized setup.

Fig. 3.10 shows the NMSE performance of the quantized VB algorithm and the

Bayesian CRLB when Nr = 40, K = 10, Lsp = 8, and 3 bits quantization. We ob-

serve that when τp = 1 and τp = 4 OFDM symbols, the NMSE of VB overlaps with the

Bayesian CRLB beyond 4 dB and −4 dB SNR, respectively. At low SNRs and τp = 1,

the gap between the Bayesian CRLB and the NMSE of VB is slightly more than that at

high SNRs, which can be attributed to the fact that there can be support recovery errors

in VB due to high noise. In our wireless communication application, we typically operate

at medium to high SNRs, where the Bayesian CRLB and VB almost overlap. Therefore,

the Bayesian CRLB serves as a good benchmark to characterize the NMSE performance
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Figure 3.10: NMSE (dB) as a function of SNR (dB) for Nr = 40, K = 10, Nc = 256,

L = 64, Lsp = 8, 3 bits quantization.
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Figure 3.11: Coded BER as a function of SNR (dB) for Nr = 32, K = 8, Nc = 256,

L = 32, Lsp = 8, τd = 10, 3-bits quantization. The conventional OFDM receiver (curves

labelled “UQOFDM” and “QOFDM”) uses the soft-detection procedure from [1].
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of a Bayesian-inspired channel estimator.

Fig. 3.11 compares the coded BER performance of the VB algorithm with that of an

unquantized joint channel estimation and data detection algorithm based on BiGAMP [95],

and MMSE channel estimator and soft-detector [1]. For the quantized MMSE receiver,

we compute the DFT after the quantization, and perform the equalization. We set the

number of outer iterations of the iterative channel estimator and soft symbol decoder to

8. An advantage of the VB algorithm is that it can recover the channel with only one

pilot OFDM symbol. However, for fair comparison, we set τp = 8 because the conven-

tional OFDM receiver cannot estimate the channel in an underdetermined setting. We see

that, at a BER of 10−4, the quantized VB algorithm (labelled “QVB τp = 8, EstCSIR”)

outperforms conventional OFDM receiver with unquantized observations and channels

estimated using τp = 8 pilot OFDM symbols by around 13 dB. In fact, it even outper-

forms the conventional OFDM receiver with unquantized observations and perfect CSIR

by 2.5 dB. Moreover, the VB algorithm with only 3 bits quantization performs better
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than an unquantized BiGAMP by around 1 dB. This shows the importance of directly

inferring the posterior distributions of the data symbols. We also see that the VB algo-

rithm with data prior adaptation performs better than the VB algorithm without any

adaptation in this scenario by more than 0.5 dB. Finally, the VB algorithm with 4-bits

quantization (labelled “QVB-4 τp = 4 EstCSIR PriorAdapt”) is only marginally better

than the VB with 3 bits quantization. Therefore, a 3 bits quantizer is sufficient to achieve

good performance in a low-resolution ADC based MIMO-OFDM system.

Fig. 3.12 compares the coded BER of the VB algorithm for the ADC resolution set to

{1, 2, 3} bits with square root raised cosine transmit and receive pulse shaping filters. The

roll-off factors for the transmit and receive filters are set to 0.3. The system bandwidth

is set to 2 GHz, so the sampling period Ts is 0.5 ns. We set the cyclic prefix length to the

maximum delay spread of L = 32 symbols. The number of nonzero taps Lsp is set to 8,

with the corresponding delays generated uniformly at random between 0 and (L − 2)Ts.

The channel gains of the nonzero taps are i.i.d. complex normal with zero mean and unit

variance. For comparison, we include the quantized VB algorithm with ideal pulse shaping

filters (labeled “QVB-3-bits-NoPS”) and the BiGAMP algorithm [95] with unquantized
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pilot and data received signals (labeled “UQGAMP”). Although the pulse shaping filters

introduce inter-symbol interference and noise correlation, it only results in a marginal

performance loss of around 0.5 − 0.7 dB in the VB algorithm with 3 bits quantization.

This shows that the VB algorithm is robust to non-idealities. Moreover, VB algorithm

with only 2 bits quantization outperforms UQGAMP.

Fig. 3.13 shows the CRLB as a function of the pilot length τp for various values of

SNR. As τp increases, the CRLB decreases, which is due to the increase in the number of

observations. The slope of the CRLB curves decreases as τp increases, and asymptotically

becomes zero, which follows the law of diminishing returns. That is, if we vary only τp by

fixing all the other parameters, we do not see any significant performance improvement

beyond a point. This is because, irrespective of the number of measurements, the quanti-

zation noise floor limits the improvement obtainable by increasing τp. Also, the value of

the threshold decreases as SNR increases, which shows that when the noise power is low,

we can potentially achieve better spectral efficiency with fewer number of pilots.

Figures 3.14 and 3.15 show the NMSE (dB) and coded BER, respectively, as a function

of the data duration, τd, for the iterative VB algorithm. We also plot the CRLB in
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Fig. 3.14. The NMSE decreases with τd, as expected, due to the increase in the number

of virtual pilot symbols. In fact, the NMSE goes below the CRLB beyond a particular

τd in all the τp configurations. For e.g., when τp is 12, the NMSE is around −13 dB

for τd = 8, whereas the CRLB of −13 dB is achieved at τp set to 13. That is, the VB

channel estimator can attain an NMSE even lower than the CRLB computed using a larger

training overhead, since it uses the data symbols as virtual pilots. On the other hand,

when τp is 12 and τd is 5, the VB algorithm achieves an NMSE of around −12.5 dB, which

is higher than the CRLB when τp is 17 by around 1.5 dB. Thus, the NMSE of the channel

estimator is higher than the CRLB computed using τp + τd as the pilot duration. This

is because the data symbols are also estimated using the received symbols. Nonetheless,

the iterative data-aided channel estimation and channel estimation assists in reducing the

training overhead and increasing the spectral efficiency. Further, the slope of the NMSE

curves decreases with τd, which reiterates our observation in Fig. 3.13 about the error

floor due to the quantization noise.

In Fig. 3.15, we see that, as τp increases, the coded BER decreases due to better channel

estimation performance. We also include the coded BER performance for a quantized VB
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soft symbol decoding algorithm with perfect CSIR, which serves as a lower bound for the

iterative quantized VB channel estimator and soft symbol decoder. We see that, when τp

is 12, and τd is greater than 28, our iterative VB algorithm almost meets the performance

of the perfect CSIR case. Given the coherence interval, such studies can guide system

designers to configure τp (and thus τd) and obtain the same BER performance as with

perfect CSIR, or to choose τp to attain the right trade off between training overhead and

data duration and thereby achieve maximal spectral efficiency.

3.9 Conclusions

In this chapter, we derived the Bayesian, hybrid, and support-aware CRLBs for an esti-

mator of a compressible signal using quantized lower dimensional measurements. Next,

we developed a pilot-based channel estimator and a soft symbol decoder using a VB

framework, which directly infers the posterior distributions of the channel and data given

the quantized received signals. We utilized the posterior statistics of the decoded data

symbols to develop an iterative VB data-aided channel estimator and soft symbol de-

coder. We marginally improved the performance by proposing a variant of the iterative

algorithm that used the posterior bit LLRs from the channel decoder for data prior adap-

tation. We benchmarked the NMSE performance of the VB estimator with that of the

derived Bayesian CRLB, and numerically showed that it is efficient. We also evaluated

the NMSE and coded BER performances of the iterative VB channel estimator and soft

symbol decoder, and compared with the state-of-the-art. Finally, we provided interesting

insights into the impact of various parameters on the system performance. Future work

could consider extending these ideas to millimeter-wave channels exploiting spatial spar-

sity, or account for carrier frequency and timing offsets across users by modeling them

using latent variables that are estimated using the VB framework, and so on.
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3.10 Proofs

3.10.1 Proof of Theorem 1

The conditional probability distribution of Ỹ given X̃, Φ̃ and σ̃w is

p(Ỹ|X̃; Φ̃, σ̃2
w) =

T∏
ℓ=1

p(ỹℓ|x̃ℓ; Φ̃, σ̃2
w)

=
T∏

ℓ=1

∫
z̃ℓ∈RM̃

p(ỹℓ|z̃ℓ)p(z̃ℓ|x̃ℓ; Φ̃, σ̃2
w) dz̃ℓ

=
T∏

ℓ=1

M̃∏
m=1

Bmℓ, (3.60)

where

Bmℓ ≜
∫ z̃

(hi)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

z̃
(lo)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

1√
2π

exp

[
− z̃2mℓ

2

]
dz̃mℓ (3.61)

and z̃
(lo)
mℓ and z̃

(hi)
mℓ are the lower and upper quantization thresholds for the (m, ℓ)th entry

of Ỹ, respectively. Also, Φ̃mn and x̃nℓ denote the (m,n)th and (n, ℓ)th entries of Φ̃ and X̃,

respectively.

Note that, since we estimate ÑT parameters in total, the FIM is block diagonal matrix

of size ÑT × ÑT , with T blocks each of size Ñ × Ñ . Computing it requires the gradient

and Hessian of the joint probability distribution w.r.t. xℓ ∀ℓ. Since the columns of X̃ are

independent of each other, we express the logarithm of the joint distribution using the

chain rule as shown in (3.62).

log p(Ỹ, X̃, P̃; Φ̃, σ̃2
w) = log p(Ỹ|X̃; Φ̃, σ̃2

w) + log p(X̃; P̃) + log p(α; a, b),

∝
T∑

ℓ=1

M̃∑
m=1

log

∫ z̃
(hi)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

z̃
(lo)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

1√
2π

exp

[
− z̃2mℓ

2

]
dz̃mℓ −

T∑
ℓ=1

x̃T
ℓ P̃x̃ℓ

2
.

(3.62)
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In (3.62), we omit the terms that do not depend on X̃ for brevity. We can verify that

the joint probability distribution in (3.62) fall into the exponential family of distributions

which satisfies the regularity conditions in Sec. 5.2.3 of [125]. We apply Leibniz integral

rule to compute the first and second derivatives of logBml with respect to (w.r.t.) x̃kℓ

and x̃jℓ shown in (3.63) and (3.64), respectively,

∂

∂x̃kℓ

logBmℓ

= − Φ̃mk√
2πBmℓσ̃w

[
exp

(
−(z̃

(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ)

2

2σ̃2
w

)
− exp

(
−(z̃

(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ)

2

2σ̃2
w

)]
.

(3.63)

− ∂2

∂x̃jℓx̃kℓ

logBmℓ =
Φ̃mkΦ̃mj

σ̃2
w

 η̃(hi)mℓ f(η̃
(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
 ,

(3.64)

where

η̃
(hi)
mℓ ≜

z̃
(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

, (3.65)

η̃
(lo)
mℓ ≜

z̃
(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w

. (3.66)

In (3.64), f(·) and F (·) denote the PDF and CDF of a standard normal random variable,

respectively. Writing in matrix form, the ℓth diagonal block of the FIM, denoted by

M̃ℓ(a, b, σ̃
2
w), is shown in (3.67).

M̃ℓ(a, b, σ̃
2
w) = E

[
− ∂2

∂x̃ℓx̃T
ℓ

log p(Ỹ, X̃; P̃, Φ̃, σ̃2
w)

]

= Φ̃Tdiag

 1

σ̃2
w

E

 η̃(hi)mℓ f(η̃
(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
M̃

m=1

Φ̃+ E[P̃].

(3.67)
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3.10.2 Proof of Lemma 1

As δ → 0, both (3.13) and (3.14) become indeterminate forms. Further, both the numer-

ators and denominators in the left hand sides of (3.13) and (3.14) are differentiable at 0.

Applying L’Hôpital’s and Leibniz integral rules (for differentiating the denominators), we

get the right hand sides in (3.13) and (3.14). □

3.10.3 Proof of Lemma 2

The proof follows by using the lower and upper thresholds of the 1-bit quantizer as follows:

z̃
(lo)
mℓ =

0 if ỹmℓ = +1

−∞ if ỹmℓ = −1

(3.68)

and

z̃
(hi)
mℓ =

∞ if ỹmℓ = +1

0 if ỹmℓ = −1.

(3.69)

Substituting (3.68) and (3.69) in (3.7), after straightforward algebraic manipulation and

using the facts that F (∞) = 1, F (−∞) = 0 and F (η̃mℓ) = 1 − F (−η̃mℓ) ∀ m, ℓ, we

get (3.16). □

3.10.4 Proof of Lemma 3

To obtain the approximate posterior distribution qH(H), we first compute the approximate

posterior distribution of each of the factors qhn(hn), n = {1, . . . , Nr}. We calculate the

expectation of the joint distribution in (3.38) with respect to the approximate posterior

distributions
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{qZ(Z(p)), qh1(h1), . . . , qhn−1(hn−1), qhn+1(hn+1), . . . , qhNr
(hNr), qα(α)} as follows:

ln qhn(hn) =
〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w) + ln p(H|P) + ln p(α; a, b)
〉

(3.70)

∝ ⟨ln p(Z(p) |H;Φ(p), σ2
w) + ln p(H|P)⟩, (3.71)

where ⟨·⟩ denotes the expectation operation w.r.t. the approximate posterior distributions

of all the latent variables except qhn (hn). We obtain (3.71) from (3.70) by including only

the terms that do not depend on hn as proportionality constants such that qhn(hn) be-

comes a probability distribution. Simplifying (3.71) by separating the terms that depend

only on hn, we get

ln qhn(hn)

∝
〈
− 1

σ2
w

(
hH
n Φ

(p)HΦ(p)hn − z(p)n

H
Φ(p)hn − hH

n Φ
(p)Hz(p)n

)
− hH

n Phn

〉
(3.72)

∝ −
(
hH
n

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)
hn −

1

σ2
w

〈
z(p)n

〉H
Φ(p)hn −

1

σ2
w

hH
n Φ

(p)H
〈
z(p)n

〉)
,

(3.73)

where
〈
z
(p)
n

〉
is the mean of qzn

(
z
(p)
n

)
, ⟨P⟩ = diag(⟨α⟩), and ⟨α⟩ is the mean of qα(α).

