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On the Minimum Average Age of Information in
IRSA for Grant-free mMTC

Subham Saha, Vineeth Bala Sukumaran and Chandra R. Murthy

Abstract—We consider the optimal design of the frame-based
irregular repetition slotted ALOHA (IRSA) protocol for minimiz-
ing the average age of information (AAoI) in grant-free massive
machine-type communications (mMTC). To this end, we first
characterize the AAoI as a function of the number of UEs,
the frame duration, and the repetition distribution of IRSA.
We present this characterization for IRSA schemes with packet
recovery at the end of frame and packet generation either at the
beginning of the frame or just in time before first transmission
in a frame. We also propose and characterize the AAoI of a
novel early packet recovery method which further reduces the
average age of information. In all cases, the analysis reveals that,
as a function of normalized channel traffic (defined as the ratio
of number of UEs to frame duration), the AAoI first decreases
linearly due to more frequent updates received from the UEs, and
increases sharply beyond a critical point due to packet recovery
failures caused by collisions. We then consider the problem of
minimizing AAoI by optimizing over the normalized channel
traffic and repetition distribution for all the proposed sampling
and recovery schemes. The optimization problem is challenging
since the objective function is semi-analytical and can only be
completely characterized using simulations. In an asymptotic
regime where the number of UEs as well as the frame size is
large, we characterize the AAoI using upper and lower bounds.
We also obtain a locally optimal normalized channel traffic and
repetition distribution using differential evolution. Based on the
insights obtained from the asymptotic analysis, we also propose
a pragmatic approach to obtain a normalized channel traffic and
repetition distribution for AAoI reduction in the non-asymptotic
case. Finally, we empirically show that our AAoI minimizing
schemes outperform conventional throughput optimal schemes.

I. INTRODUCTION

The recent growth in Internet of Things (IoT), fueled by
a variety of sensing and monitoring applications such as
smart cities and smart industries, has spurred research interest
in massive machine-type communication (mMTC) systems.
These systems have a massive number of miniature, resource
constrained, and low cost user elements (UEs) [1] deployed
for sensing and monitoring purposes. These UEs sporadically
communicate to a central base station (BS), for which, low-
complexity grant-free random access schemes such as irregular
repetition slotted ALOHA (IRSA) are used [2], [3].

Typically, the UEs sample and measure a physical process,
e.g., pollution levels, and report the measurements to the
BS. The BS uses the measurements to remotely estimate the
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physical process. The performance of such sampling, mea-
surement, and remote estimation systems critically depends
on the freshness of the reported measurements [4]. The age
of information (AoI), introduced in [5], is a relevant metric
to measure freshness of measurements. The AoI is a function
of time, computed at the BS, and measures the age of the
last successfully delivered measurement. The average age of
information (AAoI) is the time-average of the AoI. In this
paper, we consider the design of grant-free IRSA schemes for
minimizing the AAoI for mMTC scenarios.

A key challenge in mMTC systems is to provide reliable
connectivity to large number of UEs. While grant-based access
schemes are reliable, the control overhead cost is prohibitively
high when the number of UEs is large. In contrast, grant-
free random access (RA) schemes remove the requirement of
connection establishment, thus reducing the number of interac-
tions between UEs and the BS. However, as the channel access
is random, collisions can occur, leading to a loss in reliability
as the number of UEs is increased [2]. In the past decade,
several grant-free RA schemes have been introduced and their
performances analyzed [3], [6]–[12]. It was shown in [13] that
improved throughput is possible in grant-free repetition based
RA schemes such as IRSA using a successive interference
cancellation (SIC) decoder. An SIC decoder allows a colliding
packet can be recovered if the interference caused by other
packets can be cancelled. The throughput and packet decoding
probability of frame based IRSA and its variants are analyzed
in [2], [3], [9]–[11], typically by considering the asymptotic
regime where the number of UEs and slots in each frame
goes to infinity. An important design parameter of IRSA is the
repetition distribution, which can be optimized to maximize
the achievable throughput. Narayanan et al. [3] showed that
a throughput arbitrarily close to one packet per slot, which
the maximum possible throughput under a packet collision
model, is in fact asymptotically achievable by choosing the
repetition distribution as a truncated soliton distribution. In
[14], [15] a close relation of the SIC process to the decoding
of low-density parity-check code over binary erasure channels
was exploited to obtain the throughput and packet decoding
success probability for IRSA in the non-asymptotic regime.

We note that optimization of delay or throughput is not
equivalent to the optimization of AAoI (e.g., [16]). The AAoI
characterization and optimization problem has been consid-
ered, e.g., in [4], [17]–[20], but these studies do not consider
IRSA as the underlying communication scheme.

