
1

Data Aided MSE-Optimal Time Varying Channel
Tracking in Massive MIMO Systems
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Abstract—The temporal variations in the wireless propagation
channel, referred to as channel aging, cause a mismatch between
the estimated channel and the channel state at the time of data
detection. This mismatch has been shown to severely impair the
performance of massive MIMO systems. In this paper, we present
data aided MSE-optimal channel tracking algorithms to decode
the received symbols and update the channel estimates at the
base station (BS) and the UEs. These algorithms combine ideas
from Kalman filtering for channel tracking and deterministic
equivalent analysis for symbol estimation. In the uplink case,
we first develop a minimum mean squared error (MMSE) data
estimator and the MSE-optimal channel predictor based on
the Kalman filtering algorithm. We analytically show that the
updated channel estimate obtained from the estimates of the
data symbols leads to significantly larger signal to interference-
plus-noise ratio (SINR), and hence achievable rate, compared to
that obtained from the channel estimate based on pilot symbols.
Following this, in the downlink case, we develop an algorithm
to track the effective channel at the UEs and analyze its MSE,
SINR and achievable rate performance. We show that tracking
the effective downlink channel mitigates the effects of channel
aging and leads to improved performance. However, since the
beamforming matrices at the BS are not updated, downlink
channel tracking is not as effective as uplink channel tracking.
Finally, via Monte Carlo simulations, we validate our derived
results, and demonstrate the gains achievable by tracking the
time-varying channels in massive MIMO systems.

Index Terms—Massive MIMO, channel aging, Kalman filtering

I. INTRODUCTION

A. Motivation

Cellular communication systems with a large number of
base station (BS) antennas serving a large number of user
equipments (UEs), referred to as massive multiple input multi-
ple output (MIMO) systems, have seen much research interest
in recent years [1]. The large number of BS antennas results
in quasi-orthogonality among the channels to the different
users [2]–[5]. Also, the effective channels to the UEs reduce to
their deterministic equivalents (DEs) [6]. Further, if accurate
channel state information (CSI) is available, simple linear
precoding and combining techniques at the BS can lead to
large array gains and minimal inter user interference [2], [7].
However, in practice, the accuracy of the CSI available at the
BS is impaired due to various factors such as additive noise
in channel estimation [4], pilot contamination [8], reciprocity
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calibration imperfections [9], [10] and channel aging [11]. The
latter is the main focus of this work.

Channel aging is caused by the time varying nature of the
channels between the BS and the mobile UEs, and manifests as
a slow drift of the actual propagation channel from the estimate
available at the BS [11]. This evolutionary nature of an aging
channel is not amenable to the conventional block fading
model of communication channels. In the block fading model,
the channel coefficients are assumed to remain unchanged for
one coherence interval, and take independent values from the
same distribution during the next coherence interval [12]. It
has been argued that the notion of coherence time should be
replaced with that of a usable time/outage time in case of
aging channels [12], [13]. The mismatch between the actual
and the estimated channels due to aging results in the SINR
(and consequently, the achievable rate) at the UEs becoming
a decreasing function of time [11], [14]–[16]. Due to this,
depending on the choice of the underlying communication
protocol, fast channel aging may limit the maximum system
dimensions [12], [17], [18].

Now, although the effective channel quality degrades as the
lag between the training and data transmission increases, the
initial performance (i.e., at low lag values) is still close to that
of an ideal massive MIMO system without aging. This can be
exploited to accurately estimate the transmitted data symbols
with low complexity. Then, the estimated data symbols, along
with the received signal, can be fed into a Kalman filter to
update the channel estimates, and thereby track the evolution
of the channel coefficients. In this paper, we derive and analyze
the performance of data aided channel tracking algorithms in
both uplink and downlink of a massive MIMO system.

B. Related Work
Classically, time varying channels have been modeled using

either the auto-regressive (AR) model [11], [19] or the basis
expansion model (BEM) [20], [21]. The BEM model entails
tracking channel variations by estimating parameters of a
parsimonious representation of the channel. This approach
has been widely studied in the context of the estimating
doubly selective OFDM channels [22], [23], and has also
recently been applied to the modeling and tracking of sparse
millimeter wave (mmWave) massive MIMO channels [24],
[25]. While BEM remains an interesting direction for modeling
and tracking time varying channels in massive MIMO systems,
starting from [11], most of the literature discussing channel
aging in massive MIMO systems is based on the AR model.
Therefore, in this paper, we focus on tracking time-varying
multi-user massive MIMO channels under the AR model.
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The canonical massive MIMO system [2] assumes a time
division duplexed (TDD) operation due to the prohibitive
cost of downlink training. Here, training is performed in the
uplink direction, and the downlink channels are estimated by
exploiting channel reciprocity [17], [26]–[30]. Consequently, a
majority of the existing work on channel aging [11], [14]–[16],
[31], [32] has also focussed on TDD systems. These studies
exclusively consider linear signal processing techniques such
as the maximal ratio combining (MRC) [11] and the minimum
mean squared error (MMSE) combining [14] at the receiver,
and the matched filter precoding (MFP) [11] and the regular-
ized zero forcing (RZF) [15] precoding at the transmitter.

The most commonly used metric for quantifying the system
performance and the loss due to channel aging is the achiev-
able rate of the system. In this respect, both the sum rate [14]–
[16] and the average per user rate [17], [18] of a massive
MIMO system with an aging channel have been examined.
Since an aging channel results in a time varying SINR, and
consequently an achievable rate that varies as a function of
the sample index throughout a frame, both the average [17]
and the worst case [12] rates have been used as metrics for
the effects of channel aging. The achievable rates for these
systems are generally derived using the DE analysis [14], [17],
or the use and forget bounds [18]. The authors in [15] have
also discussed the non-asymptotic achievable rates for massive
MIMO systems under channel aging, incorporating the effect
of phase noise. A key takeaway from these papers is that the
expedited aging of channels in high mobility scenarios leads
to severe performance loss [33].

The early works on channel aging [11], [14]–[16] ignored
the effect of aging during the training and channel estimation
phase. This leads to simple yet inaccurate expressions of the
channel estimation errors, and consequently of the achievable
rates. Kalman filter based estimators for aging channels were
presented in [12], [34], [35], where the channel is tracked one
frame to the next using pilot symbols received at the start of
each frame. The notion of outage time, defined as the time for
which the channel can be used for data transmission after CSI
acquisition, was introduced in [13].

All the works discussed above focus exclusively on pilot
based training, and do not explore the potential of using data
symbols for data aided channel estimation and tracking. In this
work, we address this gap by developing data aided channel
tracking algorithms for massive MIMO systems.

C. Contributions

In this paper, we develop MSE-optimal data aided channel
tracking schemes for a single cell massive MIMO system
under aging channels. We first estimate the data symbols using
a low complexity procedure based on results from random
matrix theory [6], [11]. Then, we use the recovered data
symbols to update the channel estimates using the Kalman
filtering principle (See Theorems 1 and 2 in the uplink case,
and Theorems 5 and 6 in the downlink case.) We perform these
two steps successively upon reception of each data symbol,
allowing us to track the channel evolution with time (See Algo-
rithms 1 and 2 for the uplink and downlink cases, respectively).

In addition, using tools from random matrix theory, we derive
expressions for the MSE (See Theorems 3 and 4 in the uplink
case, and Theorems 7 and 8 in the downlink case), SINR,
and achievable rate performance (See Sections IV and VI) of
the time-varying channel tracking algorithm. In particular, we
make use of the expression for the MSE to obtain the Kalman
filtering gain employed in the tracking algorithm.

We consider the tracking of both uplink and downlink
channels. In the uplink case, pilot symbols transmitted by the
UEs are used to obtain the initial channel estimate. We employ
a data aided Kalman filter to track the channel using the es-
timated uplink data symbols (See Algorithm 1). Using results
from random matrix theory, we analyze the performance of
the algorithm in terms of the MSE in the channel estimate
and the achievable rate of the system. In the downlink case,
the BS fixes its precoding vectors based on the latest channel
estimate obtained from the uplink phase. Therefore, the UEs
only need to track the scalar effective downlink channel, i.e.,
the inner product between the precoding vector and the current
channel state (See Section V). We develop an algorithm for
tracking the effective downlink channels at the UEs using the
downlink data symbols (See Algorithm 2). In particular, we do
not require dedicated downlink training. We analyze the MSE
and achievable rate performance of the data aided Kalman
channel tracker. For comparison purposes, we also analyze
the performance of the system without channel tracking.

Our analysis accounts for three sources of errors: due to
noise in the pilot symbols, due to the temporal variation of
the channel, and due to incorrect symbol recovery affecting the
estimation of future channel states. In particular, we elucidate
the inter-dependence between the symbol errors and channel
tracking errors. For example, in the uplink case, Theorem 3
derives the MSE in the channel estimate, and shows how it
depends on the MSE in the data symbols. The MSE in the data
symbols, derived in Theorem 4, in turn depends on MSE in the
previous channel estimate, which relates it back to Theorem 3.
Accounting for these effects requires careful bookkeeping, and
is a new aspect that is developed in this paper.

Our key finding is that Kalman filter based tracking helps
to counter the effects of channel aging, and significantly
increases the usable time of the time-varying channel in
massive MIMO systems. We illustrate this via detailed Monte
Carlo simulations.