Taking exponentials on both sides of (3.73), and by completing the squares, we can deduce

from the structure of the resulting expression that qhn(hn) is complex normal distributed

with covariance matrix and mean given by

ΣH =

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)−1

, (3.74)

⟨hn⟩ =
1

σ2
w

ΣHΦ
(p)H

〈
z(p)n

〉
, (3.75)

respectively. Note that, the covariance matrix ΣH is independent of n. So, we can write

the posterior mean of qhn(hn), n = {1, . . . , Nr} in a matrix form to get (3.44) and (3.45).

ΣH =

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)−1

and ⟨hn⟩ =
1

σ2
w

ΣHΦ
(p)H

〈
z(p)n

〉
, (3.76)
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□

3.10.5 Proof of Lemma 4

To obtain the approximate posterior distribution qZ(Z
(p)), we first compute the approx-

imate posteriors of each of its factors qzn(z
(p)
n ), n = {1, . . . , Nr}. We calculate the ex-

pectation of the log of the joint probability distribution in (3.38) with respect to the

approximate posterior distributions of all the latent variables except qzn(z
(p)
n ) as follows:

ln qzn(z
(p)
n ) =

〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w) + ln p(H|P) + ln p(α; a, b)
〉

(3.77)

∝
〈
ln p(y(p)

n | z(p)n ) + ln p(z(p)n |hn;Φ
(p), σ2

w)
〉

(3.78)

∝ ln1(z(p)n ∈ (z(lo)n , z(hi)n ))− 1

σ2
w

〈wwz(p)n −Φ(p)hn

ww2
〉
. (3.79)

By expanding the second term in (3.79), completing the squares, and taking exponential

on both sides, qzn(z
(p)
n ) is truncated complex normal distributed with mean given by

〈
z(p)n

〉
= Φ(p) ⟨hn⟩+

σw√
2

f
(

z
(lo)
n −Φ(p)⟨hn⟩

σw/
√
2

)
− f

(
z
(hi)
n −Φ(p)⟨hn⟩

σw/
√
2

)
F
(

z
(hi)
n −Φ(p)⟨hn⟩

σw/
√
2

)
− F

(
z
(lo)
n −Φ(p)⟨hn⟩

σw/
√
2

) . (3.80)

We have included the second order terms of qhn(hn) as part of the proportionality constant

to arrive at (3.80). By writing the posterior means of qzn(z
(p)
n ) in matrix form, we get

(3.46). □

3.10.6 Proof of Lemma 5

We follow similar steps that are used to compute qZ(Z
(p)) and qH(H) to obtain qαk

(αk),

1 ≤ k ≤ KL as follows:

ln qαk
(αk) =

〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w) + ln p(H|P) + ln p(α; a, b)
〉

(3.81)
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∝ ⟨ln p(H|P) + ln p(α; a, b)⟩ (3.82)

∝ (a+Nr − 1) lnαk −
(
b+

Nr∑
n=1

⟨|hkn|2⟩
)
αk. (3.83)

From the structure of (3.83), we see that qαk
(αk) ∀k is Gamma distributed with shape

and rate parameters given by (3.47). The mean ⟨αk⟩ is computed as ãk/b̃k, where ãk and

b̃k are as defined in (3.47). □

3.10.7 Proof of Lemma 6

We obtain the approximate posterior distribution qx

(
x
(d)
kt

)
by computing the expectation

of the log of the joint distribution with respect to the approximate posterior distributions

of all the latent variables except qxkt
.

ln qxkt

(
x
(d)
kt

)
=
〈
ln p

(
Y(d)|Z(d)

)
+ ln p

(
Z(d)|X(d),D, σ2

w

)
+ ln p

(
X(d)

)〉
∝ − 1

σ2
w

(
∥D:,k∥2

x(d)
kt

2

− 2ℜ
[
DH

:,k

(〈
z
(d)
t

〉
−

KNc∑
k′=1
k′ ̸=k

D:,k′

〈
x
(d)
k′t

〉)
x
(d)
kt

∗])

+ ln p(x
(d)
kt ). (3.84)

We include all the terms that do not depend on x
(d)
kt as part of the proportionality con-

stant. Now, we substitute the values of x
(d)
kt from a discrete constellation set in (3.84)

and take exponential on both the sides to get an expression for the probability mass at

a constellation point, and normalize it to obtain the approximate posterior probability

mass function of x
(d)
kt given in (3.54). □
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Chapter 4

Site-Specific Millimeter-Wave

Compressive Channel Estimation

with Hybrid MIMO Architectures

4.1 Introduction

Millimeter-wave (mmWave) wireless communication is one of the potential technologies

proposed for the next generation communication systems (5G and beyond) to meet the

ever-increasing demand for high data rates. The mmWave frequency spectrum, ranging

from 30 GHz to 300 GHz, is attractive because it offers large bandwidths (∼ 2GHz),

resulting in very high data rates and low latency. These advantages come at a cost

of higher path loss due to several factors, such as blockages and oxygen absorption at

mmWave frequencies, which in turn bring several engineering challenges in adopting this

technology in commercial wireless communication systems.

A potential solution to overcome this problem is beamforming, which leverages the

availability of multiple antennas at the transmitter and receiver. In particular, millime-

ter wavelengths enable one to accommodate a larger number of antennas into the same

physical space, and thereby attain high beamforming gains. However, a fully digital ar-

chitecture in a MIMO system, i.e., one Radio Frequency (RF) chain per antenna, and one
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complex-valued Analog-to-Digital Converter (ADC) per RF chain is less appealing both

from commercial and engineering perspectives due to its high cost and energy require-

ments. Therefore, a hybrid MIMO architecture is proposed in the literature as a potential

solution to solve this problem [45].

In a hybrid MIMO system, multiple antennas are connected to an RF chain using

a phase shifter network (RF precoder/combiner), and a digital precoder/combiner is

employed in the complex baseband side of the transceiver. The RF and digital pre-

coders/combiners are configured by optimizing a system performance metric such as the

sum rate or signal to interference noise ratio. Unlike a fully analog architecture, a hybrid

architecture allows one to reduce the number of RF chains, while supporting multi-stream

and multi-user transmissions. The major challenges then are in estimating the mmWave

wireless channel and configuring the RF and digital precoders/combiners based on the

channel estimate. The problem is exacerbated by the fact that only the low dimensional

RF combined signals at the baseband are available for estimating the channel. Since the

system does not have any knowledge of the channel state during the channel estimation

phase, the baseband precoders/combiners are set to the identity matrix and random phase

shifts are chosen for the RF precoders/combiners.

Mmwave channel estimation in a hybrid MIMO architecture is a well studied problem,

and we provide a brief overview of some of the key existing literature here. The simplest

channel estimation method in hybrid MIMO systems is the Least Squares (LS)-based

approach [126], which is inherited from conventional MIMO [127]. A more refined solu-

tion to channel estimation is to exploit both the delay and angular domain sparsity that

mmWave channels exhibit. In this approach, the channel estimation problem is formulated

as a sparse recovery problem [57]. Such compressive sensing based estimation techniques

were first developed for frequency-flat hybrid mmWave MIMO systems [50,128]. Recently,

frequency-selective channels with OFDM-based communications leading to a more com-

plex estimation problem have also been considered, with different approaches to exploit

the sparse channel characteristics [57, 129, 130]. Several model-based signal processing

techniques for mmWave channel estimation under various system settings can be found
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in [131–145].

Machine Learning and Artificial Intelligence (ML/AI) have been shown to be powerful

tools in diverse areas such as natural language processing, speech processing, and image

recognition, where it is challenging to design specific model-based algorithms. However,

the impact of ML/AI on the design and optimization of communication systems is yet to

be extensively studied, especially under realistic and practically meaningful settings. We

aim to address some of the aspects of ML/AI in wireless communications here.

In this chapter, we study the potential advantage of using data-driven approaches for

channel estimation in hybrid MIMO systems. The model-cum-data driven algorithm we

develop in this chapter was selected as one of the top three solutions in the “ML5G-

PHY Channel Estimation Global Challenge 2020” organized by the International

Telecommunication Union (ITU)1. It also won the “Popular Vote” award in the “ITU

Challenge Grand Finale” conference organized in December 2020. Our main goal in this

chapter is to present our algorithm, and contrast it with the other two winning solutions

for estimating an mmWave channel in a hybrid MIMO system. We utilize the channel

training datasets generated using the Raymobtime tool to customize our algorithm so that

it performs well for a test dataset generated in a similar environment [146].

We provide a brief overview of our solution here. We integrate a fast greedy search

with a high-performing Bayesian inference method in the first approach. We develop a

multi-level greedy search (MLGS) to learn the sparsifying virtual beamspace dictionary

which reduces the dimensionality of the problem. We then use the learned dictionary to

estimate the channel using a reduced dimensional sparse Bayesian learning (SBL) method.

We finally exploit the delay-domain sparsity learnt from the training dataset to de-noise

the estimated channels. We name the algorithm as MLGS-SBL. We compare the NMSE

of our algorithm with the other two competing solutions named Pattern-Coupled Sparse

Bayesian Learning for Channel Estimation with Dominating Delay Taps (PCSBL-DDT)

and Projection Cuts Orthogonal Matching Pursuit (PC-OMP) [63].

1https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx
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Figure 4.1: mmWave MIMO system based on a hybrid analog-digital architecture.

Notation

The operator (·)∗ represents the conjugate transpose or conjugate for a matrix or a scalar,

respectively. Ā, AT , and A† denote the conjugate, transpose, and Moore-Penrose pseu-

doinverse of a matrix A, respectively. The multivariate complex Gaussian distribution

with mean vector µ and covariance matrix C is denoted by CN (µ,C) and its probabil-

ity density function (pdf) of a random vector x is denoted by CN (x|µ,C). blkdiag(·)

represents the block-diagonal part of a matrix. diag(X) or diag(x) represents a vector

obtained by the diagonal elements of the matrix X or the diagonal matrix obtained with

the elements of x in the diagonal, respectively. A⊗B denotes the Kronecker product of

the matrices A and B. ||A||F denotes the Frobenius norm of a matrix A. ⟨a,b⟩ is the

inner product of the two vectors a and b. The trace of a matrix A is denoted by tr(A).

Tx and Rx denote the transmitter and receiver, respectively. We use vec(A) to vectorize

the matrix A column-wise. E[·] denotes the expectation.

4.2 System Model

We consider a single cell mmWave hybrid MIMO-OFDM system with Nt antennas at the

transmitter (Tx) and Nr antennas at the receiver (Rx), as shown in Fig. 4.1. The Tx

and Rx are equipped with Lt and Lr RF chains, respectively. The training input signal

s[k] ∈ CLt×1 on the kth subcarrier is OFDM modulated, up-converted to RF, and analog

precoded using Ftr ∈ CNt×Lt , and transmitted over the air to the Rx via an mmWave

channel denoted by H[k] on the kth subcarrier. The received signal is filtered using an

RF combining matrix Wtr ∈ CNr×Lr , down-converted to baseband, OFDM demodulated
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to obtain the kth subcarrier’s complex baseband signal y[k] ∈ CLr×1. We denote the total

number of subcarriers by K.

In the initial access phase, the system has no prior knowledge of the channel, and

therefore the precoder and combiner matrices cannot be designed to optimize any chosen

performance metric. Hence, we choose random analog precoding and combining matrices

(with unit modulus entries). In our system model, we adopt a fully connected phase

shifter network for analog precoding/combining. The analog precoders and combiners

are frequency-flat, and thus are the same for each subcarrier k = 1, . . . , K. The system

operates with Uniform Linear Arrays (ULAs) at both the Tx and Rx with half wavelength

spacing between consecutive antennas. The total number of training frames is denoted

by M .

After RF combining, down-conversion, zero/cyclic prefix removal and DFT, the com-

plex baseband signal received during themth training frame for the kth subcarrier, denoted

by y(m)[k] ∈ CLr×1 is given by

y(m)[k] = W
(m)
tr

∗(
H[k]F

(m)
tr q(m)t(m)[k] + n(m)[k]

)
, (4.1)

for m = 1, . . . ,M where H[k] ∈ CNr×Nt represents the frequency domain MIMO channel

matrix for the kth subcarrier. We choose the mth training signal as s(m)[k] = q(m)t(m)[k],

where t(m)[k] ∈ C is a subcarrier-dependent pilot symbol, and q(m) ∈ CLt×1 is a frequency-

flat vector whose entries are chosen as 1√
2Lt

(a+jb), where a, b ∈ {−1, 1} and are uniformly

distributed. The noise vector n(m)[k] is independently and identically distributed acrossK

subcarriers as CN (0, σ2INr). We define the transmit Signal-to-Noise Ratio (SNR) as ρ =

1
σ2
n
. After compensating for t(m)[k], and vectorizing (4.1), we use the result vec(AXB) =

(BT ⊗A)vec(X) to obtain

vec(y(m)[k]) =
(
q(m)TF

(m)T
tr ⊗W

(m)
tr

∗)︸ ︷︷ ︸
Φ(m)

vec(H[k]) +W
(m)
tr

∗
n(m)[k]. (4.2)

Next, we describe the mmWave channel model.
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4.2.1 Channel model

We consider a frequency-selective geometric channel model that is constant across M

training frames, and has Nc delay taps [57,74]. The dth delay tap is modeled as a clustered

channel with L paths as

Hd =

√
NtNr

LρL

L∑
ℓ=1

αℓp(dTs − τℓ)aR(ϕℓ)a
∗
T(θℓ), (4.3)

where ρL is the path loss between Tx and Rx, αℓ represents the complex path gain, ϕℓ is

the AoA, θℓ is the AoD, τℓ denotes the delay of the ℓth path. The corresponding Rx and Tx

array steering vectors are denoted by aR(ϕℓ) ∈ CNr×1 and aT(θℓ) ∈ CNt×1, respectively.