The work presented in this paper is closest to [21], where
an analysis of AAoI for frame-based IRSA was carried out
for a model where UEs are active or inactive according to
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a stochastic process. The AAoI was characterized only for
an IRSA scheme in which a UE samples its packet at the
beginning of a frame and the SIC process is applied at the
end. In contrast, we characterize the AAoI for IRSA schemes
that samples packets just-in-time and or recovers packets early
in a frame. We also consider the minimization of AAoI for
frame-based IRSA by optimizing over various parameters of
IRSA, including the repetition scheme, which is not available
in prior work such as [21].

Contributions:

1) We first consider the AAoI for the basic IRSA scheme in
which packets are generated at the start of a frame and
packet recovery is performed at the end of the frame. We
characterize the AAoI of a UE as a function of system
parameters such as the frame length and IRSA repetition
scheme. This is presented in Section IV.

2) We propose the following modifications to the basic
IRSA scheme. We consider an IRSA scheme in which
packets are generated at a UE just-in-time before the
first transmission of that packet. We characterize the
AAoI in this case and show that the AAoI reduces
from the basic scheme by an amount proportional to the
frame duration. The proportionality factor depends on
the repetition distribution and is larger for distributions
with a smaller number of maximum repetitions. We also
consider an IRSA scheme with early-packet recovery. The
SIC process is applied in every slot in order to recover
UE packets early and thus reduce AAoI even further.
A complexity comparison of the two recovery methods
(i.e., end-of-frame and early recovery methods) shows
that the complexity associated with the early recovery
method is identical to the end-of-frame recovery method.
Furthermore, in the early recovery method, computations
are distributed throughout the frame, and it therefore
incurs lower packet decoding delay compared to end-
of-frame recovery. We note that our characterization of
the AAoI for all these schemes is semi-analytical since
the derived AAoI expressions contain terms which are
obtained from numerical or simulation based methods.
In particular, the packet success probability can be char-
acterized using either a simulation or an iterative density
evolution method [9]. The density evolution method uses
an asymptotic assumption which does not always match
with the packet success probability in the non-asymptotic
regime. These modifications to the basic IRSA protocol
and the insights on AAoI minimization revealed by our
analysis are not available in prior work (e.g., [21]). We
discuss this in Section IV.

3) We consider the problem of minimizing the AAoI under
the IRSA protocol, and for each sampling and packet
recovery method, by finding the optimal normalized chan-
nel traffic (ratio of number of UEs to frame duration)
and repetition distribution. The limitations in the AAoI
expressions alluded to above make this optimization
problem challenging. However, in the asymptotic regime
of large number of UEs, the density evolution based
characterization of the packet success probability can be

used to obtain a tractable AAoI optimization problem.
We characterize the optimal AAoI (an appropriately
normalized AAoI) using upper and lower bounds. We
also obtain locally optimal normalized channel traffic
and repetition distributions using differential evolution,
a numerical search method. We compare the asymptotic
scaling of the AAoI as a function of number of users
with that of an equivalent fully centralized time division
multiple access (TDMA) scheme. We show that, for the
basic IRSA scheme, the AAoI scaling is the same as
that of the equivalent centralized TDMA scheme. This is
presented in Section V.

4) In the non-asymptotic regime, where the AAoI optimiza-
tion problem is even more challenging, we observe that
the use of the normalized channel traffic and repetition
distribution from the asymptotic solution is sub-optimal.
We then propose a pragmatic approach in Section V
which modifies the asymptotic solution to obtain normal-
ized channel traffic and repetition distributions which are
empirically shown to reduce the non-asymptotic AAoI.
The AAoI performance obtained is as close as 12% and
13% of the asymptotic values, for the basic IRSA scheme
and the scheme with just-in-time sampling, respectively.
The use of early recovery along with just-in-time sam-
pling is shown to further reduce the AAoI. For example,
our proposed scheme with early recovery achieves an
AAoI which is 54% less than that of slotted ALOHA
and 53% less than CRDSA [9].

Notation: We denote the set of all non-negative integers by
Z+ and the set of all positive integers by Z++. The expectation
of a random variable X is denoted as E[X]. We summarize
the key notations in Table I.