Organization: In Section II, we discuss the system model
considered in this work. In Section III, we develop a Kalman
filter based data aided channel tracking algorithm for esti-
mating the channel matrix from all the users in the uplink,
and derive the MMSE estimates of the received symbols. In
Section IV, we present a deterministic equivalent analysis of
the achievable rate, both with and without Kalman filter based
tracking. Next, in the downlink case, develop an algorithm for
tracking the effective scalar channel at each user in Section V.
We present a DE analysis of achievable rate by the blind
downlink tracking algorithm in Section VI. In Section VII, we
validate our results via Monte Carlo simulations and illustrate
the effect of system parameters such as the user velocities and
the frame duration on the performance. Finally, we present our
concluding remarks in Section VIII.
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TABLE I: A list of notation followed in the paper.

N The number of antennas on the BS.
K The number of users.
ρk[1] The temporal correlation coefficient of the channel.
hk[n] The channel vector between the BS and the kth user

at the nth instant.
zh,k[n] The innovation component for the channel vector

between the BS and the kth user at the nth instant.
hk[n|Yn−1] The estimate of the channel vector between the BS

and the kth user at the nth instant based on the
information available till the (n− 1)th instant.

b̄2u,k[n, l] The mean squared channel estimation error for the
channel at the nth instant, based on the information till
the (n− 1)th instant.

λ The downlink power control coefficient
su,k[n] The uplink symbol transmitted by the kth user
sd,k[n] The downlink symbol transmitted to the kth user
G[n] The Kalman filtering gain for the uplink channel tracker
Rỹỹ [n] The covariance matrix of the innovation component

in the uplink.
ā2u,k[n] The MSE of in the estimation of the uplink symbol

sent by the kth user.
gkl[n] The effective downlink channel to the kth user for

the lth user’s data stream.
σ2
ỹỹ,k[n] The variance of the innovation component

in the downlink.
Γk[n] The Kalman filtering gain for the kth downlink

user at the nth instant

Notation: Boldface lowercase and uppercase letters rep-
resent vectors and matrices, respectively. The kth column
of the matrix Au is denoted by au,k. (·)H represents the
Hermitian operation on a vector or a matrix, and (·)† represents
its Moore-Penrose pseudoinverse. IK ,0K and OK represent
the K × K identity matrix, the K × 1 all-zero vector and
the K × K all-zero matrix, respectively. The `2 norm of a
vector and the Frobenius norm of a matrix are denoted by
‖·‖2 and ‖·‖F , respectively. CN (µ, σ2) represents a circularly
symmetric complex Gaussian random variable with mean µ
and variance σ2. E[·] and var(·) represent the mean and
variance of a random variable. In general, x̂ and x̃ denote the
estimate and the corresponding estimation error of a random
variable x. Also, throughout this paper, for any −1 ≤ x ≤ 1,
x̄ is used to denote x̄ =

√
1− |x|2. The other notations used

in this paper are listed in Table I.

II. SYSTEM MODEL

We consider a single cell massive MIMO system operating
in the time division duplex (TDD) mode with an N antenna
base station serving K single antenna users. We let βk and vk
respectively denote the path loss coefficient and the velocity
of the kth user [17]. Letting hik[n] denote the fast fading
component of the channel between the kth UE and the ith
BS antenna at the nth instant, the effective channel between
the ith BS antenna and the kth UE is given as

√
βkhik[n].

Also, we let hk[n] = [h1k[n], . . . hNk[n]]T denote the vector
channel to the kth user.

We consider the channel to evolve over time as

hk[n] = ρk[1]hk[n− 1] + ρ̄k[1]zh,k[n], (1)

where zh,k[n] is the temporally and spatially white zero
mean circularly symmetric complex Gaussian (ZMCSCG)

Fig. 1: The frame structure considered in this work.

innovation processes and ρk[n] is the channel correlation
coefficient defined as ρk[n] = E[hki[τ ]h∗ki[τ − n]]. A com-
monly used model for the evolution of the channel is a
first order autoregressive process, with ρk[n] = (ρk[1])n ,
(J0(2πfd,kTs))

n [11], [12], [35], where J0(.) is the Bessel
function of the first kind and zeroth order [36], Ts is the
sampling period at the BS, and fd,k is the Doppler frequency
corresponding to the kth user. It is defined as fd,k = vkfc/c,
where fc is the carrier frequency, and c is the speed of light.

Data is transmitted in frames consisting of T symbols. Each
frame is comprised of an uplink subframe of duration Tu with
τu ≥ K training symbols followed by Tu − τu data symbols,
and a downlink subframe of duration Td with τd ≥ 0 training
symbols1 followed by Td − τd data symbols (see Fig. 1.) For
notational convenience, we assume the sample index n within
each uplink/downlink subframe to take values between n =
−τx + 1 to n = Tx − τx, with x ∈ {u, d}. In both these
cases, the first τx symbols correspond to training, and data
transmission starts from the sample index n = 1.

Now, during the uplink training phase, from n = −τu + 1
to n = 0, the UEs transmit τu orthogonal pilot symbols in the
uplink (thus, τu ≥ K), with the kth UE’s pilot having a total
energy Ep,k. These pilots are used by the BS to obtain MMSE
estimates ĥk[0] of hk[0] related to the latter as

hk[0] = bu,k[1, 0]ĥk[0] + b̄u,k[1, 0]h̃k[0], (2)

with h̃k[n] being the channel estimation error, such that
E[ĥk[0]h̃Hk [0]] = ON . Here, ON denotes the N ×N all zero
matrix. Also, b̄2u,k[n, p] denotes the mean squared estimation
error in the channel vector hk[n], at time n, and based on
the signals received till time instant p ≤ n. Specifically, if
τu = K and the the pilot signal from the kth user is of the
form δ[n−K+k] where δ[·] is the Kronecker delta function, it
is known that [17] bu,k[1, 0] = ρk[K − k]

√
βkEp,k

βkEp,k+N0
, where

N0 is the noise variance at the BS. Since ρk[n] is a decreasing
function of n, bu,k[1, 0] can be lower bounded as

bu,k[1, 0] ≥ ρk[K − 1]

√
βkEp,k

βkEp,k +N0
. (3)

Note that bu,k[1, 0] captures both the effect of channel aging
as well as the channel estimation error.

In the uplink subframe, following pilot transmission, all the
UEs simultaneously transmit data symbols during the next

1We will consider channel tracking at the BS using the data symbols
transmitted during the uplink subframe. In this case, an up-to-date channel
estimate is available at the BS at the end of the uplink subframe, using which
it can transmit beamformed data to the users in the downlink. Therefore,
downlink training may not be necessary, and we can set τd = 0.
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Tu−K time instants. The data symbol transmitted by the kth
user at the nth instant is denoted by su,k[n], and is transmitted
with an energy Eu,s,k. The overall received symbol at the BS
therefore becomes

yu[n] =

K∑
k=1

√
βkEu,s,khk[n]su,k[n] +

√
N0w[n]. (4)

The BS uses linear combining vectors vk[n] (1 ≤ k ≤ K)
generated from the available channel estimates to estimate the
symbols transmitted by the kth user as ŝu,k[n].

Since the channel ages, the combining matrices based on the
initial channel estimate available at the BS gradually become
mismatched with the channel state. However, the recovered
symbols can be used as pilot signals to update the available
channel estimates, and thereby potentially prolong the usable
uplink frame duration.

In the downlink subframe, the BS uses the available chan-
nel estimate to determine an appropriate precoding matrix
P ∈ CN×K for data transmission. This precoding matrix is
then used to transmit beamformed pilots and data symbols
simultaneously to all the UEs during the next Td time instants.
Denoting the data symbol transmitted to the kth user at the
nth instant by sd,k[n], the precoded signal transmitted by the
BS can be written as

x[n] = λ

K∑
k=1

√
εd,s,kpksd,k[n], (5)

with λ as the downlink power control coefficient such that
E[‖x[n]‖22] = Ed,s, pk being the kth column of P, and
εd,s,k ≥ 0 being the fraction of the total downlink power allo-
cated to the kth user such that

∑K
k=1 εd,s,k = 1. Consequently,

the symbol received at the kth UE is given by

yd,k[n] = λ

K∑
l=1

√
βkεd,s,lh

T
k [n]plsd,l[n] +

√
N0νk[n], (6)

with νk[n] ∼ CN (0, 1) being the ZMCSCG additive noise.
Now, letting gkl[n] = λ√

N

√
βkεd,s,lh

T
k [n]pl denote the effec-

tive downlink channel for the lth user’s data stream at the kth
user, we can write

yd,k[n]=
√
Ngkk[n]sd,k[n]+

√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n]+
√
N0νk[n].

(7)
If no pilot signals are sent in the downlink, the UE recovers
its data symbols by replacing the effective channel coefficient
with its expected value, and treating interference as noise [2].

Since the channel varies over time, the precoding matrices
based on the channel estimate available at the BS gradually
become mismatched with the channel state. This results in the
effective downlink channel drifting away from the positive real
value assumed at the UE. However, the UEs can use the data
symbol estimates as pilots to update their estimates of the
effective channel, and thereby improve performance.

In the next sections, we discuss the Kalman filter based
MMSE channel estimator and data detector for this scheme.
We begin with the uplink case.