The pulse shaping and other low pass filtering evaluated at τ is represented by p(τ), and

Ts is the sampling interval. We represent the MIMO channel Hd in a matrix form as

Hd = AR∆dA
∗
T, (4.4)

where AR ∈ CNr×L and AT ∈ CNt×L contain the Rx and Tx array steering vectors aR(ϕℓ)

and aT(θℓ) as their columns for ℓ = 1, . . . , L, respectively. ∆d ∈ CL×L is a diagonal

matrix containing the complex channel gains. We take a K-point DFT of the delay-

domain channel to get the frequency domain representation as

H[k] =
Nc−1∑
d=0

Hd exp

(
−j2πkd

K

)
= AR∆[k]A∗

T, (4.5)

for k = 0, . . . , K − 1, and

∆[k] =
Nc−1∑
d=0

∆d exp

(
−j2πkd

K

)
. (4.6)

We adopt the extended virtual channel model in [74] to represent Hd as

Hd ≈ ÃR∆
v
dÃ

∗
T, (4.7)
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where the dictionary matrices ÃR ∈ CNr×Gr and ÃT ∈ CNt×Gt contain the Rx and Tx

array steering vectors evaluated on a grid of size Gr for the AoA and a grid of size Gt for

the AoD, respectively. When Gr and Gt are chosen properly, i.e., much greater than L,

∆v
d ∈ CGr×Gt becomes a sparse matrix containing the channel path gains on the locations

that match with the actual AoDs and AoAs. We represent (4.7) in the frequency domain

as

H[k] ≈ ÃR∆
v[k]Ã∗

T, (4.8)

for k = 0, . . . , K − 1, and

∆v[k] =
Nc−1∑
d=0

∆v
d exp

(
−j2πkd

K

)
. (4.9)

Note that the dictionary matrices ˜vec (A)R and ˜vec (A)T are common to all the subcarriers

due to the frequency-flat array response vectors. Hence, the sparse matrices ∆v[k] for

k = 1, . . . , K have the non-zero elements at the same indices. This means that they share

a common sparsity pattern [57].

Now, we vectorize (4.8) to get

vec(H[k]) =
(
¯̃AT ⊗ ÃR

)
vec(∆v[k]). (4.10)

We define Ψ = ¯̃AT ⊗ ÃR ∈ CNtNr×GtGr and Hv[k] = vec(∆v[k]) ∈ CGtGr , and substitute

vec(H[k]) in (4.2) to get

vec(y(m)[k]) = Φ(m)ΨH[k] + n(m)
c [k], (4.11)

where n
(m)
c [k] = W

(m)
tr

∗
n(m)[k]. By concatenating the RF combined signals of M training



Chapter 4. Site-Specific Millimeter-Wave Hybrid MIMO Compressive Channel Estimation130

frames, we get 
y(1)[k]

...

y(M)[k]


︸ ︷︷ ︸

y[k]

=


Φ(1)

...

Φ(M)


︸ ︷︷ ︸

Φ

Ψhv[k] +


n
(1)
c [k]
...

n
(M)
c [k]


︸ ︷︷ ︸

nc[k]

. (4.12)

Now, by stacking the received signals of K subcarriers, we get the final system equation

Y =
[
y[1] . . . y[K]

]
= ΦΨ

[
hv[1] . . . hv[K]

]
+
[
nc[1] . . . nc[K]

]
= ΦΨHv +Nc. (4.13)

Our goal is to estimate H[k], for k = 0, . . . , K − 1, given Y and Φ. As the AoDs

and AoAs are the same for all the subcarriers, Hv ∈ CGtGr×K has a joint row sparse

structure, i.e., the support set of each column of Hv are the same. Also, we do not have

the knowledge of the sparsifying dictionary Ψ and the noise variance, which makes the

channel estimation problem more challenging. In the following section, we present our

solution to this channel estimation problem.

4.3 MLGS-SBL

In this section, we present a model-based approach using the framework of Compressed

Sensing (CS), to estimate the mmWave channel given the received pilot measurements

and the frequency-flat transmit vector. We integrate a fast greedy search procedure and

a high performing statistical inference method to estimate the channel. The algorithm

consists of the following steps:

1. Preconditioning

2. Multi-level greedy search for dictionary learning

3. Noise variance estimation
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4. Sparse Bayesian learning for channel estimation

5. Channel de-noising

We provide a detailed description of each step below.

4.3.1 Preconditioning

Sparse signal recovery using greedy algorithms, such as OMP, are likely to choose the

correct support set when the noise covariance matrix is diagonal. In our mmWave channel

estimation problem, RF combining by Wtr at the front end of the receiver results in

correlated noise, which needs to be whitened using a preconditioning filter [57].

The scaled noise covariance matrix before whitening is

Cw =
E [nc[k]n

∗
c [k]]

σ2
= blkdiag{W(1)

tr

∗
W

(1)
tr , . . . ,W

(M)
tr

∗
W

(M)
tr }. (4.14)

We get the above by noting that

E
[
n(i)
c [k]n(j)

c

∗
[k]
]
= σ2W

(i)
tr

∗
W

(j)
tr δ[i− j]. (4.15)

We perform a Cholesky decomposition of Cw to obtain Cw = D∗
wDw, where Dw ∈

CMLr×MLr is upper triangular. Let us define D−∗
w to denote the inverse of D∗

w. Now,

we multiply the RF combined received signal (4.12) by D−∗
w to obtain the noise-whitened

received signal:

yw[k] = D−∗
w y[k] = D−∗

w ΦΨhv[k] +D−∗
w nc[k]

= Υwh
v[k] +D−∗

w nc[k], (4.16)

where Υw = D−∗
w ΦΨ ∈ CMLr×GtGr . Concatenating the noise-whitened received signals

of all the K subcarriers, we get

Yw =
[
yw[1] . . . yw[K]

]
= ΦwΨHv +Nw , (4.17)
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where Yw ∈ CMLr×K , Φw = D−∗
w Φ ∈ CMLr×NtNr , and Nw = D−∗

w

[
n[1] . . . n[K]

]
∈

CMLr×K . Thus, we need to estimate the row sparse matrix Hv given Yw and Φw.

4.3.2 Multi-level Greedy Search

We obtain an initial channel estimate using the MLGS procedure with a coarsely quantized

beamspace dictionary. We adopt the Simultaneously Weighted Orthogonal Matching

Pursuit (SW-OMP) algorithm as our base algorithm to form an initial estimate of the

channel [57]. As the sparsifying dictionary Ψ is unknown a priori, we use row-truncated

DFT matrices of size Nt × Gt and Nr × Gr as the Tx and Rx array steering matrices,

respectively. Let Ψ̃ be the initial sparsifying dictionary.

In the first step of MLGS, we select a column from Ψ̃ that is maximally correlated

with the received signal. Mathematically,

î = argmax
i

K∑
k=1

∣∣∣(ΦwΨ̃[:, i]
)∗
yw[k]

∣∣∣2 , (4.18)

where | · | denotes an element-wise modulus operation, and Ψ̃[:, i] is the ith column of Ψ̃.

Once we select î, we extract AoD θ̂i and AoA ϕî using the structure of Ψ̃, and form a

finely spaced dictionary of range (θ̂i−∆θ, θ̂i+∆θ) and (ϕî−∆ϕ, ϕî+∆ϕ), where ∆θ and

∆ϕ are appropriately chosen based on the spatial quantization of the previously chosen

dictionary. We repeat (4.18) with Ψ̃ replaced by the newly formed dictionary, and choose

a new {AoD, AoA} pair. We repeat this process N times and select one set of AoD and

AoA. Then, we compute

Ĥv =
(
ΦwΨ̂

)†
Yw, (4.19)

where Ψ̂ is formed using the currently chosen AoD and AoA. This whole procedure

constitutes the first out of S iterations of the MLGS algorithm in which we recover a

single tap.

In the sth iteration of MLGS, we recover s channel taps by following the same steps as
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Input: Yw, Φw, Ψ̃,

N , S, ∆θ, ∆ϕ

Initialize: ÂR = ∅, ÂT = ∅, Y′
w = Yw

Set Ψ̂ = Ψ̃

î = argmaxi
∑K

k=1

∣∣∣(ΦwΨ̂[:, i]
)∗

y′
w[k]

∣∣∣
Extract AoA ϕî, AoD θ̂i

Update Ψ̂ = f(ϕî, θ̂i,∆θ,∆ϕ)

ÂR =
[
ÂR aR(ϕî)

]
, ÂT =

[
ÂT aT(θ̂i)

]
Compute Ψ̂ = (

¯̂
AT ⊗ ÂR)

Channel Estimate: Ĥv =
(
ΦwΨ̂

)†
Yw,

Residual: Y′
w = Yw −ΦwΨ̂Ĥv

Output: ÂR, ÂT, Y
′
w

N times

S times

Figure 4.2: Flow diagram of MLGS.

above, but with the residual Y′
w = Yw−ΦwΨ̂Ĥv as observations, where Ψ̂ comprises the

set of {AoD, AoA} pairs chosen in the first s− 1 iterations. Therefore, after S iterations,

we recover S virtual beamspace channel taps. We summarize MLGS as a flow diagram

in Fig. 4.2.



Chapter 4. Site-Specific Millimeter-Wave Hybrid MIMO Compressive Channel Estimation134

4.3.3 Noise Variance Estimation

We estimate the noise variance σ̂2
n using the residual output from MLGS. The noise

variance is computed as

σ̂2
n =

1

MKLr

||Y′
w||2F . (4.20)

4.3.4 Sparse Bayesian Learning

In this step, our goal is to refine the channel estimates output by the MLGS procedure.

For convenience, we recall the measurement equation:

Yw = ΦwΨ̂Hv +Nw , (4.21)

where Ψ̂ = (
¯̂
AT ⊗ ÂR) is the dictionary output by MLGS. We adopt a statistical in-

ference approach to infer the posterior distribution of Hv given the measurements Yw,

measurement matrix ΦwΨ̂, and noise variance σ̂2
n. Let us denote ΦwΨ̂ by Υ̂w.

We use sparse Bayesian learning, a type-II maximum likelihood estimation procedure

to obtain the channel estimate [32,147]. In this method, we consider Hv as a hidden vari-

able, and obtain its posterior statistics given the observations. We impose a parameterized

complex Gaussian prior on each column of the channel as CN (0,Γ), where Γ = diag(γ).

Using a common hyperparameter γ across all the columns of Hv aids in promoting com-

mon row sparsity in the solution. Now, we need to obtain the posterior distribution of Hv,

and the hyperparameter γ. Since the prior and the noise are both Gaussian, obtaining

the posterior statistics of Hv is straightforward. But, computing γ requires computing

the marginal probability distribution p(Yw;γ) and maximizing it w.r.t. γ, which is called

evidence maximization or type-II maximum likelihood estimation.

We adopt the Expectation Maximization (EM) algorithm to learn the beamspace

sparse channel Hv and the hyperparameters γ. In the EM formulation, we treat Hv as

a hidden variable, and iteratively maximize a lower bound on the posterior distribution

p(γ|Yw). We alternate between E and M steps till a suitable convergence criterion is
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satisfied. We explain the steps below:

4.3.4.1 Expectation Step

In the E step, we compute the expectation of the log likelihood p(Yw,H
v|γ) w.r.t. the pos-

terior probability distribution p(Hv|Yw,γ
(i)), where i denotes the iteration index. Given

the hyperparameters γ(i), p(Hv|Yw,γ
(i)) is complex normal distributed with covariance

and mean given by

ΣH = Γ− ΓΥ̂∗
wΣY

−1Υ̂wΓ, (4.22)

Ĥv =
1

σ̂2
n

ΣHΥ̂
∗
wYw, (4.23)

where Γ = diag(γ(i)), and

ΣY = σ̂2
nIMLr + Υ̂wΓΥ̂

∗
w (4.24)

is the covariance matrix of the circularly symmetric complex normal marginal probability

distribution p(Yw).

4.3.4.2 Maximization Step

In the M step, we compute the hyperparameter γ by maximizing the function obtained

in the E step:

γ(i+1) = argmax
γ≥0

Ep(Hv|Yw,γ(i)) [p(Yw,H
v|γ)] . (4.25)

Solving (4.25), we get the hyperparameter update as

γ(i+1)
n =

1

K

K∑
k=1

|Ĥv[n, k]|2 +ΣH[n, n], n = {1, . . . , S2}. (4.26)

We alternate between E and M steps till a suitable convergence criterion is satisfied. We

use the Frobenius norm of the difference between the channel estimates of consecutive
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iterations as the convergence criterion in our simulations.

More theoretical details of SBL and type-II ML estimation can be found in [32, 123].

We provide a flow diagram of Multiple Measurement Vector SBL (MSBL) to compute

the posterior mean and covariance of the channel, and the hyperparameters, in Fig. 4.3.

Specifically, in Fig. 4.3, the E-step of the EM algorithm corresponds to the computation

of ΣY, ΣH and Ĥv, and the M-step corresponds to the computation of Γ.

Once we obtain the frequency domain channel estimate Ĥv, we estimate the support

of the row sparse matrix and the channel coefficients using the hyperparameters obtained

using SBL. We re-estimate the noise variance using the Frobenius norm of the residual

Ỹw = Yw −ΦwΨ̂Ĥv.

4.3.5 Denoising

By analyzing the training dataset, we observed that the channel is sparse in both the

virtual beamspace and delay domains. We exploited the beamspace sparsity and obtained

the frequency domain channel estimates using MLGS and SBL. In this final step, we

exploit the delay domain sparsity to denoise the channel to further reduce the MSE

between the original and estimated channels.