II. IRREGULAR REPETITION SLOTTED ALOHA

In this section, we present a brief overview of IRSA and
describe related notation. Our discussion is based on [9]. We
consider a single hop wireless network scenario with M UEs
transmitting data packets to a BS over non-fading, noiseless
links. Time is divided into slots, and the transmissions are
organized into frames, where each frame consists of N slots.
All UEs and the BS are slot and frame synchronized with each
other. A UE has a single data packet to be transmitted to the BS
in a given frame. In the frame, the UE repeats the transmission
of the data packet in multiple slots. A UE first selects the
number of repetitions D ∈ {2,3, . . . ,N} by sampling D from
a probability mass function fD[d], d ∈ {2,3, . . . ,N}. The D
repetition slots in which the UE transmits the data packet
are then chosen uniformly without replacement from the slot
indices {1,2, . . . ,N}. The transmitted data packet contains a
header with the list of D repetition slots. Every UE transmits
data packets as described above using independent samples of
D as well as repetition slots. IRSA is thus a fully distributed
transmission protocol.

In each slot, the BS receives a signal which is the super-
position of all data packets transmitted in that slot by the
UEs. In the basic IRSA scheme, the BS stores the received
signal in every slot, and performs the SIC procedure at the
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TABLE I: Notation

M Number of UEs in a frame of IRSA.

N Number of slots in a frame of IRSA.

G Normalized channel traffic (M/N).

Gτ Maximum value of G with vanishing probability
of failure in the asymptotic regime.

Ps Probability of successful decoding of a UE
at the end of a frame.

Pde
s Estimate of Ps using density evolution,

in the asymptotic regime.

Psim
s Estimate of Ps using simulation

with finite M and N .

Tu[i] or T Slot at which UE u samples and
generates a packet in frame i.

Ru[i] or R Slot at which the BS recovers the data packet
from UE u in frame i.

U N − R.

n The number of SIC iterations in every slot
other than the last slot.

ne The number of SIC iterations in the last
slot of a frame.

Au or A Average age of information (AAoI) for UE u.

Anorm Normalized AAoI (A/M).

A∗ Minimum value of the AAoI.

A∗norm Minimum value of the normalized AAoI.

f ∗D Optimal distribution fD for Fixed-M.

G∗ Optimal operating throughput for Fixed-M.

A∗
norm,d f

Minimum value of the normalized AAoI
for Fixed-M, with fD having finite support.

f ∗
D,d f

Optimal distribution fD having finite support
for Fixed-M.

G∗
d f

Optimal value of G for Fixed-M with fD
having finite support.

end of the frame on the signals thus stored to recover the
data packets. A singleton slot is a slot with transmission by
a single UE. The BS can recover the data packet transmitted
by a UE in any singleton slot. When multiple UEs transmit
their data packets in a slot (i.e., a collision occurs), the BS is
not able to directly recover any data packet from the signal
received in that slot. The SIC process starts with singleton
decoding where packets in the singleton slots are recovered.
The headers of these recovered packets contain the slot indices
in which these packets were repeated. These recovered packets
are then cancelled from the received signals in the slots where
the packet was repeated. This procedure is used to successively
cancel packet interference and recover packets until no further
packets can be recovered in the frame.

A. Probability of successful decoding
We denote the probability of successful decoding of a

UE’s packet using SIC at the end of the frame as Ps . Also,

we define normalized channel traffic G = M/N . Then, the
system throughput is GPs packets per slot. We note that
Ps is a function of M , N , and fD . It was shown in [9]
that in the asymptotic regime where M and N → ∞,
Ps can be characterized through an iterative computational
procedure referred to as density evolution, by drawing on
the similarity between the SIC process and the process of
decoding low density parity check (LDPC) codes for binary
erasure channels. Here, we briefly present this computation.
We define the polynomial Λ(x) =

∑N
d=1 xd fD[d] and its

derivative Λ′(x) =
∑N

d=1 dxd−1 fD[d]. Then, from [9], the
probability that a transmission is not recovered at the l th

iteration is pl = 1 − e−GΛ
′(pl−1), with the initialization p1 = 1.

The asymptotic probability of success at the end of the SIC
decoding operation is given by Ps = liml→∞ 1 − Λ(pl).1 We
denote this characterization of Ps as Pde

s ; note that it is
implicitly a function of G and fD . It is also known that there
exists a threshold value of the normalized channel traffic, Gτ ,
such that Pde

s ≈ 1 for G < Gτ , where Gτ depends on fD . For
G > Gτ , the SIC process performs poorly, and Pde

s is small
but bounded away from zero [22].

