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Abstract—Compressed sensing deals with recovery of sparse
signals from low dimensional projections, but under the as-
sumption that the measurement setup has infinite dynamic
range. In this paper, we consider a system with finite dynamic
range, and to counter the clipping effect, the measurements
crossing the range are folded back into the dynamic range of
the system through modulo arithmetic. For this setup, we derive
theoretical results on the minimum number of measurements
required for unique recovery of sparse vectors. We also show
that recovery using the minimum number of measurements is
achievable by using a measurement matrix whose entries are
independently drawn from a continuous distribution. Finally,
we present an algorithm based on convex relaxation and
develop a mixed integer linear program (MILP) for recovering
sparse signals from the modulo measurements. Our empirical
results demonstrate that the minimum number of measure-
ments required for recovery using the MILP algorithm is close
to the theoretical result for signals with low variance.

Index Terms—Modulo compressed sensing, `1 recovery.

I. INTRODUCTION

The effect of dynamic range in data acquisition systems
has been an important research area in signal processing [1]–
[4]. Systems with low dynamic range lead to signal loss due
to clipping, and high dynamic range systems with finite res-
olution sampling are affected by high quantization noise. A
direction of research in recent years to counter this problem
has been the so-called self-reset analog to digital converters
(SR-ADCs) [5], [6], which fold the amplitudes back into the
dynamic range of the ADCs using the modulo arithmetic,
thus mitigating the clipping effect. However, these systems
encounter information loss due to the modulo operation. The
transfer function of the SR-ADC with parameter λ is
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where JtK , t− btc is the fractional part of t [7].

In the context of SR-ADCs, an alternative sampling theory
called the unlimited sampling framework was developed in
[7], [8], which provides sufficient conditions on the sampling
rate for guaranteeing the recovery of band-limited signals
from its folded samples. Extending these results, the work
in [9] considered the inverse problem of recovering K low
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pass filtered spikes in a continuous-time sparse signal, and
developed a new sampling theorem and a signal recovery
algorithm. In [10], the authors studied the quantization of
oversampled signals in the SR-ADC architecture with the
goal of reducing the overload distortion error.

A novel HDR imaging system that employs SR-ADCs
to overcome limitations due to limited dynamic range was
studied in [2], [11]. Mathematically, this involves applying
an SR-ADC individually to multiple linear measurements of
the images, and is termed as modulo compressed sensing
(modulo-CS) [11]. Modulo-CS can also help overcome is-
sues introduced by signal clipping in other signal acquisition
systems where compressed measurements of sparse signals
are available, such as communication systems [4], [12].
By exploiting the sparsity of the signal, the modulo-CS
setup can be used to overcome the losses caused by limited
dynamic range. In the somewhat restrictive setting where
the modulo-CS measurements are assumed to span at most
two periods, [11] proposes an algorithm and analyzes the
sample complexity under Gaussian measurement matrices.
In [12], a generalized approximate message passing algo-
rithm tailored to modulo-CS was proposed by assuming a
Bernoulli-Gaussian distribution on the sparse signal. The
results in these papers suggest that sparsity is very useful
in the recovery of signals from modulo-CS measurements.

In the context of the above, our contributions in this
paper are twofold: (a) we derive necessary and sufficient
conditions on the measurement matrix under which sparse
signals are identifiable under modulo-CS measurements, and
(b) we present a novel algorithm for modulo-CS recovery
and derive its theoretical guarantees. To elaborate:

1) We derive necessary and sufficient conditions for unique
recovery of sparse signals in the modulo-CS setup.

2) We show that the minimum number of measurements
m to uniquely reconstruct every s-sparse signal from
modulo measurements is 2s+ 1.

3) We also show that m = 2s+ 1 is sufficient, and that a
measurement matrix with 2s+1 rows and entries drawn
independently from any continuous distribution satisfies
the identifiability conditions with high probability.

4) We present a mixed integer linear program for modulo-
CS recovery via convex relaxation. We also identify an
integer range space property, which guarantees exact
sparse signal recovery via the relaxed problem.



Notation: Bold lowercase and uppercase letters denote
vectors and matrices, respectively, and script styled letters
denote sets. A vector supported on index set S is denoted
as xS and AS denotes the sub-matrix with columns of A
corresponding to set S. The `0-norm of a vector, ‖x‖0, is the
number of nonzero entries in x. The inner product between
a and x is denoted by 〈a,x〉. For a set S , |S| and Sc denotes
the cardinality and the complement of the set, respectively.