For each subcarrier k, we compute (
¯̂
AT ⊗ ÂR)H

v[:, k], and reshape it to form kth

subcarrier’s channel matrix of size Nr ×Nt. Then, for each transmit and receive antenna

pair, we compute a K-point inverse DFT to obtain a delay-domain channel estimate. We

retain the P dominant taps in the delay-domain channel estimate, and set the otherK−P

taps to 0. We fix P based on the estimated noise variance, and the number of training

frames M . The value of P is inversely proportional to σ̂2
n, and the training dataset is used

to choose an appropriate P . From our experiments on the training dataset, we found that

this denoising step leads to an approximately 2 dB reduction in NMSE. This concludes

the description of the MLGS-SBL approach.
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Input: Yw, Φw, Ψ̂, σ̂n

Initialize: γ1, . . . , γS2 ,

Γ = diag(γ1, . . . , γS2)

Υ̂w = ΦwΨ̂

ΣY = σ̂2
nIMLr + Υ̂wΓΥ̂

∗
w

ΣH = Γ− ΓΥ̂∗
wΣY

−1Υ̂wΓ

Channel Estimate:

Ĥv = 1
σ̂2
n
ΣHΥ̂

∗
wYw

Hyperparameter update: For n = 1, . . . , S2,

γn = 1
K

∑K
k=1 |Ĥv[n, k]|2 +ΣH[n, n],

Γ = diag(γ1, . . . , γS2)
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Output: Ĥv, {γ1, . . . , γS2}

No

Yes

Figure 4.3: Flow diagram of MSBL.
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Table 4.1: NMSE Table for Training Data

SNR (dB) Algorithm −15 −10 −5

Pilot Frames: 20

SW-OMP −1.45 dB −5.70 dB −9.68 dB

MLGS-SBL −4.29 dB −9.13 dB −12.34 dB

PCSBL-DDT −8.16 dB −10.62 dB −11.07 dB

PC-OMP −8.34 dB −12.36 dB −16.15 dB

Pilot Frames: 40

SW-OMP −3.95 dB −7.95 dB −11.87 dB

MLGS-SBL −7.55 dB −11.19 dB −14.15 dB

PCSBL-DDT −10.56 dB −12.14 dB −12.62 dB

PC-OMP −12.66 dB −16.33 dB −19.78 dB

Pilot Frames: 80

SW-OMP −7.33 dB −11.60 dB −15.63 dB

MLGS-SBL −13.02 dB −16.37 dB −18.94 dB

PCSBL-DDT −11.90 dB −13.10 dB −13.63 dB

PC-OMP −18.70 dB −21.49 dB −24.48 dB

Table 4.2: NMSE Table for Test Data

SNR (dB) Algorithm [−20, −11) [−11, −6) [−6, 0]

Pilot Frames: 20

MLGS-SBL −7.66 dB −10.97 dB −12.34 dB

PCSBL-DDT −8.94 dB −9.99 dB −10.31 dB

PC-OMP −9.09 dB −12.45 dB −14.22 dB

Pilot Frames: 40

MLGS-SBL −11.87 dB −12.79 dB −14.20 dB

PCSBL-DDT −10.82 dB −11.33 dB −11.89 dB

PC-OMP −13.79 dB −15.24 dB −16.79 dB

Pilot Frames: 80

MLGS-SBL −13.62 dB −16.23 dB −20.08 dB

PCSBL-DDT −11.74 dB −12.47 dB −12.98 dB

PC-OMP −16.32 dB −19.07 dB −23.91 dB
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4.4 Simulation Results

In this section, we discuss the NMSE performance of our algorithm with the training and

testing data generated using Raymobtime, a ray tracing based mmWave channel genera-

tion tool. We train the mmWave channel estimation algorithm using 10, 000 independent

channel realizations, each consisting of 100 paths between the Tx and Rx. More details

about the channel generation methodology can be found in [146]. We used 20, 40, and 80

pilot frames during both the training and testing phases of the developed algorithm. For

the training phase, we used SNR values of {−15,−10,−5} dB. We benchmark the NMSE

performance of our MLGS-SBL algorithm with that of PCSBL-DDT, PC-OMP and a

reference state-of-the-art model-based greedy search algorithm called SW-OMP [57].

We note that while MLGS-SBL, PCSBL-DDT, and PC-OMP have been fine-tuned

based on the training dataset, the baseline algorithm, SW-OMP, has been implemented as-

is from the literature. On the other hand, in our implementation of SW-OMP, we consider

the case where the true AoDs and AoAs are contained in the sparsifying dictionary. While

the derived algorithm does suffer from the off-grid effects, the SW-OMP algorithm is

insulated from the performance degradation caused by them.

Upon analyzing the training channels, we set the maximum number of paths obtained

from MLGS to S = 10, and the number of levels in MLGS to N = 5. We set the num-

ber of columns in the initial AoD/AoA steering matrices to 256. We use the estimated

noise variance after SBL to threshold the number of dominant delay taps of the channel

denoiser. As this approach is primarily a model-based method, and uses few statistics

from the training data, it is suitable for general mmWave channel estimation problems

also. Further, the thresholds are set keeping in mind the computational complexity of

the MLGS-SBL algorithm. By increasing the number of paths output by MLGS, we can

potentially improve the performance of the algorithm, but at the cost of higher compu-

tational complexity. We include the NMSE values obtained for the training and testing

datasets in Table 4.1 and Table 4.2, respectively. The final performance score achieved,

which is a weighted combination of the NMSE performance in Table 4.2 when the number

of pilot frames is 20, using our algorithm in the mmWave channel estimation challenge is
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−9.16 dB.

The final performance score on the test dataset in the channel estimation challenge of

the PC-OMP algorithm is −10.64 dB, outperforming the MLGS-SBL and the PCSBL-

DDT methods by 1.48 dB and 1.15 dB, respectively. Also, from Table 4.1, we can see

that the PCSBL-DDT and the PC-OMP algorithms are tuned better than the MLGS-SBL

method for the training dataset that result in their better NMSE performances at SNR

−15 dB and pilot frames {20, 40}. But the performance gap between MLGS-SBL and

PCSBL-DDT reduces for the testing data for SNR [−20,−11) dB and 20 pilot frames.

Moreover, MLGS-SBL performs better than PCSBL-DDT at SNR [−20,−11) dB and

40 pilot frames. This can be attributed to the fact that extracting more features from

a training dataset may result in an excellent performance during training but slightly

inferior performance while testing. This shows that a good model-based signal processing

solution has to be combined with appropriate training, while taking into account the

training and testing performance trade-off.

4.5 Conclusions

In this chapter, we have presented a novel signal processing approach to estimate an

mmWave channel in a hybrid analog-digital MIMO setup. We have adapted model-driven

procedures to utilize the AoD, AoA, and channel gain information from a training dataset,

and fine-tuned the algorithms to reduce the NMSE in the testing dataset. We empirically

showed that our algorithm unanimously performed better than a purely model-based ap-

proach by a large margin on a given training data set. Hence, machine learning approaches

can be potentially used in conjunction with model-driven based approaches to fine-tune

them and thereby obtain better performance in physical layer wireless communication

problems in realistic channel environments.
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Chapter 5

Codebook Based Precoding and

Power Allocation for Sum Rate

Maximization in Downlink

MU-MIMO Systems

5.1 Introduction

The design of downlink precoding and beamforming schemes for multiuser muliple in-

put multiple output (MU-MIMO) systems with a large number of antennas at the base

station (BS) or access point (AP) has attracted significant research interest in recent

years [148–154]. In typical frequency division duplex systems, the channel state infor-

mation (CSI) is first obtained at the UEs using downlink (DL) training, i.e., from pilot

symbols transmitted by the AP. Then, the UEs send their channel estimates back to the

AP over an uplink (UL) control channel. The AP, upon receiving the channel estimates,

computes a precoding matrix for data transmission to each of the users. In this chapter,

we consider an approach where the AP selects the columns of the precoding matrix from

a predetermined codebook of beamforming vectors. This allows the AP the flexibility of

either conveying the selected codebook indices to the UEs over a DL control channel, or
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using dedicated pilots to enable the UEs to estimate their respective effective channels.

Codebook based precoding is also relevant because it is employed (for example) in the

IEEE 802.15.3 and IEEE 802.15ac standards [76, 155]. Our goal in this context is to de-

termine the optimal selection of beamforming vectors and power allocation across users,

with possibly multi-stream data transmission to each of the UEs. This is a non-convex

and combinatorial problem, and therefore hard to solve. We present two novel algorithms

based on the minorization-maximization (MM) framework for maximizing the sum rate

under the codebook constraint. In the process, we also develop new matrix inequalities

that facilitate the use of the MM approach for optimization. These latter results could

be of independent interest in many other non-convex optimization problems.

5.1.1 Prior Art

Most of the existing studies on sum rate maximization in MU-MIMO systems do not con-

sider the problem when the transmitter is constrained to select its precoding vectors from

a codebook of candidate vectors [156–163]. In codebook based transmission, the columns

of the precoding matrices need to be selected from the codebook. This makes our problem

fundamentally different from, and intrinsically harder, than the (unconstrained) design

of precoding matrices, as the underlying problem becomes one of allocating beamforming

vectors to users, i.e., an integer optimization problem.

A codebook based approach for beamforming and power allocation in multiuser mul-

tiple input single output (MU-MISO) systems is considered in [164], where the authors

transform the underlying mixed integer optimization problem into a structured mixed

integer second-order cone program. They also customize a convex continuous relaxation

based branch-and-cut algorithm to compute an optimal solution to the beamforming prob-

lem. Considering the MU-MIMO system (where multiple data streams are transmitted

to each user) significantly changes the problem, because interference between streams as-

signed to the same UE can be handled via joint processing of the signals received at the UE

antennas. This is unlike the single antenna UE case, where all inter-stream interference

negatively impacts the data rate.
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In [165], the authors consider the beamforming assignment and power allocation

(BAPA) problem for MU-MISO systems. They introduce a virtual uplink (VUL) to

decouple the power allocations across different UEs, thereby admitting an iterative so-

lution. In the case of imperfect CSI at the transmitter, rate-splitting is shown to be

sum-rate optimal [166–169], but it requires successive interference cancellation to remove

the interference caused by the common messages and decode the private messages of all

the users. In contrast, we consider linear receivers and linear precoding of data using

a beamforming vector codebook, which leads to a solution that is easy to implement in

practical systems.

In this work, we approach the problem of codebook based precoding for sum rate max-

imization using the iterative technique of minorization-maximization (MM). We bound

the original objective function in multiple stages, which simplifies the optimization prob-

lem and helps in finding a closed-form analytical solution. Note that, when using an MM

approach for optimizing a non-convex objective function, the key novelty is to bound the

cost function by a surrogate function that is tight at the current iterate and is easy to

optimize. Different bounds can lead to different convergence and complexity tradeoffs.

We present and compare two alternatives for bounding the cost function. The resulting

algorithms are computationally simple (e.g., they do not involve any matrix inversion op-

erations), making them attractive for implementation. Further, as they are based on the

MM principle, they are guaranteed to converge to a local optimum from any initialization.

5.1.2 Main Contributions

Our main contributions in this chapter are as follows:

1. We present a closed-form expression for the achievable sum rate of a codebook

based precoding MU-MIMO broadcast system with minimum mean squared error

(MMSE) channel estimation at the receiver and the feedback of imperfect CSI to the

transmitter via an error-free control channel. The achievable sum rate expression

provides us with the objective function for beamforming vector selection and power

allocation.
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2. We develop two algorithms for solving the sum rate maximization problem in MU-

MIMO systems. The two algorithms differ in the way they bound the non-convex

sum rate cost function to arrive at the surrogate cost that needs to be optimized.

(a) Square root MM (SMM) algorithm: Here, we consider the square-root of the

power allocation as the optimization variable, and apply minorization three

times to lower-bound the objective function with a quadratic-form cost func-

tion. The surrogate cost function so obtained admits a closed-form optimal

solution.

(b) Inverse MM (IMM) algorithm: We use a matrix inequality to deal with the

matrix inverse term in the objective function. After two rounds of minorization,

this again leads to a surrogate quadratic lower bound, and admits a closed-form

optimal solution.

We analytically show that the closed-form solutions of the SMM and IMM algo-

rithms are optimal with respect to their corresponding surrogate optimization prob-

lems.

3. We empirically study the performance of the SMM and IMM algorithms with re-

spect to the number of users, codebook size, data SNR, pilot SNR etc. Further,

we illustrate the performance advantage offered by the SMM and IMM algorithms

compared to the WMMSE [157] and WSRMax [161] approaches as well as a single-

user-optimal codebook based precoding approach, where the IMM algorithm is used

to select the beamforming vector and power allocation on a per-user basis. The re-

sults demonstrate that jointly choosing beamforming vectors is necessary to realize

the full potential of MU-MIMO transmission. We compare the sum rate perfor-

mance and run times of the MM algorithms with that of CVX [170, 171], a convex

optimization package available online. The IMM algorithm has significantly lower

run time compared to CVX in the interference-limited regime, which is the primary

domain of interest of our work.

We note that, even in the single-user context, our solution to the problem of selecting
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multiple beamforming vectors in a codebook along with their corresponding power allo-

cation is novel, and a similar solution does not exist in the literature, to the best of our

knowledge. Moreover, our approach can easily accommodate additional constraints such

as a minimum rate per user for a selected subset of users, etc. Also, codebook based pre-

coding will necessarily play a role in the next generation wireless systems like mmWave

massive MIMO, where it is customary to adopt a hybrid precoding architecture [45] due

to the high cost and power consumption in the power amplifiers and ADCs. For instance,

in the analog precoding stage, due to the finite angular resolution of the analog phase

shifters, codebook based precoding arises naturally. The solution presented in this work

can be easily adapted to mmWave hybrid analog-digital beamforming based systems, by

imposing a constraint on the total number of spatial streams to which nonzero power

is allocated. Finally, the guaranteed convergence and simple implementation makes the

novel bounding technique developed in this work a potentially attractive approach for a

variety of optimization problems which arise in MU-MIMO systems.