III. UPLINK CHANNEL TRACKING AND SYMBOL
DETECTION

Let the MMSE estimate of the uplink channel from the kth
user at the nth instant (1 ≤ n ≤ Tu − K), and conditioned
on the signals received till the (n − 1)th instant be denoted
by ĥk[n|Yn−1]. By the orthogonality principle, ĥk[n|Yn−1] is
related to the true channel at the nth instant, hk[n], as

hk[n] = bu,k[n, n−1]ĥk[n|Yn−1]+ b̄u,k[n, n−1]h̃k[n, n−1],
(8)

such that, E[ĥk[n|Yn−1]h̃Hk [n, n − 1]] = ON . Recall that
b̄2u,k[n, n − 1] is the mean squared error in the channel
estimate at the nth instant based on the data received till
the (n − 1)th instant. Letting H[n] = [h1[n], . . . ,hK [n]],
bu[n, n − 1] = [bu,1[n, n − 1], . . . , bu,K [n, n − 1]]T , and
Bu[n, n− 1] = diag(bu[n, n− 1]), we can write the channel
at the nth instant in terms of the available channel estimate as

H[n] = Ĥ[n|Yn−1]Bu[n, n−1]+H̃[n, n−1]B̄u[n, n−1]. (9)

Also, letting ρ[n] = [ρ1[n], . . . , ρK [n]]T , the temporal evolu-
tion of H[n] can be expressed as

H[n] = H[n− 1]diag(ρ[1]) + Zh[n]diag(ρ̄[1]). (10)

Let ŝu,k[n] be the MMSE estimate of the sym-
bol transmitted by the kth UE, such that su,k[n] =
au,k[n]ŝu,k[n] + āu,k[n]s̃u,k[n], with E[ŝu,k[n]s̃u,k[n]∗] = 0,
and E[|ŝu,k[n]|2] = E[|s̃u,k[n]|2] = 1. We discuss the
derivation of the coefficient āu,k[n] in Sec. IV (see Theo-
rem 4). Also, defining ŝu[n] = [ŝu,1[n], . . . , ŝu,K [n]]T and
s̃u[n] = [s̃u,1[n], . . . , s̃u,K [n]]T , we can equivalently write the
signal vector received at the BS as

yu[n] = H[n]
√
β � Eu,s � au[n]� ŝu[n]

+ H[n]
√
β � Eu,s � āu[n]� s̃u[n] +

√
N0w[n], (11)

where β = [β1, . . . , βK ]T , au[n] = [au,1[n], . . . , au,K [n]]T ,
Eu,s = [Es,1, . . . , Es,K ]T , and � denotes the Hadamard prod-
uct. Letting h[n] = vec(H[n]) and ⊗ denoting the Kronecker
product, we rewrite (10) and (11) as

h[n] = (diag(ρ[1])⊗ IN )h[n− 1] + (diag(ρ̄[1])⊗ IN )zh[n],
(12)

yu[n] = ((
√
β � Eu,s � au[n]� ŝu[n])T ⊗ IN )h[n]

+ ((
√
β � Eu,s � āu[n]� s̃u[n])T ⊗ IN )h[n]

+
√
N0w[n]. (13)

Viewing (12) and (13) as the process and observation
equations for the channel state h[n] [37], we identify P[1] =
(diag(ρ[1]) ⊗ IN ) as the state evolution matrix and C[n] =
(
√

β � Eu,s � au[n] � ŝu[n])T ⊗ IN as the observation
matrix. Also, the term (ρ̄[1] ⊗ IN )zh[n] can be viewed as
a temporally white process noise vector having a covariance
matrix Q1[n] = diag(ρ̄2[1]) ⊗ IN . Similarly, with C̃[n] =
((
√

β � Eu,s � āu[n] � s̃u[n])T ⊗ IN ), we can write the
observation noise covariance matrix, Q2[n], as

Q2[n] = E
[
C̃[n]h[n]hH [n]C̃H [n]

]
+N0IN
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=

(
K∑
k=1

βkEu,s,kā2u,k[n] +N0

)
IN . (14)

Using ĥ[n−1|Yn−1] , vec(Ĥ[n−1|Yn−1]), h̃[n, n−1] ,
vec(H̃[n, n − 1]) and ŝu[n], we can write the innovation
component, denoted by ỹu[n], as

ỹu[n] = yu[n]− ((
√
β � Eu,s � au[n]� ŝu[n])T

×(Bu[n, n− 1])⊗ IN )ĥ[n|Yn−1]

= C[n](h[n]− (Bu[n, n− 1]⊗ IN )ĥ[n|Yn−1])

+C̃[n]h[n] +
√
N0w[n]

= C[n](B̄u[n, n− 1]⊗ IN )h̃[n, n− 1] + C̃[n]h[n]

+
√
N0w[n]. (15)

The next step in deriving the Kalman filter based channel
tracker is to derive the covariance matrix of the innovation
component, which is given by the following Lemma.

Lemma 1. The covariance matrix of the innovation process
ỹu[n] is given as

Rỹỹ[n] =

(
K∑
k=1

βkEu,s,k(b̄2u,k[n, n− 1] + ā2u,k[n]) +N0

)
IN .

(16)

Proof. See Appendix A. �

The expression for Rỹỹ[n] contains three terms. The term
b̄2u,k[n, n−1] depends on both the pilot power and on channel
aging, and is explicitly derived in Theorem 3. The second
term, ā2u,k[n], depends on the MSE in the data symbols, and,
as shown in Theorem 4, this in turn depends on the data SNR
and B̄2

u[n, n− 1]. The third term is due to the AWGN.
To complete the derivation of the Kalman filtering based

channel tracking procedure, we need to specify the MMSE
channel predictor and the data symbol estimator, which is
given by the following two Theorems.

Theorem 1. The estimate ĥ[n + 1|Yn] of h[n + 1] can be
obtained from ỹu[n] and the available estimate ĥ[n|Yn−1] as

ĥ[n+ 1|Yn] = (B−1u [n+ 1, n]Bu[n, n− 1]⊗ IN )

× P[1]ĥ[n|Yn−1] + G[n]ỹu[n], (17)

where G[n] is the Kalman filtering gain, given as,

G[n] = (Bu[n+ 1, n]⊗ IN )−1

×
(ρ[1]�b̄2

u[n, n− 1]�
√
β�Eu,s�au[n]�ŝ∗u[n])⊗ IN∑K

k=1 βkEu,s,k(b̄2u,k[n, n− 1] + ā2u,k[n]) +N0

,

(18)

with ĥ[1|Y−1] initialized via pilot training as discussed
in [17], and Bu[1, 0] is initialized using (3). Note that Y−1
corresponds to the received pilot signals.

Proof. See Appendix B. �

Once the updated channel estimate is obtained at the BS
at time n − 1, the next received signal vector, y[n], is used
to obtain an MMSE estimate of the transmitted symbols
according to the following Theorem.

Theorem 2. The MMSE estimate of su[n] can be obtained
from y[n], and the available channel estimate Ĥ[n|Yn−1] as

ŝu[n] = Bu[n, n− 1]diag(
√
β � Eu,s)ĤH [n|Yn−1]

×

(
Ĥ[n|Yn−1]diag(β � Eu,s)B2

u[n, n− 1]ĤH [n|Yn−1]

+

(
K∑
k=1

b̄2u,k[n, n− 1] +N0

)
IN

)−1
yu[n]. (19)

Proof. See Appendix C. �

The MSE performance of the Kalman filter based channel
tracker and the coefficients bu,k[n, n − 1] in Theorem 1 can
be obtained via Theorem 3 below.

Theorem 3. The mean squared estimation error for the
kth user’s channel at the (n + 1)th instant based on the
observations till the nth instant is

b̄2u,k[n+ 1, n] = ρ̄2k[1] + ρ2k[1]b̄2u,k[n, n− 1]× (1−

ρ2k[1]a2u,k[n]b̄2u,k[n, n− 1]βkEu,s,k

bu,k[n,n−1](
K∑
p=1

βpEu,s,p(b̄2u,p[n, n−1]+ā2u,p[n])+N0)

 .

(20)

Proof. See Appendix D. �

Finally, the MSE in the symbol estimates is given by the
following theorem.

Theorem 4. The MSE of the received symbol estimate ŝu,k[n]
is given by

ā2u,k[n] =

∑K
l=1 b̄

2
u,l[n, n− 1] +N0

βkEu,s,kb2u,k[n, n− 1] +
∑K
l=1 b̄

2
u,l[n, n− 1] +N0

.

(21)

Proof. See Appendix E. �

Also, for comparison, in the absence of Kalman filter
based tracking (i.e., when the channel estimated from the
pilot symbols is utilized for the rest of the frame, without
tracking the channel variations), it is easy to show that the
mean squared channel estimation error for the kth user can be
reduced to

b̄2u,k[n, 0] = ρ2k[n]b̄2u,k[1, 0] + ρ̄2k[n]. (22)

We will use this expression later, to calculate the achievable
rate of the system without channel tracking.