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the wireless network setup described in Sec-
tion II, where, in every frame, M UEs sample a process of
interest and generate a data packet to be communicated to the
BS. Since our objective is to minimize the age of information,
the UEs send fresh information to the BS by sampling and
generating a data packet once every frame.2 The sampling,
measurement, data packet generation and transmission time is
considered to be negligible compared to the slot duration. We
index slots and frames by t ∈ Z++ and i ∈ Z++, respectively.
In the ith frame, UE u samples and generates a packet at
the beginning of slot Tu[i], u ∈ {1,2, . . . ,M}. We note that
Tu[i] ∈ {1,2, ...,N}. In this paper, we consider the following
choices for Tu[i] for a UE:
G1: Tu[i] = 1,∀i, i.e., each UE samples the process at the

beginning of every frame.
GT: Tu[i] = s1, where s1 is the first transmission slot for the

UE under IRSA. In this case, the UE samples just-in-time
before the first transmission.

G1 models scenarios where the sampling process is periodic.
We also consider GT since it is intuitive that a UE u can
choose Tu[i] = s1 to reduce the age.

We recall that in IRSA the BS stores the signals received
in each slot of a frame and applies the SIC procedure at the
end of the frame in order to recover the packets. We denote
this recovery method as REND. In REND, we assume that
a maximum of ne ∈ Z+ iterations of SIC is applied at the
end of a frame. For example, REND with ne = 0 will recover
the packets from the singleton slots but will not proceed to
interference cancellation (IC), while REND with ne = ∞ will
continue SIC process as long as an IC can be performed.

1The sequence Λ(pl ) converges to a fixed point. For practical computation,
we take l = 1000.

2We assume that there is no channel state feedback since we are considering
grant-free communication systems.
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Fig. 1: Illustration of the evolution of AoI Au[t] for a UE u. The
IRSA frame length N = 5. The packet is generated at the start of slot
Tu[i] in frame i. In this example, UE fails to update in frame i − 1
and AoI increases linearly. In the next frame the UE is recovered
successfully at slot Ru[i] = 3. Since Tu[i] = 3, the AoI is 1 at the
beginning of the slot 4.

Intuitively, the AoI can be reduced by applying SIC at the
end of every slot, instead of waiting till the end of the frame.
We denote this packet recovery method as REARLY-n. In
REARLY-n, we assume that SIC is applied for a maximum
of n ∈ Z+ iterations in every slot other than the last slot of
a frame. In the last slot, a maximum of ne SIC iterations are
performed. For example, in REARLY-0, packets received in
singleton slots are recovered immediately at the end of the slot,
while packets received in slots with collisions are recovered
via SIC at the end of the frame.

Suppose the packet transmitted by user u in frame i is
successfully recovered. Then, we denote the slot in which the
data packet is recovered as Ru[i] ∈ {1,2, . . . ,N}. We assume
that the packets are recovered at the end of a slot. For REND,
we have that Ru[i] = N , while in REARLY-n, Ru[i] ≤ N . We
also note that Ru[i] ≥ Tu[i] for any frame i and UE u.

A. Average age of information (AAoI)

The age of information for UE u at the start of slot
t is denoted as Au[t]. We assume that Au[0] = au,0 for
au,0 ∈ Z+,∀u ∈ {1,2, . . . ,M}. Within a frame i, Au[t] increases
linearly with each slot till UE u’s packet is recovered using
REND or REARLY-n. Suppose the packet is recovered at
trec = (i−1)N +Ru[i]. Then, the age drops to Ru[i]−Tu[i]+1
at the start of slot trec + 1, where Tu[i] depends on whether
sampling is done using GT or G1. Thus, the evolution of Au[t]
can be described as

Au[t + 1] =

{
Au[t] + 1, if u is not recovered at t,
Ru[i] − Tu[i] + 1, if u is recovered at t.

(1)

Here, i =
⌈
t
N

⌉
. We illustrate the above evolution by an example

in Figure 1. We note that in G1 and REND, the process Au[t]
is random since the successful decoding of the packet depends
on whether the SIC process over the random slot selections by
the UEs is successful. In other cases, the randomness in the
slot selection process causes the sampling time Tu[i] as well
as the decoding time Ru[i] to be random, which introduces
additional randomness in Au[t].

For each user, we are interested in the average age of
information (AAoI), defined as

Au = lim sup
K→∞

1
K

K−1∑
t=0

Au[t].

We note that both AoI and AAoI have units of slots. For
brevity of notation, the index u is dropped in further discussion
since the UEs are identical in every respect (e.g., the average
age is represented as A for any UE).