II. MODULO COMPRESSED SENSING

Let x ∈ RN denote an s-sparse vector, i.e., ‖x‖0 ≤ s,
with s < N

2 . For ease of exposition, instead of SR-ADC
transfer function given in (1), we consider an equivalent
modular arithmetic which returns the fractional part of a real
number, i.e., it returns JtK , t−btc. We obtain m projections
of x as follows:

zi = J〈ai,x〉K, i = 1, 2, . . . ,m. (2)

Usually, m ≤ N in the compressed sensing paradigm, but
we will also present extensions to dense vectors (s ≥ N

2 ) in
the overdetermined system setup (m > N ).

Stacking the projections 〈ai,x〉 as a vector y, we can
rewrite (2) in a form similar to the CS framework as

z = JyK = JAxK, (3)

where A =
[
a1 a2 . . . am

]T ∈ Rm×N is the measure-
ment matrix and J·K represents the element wise modulo-1
operation on a vector, as before.

The non-linearity introduced by the modulo operation
along with the underdetermined compressive measurements
could lead to an indeterminate system, i.e., it may not have a
unique solution. In this paper, we explore the role of sparsity
in uniquely recovering an s-sparse input signal x from the
modulo-CS measurements z obtained using (3).

P0 formulation: Any real valued vector y ∈ Rm can be
uniquely decomposed as y = z+ v, where z ∈ [0, 1)m and
v ∈ Zm denote the fractional part and integer part (the floor
function) of y, respectively. Using this decomposition, the
non-linearity in (3) can be represented using a linear equation
Ax = z + v. Now, consider the optimization problem:

argmin
w,v

‖w‖0 subject to Aw = z + v;v ∈ Zm. (P0)

Any s′-sparse solution x∗ to (P0) satisfies s′ ≤ s (i.e., x∗

is s-sparse), since x is s-sparse and satisfies the constraints
of (P0). Thus, unique identifiability of an s-sparse x from
modulo-CS measurements is equivalent to the existence of
a unique solution to (P0), which we discuss next.

III. IDENTIFIABILITY

In this section, we derive conditions under which (P0)
admits a unique s-sparse solution.

Lemma 1 (Necessary and sufficient conditions). Any vector
x satisfying ‖x‖0 ≤ s < N

2 is an unique solution to the
optimization problem (P0) if and only if any 2s columns of
matrix A are linearly independent of all v ∈ Zm.

Proof. We first prove sufficiency by contradiction. Let z =
JAxK, x is an s-sparse vector, and A ∈ Rm×N . Suppose the
optimization problem (P0) returned another s-sparse vector
x# (so that ‖x#‖0 ≤ s), then

A(x− x#) = v ⇒ AS(xS − x#
S ) = v ∈ Zm,

where the set S is the union of the supports of x and x#.
Since |S| ≤ 2s, a set of 2s columns of A span an integer
vector v, which violates the condition in the Lemma.

To prove the necessary part, suppose ∃S such that |S| =
2s and 0 6= u ∈ R2s such that ASu = v, where v ∈ Zm.
We construct two s-sparse vectors x0,x# ∈ RN from u,
where the first s indices of S constitute the support of x0

with the values equal to first s entries of u, and the remaining
s entries of S constitute the support of x# with the values
equal to the corresponding s entries of u. Also, define z =
JAx0K and y0 = Ax0, so that y0 = z + v0 for some
v0 ∈ Zm. Then, using ASu = v, we have Ax# +Ax0 =
v which implies y0 − v = −Ax#. Thus, −x# is also a
solution to the optimization problem since ‖x#‖0 ≤ s and
J−Ax#K = Jy0 − vK = z, which is a contradiction.

The following corollary presents a similar result for the
recovery of dense vectors, which requires m > N .

Corollary 1. Any vector x satisfying ‖x‖0 ≥ N
2 is a unique

solution to Aw = y with y = JAxK + v and v ∈ Zm if
only if the columns of matrix A are linearly independent
of all v ∈ Zm. Consequently, the minimum number of
measurements required for unique recovery is m = N + 1.

Proof. The proof is similar to Lemma 1, with the observation
that when ‖x‖0 ≥ N

2 and ‖x#‖0 ≥ N
2 , x−x# can be any

N length real vector.

To compare the modulo-CS problem to the standard CS
problem, we state two necessary conditions for modulo-CS
recovery below. The proof is immediate from Lemma 1.

Corollary 2. The following two conditions are necessary for
recovering any vector x satisfying ‖x‖0 ≤ s as a unique
solution of the optimization problem (P0):

1) m ≥ 2s+ 1, and

2) Any 2s columns of A are linearly independent.

We recall that m = 2s is necessary and sufficient for
unique sparse signal recovery in the standard CS setup [13,
Theorem 2.14]. The above corollary shows that the minimum
number of measurements needed to reconstruct all s-sparse



vector from modulo measurements is 2s+1. We now show
that m = 2s+1 measurements are also sufficient. Thus, we
see that the penalty for unique sparse signal recovery due to
the modulo operation is just one additional measurement.