5.2 System Model & Problem Statement

We consider a MU-MIMO system comprised of a AP equipped with Nt antennas and

K users each equipped with Nr antennas. The UEs and the AP share a codebook C ∈

CNt×N , whose columns consist of N unit-norm beamforming vectors c1, c2, . . . , cN , with

cj ∈ CNt . The complex baseband channel between the AP and the kth UE is denoted by

Hk ∈ CNr×Nt . The AP sends the data symbol sk(l) to the kth UE by precoding it using

the lth beamforming vector cl, and the composite signal x ∈ CNt transmitted by the AP

is

x =
√
ρdl

K∑
k=1

N∑
l=1

√
Pk (l)clsk(l), (5.1)

where ρdl is the data signal to noise ratio (SNR). In the sequel, all powers are normalized

with respect to the noise variance, and we use the SNR and transmit power interchange-

ably.
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Note that this general model allows multiple users to receive data on the same beam-

forming vector or multiple beamforming vectors to be assigned to a given user. Ultimately,

the beamforming vector selection and power allocation solution will ensure that the objec-

tive function, namely, the sum rate, is maximized. Therefore, there is no need to explicitly

impose constraints such as each beamforming vector should be allotted to at most one

user, or that a user should not be allocated more than a given number of beamforming

vectors. In (5.1), the data symbols {sk(l)} for k = 1, . . . , K, l = 1, . . . , L are assumed

to be independent and identically distributed (i.i.d.) Gaussian, with zero mean and unit

variance. Let Φk ≜ diag (()Pk(1), Pk(2), . . . , Pk(N)) denote a diagonal matrix whose en-

tries contain the fraction of the available power at the AP that is allocated to kth user on

the N beamforming vectors (hence, tr
(∑K

k=1Φk

)
= 1). Then, the goal at the AP is to

determine Φk, based on Hk, k = 1, 2, . . . , K, to maximize the achievable sum rate in the

system. Note that, Pk(l) = 0 is equivalent to not allotting the lth beamforming vector in

the codebook to the kth user.

Past works in the area, e.g., [164, 165], assume that Hk is perfectly known at the

AP. However, in practice, channel is estimated using training symbols, which results in

imperfect CSI. Therefore, we first describe the MMSE channel estimation at the UEs

using common pilots transmitted by the AP.

5.2.1 Downlink Training and Channel Estimation

In the downlink training phase, the AP transmits τp orthogonal pilot symbols (τp ≥ Nt)

over its Nt antennas. The pilot signal Xp ∈ CNt×τp satisfies XpX
H
p = INt . The received

pilot sequence at the kth user, Y
(p)
k ∈ CNr×τp , is given by

Y
(p)
k =

√
ρ
(p)
dl τpHkXp +Wk, (5.2)

where ρ
(p)
dl is the pilot signal to noise ratio (SNR), and Wk ∈ CNr×τp is the complex

additive white Gaussian noise (AWGN) whose columns are i.i.d. with mean 0 and co-

variance matrix INr , denoted CN (0, INr). The multiplication of the transmit symbols by
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√
τp above is to ensure that the total energy expended over the entire pilot duration is

τp. Also, Hk ∈ CNr×Nt denotes the channel matrix of the kth user, which contains i.i.d.

entries drawn from CN (0, βk), where βk denotes the combined effect of long term pathloss

and large scale shadowing between the AP and user k.

By multiplying (5.2) by XH
p on the right, we get

Y
(p)′

k ≜ Y
(p)
k XH

p =

√
ρ
(p)
dl τpHk +W

′

k, (5.3)

where W
′

k = WkX
H
p ∈ CNr×Nt is the effective noise whose columns are also distributed

as CN (0, INr). The MMSE estimate of the channel is given by [4]

Ĥk ≜
√

ρ
(p)
dl τpβkY

(p)′

k /
(
1 + ρ

(p)
dl τpβk

)
, (5.4)

and the mean square value of each entry of Ĥk is given by

γk ≜ ρ
(p)
dl τpβ

2
k/
(
1 + ρ

(p)
dl τpβk

)
. (5.5)

Note that, Ĥk is Gaussian distributed and is uncorrelated with the channel estimation

error H̃k ≜ Hk − Ĥk. This is useful in computing the noise plus interference covariance

matrix, in the next subsection.

5.2.2 Derivation of the Achievable Rate

Consider a power allocation matrix Φk, k = 1, 2, . . . , K. From (5.1), the composite signal

transmitted by the AP to all the users can be written compactly as
√
ρdl
∑K

j=1CΦ
1
2
j sj ∈

CNt where sj = [sj(1), sj(2), . . . , sj(N)]T is the data transmitted data to the jth user using

the beamforming codebook C, and ρdl is the downlink SNR. The received signal yk ∈ CNr

at the kth user is given by

yk = Hk

(
√
ρdl

K∑
j=1

CΦ
1
2
j sj

)
+wk,
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where wk ∈ CNr is the complex AWGN at the kth user with distribution CN (0, INr).

Given the channel estimate Ĥk at the receiver, the received signal can be rewritten as

yk =
√
ρdlĤkCΦ

1
2
k sk︸ ︷︷ ︸

Desired signal

+
√
ρdlĤk

K∑
j=1
j ̸=k

CΦ
1
2
j sj +

√
ρdlH̃k

K∑
j=1

CΦ
1
2
j sj +wk. (5.6)

In order to compute the achievable rate from the above equation, we need to compute the

signal and noise plus interference covariance matrices, find the signal to interference plus

noise ratio (SINR) and then use the worst case noise theorem [172]. The covariance of

the desired signal is ρdlĤkCΦkC
HĤH

k . We denote the covariance matrix of the noise and

interference of the kth user byVk. Using the fact that the terms involved are uncorrelated,

it is easy to show that

Vk = INr + ρdlĤkC
K∑
j=1
j ̸=k

ΦjC
HĤH

k + ρdlE
[
H̃kxx

HH̃H
k

]
︸ ︷︷ ︸
Due to channel est. errors

. (5.7)

It is shown in Sec. 5.6.1 that

E
[
H̃kxx

HH̃H
k

]
= (βk − γk) INr . (5.8)

Substituting (5.8) in (5.7) and simplifying, we get

Vk = σ2
kINr +

̂̂Hk

K∑
j=1
j ̸=k

Φj
̂̂HH

k , (5.9)

where ̂̂Hk ≜
√
ρdlĤkC and σ2

k ≜ (1 + ρdl (βk − γk)). Now, since the interference terms

are uncorrelated with the desired signal by virtue of MMSE estimation, using the worst

case noise theorem [172], the achievable rate of the kth user and the downlink sum rate

are given by

Rk = log

∣∣∣∣INr +V−1
k
̂̂HkΦk

̂̂HH

k

∣∣∣∣ . (5.10)
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Our goal is to maximize the sum rate Rtot =
∑K

k=1Rk under a total power constraint:

maximize
Φ1,Φ2,...,ΦK

Φk diagonal, p.s.d.

K∑
k=1

log

∣∣∣∣INr +V−1
k
̂̂HkΦk

̂̂HH

k

∣∣∣∣ , (5.11)

subject to tr
( K∑

k=1

Φk

)
= 1.

The optimization problem in (5.11) is nonconvex in Φ1, . . . ,ΦK due to the V−1
k term,

and cannot be solved in closed-form. Note that, we restrict the power allocation matrices

to be diagonal in order to be implementable under codebook based precoding. This

constrains the precoding matrices to belong to the finite set of matrices that can be

expressed as the sum of outer products of codebook vectors weighted by the corresponding

power allocation, and makes the problem significantly harder than unconstrained designs

of precoding matrices [156,157].

In this work, we present two algorithms based on the MM principle, which proceeds by

finding a surrogate function that is a lower bound on the objective function, followed by

maximizing the surrogate cost function, iteratively, until convergence to a local optimum.

An excellent tutorial on the MM principle can be found in [64].

5.3 Minorization-Maximization Algorithms for Sum

Rate Maximization

In this section, we present our solutions to the beamforming vector selection and power

allocation problem stated in (5.11). We develop two algorithms, namely, the square root

MM (SMM) and inverse MM (IMM) algorithms. These algorithms start with a common

minorization step, and then solve the resulting optimization problem by two different

approaches.

The first step in finding a computationally efficient solution to (5.11) is to find a

surrogate function which is a lower bound on the sum rate, and is tight at the current

iterate. To this end, consider the function f(Z,Y) = log |Z−1Y|, for Z, Y ⪰ 0. This
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function is convex in Z, Y−1. Hence, we can bound it from below using the first order

Taylor series expansion, as given by the following Lemma:

Lemma 8. For matrices Z, Y ⪰ 0, the function

f(Z,Y) = log
∣∣Z−1Y

∣∣
can be lower bounded by

f(Z,Y)≥−
(
log
∣∣Z(m)

∣∣+tr
(
Z(m)−1(

Z−Z(m)
))

+log
∣∣∣Y(m)−1

∣∣∣+tr
(
Y(m)

(
Y−1−Y(m)−1

)))
with equality at Z = Z(m) and Y = Y(m). (Later, m will be used to denote the iteration

index).

Returning to our problem, we define an intermediate matrix

Bk ≜ σ2
kINr +

K∑
j=1

̂̂HkΦj
̂̂HH

k . (5.12)

The rate of the kth user in (5.10) can then be written as Rk = log
∣∣V−1

k Bk

∣∣. Using Lemma

8, we get the following surrogate optimization problem for (5.11):

{Φ(m+1)
1 , . . . ,Φ

(m+1)
K }

= argmax
Φ1,...,ΦK

K∑
k=1

{
− tr

(
V

(m)
k

−1
(
σ2
kINr +

K∑
j=1
j ̸=k

̂̂HkΦj
̂̂HH

k

))

− tr

(
B

(m)
k

[
σ2
kINr +

K∑
j=1

̂̂HkΦj
̂̂HH

k

]−1
)}

, (5.13)

subject to tr
( K∑

k=1

Φk

)
≤ 1,

where m is the iteration index. Here, we omit the loge 2 term in the denominator, as it

does not affect the solution. In (5.13), the quantities V
(m)
k and B

(m)
k are computed by
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substituting Φ
(m)
k for Φk in (5.9) and (5.12), respectively. Now, if we are able to solve

the surrogate problem in (5.13), then, starting from an arbitrary initialization for Φk, the

MM procedure iterates between solving (5.13) and updating Vk and Bk. By virtue of the

fact that the cost function increases in each iteration and is bounded above (for example,

by the sum of the best rates achievable by each individual user), such a procedure is

guaranteed to converge to a local optimum from any initialization.

Now, the optimization problem in (5.13) is a semidefinite program (SDP). However,

the matrices {Φk}k=K
k=1 are coupled in the objective function and constraints, making it

a large dimensional problem. Due to this, SDP based methods such as sdpsol to solve

(5.13) can quickly become computationally prohibitive as the number of users, the size

of the codebook, and/or number of antennas gets large. Hence, there is a need to find

alternative, computationally inexpensive approaches to solving (5.13). The SMM and

IMM algorithms employ two different surrogate functions to further lower bound the

objective function, in turn, leading to a surrogate cost function that is more amenable to

optimization. In fact, we are able to solve the final surrogate problem in closed-form.

Before discussing the SMM and IMM algorithms further, we define some notation and

simplify the first term in the objective function in (5.13). Let

Φ ≜ diag (Φ1, . . . ,ΦK) , (5.14)

Ψk ≜
[ ̂̂Hk, . . . ,

̂̂Hk

]
, k = 1, . . . , K (5.15)

denote the augmented power allocation and the kth user’s channel matrices, respectively.

In (5.15), ̂̂Hk is repeated K times. Also, let

Q ≜
K∑
k=1

diag

( ̂̂HH

k V
−1
k
̂̂Hk, . . . ,0N , . . . ,

̂̂HH

k V
−1
k
̂̂Hk

)
. (5.16)

In the above, the N × N all zero matrix 0N is in the kth block diagonal position of Q.
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Excluding the constant noise variance part, we can rewrite the first term of (5.13) as

K∑
k=1

tr

(
V

(m)
k

−1
( K∑

j=1
j ̸=k

̂̂HkΦj
̂̂HH

k

))
= tr

(
Q(m)Φ

)
, (5.17)

where the superscript m denotes the iteration index, and Q(m) is obtained by substituting

V
(m)
k for Vk in (5.16). We are now ready to describe the SMM and IMM algorithms in

detail.

5.3.1 Square-Root Minorization Maximization Procedure

The square root MM procedure involves working with the square root of the power allo-

cation matrix Φ. It also involves two stages of minorization. The result is a surrogate

objective function that is a lower bound on the cost function in (5.13), is tight at the

current iterate, and is easy to optimize. First, note that, with the notation defined in

(5.14) and (5.15), the second term in (5.13) can be written as

−
K∑
k=1

tr
(
F

(m)
k

(
σ2
kINr +ΨkΦΨH

k

)−1
F

(m)
k

H
)
, (5.18)

where Fk is such that Bk = FH
k Fk, and can be computed via the Cholesky decomposition

of Bk. The above cost function cannot be directly optimized due to the matrix inversion

involved. Hence, we minorize it using the following lemma.

Lemma 9. Let R denote a diagonal p.s.d. square matrix, and consider the function

f(R) ≜ −tr
(
A
(
B+CRCH

)−1
AH
)
, (5.19)

where A,B and C are matrices of compatible dimensions, and B ≻ 0, so that B+CRCH

is invertible. Then, for a given diagonal p.s.d. matrix R(m), f(R) can be lower bounded

by

f(R) ≥ g(R|R(m))
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≜ −tr(K̂) + tr
((

Ŷ−1X̂HAB−1C +CHB−HAHX̂Ŷ−1
)
R

1
2

−Ŷ−1X̂HX̂Ŷ−1R
1
2CHB−1CR

1
2

)
, (5.20)

where

X̂ ≜ AB−1CR(m)
1
2 , Ŷ ≜ I+R(m)

1
2CHB−1CR(m)

1
2 ,

K̂ ≜ AB−1AH + Ŷ−1X̂HX̂− Ŷ−1X̂HX̂Ŷ−1Ŷ + Ŷ−1X̂HX̂Ŷ−1 + X̂Ŷ−1X̂H .

Also, g(R(m)|R(m)) = f(R(m)).