B. Problem statement

Our objective is to obtain an IRSA design so as to minimize
the AAoI. In the mMTC scenario, we assume that there is
a large but fixed number M of UEs that the system design
has to support. The frame length N , the repetition distribution
fD to be used by each UE, the sampling method, and the
recovery method have to be chosen so as to minimize the
AAoI. We recall that the choice of sampling method is either
G1 or GT, and the choice of recovery method is either REND
or REARLY-n. Formally, the problem is to

minimize
{G1, GT}, {REND, REARLY-n},N , fD

A (2)

We denote this IRSA design problem as Fixed-M. An ap-
proach to solve Fixed-M is to minimize the AAoI over N
and fD for a given combination of sampling (G1 or GT) and
recovery method (REND or REARLY-n). For each combina-
tion (e.g., G1 and REND), the minimum value of Fixed-M
is denoted as A∗, while the optimal value of N and optimal
distribution fD are denoted as N∗ and f ∗D , respectively. In the
next section, we characterize the AAoI A as a function of
N , M , and fD for each combination of sampling and recovery
methods. Following this, we optimize the AAoI over N and fD
in Section V.

IV. AVERAGE AGE OF INFORMATION FOR IRSA
In this section, we characterize A for the system discussed

in Section III as a function of N , M , fD , the choice of
sampling method (G1 or GT), and the choice of recovery
method (REND or REARLY-n). Since the packet transmission
and recovery process are independent from frame to frame, we
drop the frame index i in the notations below. We consider
REND first.

Theorem IV.1. For G1 and REND,

A =
N
2
+

N
Ps
−

1
2
. (3)

Theorem IV.1 is proved in Appendix A by identifying a
renewal process for each UE with the renewal cycle being the
interval between two successful updates. For every renewal
cycle, the age is obtained as a reward which depends on the
duration of the renewal cycle. The AAoI is computed using
the renewal reward theorem. We observe that A is inversely
proportional to Ps .

In Figure 2, we plot (3) with Ps = Pde
s . We note that

Ps = Pde
s is appropriate for mMTC scenario with M → ∞.
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In this illustration, we choose the repetition distribution fD
with Λ(x) = x3. We show Anorm = A/M in the plot since in
the mMTC scenario A → ∞ as M → ∞. Furthermore, this
normalization by M clearly brings out the dependence of A
on the normalized channel traffic G and Ps for the asymptotic
and non-asymptotic cases over a wide range of values of G.
We note that G is varied by varying N , keeping M fixed.
We observe that Anorm initially decreases and then increases
rapidly as G increases. The initial decrease occurs due to the
decrease in N with increasing G (as N = dM/Ge). But for
larger G, the recovery probability Ps rapidly transitions from 1
to a small non-zero value and Anorm increases. This transition
in Anorm occurs for G in the neighbourhood of Gτ (for this
example of Λ(x) = x3, Gτ = 0.818).

We also plot the AAoI obtained from simulation for the non-
asymptotic cases of M = 100 and 1000, to validate whether
(3) with Pde

s matches with simulated AAoI values for non-
asymptotic M and N . For each M , SIC is performed with
ne = 100 and the simulations are run for 10000 frames. Two
quantities are estimated from the simulations: (a) the SIC
success probability Psim

s and (b) the AAoI A
sim

. For all values
of G, we observe that the value of (3) with Ps = Psim

s matches
with A

sim
. For both G < Gτ and G > Gτ , we observe that

(3) with Ps = Pde
s closely matches (3) with Ps = Psim

s as
well as A

sim
for non-asymptotic M and N . In a small interval

around Gτ , there is a mismatch3 due to Pde
s being different

from Psim
s . This shows that, in the non-asymptotic regime with

fixed M , the accuracy of (3) is limited by the accuracy of the
characterization of Ps via the density evolution analysis, for
G ≈ Gτ ; the result in Theorem IV.1 itself is accurate. We
also observe that for a fixed fD , the G at which minimum
AAoI occurs is different at finite values of M compared to
the asymptotic M case, for the same reason.

We now discuss the case of GT and REND. We let α( fD) ,∑N
d=2

fD [d]
d+1 .

Theorem IV.2. For GT and REND,

A =
N
2
+

N
Ps
− (N + 1)α( fD) +

1
2
. (4)

To prove Theorem IV.2, we identify a renewal process in
the evolution of the age for every UE, with the renewal cycle
being the duration between two successful updates. But, due to
the just-in-time sampling, the reward depends not only on the
duration of the renewal cycle but also on the sampling time T ,
which is random due to the randomness in the slot selection
process. We derive the distribution of T in Appendix B and
formally prove the theorem in Appendix C.