We summarize the channel tracking and data estimation
procedure at the BS in Algorithm 1. We note that the calcula-
tion of au,k[n] requires O(K) complex operations. Similarly,
the use of Theorem 2 requires N3 complex operations for
inverting the N × N matrix, KN complex operations for
generating the combining matrix and another KN complex
operations for obtaining ŝu[n] from yu[n]. Therefore, the over-
all computational complexity of the first step is O(KN+N3).
The second step has a computational complexity of O(K).
Finally, in third step, the calculation of the Kalman gain
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Algorithm 1: Data Aided Uplink Channel Tracking

Initialize ĥk[0] and Bu[1, 0] using pilot based
estimation.

for n = 0, 1, . . . , Tu − τu do
1) Use (21) in Theorem 4 to compute au,k[n],

and use (19) in Theorem 2 to compute ŝu[n].
2) Compute Bu[n+ 1, n] using (20) in Theorem 3,

and compute ỹu[n] using (15).
3) Calculate G[n] from (18), and substitute it

in (17) of Theorem 1 to obtain ĥ[n+ 1|Yn].
end

requires O(KN) complex operations and the channel update
requires O((KN)2) complex operations. Thus, the overall
computational complexity of Algorithm 1 is O(N3 +(KN)2)
per symbol. We note that, when K � N , this is comparable to
the O(N3) complexity of the MMSE detector. Hence, Kalman
filtering based channel tracking does not result in a significant
increase in the computational load at the BS.

Based on the above results, in the next section, we the-
oretically analyze the performance of the channel tracking
algorithm in terms of the uplink achievable rate.

IV. UPLINK ACHIEVABLE RATE ANALYSIS

In the previous section, we derived the MSE performance of
the Kalman filter based channel tracking technique. We now
analyze the achievable rate of the system. Considering a gen-
eralized MMSE receiver based on the predicted channel, the
BS uses V[n] = Q−1[n|Yn−1]Ĥ[n|Yn−1]diag(

√
β � Eu,s �

bu[n, n − 1]) as the receive combining matrix, where
Q−1[n|Yn−1] , (Ĥ[n|Yn−1]diag(β � Eu,s � b2

u[n, n −
1])ĤH [n|Yn−1] + µIN )−1 and µ is the regularization fac-
tor. Note that this generalized MMSE combiner reduces
to the MMSE symbol estimator discussed previously for
µ =

∑K
k=1 b̄

2
u,k[n, n − 1] + N0. Then, the combin-

ing vector for the kth stream is
√
βkEu,s,kbu,k[n, n −

1]Q−1[n|Yn−1]ĥk[n|Yn−1]. Therefore, ŝu,k[n|Yn−1], which
is the signal used at the BS to detect the kth user’s data, can
be expanded as

ŝu,k[n|Yn−1]= βkEu,s,kb2u,k[n, n− 1]ĥHk [n|Yn−1]

×Q−1[n|Yn−1]ĥk[n|Yn−1]su,k[n]

+

K∑
l=1
l 6=k

bu,l[n, n− 1]bu,k[n, n− 1]
√
βlEu,s,lβkEu,s,k

× ĥHk [n|Yn−1]Q−1[n|Yn−1]ĥl[n|Yn−1]su,l[n]

+

K∑
l=1

b̄u,l[n, n− 1]bu,k[n, n− 1]
√
βlEu,s,lβkEu,s,k

× ĥHk [n|Yn−1]Q−1[n|Yn−1]h̃l[n, n− 1]su,l[n]

+ ηk[n]. (23)

with ηk[n] =
√
βkEu,s,kbu,k[n, n −

1]ĥHk [n|Yn−1]Q−1[n|Yn−1]w[n]. Similarly, without the
Kalman filter based channel tracking, the combining vector

for the kth UE’s signal is
√
βkEu,s,kbu,k[1, 0]Q−1[0]ĥk[0],

where Q−1[0] equals Q−1[n|Yn−1] defined above, with
n = 0. Then, the received signal for the kth user becomes

ŝu,k[n|Y−1] = βkEu,s,kρk[n]b2u,k[1, 0]

× ĥHk [0]Q−1[0]ĥk[0]su,k[n]

+

K∑
l=1
l 6=k

ρl[n]bu,l[1, 0]bu,k[1, 0]
√
βlEu,s,lβkEu,s,k

× ĥHk [0]Q−1[0]ĥl[0]su,l[n]

+

K∑
l=1

ρl[n]b̄u,l[1, 0]bu,k[1, 0]
√
βkEu,s,kβlEu,s,l

× ĥHk [0]Q−1[0]h̃l[0]su,l[n]

+

K∑
l=1

ρ̄l[n]bu,k[1, 0]
√
βkEu,s,kβlEu,s,l

× ĥHk [0]Q−1[0]zh,l[n]su,l[n] + ηk[n], (24)

with ηk[n] =
√
βkEu,s,kbu,k[1, 0]ĥHk [0]Q−1[0]w[n]. In (24),

the last term corresponds to the interference due to the aging
of the available channel estimates without channel tracking
and is absent when the Kalman filter is used, i.e., in (23).

In order to evaluate SINR of these signals, we need to
compute the mean squared values of each of the terms in (23)
and (24), and exploit the fact that the terms are all uncorrelated
with each other. Since all the entries of the channel vectors
are i.i.d. ZMCSCG random variables, we can use tools from
random matrix theory [6], [17], to replace the expectation
operation with its DE. Using results derived in [6], it can be
shown that the DE of the achievable SINR with and without
Kalman filter based channel tracking can be given as (25)
and (26) on the next page, where the superscripts P and NP
denote the Kalman filter based prediction and no prediction,
respectively. Also, under channel tracking,

ϕk[n] ,

 K∑
m=1
m6=k

b2u,m[n, n− 1]βmEu,s,m
1 + ek,m[n]

+ µ


−1

, (27)

and ek,m[n] is iteratively computed as the limit t→∞ in

e
(t)
k,m[n] =

b2u,m[n, n− 1]βmEu,s,m∑K
i=1;i 6=k

b2u,i[n,n−1]βiEu,s,i

1+e
(t−1)
k,i [n]

+ µ
, (28)

with the initialization e(0)k,m[n] = 1
µ . Also,

ε̇kl[n] = ϕ̇2
kl[n] +

|b2u,l[n, n− 1]βlEu,s,l|2N2ϕ̇4
kl[n]

|1 + b2u,l[n, n− 1]βlEu,s,lNϕ̇kl[n]|2

− 2<

{
b2u,l[n, n− 1]βlEu,s,lNϕ̇3

kl[n]

1 + b2u,l[n, n− 1]βlEu,s,lNϕ̇kl[n]

}
, (29)

where <{.} denotes the real part of a complex number, and

ϕ̇kl[n] =

 K∑
m=1;m6=l,k

b2u,m[n, n− 1]βmEu,s,m
1 + ėk,l,m[n]

+ µ

−1 ,
(30)
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γP
u,k[n]−

NβkEu,s,kb2u,k[n;n− 1]∑K
l=1
l 6=k

βlEu,s,lb2u,l[n;n− 1] ε̇kl[n]
ϕ2

k[n]
+
∑K
l=1

βlEu,s,lb̄2u,l[n;n− 1] +N0

a.s.−−→ 0. (25)

γNP
u,k[n]−

Nρ2k[n]βkEu,s,kb2u,k[1, 0]∑K
l=1
l 6=k

ρ2k[n]βlEu,s,lb2u,l[1, 0] ε̇kl[n]
ϕ2

k[n]
+
∑K
l=1

ρ2l [n]βlEu,s,lb̄2u,l[1, 0] +
∑K
l=1

ρ̄2l [n]βlEu,s,l +N0

a.s.−−→ 0. (26)

with ėk,l,m[n] being iteratively computed as

ė
(t)
k,l,m[n] =

b2u,m[n, n− 1]βmEu,s,m∑K
i=1;i6=m,k

b2u,i[n,n−1]βiEu,s,i

1+ė
(t−1)
k,l,i [n]

+ µ
, (31)

with the initialization ė
(0)
k,l,m[n] = 1

µ . In case of no CSI
tracking, the expressions in (27)–(31) remain the same, but
with ρk[n]bu,k[1, 0] replacing bu,k[n, n− 1].

We note that a key difference between the SINRs with and
without channel tracking ((25) and (26)) is in their dependence
on channel aging. While (25) depends only on ρk[1] (through
bu,k[n, n − 1] in (20)), (26) depends directly on ρk[n]. At
high user velocities, ρk[n] decreases rapidly with n, leading to
significantly lower SINRs without channel tracking compared
to the Kalman filtering based channel tracking algorithm.

Uplink Achievable Sum Rate: With the SINR expressions
in hand, we can now write the uplink sum rate (x ∈ {P,NP}
with and without channel tracking, respectively) as

Rx =
1

Tu

K∑
k=1

Tu−K∑
n=1

log2(1 + γx
k[n]). (32)

From (29), as the SNR, and consequently, the term
NβlEu,s,l increases, the term ε̇kl[n] converges to zero for
all k and l, thus indicating that the inter-stream interfer-
ence in MMSE based detection is negligibly small. However,
from (24), we observe that a mismatch between the true and
the estimated channel results in an additional interference
term, which limits the performance of the system. Since the
mismatch in the channel estimate and the true channel is
smaller with Kalman filtering based channel tracking com-
pared to the no tracking case, Kalman filtering not only helps
to preserve the array gain of a massive MIMO system, but also
leads to improved interference suppression in case of MMSE
combining at the BS.

V. BLIND CHANNEL TRACKING AND SYMBOL DETECTION
IN THE DOWNLINK

Let the MMSE estimate of the effective downlink channel
at the kth user, and at the nth (1 ≤ n ≤ Td − K) instant,
conditioned on the signals received till the (n − 1)th instant
be denoted by ĝkk[n|Yn−1]. As a consequence of MMSE
estimation, ĝkk[n|Yn−1] is related to gkk[n], the true effective
downlink channel at the nth instant (see (7)), as

gkk[n] = bd,k[n, n−1]ĝkk[n|Yn−1]+b̄d,k[n, n−1]g̃kk[n, n−1],
(33)

with g̃kk[n, n − 1] corresponding to the channel estimation
error at the nth instant based on the signals received till the

(n− 1)th instant, such that, E[ĝkk[n|Yn−1]g̃∗kk[n, n− 1]] = 0,
and E[|g̃kk[n, n− 1]|2] = E[|ĝkk[n, n− 1]|2] = E[|gkk[n, n−
1]|2], and b̄2d,k[n, n−1] is the normalized mean squared channel
estimation error for the nth instant based on the data received
till the (n− 1)th instant.