Proof. See Sec. 5.6.2.

The objective function in (5.18) is in the same form as the function in Lemma 9.

Applying Lemma 9 to (5.18), we get

−tr
(
W

(m)
1,k Φ

1
2 +W

(m)
2,k Φ

1
2SkΦ

1
2

)
, (5.21)

where

W1,k ≜ −
{
Y−1

k XH
k FkΨk +ΨH

k F
H
k XkY

−1
k

σ2
k

}
, (5.22)

W2,k ≜ Y−1
k XH

k XkY
−1
k , (5.23)

and Sk ∈ CKN×KN ,Xk ∈ CNr×KN and Yk ∈ CKN×KN are defined as

Sk ≜
ΨH

k Ψk

σ2
k

, Xk ≜
FKΨkΦ

1
2

σ2
k

, Yk ≜ IKN +Φ
1
2SkΦ

1
2 .

Note that, W1,k and W2,k in (5.22) and (5.23), are negative and p.s.d. matrices, and

hence, their diagonal entries are non-positive and non-negative, respectively. Also, Y−1
k

can be computed with low complexity using Woodbury matrix identity (requiring only

a Nr × Nr matrix inverse instead of a KN × KN matrix inverse). Substituting (5.21)

into (5.13), we get the surrogate cost function that needs to be maximized. Notice that
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the matrix inversion in (5.18) has been circumvented by the use of the lower bound.

However, the surrogate cost function is not yet amenable to a closed-form solution due to

the W
(m)
2,k Φ

1
2SkΦ

1
2 term in (5.21). Hence, we minorize the second term in (5.21) again to

get a cost function that is easy to optimize. To this end, we need the following Lemma.

Lemma 10. Suppose R is a p.s.d. diagonal matrix, and A and B are symmetric p.s.d.

square matrices. Then, the function f(R) ≜ −tr (ARBR) can be lower bounded by

f(R) ≥ −tr
(
AR(m)BR(m) −

(
(B− λI)R(m)A+AR(m) (B− λI)

)
R(m)

)
− tr

((
(B− λI)R(m)A+AR(m) (B− λI)

)
R
)
− λtr

(
AR2

)
, (5.24)

where λ is the largest eigenvalue of B. Further, we have equality in (5.24) at R = R(m).

Proof. See Sec. 5.6.3.

Applying Lemma 10 to (5.21), we get the final lower bound for (5.18) as follows:

−
K∑
k=1

tr
(
W

(m)
1,k Φ

1
2 +W

(m)
2,k Φ

1
2SkΦ

1
2

)
≥ −tr

(
W

(m)
A Φ

1
2 +W

(m)
B Φ

)
, (5.25)

where

WA ≜
K∑
k=1

(
W1,k + (Sk − λmax (Sk) IKN)Φ

1
2W2,k

)
, (5.26)

WB ≜
K∑
k=1

λmax (Sk)W2,k, (5.27)

and λmax(Sk) is the largest eigenvalue of Sk. Note that the superscript m in (5.21) and

(5.25) is the iteration index. Also, we can compute the eigenvalues of Sk by multiplying

the eigenvalues of the smaller dimensional matrix ̂̂HH

k
̂̂Hk/σ

2
k by the number of users in

the system. Thus, λmax(Sk) needs to be computed only once and stored in the memory.

Combining (5.25) with tr
(
Q(m)Φ

)
in (5.17), the optimization problem we wish to solve
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becomes

{Φ(m+1)} =argmax
Φ

{
−tr

(
Q(m)Φ+W

(m)
A Φ

1
2 +W

(m)
B Φ

)}
(5.28)

subject to tr (Φ) ≤ 1.

Lemma 11. The optimization problem in (5.28) has a locally optimal solution given by

P (i) =


[
W

(m)
A

]
(i,i)

2

([
W

(m)
B

]
(i,i)

+ [Q(m)](i,i) + η

)


2

, ∀i, (5.29)

where η is chosen to satisfy
∑KN

i=1 P (i) = 1.

Proof. See Sec. 5.6.4.

Using the solution for P (i), one can construct the new surrogate function that needs to

be optimized in the next iteration. Iterating the process of computing P (i), we arrive at

a locally optimal joint power and beamforming vector allocation solution for maximizing

the sum rate.

We next present an alternative bounding approach which leads to a different MM

procedure for sum rate maximization.

5.3.2 Inverse Minorization Maximization Procedure

We now return to the original optimization problem in (5.13). Recall that Φ ∈ RKN×KN

is the augmented transmit power allocation matrix defined in (5.14). For convenience, let

us define an augmented covariance matrix Φ̃ ∈ R(KN+Nr)×(KN+Nr), an augmented channel

matrix Ψ̃k ∈ CNr×(KN+Nr) and the matrix Ξk ∈ CNr×Nr as follows:

Φ̃ ≜ diag
(
Φ1, . . . ,ΦK , σ

2INr

)
, (5.30)

Ψ̃k ≜
[ ̂̂Hk, . . . ,

̂̂Hk, INr

]
, (5.31)

Ξk ≜ Ψ̃kΦ̃Ψ̃H
k , (5.32)
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k = 1, . . . , K. In the definition of Ψ̃ above, the matrix ̂̂Hk is repeated K times. Then,

we can rewrite the term inside the square brackets in (5.13) as B
(m)
k Ξ−1

k . Note that the

matrix Ξk ∀ k is p.s.d., which will be useful in showing that the optimization problem

has a feasible solution. For simplicity, we assumed that σk is same for all the users to

define Φ̃. This is a valid assumption in an interference dominated regime, with path loss

inversion based power control.

In order to develop the IMM procedure, we start with the following proposition from

[173].

Proposition 1. Let R be an m × n matrix and A be an m ×m p.s.d. matrix. We can

upper bound the function f(U) ≜ tr
(
A
(
RURH

)−1
)
as

f(U) ≤ tr
(
A
(
RU(m)RH

)−1
RU(m)U−1U(m)RH

(
RU(m)RH

)−1
)
, (5.33)

with equality at U = U(m).

Since B
(m)
k ⪰ 0 ∀ k, we can apply proposition 1 to tr

(
B

(m)
k Ξ−1

k

)
, which leads to

K∑
k=1

tr
(
B

(m)
k Ξ−1

k

)
≤

K∑
k=1

tr
(
B

(m)
k Ξ

(m)
k

−1
Ψ̃kΦ̃

(m)Φ̃−1Φ̃(m)Ψ̃H
k Ξ

(m)
k

−1
)

(5.34)

= tr

(
K∑
k=1

Φ̃(m)Ψ̃H
k Ξ

(m)
k

−1
Ψ̃kΦ̃

(m)Φ̃−1

)
, (5.35)

where (5.35) is obtained by recognizing that B
(m)
k Ξ

(m)
k

−1
is the identity matrix, cyclically

permuting the terms, and pulling the summation over k into the trace function. In (5.35),

the matrix Φ̃ is diagonal and positive semi-definite, which may become singular. On the

other hand, Proposition 1 assumes it to be an invertible matrix for deriving the upper

bound to the objective function of the optimization problem and obtain a closed form

solution. However, this does not pose a problem in practice, because if some of the

diagonal entries of Φ̃ become 0, we can remove the corresponding columns and rows of

the matrices in the left hand side and right hand side of Φ̃ in (5.34), and form a new

nonsingular Φ̃. During initialization, we allocate equal or random powers to all the users
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across all the beamforming vectors, which makes Φ̃ invertible. Therefore, without loss of

generality, we can assume that Φ̃ is invertible. Further, in the final iterative algorithm,

we compute the power allocations using closed form expressions, which converge to a

stationary point of the optimization problem. Now, let

Z ≜
K∑
k=1

Φ̃Ψ̃H
k Ξ

−1
k Ψ̃kΦ̃. (5.36)

Substituting tr
(
Q(m)Φ

)
(from (5.17)) and (5.35) into (5.11), we get the following surro-

gate optimization problem:

Φ(m+1) =argmax
Φ⪰0

{
−tr

(
Q(m)Φ+ Z(m)Φ̃−1

)}
(5.37)

subject to tr (Φ) ≤ 1,

where m is the iteration index.

Lemma 12. The optimization problem in (5.37) has a locally optimal solution given by

P (i) =

( [
Z(m)

]
(i,i)

[Q(m)](i,i) + η

) 1
2

, i = 1, . . . , KN, (5.38)

where η is chosen to satisfy
∑KN

i=1 P (i) = 1.

Proof. See Sec. 5.6.5.

In each iteration, we bound the cost function using proposition 1, and maximize the

corresponding surrogate cost function using the solution in (5.38). Then, we recompute

the bounding function, and the process repeats till convergence. Since (5.38) is strictly

decreasing in η, we can determine the value of η for which the solution satisfies the power

constraint using a line search or bisection method [174].

The outcome of both the SMM and IMM procedures is the matrix Φ, which gives the

individual users’ powers across all the beamforming vectors. The power allocated to the

kth user on the jth beamforming vector can be written using the solutions from the SMM
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Table 5.1:

Flop count order of SMM per iteration

Matrix Size Flop Count

Sk KN ×KN K2N2Nr

Xk Nr ×KN KNN2
r

Y−1
k KN ×KN KNN3

r

W1,k KN ×KN KN

W2,k KN ×KN K2N2Nr

WA,k KN ×KN K3N3

WB,k KN ×KN KN

WA KN ×KN K2N

WB KN ×KN K2N

or IMM procedure as

Pk(j) = P ((k − 1)N + j) . (5.39)

Pseudo-codes for SMM and IMM are shown in Sec. 5.7.

5.3.3 Computational Complexity

We use floating point operations (flops) to quantify the computational complexity of the

algorithms. We assume that the multiplication of a p × q matrix with a q × r matrix

requires O(pqr) flops. The per-iteration computational complexity of the SMM and IMM

algorithms are provided in Tables 5.1 and 5.2, respectively. The flop counts account for

the structural properties of the various matrices. For example, while computing the flop

counts for the matrix Z or Q, we only consider the computations involved in finding
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Table 5.2:

Flop count order of IMM per iteration

Matrix Size Flop Count

Ξk Nr ×Nr KNN2
r

Z (KN +Nr) KNN2
r

×(KN +Nr)

Q KN ×KN (Nr +K)N2

the diagonal entries of those matrices. Also, although the flop count for computing the

matrix Q is mentioned only in Table 5.1, it is common for both the SMM and IMM

algorithms. The overall computational complexities of the SMM and IMM algorithms are

of the order O(K4N3) and O(K2N2), respectively. Thus, the per-iteration complexity of

IMM is lower than that of the SMM algorithm. Finally, we note that the complexity of

SMM and IMM are independent of the number of transmit antennas. In practice, one

would typically scale the size of the codebook with the number of transmit antennas, for

example, as N = 2NtB when a codebook with resolution B-bits per antenna is used. This

can be substituted in the tables to infer the dependence of the complexity on the number

of antennas.

5.4 Simulation Results

In this section, we evaluate the performance of the SMM and IMM algorithms using

Monte Carlo simulations. We consider Nt = {8, 16, 32, 64, 128} transmit antennas at the

AP and Nr = {1, 2} antennas at each UE. The number of UEs is varied from K = 1 to

10. The channel coefficients are drawn i.i.d. from CN (0, 1). The AWGN at the receivers

is also distributed as CN (0, 1) and is independent across receive antennas. For channel

state feedback, we quantize the CSI using 4 to 8 bits per channel coefficient. The dynamic
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range of the channel coefficients typically vary around three times the standard deviation

from the mean, and we set the maximum and minimum values of the quantization levels

accordingly, and use uniform quantization. We consider the size of the beamforming

codebook varying from N = 64 (6 bits) to 1024 (10 bits), uniformly distributed on the N

dimensional complex unit sphere. The algorithms are initialized randomly for all the users

across all the beams, such that the total power constraint is satisfied with equality. The

algorithms are run till the normalized increase in the sum rate between two consecutive

iterations is less than 10−4.

We compare the sum rate of the IMM algorithm against the WMMSE [157] and WS-

RMax [161] algorithms. These algorithms use perfect CSI to design the precoder matrix,

and do not consider the codebook constraint in the optimization. Hence, for comparison

with our work, we quantize the precoding vectors output by the above algorithms to the

nearest vector in the codebook, and compare the sum rates achieved. We also compare

against the eigen-mode beamforming (EBF), a heuristic precoding approach (User-BFVec

Selection) in which each UE maximizes its achievable sum rate using the IMM algorithm

and feeds back the selected beamforming vectors to the AP, and the use of CVX [170,171]

to solve (5.13).

Figure 5.1 shows the complementary cumulative distribution function (CCDF) of the

achieved sum rates for the SMM and IMM algorithms at an SNR of 10 dB. We see that

the two approaches offer similar sum rates. Figures 5.2 and 5.3 illustrate that although

both SMM and IMM algorithms exhibit monotonic convergence, IMM converges much

faster than SMM. This highlights the impact of the choice of the surrogate function on

the rate of convergence [173]. In SMM, we apply the minorization three times to lower

bound the objective function, whereas, in IMM, the minorization is applied twice. Also,

SMM makes use of the first order Taylor series expansion, whereas, IMM uses a matrix

inequality to find the surrogate function. These differences result in the different rates

of convergence of the two procedures. We note that the associated matrix inequalities

(Lemmas 9, 10, and Proposition 1) are potentially be useful in other problem scenarios.

Given their similar performance, in the sequel, we do not include the SMM algorithm in
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Figure 5.1: CCDF comparison between SMM and IMM for data SNR = 10 dB, Nr =

2, Nt = 16. The distribution of the sum rates achieved by SMM and IMM are similar.

the performance plots, to avoid clutter.

Figure 5.4 shows the achievable sum rate vs. the number of users, with N = 512, Nr =

2, Nt = 16 and data SNR 20 dB. The sum rate improves with finer quantization of channel

estimates, as expected. However, increasing the number bits of quantization beyond 6

has a negligible impact on the performance. So, we have merged the curves for 6 bits and

8 bits to avoid clutter.