Theorem 1 (Sufficiency). For any N ≥ 2s+1, there exists
a matrix A ∈ Rm×N with m = 2s+1 rows such that every
s-sparse x ∈ RN can be uniquely recovered from its modulo
measurements z = JAxK as a solution to (P0).

Proof. Let A ∈ R(2s+1)×N be a matrix for which at
least one s-sparse vector x cannot be recovered from z =
JAxK via (P0). Hence, A does not satisfy the condition in
Lemma 1. We will show that the set of all such matrices is
of Lebesgue measure 0. To this end, we define two sets:

1) Let V = {v|v ∈ Zm} denote the countably infinite set
of all integer vectors.

2) Let S = {T |T ⊂ [N ], |T | = 2s} denote the set of all
index sets on [N ] whose cardinality is 2s.

For a given u∈V and S∈S, construct B(u,S) =
[
u AS

]
.

Hence, the condition in Lemma 1 fails if det (B(u,S)) =
0. This is a nonzero polynomial function of the entries
of AS , and therefore the set of matrices which satisfy
this condition have Lebesgue measure 0. Now, consider
∪S∈S ∪u∈V {A|det (B(u,S)) = 0}. This is a finite union
of countable unions of Lebesgue measure 0 sets and hence
is also of Lebesgue measure 0. Hence, a matrix A chosen
outside of this set will ensure that any s-sparse vector x can
be recovered from its modulo measurements y = JAxK.

Remark 1: If the entries of A are drawn independently
from any continuous distribution, A lies outside the set of
Lebesgue measure 0 described in Theorem 1 and hence is a
valid candidate for modulo-CS recovery.

Remark 2: From [14, Proposition 1], for any integer vector
a ∈ ZK and x ∈ RK it holds that JaT JxKK = JaTxK. As
consequence, if the entries of A are integers, then x and
JxK result in the same modulo measurements, and unique
recovery is not possible. Hence, integer matrices cannot be
used as candidate measurement matrices for modulo-CS.

Remark 3: Extending Theorem 1 to dense vectors similar
to Corollary 1, it can be shown that m = N +1 suffices for
unique recovery of all x ∈ RN .

We next study the recoverability of sparse vectors when
the `0-norm in (P0) is replaced with the `1-norm, thus
making the objective function convex.

IV. CONVEX RELAXATION

In the previous section, we derived conditions for unique
sparse vector recovery from modulo-CS measurements
via (P0). However, both the objective function and the

constraint set of (P0) are non-convex, and solving it requires
an exhaustive search over all possible index sets and integer
vectors of length m. Replacing the `0-norm in (P0) with the
`1-norm, we obtain the combinatorial optimization problem:

argmin
x,v

‖x‖1 subject to Ax = z + v; v ∈ Zm. (P1)

A. Integer Range Space Property
In order to develop conditions on A for unique recover-

ability of the original sparse vector via (P1), we introduce
the following property.

Definition 1 (Integer range space property (IRSP)). A matrix
A is said to satisfy the IRSP of order s if, for all sets S ⊂ [N ]
with |S| ≤ s,

‖uS‖1 < ‖uSc‖1,

holds for every u ∈ RN with Au = v ∈ Zm.

Remark 4: In the above, if the integer vector v is replaced
with the all zero vector, the IRSP boils down to the null space
property, which is necessary and sufficient for the `1 norm
based relaxation of the standard CS problem.

Theorem 2 (`1 recovery from modulo-CS). Every s-sparse
x is the unique solution of (P1) if and only if the matrix A
satisfies the IRSP of order s.

Proof. Consider a fixed index set S with |S| ≤ s, and
suppose that every x supported on S is a unique minimizer
of (P1). Then, for any u such that Au = v ∈ Zm, the vector
uS is the unique minimizer of (P1). But, A(uS + uSc) =
v. Thus, ‖uS‖1 < ‖uSc‖1, which proves the necessary
condition. Conversely, suppose that the IRSP holds with
respect to the set S. Consider x supported on S and another
vector x# that result in the same modulo measurements, i.e.,
Ax+v1 = Ax#+v2, where v1 and v2 are integer vectors.
Letting u = x− x#, the vector Au = v2 − v1 = v ∈ Zm.
Hence, by virtue of the IRSP, ‖uS‖1 < ‖uSc‖1. Then,

‖x‖1 ≤ ‖x− x#
S ‖1 + ‖x

#
S ‖1

= ‖uS‖1 + ‖x#
S ‖1

< ‖uSc‖1+‖x#
S ‖1 = ‖ − x#

Sc‖1+‖x#
S ‖1 = ‖x#‖1.