Accounting for the effects of channel aging, gkk[n] can be
alternatively expressed as
√
Ngkk[n] = λ

√
βkεd,s,k(ρk[1]hk[n−1]+ ρ̄[1]zh,k[1])Tpk

=
√
Nρk[1]gkk[n− 1] +

√
Nρ̄k[1]ζkk[n], (34)

with εd,s,k ≥ 0 being the fraction of the total downlink energy
allocated to the kth user such that

∑K
k=1 εd,s,k = 1, as before.

Letting sd,k[n] = ad,k[n]ŝd,k[n] + ād,k[n]s̃d,k[n], with
E[ŝd,k[n]s̃d,k[n]∗] = 0, and E[|s̃d,k[n]|2] = 1, the signal
received at the kth UE can be equivalently written as

yd,k[n]=
√
Nad,k[n]gkk[n]ŝd,k[n]+

√
Nād,k[n]gkk[n]s̃d,k[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n] +
√
N0νk[n]. (35)

Viewing (34) and (35) as the process and observation
equations for the effective channel state gkk[n], we identify
ρk[1] as the state evolution coefficient and

√
Nad,k[n]ŝd,k[n]

as the observation coefficient [37]. Also, ρ̄k[1]ζkk[n] is a
temporally white process noise with variance

σ2
1 = λ2βkεd,s,kρ̄

2
k[1]‖pk‖22. (36)

Similarly, the variance of the observation noise is given by

σ2
2 = NE

[
|gkk[n]|2]E[|s̃d,k[n]|2

]
ā2d,k[n]

+N

K∑
l=1
l 6=k

E
[
|gkl[n]|2|sd,l[n]|2

]
+N0. (37)

Using the previously available estimate ĝkk[n|Yn−1] and
ŝd,k[n], we can define the prediction of yd,k[n] at the UE as
ŷk[n] =

√
Nad,k[n]bd,k[n, n−1]ĝkk[n|Yn−1]ŝd,k[n], and write

the innovation component ỹk[n] as

ỹd,k[n]=yd,k[n]

−
√
Nad,k[n]bd,k[n,n− 1]ĝkk[n|Yn−1]ŝd,k[n] (38)

=
√
N
[
ŝd,k[n]ad,k[n]b̄d,k[n, n− 1]g̃kk[n, n− 1]

+ ād,k[n]gkk[n]s̃d,k[n]+

K∑
l=1
l 6=k

gkl[n]sd,l[n]
]
+
√
N0νk[n].

(39)
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Since the transmitted symbols, the symbol errors, and the
additive noise are all zero mean and uncorrelated, we can
obtain the variance of the innovation process ỹk[n] as given by
the following Lemma. We omit the proof as it is immediate.

Lemma 2. The variance of the innovation process ỹd,k[n] is
given by

σ2
ỹỹ,k[n] = N

(
a2d,k[n]b̄2d,k[n, n− 1]E[|g̃kk[n, n− 1]|2]

+ ā2d,k[n]E
[
|gkk[n]|2

])
+ λ2

K∑
l=1
l 6=k

βkεd,s,lE
[
|hTk [n]pl|2

]
+N0. (40)

Similar to the uplink case, the innovation component can
now be used to obtain an updated estimate of the effective
downlink channel according to following theorem.

Theorem 5. The estimate ĝkk[n+ 1|Yn] of gkk[n+ 1] can be
obtained from yd,k[n] and the previous estimate ĝkk[n|Yn−1]
as

ĝkk[n+1|Yn]=
bd,k[n, n− 1]

bd,k[n+ 1, n]
ρk[1]ĝkk[n|Yn−1]+Γk[n]ỹd,k[n],

(41)
where Γk[n] is the Kalman filtering gain, and is given as

Γk[n] =
ρk[1]b̄2d,k[n, n− 1]E[|gkk[l]|2]ad,k[n]ŝ∗d,k[n]

bd,k[n+ 1, n]σ2
ỹỹ,k[n]

. (42)

Proof. See Appendix F. �

We use Theorem 5 to update the available channel esti-
mates using the received data samples. Now, since we do
not consider any explicit downlink training, we initialize
the channel estimates at the UEs as ĝkk[0] = E[gkk[0]]
and b̄2d,k[1, 0] = E[|gkk[0] − E[gkk[0]]|2]. Once the effective
downlink channel at the (n+1)th instant is estimated using the
nth detected symbol, the UE then proceeds to obtain ŝk[n+1]
from yd,k[n+ 1], and repeats the cycle. In order to complete
the process, we also need to obtain the MMSE estimate of the
data symbol sd,k[n], which is given by the following theorem.

Theorem 6. The MMSE estimate of sd,k[n] can be obtained
from yd,k[n] and the available channel estimate ĝkk[n|Yn−1]
as (43) on the next page.

Proof. We can write the received signal yd,k[n] as,

yd,k[n] =
√
Nbd,k[n, n− 1]ĝkk[n|Yn−1]sd,k[n]

+
√
Nb̄d,k[n, n− 1]g̃kk[n, n− 1]sd,k[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n] +
√
N0νk[n]. (44)

We can obtain (43) by following steps similar to those in the
proof of Theorem 2. �

Theorem 7. The mean squared estimation error of the kth
user’s channel at the (n+ 1)th instant based on the observa-
tions till nth instant is given by (45), where σ2

ỹỹ,k[n] is given
by (40).

Algorithm 2: Data Aided Downlink Channel Tracking
Initialize ĝkk[0] and bd,k[1, 0] their deterministic

equivalent values.
for n=0,1,. . .Td − τd do

1) Use (46) in Theorem 8 to compute ad,k[n],
and use (43) in Theorem 6 to compute ŝd,k[n].

2) Compute bd,k[n+ 1, n] using (45) in Theorem 7,
and compute ỹd,k[n] using (38).

3) Calculate Γk[n] from (42), and substitute it
in (41) of Theorem 5 to obtain ĝkk[n+ 1|Yn].

end

Proof. See Appendix G. �

We now present an expression for the the mean squared
symbol estimation error at the UE, that is required to update
the available estimate of the effective channel at the UEs.

Theorem 8. The MSE of the received symbol estimate at the
UE can be expressed as (46).

It can be observed that the symbol estimation error consists
of three terms, with the first term corresponding to the esti-
mation error for the effective downlink channel to the kth UE,
the second term arising from the interference due to the data
being transmitted to all the other UEs, and the third due to
the additive noise.

In the absence of Kalman filter based tracking, it is easy to
show that the mean squared channel estimation error of the
kth user’s channel can be reduced to

b̄2d,k[n, 0] = ρ2k[n]b̄2d,k[1, 0] + ρ̄2k[n]. (47)

An intuitive comparison of (47) with (45) is hard due to the
large number of terms involved in (45). We therefore defer
this discussion to the section on simulation results.

We summarize the overall channel tracking and data esti-
mation procedure at the each of the users in Algorithm 2. We
note that, since all the channel coefficients and corresponding
symbols are scalars, this algorithm has a constant (O(1))
computational complexity.

We use the above derived results to derive the achievable
rate of the system in the next section.

VI. DOWNLINK ACHIEVABLE RATE ANALYSIS

In the previous section, we derived the Kalman filtering
based channel tracker and symbol detector, and its MSE
performance. With these results in hand, we now proceed with
analyzing achievable rate of the system in the downlink.

We consider that the BS employs matched filter (MF)
precoding, such that the precoding matrix P takes the form
P = Ĥ∗[0],2 and consequently,

x[n] = λ

K∑
k=1

√
εd,s,kĥ

∗
k[0]sk[n], (48)

2We use the MF precoding here for simplicity, but the analysis can be
extended to other schemes such as regularized zero-forcing precoding also.
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ŝd,k[n] =

√
Nbd,k[n, n− 1]ĝ∗kk[n|Yn−1]yd,k[n]

Nb2d,k[n, n− 1]|ĝkk[n|Yn−1]|2 +Nb̄2d,k[n, n− 1]E[|gkk[n]|2] +N(
∑K

l=1
l 6=k

E[|gkl[n]|2]) +N0

(43)

b̄2d,k[n+ 1, n] = ρ̄2k[1]λ2βkεd,s,k‖pk‖22 + ρ2k[1]b̄2d,k[n, n− 1]

(
1−

ρ2k[1]b̄2d,k[n, n− 1]a2d,k[n]

bd,k[n, n− 1]σ2
ỹỹ,k[n]

)
(45)

ā2d,k[n] =

Nb̄2d,k[n, n− 1]E[|gkk[n]|2] +N
∑K

l=1
l 6=k

E
[
|gkl[n]|2

]
+N0

Nb2d,k[n, n− 1]|ĝkk[n|Yn−1]|2 +Nb̄2d,k[n, n− 1]E[|gkk[n]|2] +N
∑K

l=1
l 6=k

E [|gkl[n]|2] +N0

(46)

with E[‖x[n]‖22] = Nλ2
∑K
k=1 εd,s,k. Using

∑K
k=1 εd,s,k = 1,

we have λ =
√
Ed,s/N. Defining Ed,s,l , εd,s,lEd,s, we can

write

gkl[n] =

√
βkEd,s,l
N

hTk [n]ĥ∗l [0]. (49)