3The SIC process stops at a stopping set (a set of UEs which have
transmitted in slots where every slot has at least two transmissions from
the same set). The size of these stopping sets, i.e., the number of UEs in
the stopping set, grows with the normalized channel traffic. While density
evolution is able to capture the effect of large stopping sets (at high G), the
contribution of moderate to small stopping sets (which are observed at finite
M) are not captured by the analysis. However, at low G, this effect is not
very prominent since the size of the stopping set is small (and hence Ps ≈ 1).
In the transition region (G near Gτ ), we observe a small mismatch between
Pde
s and Psim

s [22].
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Fig. 2: Plot of Anorm for G1 and REND using (3) with Ps = Pde
s

and Ps = Psim
s (for M = 100 and 1000) compared with A

sim
/M

(for M = 100 and 1000). The repetition distribution has Λ(x) = x3.
The simulations are done for 10000 frames with ne = 100 and N =
dM/Ge. We observe that (3) with Ps = Psim

s matches A
sim

for all
G and approaches (3) with Ps = Pde

s as M increases.

We note that since α( fD) ≥ 1
N+1 ,4 compared to the AAoI

for G1 and REND given in Theorem IV.1, the AAoI in this
scheme is reduced by (N + 1)α( fD) − 1. This reduction in the
age is a function of fD as well as N . We analytically compute
Anorm by substituting Ps = Pde

s . Simulations show similar
behaviour in the case of GT and REND as in G1 and REND,
but with the reduced AAoI as mentioned above. We omit the
detailed discussion here to avoid repetition.

We have the following characterization of A for G1 and
REARLY-n.

Theorem IV.3. For G1 and REARLY-n,

A =
N
2
+

N
Ps
− E[U |S] −

1
2
, (5)

where U = N − R.

The proof is given in Appendix D. Compared to G1 and
REND, we observe a reduction of E[U |S] in A due to early
recovery. We do not have an analytical characterization of
E [U |S] for a general n in REARLY-n. However, for REARLY-
0, we obtain the distribution of R for finite N in Appendix
E from which we derive E [U |S]. Simulations of REARLY-n
are used to compute A

sim
as before, for finite M and N . In

Figure 3, we compare Anorm for G1-REND, G1-REARLY-0
and G1-REARLY-5. Comparing cases (b) and (d) in Figure
3, we see that even REARLY-0 (where only singleton packets
are decoded immediately and no SIC is performed till the end
of the frame) leads to a nearly 19% reduction in AAoI at
G = 0.5 compared to G1 and REND. Also, comparing (b), (d)
and (f) in Figure 3, REARLY-5 leads to a 34% reduction in
AAoI compared to G1 and REND, and nearly 18% reduction
in AAoI compared to G1 and REARLY-0, at G = 0.5.

4α( fD ) =
∑N

d=2
fD [d]
d+1 ≥

∑N
d=2 fD [d]

N+1 = 1
N+1
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Fig. 3: Plot of Anorm for G1 from: (a) (3) with Ps = Pde
s , (b)

A
sim

for REND, (c) (5) with Ps = Pde
s , (d) A

sim
for REARLY-0,

(e) (5) with Ps = Pde
s and (f) A

sim
for REARLY-5. For (c) E [U |S]

in (5) is obtained from Appendix E while for (e) E[U |S] is estimated
from the simulations. The repetition distribution has Λ(x) = x3. The
simulations are done for 1000 frames with ne = 100 and N = dM/Ge.

We now consider the sampling method GT and REARLY.

Theorem IV.4. For GT and REARLY-n,

A =
N
2
+

N
Ps
− [(N + 1)α( fD) − 1]

[
1 −

Ps

N
E[U |S]

]
−E[U |S] −

Ps

N
E[(T − 1)U |S] −

1
2
, (6)

where α( fD) ,
∑N

d=1
fD [d]
d+1 and T is the slot index of first

transmission for the UE.

The proof is given in Appendix F. Compared to G1 and
REND, we note that there is a reduction in A caused due
to both sampling just before transmission as well as early
recovery of the packets.5 However, we do not have analytical
characterizations of E [U |S] or E [TU |S] for a general n.
These quantities need to be estimated from simulations.