Figure 5.5 shows the achievable sum rate vs. the number of users, with N = 512, Nr =

2, Nt = 16 and CSI quantized to 6 bits per channel coefficient. We have merged the 10 dB

and 20 dB pilot SNR plots, as their performances were very similar. While the sum rate
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Figure 5.2: Convergence behavior of the SMM procedure, K = 4, Nr = 2, Nt = 16, Data

SNR = 10 dB.

increases, the rate of increase decreases with the number of users. As K is increased from

K = 1, the algorithm has a larger number of choices to assign resources, which improves

the sum rate. However, this only offers a marginal benefit at a given pilot/data SNR

for large K. Also, the sum rate improvement with pilot SNR becomes marginal once it

exceeds the data SNR. Thus, the AP can use these results to determine the pilot and data

transmission powers in order to, for example, maximize energy efficiency while achieving

a desired rate.

Figure 5.6 shows the sum rate vs. the pilot SNR, with N = 512, K = 8, Nr = 2, Nt =

16, and CSI quantized to 6 bits. The sum rate monotonically increases with the pilot
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Figure 5.3: Convergence behavior of the IMM procedure, K = 4, Nr = 2, Nt = 16, Data

SNR = 10 dB.

SNR, but saturates as the pilot SNR exceeds the data SNR, as observed earlier. From

the achievable sum rate expression, the tipping point occurs when the channel estimation

error variance is of the same order as that of the AWGN. The channel estimation error

decreases linearly with the pilot SNR, while the residual interference caused due to chan-

nel estimation error increases linearly with the data SNR. Hence, if the pilot power scales

linearly with the data power, it results in a roughly constant interference in the denomina-

tor of the SINR. Interestingly, this intuition continues to hold for the sum rate even after

the beams and corresponding data powers are optimally chosen by the IMM algorithm.

Hence, increasing the pilot SNR beyond the data SNR only marginally improves the sum
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Figure 5.4: Sum rate vs. K, N = 512, Nr = 2, Nt = 16, data SNR = 20 dB. The sum rate

improves with the number of CSI quantization bits, but beyond 6 bits, the performance

improvement is negligible.

rate, and the system becomes noise and multiuser interference limited.

Figure 5.7 shows the sum rate vs. the data SNR, with N = 512, K = 8, Nr = 2, Nt =

16 and CSI quantized to 6 bits. The sum rate initially increases linearly with the data

SNR, but begins to saturate once the data SNR exceeds the pilot SNR. For example, the

sum rates achieved with pilot SNR = 10 dB and 20 dB match till a data SNR of 10 dB,

with the sum rate increasing linearly with the data SNR. Beyond a data SNR of 10 dB,

the performance with pilot SNR = 10 dB becomes limited by channel estimation errors,

and the sum rate starts to saturate. This behavior is consistent with the observations

made for Fig. 5.6. We also illustrate the sum rate performance of the WMMSE algorithm



Chapter 5. Codebook Based Precoding in Downlink MU-MIMO Systems 166

1 2 3 4 5 6 7 8 9 10

Number of Users

3

6

9

12

15

18

20
S

u
m

 R
a
te

 (
b
p
s
/H

z
)

Pilot SNR = 20dB, Data SNR = 20dB

Pilot SNR = 10dB, Data SNR = 20dB

Pilot SNR = 0dB, Data SNR = 20dB

Pilot SNR = (20dB, 10dB), Data SNR = 10dB

Pilot SNR = 0dB, Data SNR = 10dB

Pilot SNR = (20dB, 10dB), Data SNR = 0dB

Pilot SNR = 0dB, Data SNR = 0dB

Figure 5.5: Sum rate vs. K, N = 512, Nr = 2, Nt = 16, CSI quantized to 6 bits. The

sum rate improves with pilot SNR, but the improvement is marginal once the pilot SNR

exceeds the data SNR.

in Fig. 5.7. We see that the sum rate performance of WMMSE is far inferior than that

achieved by the MM based approaches when its precoder outputs are quantized to the

nearest vectors in the codebook. The sum rate obtained using the non-codebook based

WMMSE is higher than that of the MM algorithms, but it comes with the high overhead

of conveying the precoding matrices to the users. For example, at a data SNR of 10 dB,

the sum rate achieved by the unconstrained WMMSE is 36 bps/Hz (not shown in the

figure), but when the precoders are quantized to the nearest beamforming vectors in

the codebook, it drastically reduces to 6.46 bps/Hz. This illustrates the importance of

considering the codebook constraint while solving the beamforming vector assignment
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Figure 5.6: Sum rate vs. pilot SNR for K = 8, N = 512, Nr = 2, Nt = 16, CSI quan-

tized to 6 bits. We observe a monotonic increase in the sum rate with pilot and data

SNR. Eventually, the sum rate saturates beyond a certain level of the pilot SNR but the

saturation point moves to the right as the data SNR increases.

and power allocation problem.

In Fig. 5.7, we also show the performance of the EBF and User-BFVec Selection. In the

EBF method, each UE chooses the beamforming vectors as the Nr dominant right singular

vectors, and feeds back their quantized versions. In our simulations, we use 32 bits to

quantize each selected beamforming vector. Note that, the feedback overhead associated

with this is higher than the feedback overhead associated with the IMM approaches. The

EBF approach outperforms the IMM algorithm at low SNRs. This is because the noise

dominates the interference, and the multiuser interference term does not significantly



Chapter 5. Codebook Based Precoding in Downlink MU-MIMO Systems 168

0 5 10 15 20 25
Data SNR (dB)

4

6

8

10

12

14

16

18

20

22
S

u
m

 R
a
te

 (
b
p
s
/H

z
)

Pilot SNR = 20dB

Pilot SNR = 10dB

Pilot SNR = 0dB

EBF, Perfect CSI

User-BFVec Selection

WMMSE, N=1024

WMMSE, N=512

Figure 5.7: Sum rate vs. data SNR for K = 8, N = 512, Nr = 2, Nt = 16, CSI quantized

to 6 bits. We observe a monotonic increase in the sum rate with pilot and data SNR. The

sum rate performance for the values of pilot SNRs 10 dB and 20 dB are almost the same

till the data SNR reaches 10 dB beyond which they diverge.

affect the achievable rate. At higher SNRs, the multiuser interference terms dominate

the noise terms, and the IMM algorithm performs better than the other approaches as it

is able to mitigate the multiuser interference through the joint selection of BF vectors.

Also, User-BFVec selection approach performs worse than the IMM algorithm because

of its inability to suppress the multiuser interference. Note that the feedback associated

with this approach is the same as that of the IMM algorithm.

Figure 5.8 shows the sum rate performance vs. the codebook size (in bits), with

K = 10, Nr = 2 and Nt = 16. The sum rate increases linearly with the codebook size,
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Figure 5.8: Sum rate vs. codebook size for K = 10, Nr = 2, Nt = 16, CSI quantized to

6 bits. We observe a monotonic increase in the sum rate with pilot and data SNR. As

the codebook size increases, the AP has more number of beamforming vectors to choose

resulting in an increase in the sum rate performance.

as the AP has more choices to select the beamforming vectors, which helps in canceling

the multiuser interference. Note that, although the complexity of the problem increases

with the codebook size, if the computational resources are limited, the IMM algorithm

can be stopped at any iteration, resulting in a correspondingly effective solution. The

figure also compares the the SMM and IMM algorithms with the WMMSE and WSRMax

procedures. The sum rates achieved by WMMSE and WSRMax when the precoding

vectors are quantized to the nearest vectors in the codebook are far inferior compared to

that achieved by our algorithms. Once again, this illustrates the importance of accounting



Chapter 5. Codebook Based Precoding in Downlink MU-MIMO Systems 170

1 2 4 6 8 10
Number of Users

0

5

10

15
S

u
m

 R
a
te

 (
b
p
s
/H

z
)

IMM, Data SNR = 20 dB

CVX, Data SNR = 20 dB

IMM, Data SNR = 10 dB

CVX, Data SNR = 10 dB

IMM, Data SNR = 0 dB

CVX, Data SNR = 0 dB

IMM, Data SNR = -10 dB

CVX, Data SNR = -10 dB

Figure 5.9: Sum Rate vs. K with Nr = 1, Nt = 32, Pilot SNR=20 dB, N = 1024

for SMM, IMM and CVX. We see that the MM based algorithms and CVX converge to

almost same sum rate for various values of data SNR.

for the codebook constraint while solving the sum rate optimization problem.

In Figure 5.9, we compare the sum rates achieved by directly solving (5.13) using CVX

with the MM based algorithms. We see that both solutions converge to almost the same

sum rates. However, the IMM algorithm exhibits faster run time, as shown in Figures

5.10 and 5.11. In these figures, we plot the ratio of the run times of the IMM and the

convex solver CVX for various values of data SNRs and number of transmit antennas and

number of users. The pilot SNR and the codebook size are set to 20 dB and {512, 1024},

respectively. We observe that as the data SNR increases, IMM converges much faster

than the CVX package. This is thanks to the closed form expressions obtained for the
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Figure 5.10: Ratio of run times of CVX and IMM with respect to K. Pilot SNR = 20 dB,

Nr = 1, N = 1024. We see that IMM converges much faster than CVX in the interference

limited regime.

final optimization problem. Also, as the number of transmit antennas increases, the ratio

of the run times of CVX and IMM increases, which shows that IMM converges faster for

large MIMO systems.

5.5 Conclusions

In this chapter, we presented two procedures, named square root MM (SMM) and inverse

MM (IMM), to solve the problem of codebook based DL sum rate maximization in a

MU-MIMO broadcast system. Both SMM and IMM procedures find a locally optimal

allocation of beamforming vectors and data signal powers to each user, so as to maximize
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Figure 5.11: Ratio of run times of CVX and IMM with respect to Nt. Pilot SNR = 20 dB,

Nr = 1, N = 512, K = 8.

the DL sum rate. These procedures are based on a nested application of the MM principle

to lower bound the objective function, which is then maximized in an iterative fashion.

The novelty of the algorithms lies in the choice of the surrogate functions used to bound

the objective function. We also proved the optimality of the solutions to the surrogate

optimization problems, as a consequence of which, the SMM and IMM algorithms reach

a local optimum of the overall sum rate from any initialization.

We empirically illustrated the dependence of the achieved sum rate on the number

of antennas, users, pilot power, and size of the codebook. We compared the sum rate

of the SMM and IMM algorithms with that of WMMSE and WSRMax algorithms from

the existing literature. The comparisons illustrated the importance of accounting for the
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codebook constraint while solving the sum rate optimization problem. Future work could

include a theoretical analysis of the dependence of the optimal sum rate on parameters

such as the codebook size, pilot/data SNR, and number of antennas.

5.6 Derivations and Proofs

5.6.1 Derivation of Equation (5.8)

We simplify the covariance matrix of interest due to channel estimation error as follows:

E
[
H̃kxx

HH̃H
k

]
= E

[
H̃kC

K∑
j=1

ΦjC
HH̃H

k

]

= E
[
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1
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1
2CHH̃H

k

]
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= (βk − γk)
N∑

n=1

P (n)INr

= (βk − γk) tr

(
K∑
j=1

Φj

)
INr = (βk − γk) INr . (5.40)

In the above derivation, P (n) =
∑N

j=1 Pj(n), i.e., the sum of powers allocated to all the

users in the nth beamforming vector. Also, h̃
(l)
k denotes the lth row of the matrix H̃k.
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5.6.2 Proof of Lemma 9

Using the Woodbury identity for the inverse term in the function f in (5.19), we get

−tr

(
A

(
B−1 −B−1CR

1
2

(
I+R

1
2CHB−1CR

1
2

)−1

R
1
2CHB−1

)
AH

)
=− tr

(
AB−1AH

)
+ tr

(
XY−1XH

)
, (5.41)

where X ≜ AB−1CR
1
2 and Y ≜ I + R

1
2CHB−1CR

1
2 . The function tr

(
XY−1XH

)
is

jointly convex in X and Y, and, can be minorized using a first order Taylor series. The

complex matrix differential of XY−1XH is computed as follows [175]:

tr
(
d
(
XY−1XH

))
= tr

(
Y−1XHdX−Y−1XHXY−1dY +XY−1dXH

)
.

Thus, around the point (X̂, Ŷ), (5.41) can be lower bounded as
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)
,

where K̂ is as defined in Lemma 9. Finally, grouping the constant matrices together, we

get (5.20).
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5.6.3 Proof of Lemma 10

We lower bound the function f(R) using λ, the largest eigenvalue of the matrix B, as

follows:

f(R) = −tr
(
AR(B− λI)R+ λAR2

)
= −tr

(
ARCR+ λAR2

)
, (5.42)

where C ≜ (B− λI). The complex matrix differential of the first term in (5.42) is [175]

tr (d(ARCR)) = tr (CRA(dR) +ARC(dR)) .

Hence, around the previous iterate R(m), a lower bound on f can be written as

f(R) ≥ −tr
(
AR(m)BR(m)

)
− tr

((
CR(m)A+AR(m)C

) (
R−R(m)

))
− λtr

(
AR2

)
.

(5.43)

Grouping the constant terms in (5.43) together and substituting for C, we get (5.24).

5.6.4 Proof of Lemma 11

Note that (5.28) is a separable convex optimization problem, which can be solved in closed

form using the Lagrangian method. The Lagrangian for (5.28) is given by

KN∑
i=1

(
[Q(m)](i,i)P (i) + [W

(m)
A ](i,i)P (i)

1
2 + [W

(m)
B ](i,i)P (i)

)
+ η

(
KN∑
i=1

P (i)− 1

)
, (5.44)

where P (i), i = 1, 2, . . . , KN denote the diagonal entries of Φ. Note that the sign of the

objective function in (5.28) has been flipped while forming the Lagrangian, which makes

it a minimization problem. By straightforward differentiation with respect to P (i) in
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(5.44), we obtain the closed form solution

P (i) =


[
W

(m)
A

]
(i,i)

2

([
W

(m)
B

]
(i,i)

+ [Q(m)](i,i) + η

)


2

, (5.45)

where η is chosen to satisfy
∑KN

i=1 P (i) = 1. Since the P (i) in (5.45) is strictly decreasing

in η, it can be found using a simple line search or the bisection method [174].