When the number of BS antennas is large, we can use results
from random matrix theory [6] to argue that gkl[n] converges
to its DE, such that,

gkk[n]− ρk[n]bu,k[1, 0]
√
βkEd,s,k

a.s.−−→ 0, (50)

gkl[n]
a.s.−−→ 0, l 6= k, (51)

|gkk[n]|2 −
(
ρ2k[n]b2u,k[1, 0]βkEd,s,k +

βkEd,s,k
N

)
a.s.−−→ 0,

(52)
and

|gkl[n]|2 − βkEd,s,l
N

a.s.−−→ 0, l 6= k. (53)

Now, if the kth UE employs the Kalman filter based tracking
of the effective downlink channel, then the signal received at
the nth instant can be expressed as

yd,k[n] =
√
Nbd,k[n, n− 1]ĝkk[n|Yn−1]sk[n]

+
√
Nb̄d,k[n, n− 1]g̃kk[n]sk[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sl[n] +
√
N0wk[n]. (54)

Also, without Kalman filter based channel tracking, the signal
received at the kth UE can be expressed as

yd,k[n] =
√
Nĝkk[0]sk[n] +

√
N(gkk[n]− ĝkk[0])sk[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sl[n] +
√
N0wk[n]. (55)

In both the above expressions, the first term corresponds to the
desired signal received over a known channel, and all the other
terms to noise and interference. It is important to note that
both ĝkk[n|Yn−1] and ĝkk[0] are MMSE estimates of the true
downlink channel based on independent sets of observation
vectors. Hence, the noise and interference terms for both cases
are uncorrelated with the desired signal. Using the worst case
noise theorem [38], we can treat the interference from all

sources as independent Gaussian noise. Also, from [17], we
can write the effective SINR of the kth user’s uplink signal
at the nth instant with the Kalman filter channel tracking
being employed at the UE as (56) at the top of the next
page, with the superscript P indicating the use of Kalman
filter based tracking. Similarly, the achievable SINR for the kth
user without Kalman channel tracking is given as (57) on the
next page, with the superscript NP indicating the absence of
Kalman prediction. In (56), the primary effect of channel aging
is captured by the first term in the denominator, b̄2d,k[n, n−1].
When the channel tracking at the UEs is effective, the value of
b̄2d,k[n, n− 1] is small, which mitigates the impact of channel
aging. However, in the absence of tracking, from (57), the
noise and interference depend on ρ̄2k[n], making channel aging
more harmful without channel tracking, especially at high user
velocities and large values of n.

Now, for a downlink frame duration of Td, the achievable
sum rate with and without channel prediction is given by

Rx =
1

Td

K∑
k=1

Td−K∑
n=1

log2(1 + γx
k[n]), (58)

with x ∈ {P,NP}. The variable Td can either be fixed, or
optimized to satisfy a minimum quality of service constraint
for the users. The latter is a one-dimensional optimization
problem that can be easily solved using a simple line-search
or bisection-based procedure.

VII. SIMULATION RESULTS

In this section, we numerically quantify and compare the
performance of the different channel tracking schemes, and
contrast them against the case with no tracking. We consider a
single cell system containing an N = 256 antenna BS serving
K = 16 users transmitting at a carrier frequency fc = 3 GHz
with a signal bandwidth 100 kHz. We also assume that the
BS samples the in-phase and quadrature components of the
signal at the Nyquist rate of the complex baseband signal,
i.e., at 100 kHz. The channel is assumed to age according
to the AR-1 model, i.e., ρ[n] = ρn, with the correlation
coefficient ρ lying in the range 0.999 ≤ ρ ≤ 0.99999 [12].
More specifically, we consider ρ = 0.99999, ρ = 0.9999 and
ρ = 0.999, corresponding to user velocities of 10, 70, and
270 km/h, respectively [12]. The frame duration is fixed at
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γP
k[n]−

(1 +Nb2u,k[1, 0]ρ2k[n])βkEd,s,kb2d,k[n, n− 1]

b̄2d,k[n, n− 1](1 +Nb2u,k[1, 0]ρ2k[n])βkEd,s,k +
∑K

l=1
l 6=k

βkEd,s,l +N0

a.s.−−→ 0. (56)

γNP
k [n]−

NβkEd,s,kb2u,k[0, 0]

(Nρ̄2k[n]b2u,k[0, 0] + ρ2k[n]b̄2d,k[0, 0] + ρ̄2k[n])βkEd,s,k +
∑K

l=1
l 6=k

βkEd,s,l +N0

a.s.−−→ 0 (57)

0 500 1000 1500 2000 2500 3000 3500 4000

Sample Index

10
-1

10
0

M
S

E

=0.999

=0.9999

=0.99999

Solid: Data + Pilot based tracking

Dashed: No Tracking

Dotted: Pilot Based Tracking

Fig. 2: MSE in uplink channel estimation vs. sample index,
for different values of ρ, and for the first four frames.

T = 1024 symbols [17]. However, for ease of presentation,
while discussing the uplink case, we consider T = Tu and
Td = 0, with the Tu uplink symbols consisting of τu = K
training symbols followed by Tu − K data symbols. In the
downlink case, we consider Tu = τu = K and τd = 0,
such that T = τu + Td. Also, for simplicity, we consider
that the path loss coefficients of all users are equal to unity,
which corresponds to users employing path loss inversion
based power control.3 Also, unless specified otherwise, the
data and pilot SNRs are assumed to be 10 dB.

A. Uplink Channel Tracking

In Fig. 2, we plot the MSE in the channel estimate obtained
using the Kalman filter based channel tracking at the BS,
as a function of the sample index, for the first four frames.
We track the channel evolution via Theorem 1, which in turn
involves updating the MSE using (20) in Theorem 3. We also
compare the MSE against that obtained using the pilot only
based tracking discussed in [34], [35] as well as without track-
ing, which corresponds to assuming the conventional block-
fading channel to obtain pilot-only based channel estimates.
We observe that, at all user mobilities, data-and-pilot based
tracking achieves a lower MSE compared to the other two
schemes as the sample index increases. In fact, at low and
medium user velocities, the performance of the Kalman filter
based tracking is constant across the frame, i.e., it is able to
completely overcome the effect of channel aging. Further, the
performance advantage offered by the data-aided Kalman filter
based tracking increases with user mobility.

3The results for other forms of power control at the UEs are similar, but
are not included here due to lack of space.
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Fig. 3: MSE in the uplink channel estimate with and without
Kalman filtering based tracking at the BS, as a function of the
data SNR.
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Fig. 4: Uplink rate with and without Kalman filtering based
tracking vs. the sample index, for different values of ρ.

We plot the MSE at the end of the second frame as a
function of data and pilot SNR for different values of ρ, in
Fig. 3. For this simulation, we set the data SNR to be equal to
the pilot SNR. We see that Kalman filtering offers significant
advantage over no filtering in all the cases. Furthermore, at
higher user mobility, the MSE begins to saturate as the SNR
increases. This is because channel aging results in estimation
errors, which cannot be overcome by data-aided channel
tracking. On the other hand, at lower user mobility, Kalman
tracking does result in lower MSE at higher SNRs, due to the
lower symbol error rates and better channel tracking.

In Fig. 4, we plot the uplink achievable rate at the BS,
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Fig. 6: Achievable downlink rate with and without Kalman
filtering based downlink channel tracking vs. the sample index,
for different values of ρ.

with and without Kalman filtering based channel tracking, as
a function of the sample index, for different values of ρ. These
correspond to the rate expression in (32), with the SINRs
obtained using (25) and (26). When the channel is fast varying,
Kalman filtering limits the deterioration in the uplink rates
over time. On the other hand, for slowly varying channels,
it actually leads to a marginal improvement in the achievable
rates, as the channel estimates improve with the sample index.
Further, in all cases, Kalman filtering offers much higher
achievable rates compared to pilot-based channel estimation
without channel tracking, particularly at higher sample indices.

B. Downlink Channel Tracking

In Fig. 5, we plot the MSE in the downlink channel estimate
at a user, both with and without Kalman filter based blind
channel tracking, obtained via Theorems 5 and 8, as a function
of the sample index. Kalman filter based tracking improves
the channel MSE in all the cases, and is particularly helpful
in the case of high mobility users, where the channel ages
rapidly. In Fig. 6, we plot the downlink rates achievable
by a single user under matched filter precoding, with and
without Kalman filtering based channel tracking, as a function

of the sample index, and for different user mobilities. The
rates are computed by substituting (56) and (57) in (58).
Kalman filtering mitigates the performance loss due to aging
for fast moving users, while offering a marginal improvement
for slow moving users. However, unlike in the uplink case,
the performance loss due to aging in fast moving users is
larger, because the precoding matrix and the true downlink
channel are still mismatched, and we are only able to track
the variations in the effective downlink channel at the user.