Thus, x is the unique minimizer of (P1), and IRSP relative
to S is sufficient. Finally, letting S vary, we see that A
satisfying IRSP of order s is necessary and sufficient.

The above theorem shows that the IRSP is a key prop-
erty for guaranteeing sparse vector recovery from modulo-
CS measurements via (P1). Next, we present a practical
algorithm for solving (P1) based on mixed-integer linear
programming and empirically evaluate its performance.

B. Mixed Integer Linear Program (MILP)

The `1 norm in the (P1) problem can be rewritten as a
linear function using two positive vectors x+ and x− as
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Fig. 1. Percentage of success recovery for MILP.
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Fig. 2. Phase transition curves for 80% recovery accuracy.

x = x+ − x−. This leads to the MILP formulation:

min
x+,x−,v

1T
(
x+ + x−

)
subject to

[
A −A −I

] x+

x−

v

 = z; (4)

v ∈ Zm; x+,x− ≥ 0.

The MILP can be solved efficiently using the branch-and-
bound algorithm [15]. Once x+ and x− are obtained, we
can solve for x as x = x+ − x−.

V. SIMULATION RESULTS

We now empirically evaluate performance of the MILP
for the modulo-CS problem. We solve the MILP using the
intlinprog function in the MATLAB optimization toolbox.
We set N = 50, and for a given sparsity level ρ = s

N ,
we randomly select ρN indices of the input signal to be
nonzero, and set the others to zero. The nonzero entries are
drawn from either the uniform or Gaussian distributions with
zero-mean and different variances as specified in the figures.
For a given measurement ratio δ = m

N , the entries of the
measurement matrix with δN rows are drawn from an i.i.d.
Gaussian distribution with mean zero and variance 1

m .

We first present the phase transition curve of the MILP
problem by plotting the success rate over 1000 Monte
Carlo simulations when the nonzero entries of the sparse
signal are obtained from a uniform distribution on [−1, 1],
denoted by Unif [−1, 1]. From Fig. 1, we see that the

transition region between success and failure roughly follows
the theoretical result (solid line in red) in Theorem 1. In
particular, the MILP formulation of the algorithm based on
convex relaxation performs close to the theoretical bound
for the (P0) problem, i.e., it is near-optimal in the settings
considered here.

In the next experiment, we compare the performance of
the MILP algorithm when the measurements span different
number of modulo periods. To this end, we evaluate the
performance of the MILP for different distributions on the
nonzero entries of the sparse signal. We plot the minimum
value of m required for 80% recovery accuracy (i.e., exact
recovery of the sparse signals in 80% of the random experi-
ments) for sparsity levels varying from 1 to N

2 in Fig. 2. For
the Unif [−0.01, 0.01] curve, the measurements are always
in the range [−0.5, 0.5], and by shifting by 0.5, we obtain
all measurements within a single modulo period, hence the
modulo operation does not introduce any nonlinearity. As
seen in the figure, the curve for Unif [−0.5, 0.5] which spans
at least 2 modulo periods is close to the Unif [−0.01, 0.01]
case without the modulo operation. When the variance of
the signal is low, MILP performs close to the theoretical
limit for the minimal number of measurements required.
However, with increase in variance of the input signal, the
measurements span a larger number of modulo periods, and
the performance starts to deteriorate. We also notice that
the simulated curves for the Unif [−0.01, 0.01] and Unif
[−0.5, 0.5] cases cross the theoretical bound for sparsity
levels beyond s = 18. There are two reasons for this. First,
the simulated curves correspond to 80% recovery success
rate, while the theoretical results were for perfect recovery
of all sparse signals. Second, the simulated curves are for
specific source distributions, while the theoretical result
is for arbitrary (even adversarially chosen) sparse vectors.
Nonetheless, the theoretical curve forms a useful benchmark
for the performance of modulo-CS recovery algorithms.

VI. CONCLUSIONS

In this work, we considered the problem of recovering
sparse signals from modulo compressed sensing measure-
ments. We presented an equivalent optimization problem
for the modulo-CS setup using the `0 norm. For this opti-
mization problem, we showed that the 2s+1 measurements
are necessary and sufficient for recovering s-sparse signals.
Finally, we considered a convex relaxation for the `0-norm
and presented an algorithm based on mixed-integer linear
programming. For this algorithm, we obtained theoretical
guarantees as a property of the measurement matrix.

In this work, we have considered the case of noiseless
measurements. These results and the MILP algorithm need
to be extended to the case of noisy measurements. Further,
deriving the sample complexity of the MILP algorithm is an
interesting direction for future work.
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