Now, we show that the solution in (5.45) satisfies the second order sufficiency condition

for optimality. That is, we show that the Hessian matrix of the Lagrangian in (5.44) is

positive definite. The Hessian matrix of the Lagrangian in (5.44) is diagonal, with the ith

diagonal entry −[W
(m)
A ](i,i)/(4P

3/2(i)), where P (i) is given by (5.45). Thus, we need to

show that the diagonal entries of WA are strictly negative.

For simplicity and without loss of generality, we assume that σ2 = 1. First, we simplify

the first term, W1,k, of WA in (5.26). Note that, W1,k, defined in (5.23), is a negative

semidefinite matrix, as it is the sum of the matrix
(
−Y−1

k XH
k FkΨk

)
and its conjugate

transpose. The first term Y−1
k XH

k FkΨk becomes

(
IKN +Φ

1
2SkΦ

1
2

)−1

Φ
1
2ΨHFH
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1
2
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1
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Thus, W1,k can be written as

W1,k = −
(
Φ

1
2Sk + SkΦ

1
2

)
. (5.46)

Define λ̂k ≜ λmax(Sk). The term
(
Sk − λ̂kIKN

)
Φ

1
2W2,k in the expression for WA in

(5.26) becomes

(
Sk − λ̂kIKN

)
Φ

1
2

(
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1
2SkΦ

1
2

)−1

Φ
1
2ΨH

k
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×
(
INr +ΨkΦΨH

k

)
ΨkΦ

1
2

(
IKN +Φ

1
2SkΦ

1
2

)−1

=
(
Sk − λ̂kIKN

)
ΦSkΦ

1
2

(
IKN +Φ

1
2SkΦ

1
2

)−1
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Combining (5.46) and (5.47), we get the term inside the summation in the expression for

WA in (5.26) as follows:

−Φ
1
2Sk − SkΦ

1
2 +

(
Sk − λ̂kIKN

)
ΦSkΦ

1
2

(
IKN +Φ

1
2SkΦ

1
2

)−1

= −
(
Φ

1
2Sk + SkΦ

1
2 +Φ

1
2SkΦ

1
2SkΦ

1
2 + λ̂kΦSkΦ

1
2

)(
IKN +Φ

1
2SkΦ

1
2

)−1

= −Φ
1
2Sk −

(
IKN + λ̂kΦ

)
SkΦ

1
2

(
IKN +Φ

1
2SkΦ

1
2

)−1

. (5.48)

Now, we simplify the term

(
SkΦ

1
2

(
IKN +Φ

1
2SkΦ

1
2

)−1
)

in (5.48). This becomes

Sk

(
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2 +Φ
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(
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)
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=
(
Sk − Sk

(
Φ−1 + Sk

)−1
Sk

)
Φ

1
2 . (5.50)

Here, the right hand side of (5.49) is obtained by applying the Woodbury matrix identity

to the inverse term in the left hand side. Substituting (5.50) in (5.48), we get

WA = −
K∑
k=1

{
Φ

1
2Sk + (IKN + λmax (Sk)Φ)WA1,kΦ

1
2

}
,

where WA1,k ≜ Sk − Sk (Φ
−1 + Sk)

−1
Sk. Since Sk is symmetric and p.s.d., the diag-

onal entries of Φ
1
2Sk are non-negative. Moreover, since Hk is drawn from a continu-

ous valued distribution, the diagonal entries of Φ
1
2Sk are strictly positive with prob-

ability 1. Also, (IKN + λmax (Sk)Φ), and Φ
1
2 are diagonal matrices with strictly pos-

itive entries on the diagonal. Finally, it is easy to show that the diagonal entries of

WA1,k are also non-negative. For this, it suffices to show that the diagonal entries of{
Sk − Sk

(
1

λmax(Φ)
IKN + Sk

)−1

Sk

}
are non-negative, where λmax(Φ) is the largest eigen-

value of the matrix Φ. The eigenvalues of this matrix are given by
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λ(Sk)/ (1 + λmax (Φ)λ (Sk)), where λ(Sk) is an eigenvalue of Sk. These eigenvalues are

non-negative, and hence the eigenvalues of WA1,k are also non-negative. Moreover, since

Hk is drawn from a continuous valued distribution, the diagonal entries of WA1,k are

strictly positive with probability 1. Therefore, the diagonal entries of WA are strictly

negative, thus satisfying the second order sufficient conditions for optimality of the sur-

rogate optimization problem in (5.28).

5.6.5 Proof of Lemma 12

The objective function is quadratic in Φ, and is therefore amenable to optimization.

Further, the problem in (5.37) is separable in the optimization variables, and can be

solved using the Lagrangian method to obtain a closed form solution. The Lagrangian is

given by

KN∑
i=1

([
Q(m)

]
(i,i)

P (i) +
[
Z(m)

]
(i,i)

1

P (i)

)
+ η

(
KN∑
i=1

P (i)− 1

)
. (5.51)

Note that, the negative sign in the optimization problem in (5.37) is removed while forming

the Lagrangian, making it a minimization problem. By differentiating (5.51) with respect

to P (i), we obtain (5.38).

Now, we show that the solution to the surrogate convex optimization problem in (5.38)

satisfies the second order sufficiency condition for optimality. The Hessian matrix of the

Lagrangian in (5.51) is diagonal, with the ith diagonal entry {2[Z(m)](i,i)/P (i)3}, where

P (i) is given by (5.38). Thus, we need to show that the diagonal entries of Z are strictly

positive.

Without loss of generality, we assume that σ2 = 1. We can simplify each term inside

the summation in (5.36) as follows:

Φ̃

(
S̃k − S̃k

(
Φ̃−1 + S̃k

)−1

S̃k

)
Φ̃,

where S̃k ≜ Ψ̃H
k Ψ̃k. By following a similar procedure as done for showing the optimality
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of the SMM solution in (5.45), we can show that the diagonal entries of Z are strictly

positive with probability 1, and hence it satisfies the second order sufficient conditions for

optimality of the solution (5.38) to the surrogate optimization problem (5.37).

5.7 SMM and IMM Pseudocodes

The pseudo codes for the SMM and IMM algorithms are provided in Algorithms 9 and 10,

respectively.

Algorithm 9: SMM

Input: Ĥ1, . . . , ĤK ,C, K, ρdl

Output: P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N)

1: Initialize P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N) to satisfy the total power

constraint.

2: Compute ̂̂Hk =
√
ρdlĤkC, k = 1, 2, . . . , K.

3: Compute Ψ1, . . . ,ΨK using (5.15).

4: repeat

5: Compute Φ using (5.14).

6: Compute Q using (5.16).

7: Compute WA, WB using (5.26), (5.27).

8: Calculate Lagrange multiplier η using line search to satisfy maximum power

constraint.

9: Compute P (i) using (5.29), i = 1, 2, . . . , KN .

10: for k = 1 to K do

11: for i = 1 to N do

12: Compute Pk(i) using (5.39).

13: end for

14: end for

15: until convergence
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Algorithm 10: IMM

Input: Ĥ1, . . . , ĤK ,C, K, ρdl

Output: P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N)

1: Initialize P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N) to satisfy the total power

constraint.

2: Compute ̂̂Hk =
√
ρdlĤkC, k = 1, 2, . . . , K.

3: Compute Ψ̃1, . . . , Ψ̃K using (5.31).

4: repeat

5: Compute Φ, Φ̃ using (5.14), (5.30), respectively.

6: Compute Q and Z using (5.16) and (5.36) respectively.

7: Calculate Lagrange multiplier η using line search to satisfy maximum power

constraint.

8: Compute P (i) using (5.38), i = 1, 2, . . . , KN .

9: for k = 1 to K do

10: for i = 1 to N do

11: Compute Pk(i) using (5.39).

12: end for

13: end for

14: until convergence
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Conclusions and Future Work

In this thesis, we investigated the application of VB techniques in the channel estimation

and data decoding problems in massive MIMO-SC and MIMO-OFDM wireless commu-

nication systems with low-resolution ADCs. Further, we derived different Cramér-Rao

type lower bounds to benchmark the performance of estimators of jointly compressible

signals with quantized lower dimensional measurements. We also studied the model and

data driven mmWave sparse channel estimation using greedy and Bayesian approaches.

Finally, we used the minorization-maximization framework to maximize the downlink sum

rate in a codebook based multi-user MIMO broadcast system. We summarize the main

contributions of this thesis below.

6.1 Summary of the Thesis

In chapter 2, we developed channel estimation and data detection algorithms for uplink

massive MIMO-SC communication systems with low-resolution ADCs. We formulated

the channel estimation and data detection as a statistical inference problem to derive

the posterior distributions of the channel and the data. The computational intractability

involved in calculating the partition function in a high dimensional statistical inference

problem necessitated alternate techniques to compute the posterior distributions of the

latent variables and/or parameters. We used an approximate inference framework called

181
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VB, which is a principled approach to obtain the posterior distributions of the latent

variables. We judiciously introduced latent variables, which led to a computationally

and analytically tractable solution. We imposed a factorized structure on the posterior

distribution and developed a low complexity channel estimation and soft symbol decoding

algorithm. We benchmarked the NMSE and the coded BER performance of the VB

receiver with the state-of-the-art. We integrated the VB based joint channel estimator

and soft symbol detector with the channel decoder, and showed that it is possible to

utilize the extrinsic information to further improve the system performance.

In chapter 3, we derived the Bayesian CRLB on the MSE of an estimator of jointly

compressible signals using quantized noisy measurements. We imposed a two-stage hi-

erarchical complex normal prior on the compressible signal, with a conjugate Gamma

hyperprior on the precision matrix. Due to the analytically intractability in obtaining

a closed form expression for the Bayesian information matrix, we computed it via simu-

lations. Then, we extended the joint channel estimation and soft symbol problems to a

massive MIMO-OFDM system with low-resolution ADCs. We exploited the delay domain

sparse nature of the wireless channels to formulate the channel estimation as a sparse sig-

nal recovery problem. We imposed a two stage hierarchical complex normal prior on the

sparse channel, with a conjugate Gamma hyperprior on the precision matrix. We then

used a factorized posterior structure on the users’ channels and the unquantized received

signals to obtain a VB based sparse channel estimation algorithm. Next, we utilized the

estimated channels to compute the posterior distributions of the data symbols based on

the VB framework. Finally, we computed the posterior means of the detected data sym-

bols and use them as virtual pilots to re-estimate the channels in an iterative fashion. We

integrated the iterative VB channel estimator and data decoder with a channel decoder

to further improve the performance. We also discussed the per-iteration computational

complexities of the iterative sparse channel estimation and soft symbol decoding algo-

rithm. Finally, we benchmarked the Bit Error Rate (BER) and NMSE performances of

our algorithm with the state-of-the-art.

In chapter 4, we considered a hybrid mmWave MIMO-OFDM system deployed in
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a specific site. We utilized the beamspace sparse nature of the mmWave channels to

formulate the channel estimation as a joint row sparse recovery problem. We integrated

a fast greedy algorithm for dimensionality reduction with a high performing Bayesian

learning procedure to estimate the mmWave channel. Then, we developed a multi-level

greedy search algorithm to learn the sparsifying beamspace dictionary. We utilized the

learnt dictionary to estimate the channel using a sparse Bayesian learning algorithm. We

exploited the training dataset to learn the number of multipaths with significant energy,

and used them for denoising the estimated channel in the frequency domain. Finally, we

utilized the lag domain sparsity information of the channels from the dataset, to denoise

the channels in the lag domain. We benchmarked the developed algorithm with the

state-of-the-art.

In chapter 5, we considered a single cell downlink multiuser MIMO system where the

beamforming vectors are chosen from a predefined codebook. We derived the downlink

achievable sum-rate of this codebook based multiuser MIMO system when the channels are

estimated using MMSE approach. We then solved the non-convex sum-rate maximization

problem with a total transmit power constraint. We adopted the MM framework to

bound the objective function, and maximize it in an iterative manner. We utilized the

mathematical tools from complex matrix derivatives and inequalities, to lower bound the

objective function multiple times, to obtain a tractable surrogate convex optimization

problem. We also analytically proved that the SMM and IMM algorithms converged

to a global optimum of the surrogate optimization problems. We also discussed the

computational complexities of the algorithms, and shown empirically that a judicious

choice of bounding the non-convex objective function is essential for faster convergence of

the solution. Finally, we compared the sum-rate performance of the MM algorithms with

the state-of-the-art.

6.2 Future Work

We list a few interesting research directions which can be pursued in future.
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1. In the massive MIMO-OFDM system, we exploited the joint row sparse structure of

the lag domain channel to design a VB based channel estimation algorithm. Along

with the row sparsity, each column of the estimand also has a piecewise sparse

structure, which can be potentially utilized to improve the system performance.

By piecewise sparsity, we mean that each sub-block of every column has a joint

row sparse structure. Utilizing the piecewise sparsity may assist in reducing the

computational complexity and also improve the system performance.

2. The VB channel estimation algorithms for both the massive MIMO single carrier and

OFDM systems require the computation of matrix inverses to obtain the covariance

matrices of the posterior distributions of the users’ channels. This results in a cubic

complexity of the algorithms. To overcome this, we can replace the channel matrix

computation part by a message passing based algorithm, which results in a linear

complexity in terms of the number of users and the channel lengths. Exploring this

option will be an interesting extension to the channel estimation problem.

3. One can employ data-driven approaches to implement the VB based channel es-

timation and soft symbol decoding algorithms. The posterior distributions of the

data symbols in the VB algorithm follow a Boltzmann distribution, which is the

same as the softmax operation that is used as activation functions in deep neural

networks (DNN). Therefore, unfolding the VB algorithm as a DNN is an interesting

research direction to explore in the future.
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