A. Complexity of the recovery methods

In a practical implementation of an SIC receiver, the two
computationally expensive operations are (a) decoding a data
packet from a singleton slot and (b) cancelling its interference
in other slots. In order to analyze the complexity of the
recovery methods, we consider the case n = ∞ and ne = ∞.
The SIC process in both the recovery methods (REND and
REARLY-∞) stops if no singleton slot is found. The stopping
set is defined as the set of UEs which cannot be recovered.
These UEs have transmissions in slots where each one of those
slots have at least two transmissions from UEs in the stopping
set. This renders the slots not recoverable by IC. We note
that, for a given frame, the stopping set of the SIC process is
unique (which can be an empty set) [22]. Thus, the UEs in the

5We note that in (6) the expectations in the third and fifth terms are non-
negative, E[U |S] ≤ N , and (N + 1)α( fD ) ≥ 1 from the footnote on page 5.

stopping set as well as the UEs which are recovered are the
same for REND and REARLY-∞. Furthermore, the number
of decoding operations is equal to the number of recovered
UEs, while the total number of decoding operations and ICs is
equal to the total number of transmissions from the recovered
UEs. Hence, we conclude that the complexity of the recovery
process is the same for both REND and REARLY-∞.

In REND, the decoding process happens at one shot, at the
end of the frame, while in REARLY-n, the decoding process
is performed whenever a singleton packet is received. As a
consequence, the computations in REARLY-n are distributed
across the frame. In this work, we do not consider the time
involved in executing the decoding and IC operations, as
this is dependent on the specific algorithm and architecture
used for data decoding. Nonetheless, it is clear that since
REARLY-n distributes the computations over the duration of
the frame, in addition to the advantage obtained in age by early
decoding, REARLY-n can achieve a lower packet decoding
delay compared to REND, where all the computations are
executed at the end of the frame.

B. Discussion

We now summarize the results obtained in this section. We
have characterized the AAoI of four schemes: G1-REND, GT-
REND, G1-REARLY-n, and GT-REARLY-n up to expressions
containing Ps , E[U |S], and E [TU |S]. GT strictly improves
the AAoI compared to G1, and REARLY-n strictly improves
the AAoI compared to REND. Hence, for any given repetition
distribution fD , the least AAoI is achieved by GT-REARLY-
n, and the largest AAoI of these schemes is achieved by G1-
REND. Quantitative performance comparison of the different
schemes can be done via simulation. We illustrate this in
Figure 4. We see that, as the normalized channel traffic G
is increased, the AAoI for all the schemes decreases up to
around G = 0.75, and increases thereafter. In the G < Gτ

regime, which is the preferred regime of operation for achiev-
ing low AAoI, GT-REARLY-5 lowers the AAoI by a factor
of 2 compared to G1-REND. The other schemes offer a
performance between these two extremes, with G1-REARLY-
5 outperforming GT-REND at low values of G. In the next
section, we use the AAoI characterizations developed above to
obtain an normalized channel traffic and repetition distribution
for IRSA that minimizes the AAoI.

V. DESIGN OF IRSA FOR MINIMUM AAOI

In this section, we consider the optimal choice of the frame
duration N and repetition distribution fD[d] for minimizing
AAoI of IRSA. We consider different combinations of G1,
GT and REND, REARLY-n with fixed M . The optimization
of AAoI for these combinations in the non-asymptotic regime
of finite M and N requires a simulation based approach and
is tedious. However, for REND with both G1 and GT, we
show that it is possible to formulate a tractable optimization
problem in the asymptotic regime where M,N →∞ using the
density evolution based approximation Pde

s for Ps . Therefore,
we first consider the optimization problems in this asymptotic
regime, and use insights gained from its solution to obtain
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Fig. 4: A plot comparing A
sim
/M for (a) G1 and REND, (b) GT

and REND, (c) G1 and REARLY-5 and (d) GT and REARLY-5. The
repetition distribution has Λ(x) = x3. The simulations are run for
1000 frames with M = 500 and ne = 100. GT and REARLY-5 offers
the lowest AAoI compared to other combinations of sampling and
recovery methods.

a judicious choice of N and fD[d] for non-asymptotic cases
for all combinations. We note that the solution to GT and
REARLY-n also gives us the solution to Fixed-M, since GT
and REARLY-n offers the lowest AAoI among all the schemes
considered. We start with the optimal design of IRSA for G1
and REND.

A. IRSA design for G1 and REND

We consider the optimization of AAoI in the asymptotic
regime where M,N →∞. In this regime, we have that A→∞.
Therefore, we consider Anorm = A/M for minimization. Using
A from (3) and replacing Ps with Pde

s , we have the AAoI
minimization problem

minimize
G, fD

1
2G
+

1
GPde

s

, (7)

where the optimization is carried out over fD[d] (which can
have infinite support) and G = M/N for a fixed M . The
optimal solution is denoted as A∗norm. We recall that Pde

s is a
function of G and fD , and the throughput in IRSA is given
by GPs . The solution of (7) achieves a trade-off between
throughput and the normalized channel traffic to achieve
minimum Anorm and is therefore different from the problem
of maximizing the throughput GPs . For example, in case of
contention resolution diversity slotted ALOHA (CRDSA) [9],
the maximum throughput of 0.541 and a normalized AAoI
of 2.69 is achieved in the asymptotic regime at G = 0.597.
However, a marginally lower minimum normalized AAoI of
2.64 is achieved at G = 0.668 which nonetheless shows that
the throughput optimal solution is different from the AAoI
optimal solution. We have the following result for A∗norm.