VIII. CONCLUSIONS

In this work, we developed Kalman filter based data aided
channel tracking algorithms in massive MIMO systems under
aging channels for both uplink and downlink transmission. We
also derived the mean squared error performance of channel
tracking and received symbol estimation. We used these results
to obtain expressions for the rates achievable with and without
channel tracking in a massive MIMO system with time-varying
channels. In the downlink, the gains due to channel tracking
are lower, because the mismatch between the precoding matrix
(which is based on the channel matrix available at the BS
at the end of the training duration) and the true channel
increases with time. We validated our derived results using
Monte Carlo simulations, and found that Kalman filter based
tracking indeed results in a substantial improvement in the
achievable uplink rates, and a marginal improvement in the
achievable downlink rates. Motivated by this difference in the
tracking performance uplink and downlink channels, future
work could consider the use of channel tracking in full duplex
massive MIMO systems under channel aging.

APPENDIX

A. Proof of Lemma 1

From the definition of Rỹỹ[n], we have

Rỹỹ[n] = E[ỹu[n]ỹHu [n]]

= E[(C[n](B̄u[n, n− 1]⊗ IN )h̃[n, n− 1] + C̃[n]h[n]

+
√
N0w[n])× (C[n](B̄u[n, n− 1]⊗ IN )h̃[n, n− 1]

+ C̃[n]h[n] +
√
N0w[n])H ], (59)

where (B̄u[n, n − 1] ⊗ IN )h̃[n, n − 1] = h[n] − (Bu[n, n −
1]⊗IN )ĥ[n|Yn−1]. Since the data symbols, symbol errors and
additive noise are all zero mean and uncorrelated,

Rỹỹ[n] = E[C[n]B̄u[n, n− 1]E[h̃[n, n− 1]h̃H [n, n− 1]]

× B̄u[n, n− 1]CH [n]] + Q2[n]

= E[C[n]B̄2
u[n, n− 1]CH [n]] + Q2[n], (60)

where Q2[n] was defined in (14). Also,

E[C[n]B̄2
u[n, n− 1]CH [n]]

=

(
K∑
k=1

βkEu,s,k b̄2u,k[n, n− 1]

)
IN , (61)

Substituting (61) and (14) into (60), we obtain (16).
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B. Proof of Theorem 1

The standard Kalman filtering formulation [37] begins by
writing the channel estimate as a linear combination of all the
past innovation components, including the pilot signal, as

ĥ[n+ 1|Yn] =

n∑
i=−K+1

Ψ [n+ 1, i]ỹu[i], (62)

where Ψ [n + 1, i] ∈ CKN×N is the gain associated with
the ith innovation component. We know from the principle
of orthogonality that,

E[(h[n+ 1]−(Bu[n+ 1, n]⊗ IN )ĥ[n+ 1|Yn])ỹHu [l]|Yn]

= OKN×N , for 1 ≤ l ≤ n. (63)

Given Yn, C[n] is known, while C̃[n] is random and unknown.
Therefore, the expectation above can be evaluated conditioned
on C[n], and we get

E[h[n+ 1]ỹH [l]|C[n]] = (Bu[n+ 1, n]⊗ IN )

× E[ĥ[n+ 1|Yn]ỹHu [l]|C[n]]

= (Bu[n+ 1, n]⊗ IN )

× E

[
n∑

i=−K+1

Ψ [n+ 1, i]ỹu[i]ỹHu [l]
∣∣∣C[n]

]
. (64)

Since the innovation process is temporally white, the right
hand side of the above is simply (Bu[n + 1, n] ⊗ IN )Ψ [n +
1, l]Rỹỹ[l]. Also, the left hand side can be simplified as

E[h[n+ 1]ỹH [l]|C[n]] = P[n+ 1− l]E[h[l]ỹHu [l]|C[n]]

(a)
= P[n+ 1− l]E[h[l](C[l](B̄u[l, l − 1]⊗ IN )h̃[l, l − 1]

+ C̃[l]h[l] +
√
N0w[l])H ]

(b)
= P[n+ 1− l](B̄u[l, l − 1]⊗ IN )E[h̃[l, l − 1]h̃H [l, l − 1]]

× (B̄u[l, l − 1]⊗ IN )HCH [l] + E[h[l]hH [l]C̃H [l]]

= P[n+ 1− l]B̄2
u[l, l − 1]CH [l], (65)

where P[l] , (diag(ρ[l]) ⊗ IN ), (a) follows by using the
expression for ỹu[n] from (15), and (b) by the orthogonality
of ĥ[l, l − 1] and h̃[l, l − 1]. Therefore,

Ψ [n+ 1, l] = (Bu[n+ 1, n]⊗ IN )−1P[n+ 1− l]
× B̄2

u[l, l − 1]CH [l]R−1ỹỹ [l], (66)

and consequently

ĥ[n+ 1|Yn] = (Bu[n+ 1, n]⊗ IN )−1

×
n−1∑

l=−K+1

P[n+ 1− l]B̄2
u[l, l − 1]CH [l]R−1ỹỹ [l]ỹu[l]

+ (Bu[n, n− 1]⊗ IN )−1P[1]B̄2
u[n+ 1, n]CH [n]R−1ỹỹ [n]ỹu[n]

= (Bu[n+ 1, n]⊗ IN )−1

× P[1]

n−1∑
l=−K+1

P[n− l]B̄2
u[l, l − 1]CH [l]R−1ỹỹ [l]ỹu[l]

+ (Bu[n+ 1, n]⊗ IN )−1P[1]B̄2
u[n+ 1, n]CH [n]R−1ỹỹ [n]ỹu[n]

= (B−1u [n+ 1, n]Bu[n, n− 1]⊗ IN )P[1]ĥ[n|Yn−1]

+(Bu[n+1, n]⊗IN )−1P[1]B̄2
u[n+1, n]CH [n]R−1ỹỹ [n]ỹu[n],

(67)

where the last equation follows because the matrices
(Bu[n, n− 1]⊗ IN ) and P[1] commute as they are diagonal.
This completes the proof.

C. Proof of Theorem 2

The received signal y[n] can be written in terms of the
available channel estimate Ĥ[n|Yn−1] as

yu[n] = Ĥ[n|Yn−1]Bu[n, n− 1]diag(
√
β � Eu,s � su[n])

+ H̃[n|Yn−1]B̄u[n, n− 1]diag(
√
β � Eu,s � su[n])

+
√
N0w[n]. (68)

For Gaussian distributed noise and channel estimation error,
the MMSE estimator is same as the LMMSE estimator, and
consequently,

ŝu[n] = E[su[n]yHu [n]|Ĥ[n|Yn−1]]

×
(
E[yu[n]yHu [n]|Ĥ[n|Yn−1]]

)−1
y[n]. (69)

It is easy to show that,

E[su[n]yHu [n]|Ĥ[n|Yn−1]]

= diag(
√
β � Eu,s)Bu[n, n− 1]ĤH [n|Yn−1], (70)

and

E[yu[n]yHu [n]|Ĥ[n|Yn−1]]

=

(
K∑
k=1

b̄2u,k[n, n− 1] +N0

)
IN

+ Ĥ[n|Yn−1]diag(β � Eu,s)B2
u[n, n− 1]ĤH [n|Yn−1],

(71)

where we have used the fact that Bu[n, n − 1] is a diagonal
matrix. Substituting (70) and (71) into (69) completes the
proof.

D. Proof of Theorem 3

In the Kalman filtering formulation, the estimation error
covariance matrix is updated with time as [37]

B̄2
u[n+ 1, n] = P[1]B̄2

u[n]PH [1] + Q1[n], (72)

where Q1[n] was defined in the paragraph above (14), and
B̄2
u[n] is the error covariance matrix for the filtered channel

state at the nth instant, Ĥ[n|Yn] = P−1[1]Ĥ[n + 1|Yn]. We
can write B̄2

u[n] as [37]

B̄2
u[n] = E[(IKN − P[1]G[n]C[n])]B̄2

u[n, n− 1], (73)

and can be reduced to (74) on the next page, where the inverse
in the b−1u [n, n − 1] term is an element-wise inverse. The
diagonal elements of B̄2

u[n] can be written as (75). Substituting
this into (72), we obtain (76).

Considering the kth element of the vector b̄2
u[n + 1, n]

completes the proof.
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B̄2
u[n] =

((
IK

−
E
[
(ρ2[1]�b̄2

u[n, n− 1]�b−1u [n, n− 1]�
√
β�Eu,s�au[n]�ŝ∗u[n])(

√
β�Eu,s�au[n]�ŝu[n])T

]∑K
k=1 βkEu,s,k(b̄2u,k[n, n− 1] + ā2u,k[n]) +N0

)
⊗IN

)
B̄2
u[n, n−1]

(74)

B̄2
u[n] =

(
IK −

diag(ρ2[1]�b̄2
u[n, n− 1]�b−1u [n, n− 1]�β�Eu,s�a2

u[n])∑K
k=1 βkEu,s,k(b̄2u,k[n, n− 1] + ā2u,k[n]) +N0

)
b̄2
u[n, n− 1] (75)

b̄2
u[n+ 1, n] = ρ̄2[1] + ρ2[1]�

(
IK −

diag(ρ2[1]� b−1u [n, n− 1]� b̄2
u[n, n− 1]� β � Eu,s � a2

u[n])∑K
k=1 βkEu,s,k(b̄2u,k[n, n− 1] + ā2u,k[n]) +N0

)
b̄2
u[n, n− 1] (76)

E. Proof of Theorem 4

We know that E[su[n]sHu [n]] = IN . Also, from the
definition of ŝu[n] in (19), it is easy to show that

E[(au[n]�ŝ[n])(ŝH [n]�aHu [n])]=diag(β�Es�b2
u[n,n−1])

×

(
diag(β�Es�b2

u[n,n−1])+

(
K∑
k=1

b̄2u,k[n,n− 1]+N0

)
IN

)−1
and consequently,

E[(āu[n]� s̃[n])(s̃H [n]� āHu [n])] =

(
K∑
k=1

b̄2u,k[n] +N0

)

×

(
diag(β � Eu,s � b2

u[n, n− 1])

+

(
K∑
k=1

b̄2u,k[n, n− 1]+N0

)
IN

)−1
. (77)

We obtain (21) by considering the kth diagonal element of the
above matrix.

F. Proof of Theorem 5

We can write the channel estimate in terms of all the past
innovation components as

ĝkk[n+ 1|Yn] =

n∑
i=0

Ψ [n+ 1, i]ỹd,k[i], (78)

with Ψ [n + 1, i] being the gain associated with the innova-
tion component at the ith instant. Invoking the principle of
orthogonality, we have E[(gkk[n+ 1]− bd,k[n+ 1, n]ĝkk[n+
1|Yn])ỹ∗d,k[l]] = 0, 1 ≤ l ≤ n. Given Yn, ŝk[n] is known,
while s̃k[n] is random and unknown. Therefore, we can replace
the conditioning on Yn with the conditioning on ŝk[n] to write
the above as

E[gkk[n+ 1]ỹ∗d,k[l]|ŝk[n]]

= bd,k[n+ 1, n]E

[
n∑
i=0

Ψ [n+ 1, i]ỹd,k[i]ỹ∗d,k[l]

]
. (79)

Since the innovation process is temporally white,

E[gkk[n+ 1]ỹ∗d,k[l]|ŝd,k[n]]

= Ψ [n+ 1, l]bd,k[n+ 1, n]σ2
ỹỹ,k[l]. (80)

Also,

E[gkk[n+ 1]ỹ∗d,k[l]|ŝd,k[n]]

= ρk[n+ 1− l]b̄2d,k[l, l − 1]E[|gkk[l]|2]ad,k[l]ŝ∗d,k[l]. (81)

Therefore,

Ψ [n+ 1, l]

=
ρk[n+ 1− l]b̄2d,k[l, l − 1]E[|gkk[l]|2]ad,k[l]ŝ∗d,k[l]

bd,k[n+ 1, n]σ2
ỹỹ,k[l]

, (82)

and consequently

ĝkk[n+ 1|Yn] = ρk[1]
bd,k[n, n− 1]

bd,k[n+ 1, n]
ĝkk[n|Yn−1]

+
ρk[1]b̄2d,k[n, n− 1]E[|gkk[l]|2]ad,k[n]ŝ∗d,k[n]

bd,k[n+ 1, n]σ2
ỹỹ,k[n]

ỹd,k[n], (83)

which completes the proof.

G. Proof of Theorem 7

Similar to the uplink case, the mean squared estimation error
can be updated with time as [37],

b̄2d,k[n+ 1, n] = |ρk[1]|2b̄2d,k[n] + σ2
1 [n], (84)

where b̄2u,k[n] is the variance of the filtered state error:

b̄2d,k[n] = E[(1−ρk[1]Γk[n]ad,k[n]ŝk[n])]b̄2d,k[n, n−1]. (85)

The above can be reduced to

b̄2d,k[n] = b̄2d,k[n, n− 1]

×

(
1−

ρ2k[1]b̄2d,k[n, n− 1]a2d,k[n]

bd,k[n, n− 1]σ2
ỹỹ,k

)
, (86)
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and the process noise variance σ2
1 [n] can be obtained

from (36). Substituting (86) and (36) into (84) yields (45)
and completes the proof.

H. Tracking of Spatially Correlated Channels in the Uplink

We now consider the case where the channels from different
users to the BS are spatially correlated, with the vector channel
of the kth user distributed as hk[n] ∼ CN (0,Tk) at time
n, and evolving over time according to (1), with zh,k[n] ∼
CN (0,Tk). As before, denoting the MMSE channel estimate
of hk[n] by ĥk[n|Yn], we can write hk[n] as

hk[n] = ĥk[n|Yn−1] + h̃k[n, n− 1], (87)

with E[ĥk[n|Yn−1]ĥHk [n|Yn−1]] = Bu,k[n, n − 1], and
E[h̃k[n, n − 1]h̃Hk [n, n − 1]] = Tk − Bu,k[n, n − 1]. Note
that the notation here is slightly different from (8), with the
estimate and estimation error no longer having unit variance.
Now, letting h[n] = [hT1 [n], . . . ,hTK [n]]T , we can express
E[h[n]hH [n]] = T, where T is a block diagonal matrix with
Tk, k = 1, . . . ,K as its diagonal elements. We can similarly
define the block diagonal matrix Bu as the covariance matrix
of ĥ[n|Yn−1].

1) State Equations: Invoking the process equation from
(12), the process noise covariance matrix is Q1[n] =
diag(ρ2[1])⊗T. Similarly, by inspecting (13), the observation
noise covariance matrix can be reduced to

Q2[n] =

K∑
k=1

βkEu,s,kāu,k[n]Tk +N0IN . (88)

Based on this, the covariance matrix of the innovation process,
as calculated in Lemma 1, becomes

Rỹỹ[n] =

K∑
k=1

βkEu,s,k(āu,k[n]Tk + (Tk −Bk[n, n− 1]))

+N0IN . (89)

2) Kalman Filtering: The estimate ĥ[n + 1|Yn] of h[n +
1] can be obtained from ỹu[n] and the available estimate
ĥ[n|Yn−1] as

ĥ[n+ 1|Yn] = P[n]ĥ[n|Yn−1] + G[n]ỹu[n] (90)

with

G[n] = P[1](T−Bu[n, n− 1])C[n]R−1ỹỹ [n]. (91)

Similarly, Bu[n + 1, n] can be updated via equations (72)
and (73). These results, in conjunction with Algorithm 1, can
be used to track the uplink spatially correlated masssive MIMO
channel over time.
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Linköping University, Sweden, 2014.

[34] S. Kashyap, C. Mollén, E. Björnson, and E. G. Larsson, “Performance
analysis of TDD massive MIMO with Kalman channel prediction,” in
Proc. Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP
2017), New Orleans, LA, Mar. 2017, pp. 3554–3558.

[35] V. Arya and K. Appaiah, “Kalman filter based tracking for channel
aging in massive MIMO systems,” in 2018 International Conference
on Signal Processing and Communications (SPCOM) (SPCOM 2018),
Indian Institute of Science, Bangalore, India, Jul. 2018.

[36] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 9th ed. New York:
Dover, 1964.

[37] S. Haykin, Adaptive Filter Theory. Pearson Education, 2002.
[38] B. Hassibi and B. M. Hochwald, “How much training is needed in

multiple-antenna wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4,
pp. 951–963, Apr. 2003.

Ribhu Chopra (S’11–M’17) received the B.E. de-
gree in Electronics and Communication Engineering
from Panjab University, Chandigarh, India in 2009,
and the M. Tech. and Ph. D. Degrees in Electronics
and Communication Engineering from the Indian
Institute of Technology Roorkee, India in 2011 and
2016 respectively. He worked as a project associate
at Department of Electrical Communication Engi-
neering, Indian Institute of Science, Bangalore from
Aug. 2015, till May 2016. From May 2016 to March
2017 he worked as an institute research associate at

the Department of Electrical Communication Engineering, Indian Institute of
Science, Bangalore, India. In April 2017, he joined the department of Elec-
tronics and Electrical Engineering, Indian Institute of Technology Guwahati,
Assam, India. His research interests include statistical and adaptive signal
processing, massive MIMO communications, and cognitive communications.

Chandra R. Murthy (S’03–M’06–SM’11) received
the B. Tech. degree in Electrical Engineering from
the Indian Institute of Technology Madras, India, in
1998, the M. S. and Ph. D. degrees in Electrical
and Computer Engineering from Purdue University
and the University of California, San Diego, USA,
in 2000 and 2006, respectively. From 2000 to 2002,
he worked as an engineer for Qualcomm Inc., where
he worked on WCDMA baseband transceiver design
and 802.11b baseband receivers. From Aug. 2006
to Aug. 2007, he worked as a staff engineer at

Beceem Communications Inc. on advanced receiver architectures for the
802.16e Mobile WiMAX standard. In Sept. 2007, he joined the Department
of Electrical Communication Engineering at the Indian Institute of Science,
Bangalore, India, where he is currently working as a Professor.

His research interests are in the areas of energy harvesting communications,
multiuser MIMO systems, and sparse signal recovery techniques applied
to wireless communications. His paper won the best paper award in the
Communications Track at NCC 2014 and a paper co-authored with his student
won the student best paper award at the IEEE ICASSP 2018. He has 70+
journal papers and 100+ conference papers to his credit. He was an associate
editor for the IEEE SIGNAL PROCESSING LETTERS during 2012-16 and
for the SADHANA JOURNAL during 2016-18. He is an elected member of
the IEEE SPCOM Technical Committee for the years 2014-19. He is a
past Chair of the IEEE Signal Processing Society, Bangalore Chapter. He is
currently serving as an area editor for the IEEE TRANSACTIONS ON SIGNAL
PROCESSING and as an associate editor for the IEEE TRANSACTIONS ON
INFORMATION THEORY and IEEE TRANSACTIONS ON COMMUNICATIONS.