Theorem V.1. For G1 and REND in the asymptotic regime of
M,N →∞,

1) A∗norm is bounded below by 3
2 .

2) A sequence of truncated soliton distributions with maxi-
mum degree dm achieves this lower bound in the limit as
dm →∞. A truncated soliton distribution with maximum
degree dm is defined by the probability mass function
fD[d] =

dm

d(d−1)(dm−1) for d ∈ {2, ..., dm}.

Proof. We note that a lower bound to the optimal solution
of this problem is obtained by using the maximum value of
1 for both G and Ps . So A∗norm ≥

3
2 . To show that this

lower bound is indeed achievable, we evaluate Anorm for a
class of truncated soliton distributions. From [3], we have
that a truncated soliton distribution with maximum degree dm
achieves Gτ = 1 − 1/dm. Therefore, with G = Gτ we have
that Anorm =

3
2(1−1/dm)

with Ps → 1 as the number of SIC
iterations ne → ∞. Therefore, this lower bound is achievable
in the limit as dm →∞. �

We also consider the following constrained6 form of (7)
where the distribution fD[d] has a maximum number of
repetitions Λmax .

minimize
G, fD

1
2G
+

1
GPde

s

(8)

subject to
Λmax∑
d=2

fD[d] = 1,

0 ≤ fD[d] ≤ 1,∀d ≥ 2.

Solving the above optimization problem analytically is chal-
lenging as Pde

s is not available in closed form and the
optimization problem is not convex. However, locally optimal
solutions7 to this constrained optimization problem (with Pde

s

evaluated using the iterative density evolution method outlined
earlier) can be obtained using differential evolution (DE) [23].
The locally optimal value of (8) obtained using DE is denoted
as A∗

norm,d f
and the corresponding choices G and fD as G∗

d f
and f ∗

D,d f
respectively. In Table II, for Λmax ∈ {4,5,6,7,8}

we present G∗
d f

, f ∗
D,d f

and A∗
norm,d f

obtained using DE.
Discussion: From Theorem V.1 we see that, for large M ,
the AAoI scales linearly as 3M/2. We compare the AAoI
scaling with an equivalent centralized time division multiple
access (TDMA) method (see Appendix G for a discussion.). In
TDMA, we assume that transmissions from users are sched-
uled in a frame of length M slots, with the user scheduled in
distinct slots. The users sample packets at the beginning of the
TDMA frame with M slots. The users are decoded only at the
end of the TDMA frame. From Theorem G.1, we have that the
TDMA scheme has an AAoI of 3M/2− 1/2. This shows that
the IRSA based distributed access scheme has the same AAoI
scaling with M , namely, 3M/2, as a fully centralized scheme
(a comparison of IRSA with other distributed random access
schemes is given in the sequel.) Thus, for G1 and REND,
IRSA achieves not only the same throughput as TDMA but
also the same AAoI, in the asymptotic regime with M,N →∞.

6The constraints ensure that fD [d] is a valid repetition distribution with at
least two repetitions.

7Such solutions are useful since they are amenable to implementation in
the non-asymptotic setting where Λmax ≤ N .
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TABLE II: Solutions f ∗
D,d f

,G∗
d f

, and the local optimum A∗
norm,d f

for (8) obtained using differential evolution. The obtained f ∗
D,d f

are
given labels O4-O8 for easy reference.

Λmax Label f ∗
D,d f

G∗
d f

A∗
norm,d f

4 O4 0.531x2 + 0.469x4 0.868 1.7281

5 O5 0.57x2 + 0.034x3 + 0.396x5 0.899 1.6708

6 O6 0.546x2 + 0.165x3 + 0.289x6 0.915 1.6397

7 O7 0.528x2 + 0.232x3 + 0.001x4 + 0.239x7 0.929 1.6146

8 O8 0.5118x2 + 0.258x3 + 0.0101x4 + 0.0042x5 0.939 1.5974
+0.0006x6 + 0.0045x7 + 0.2108x8

Theorem V.1 indicates that truncated soliton distributions
are good candidates for fD[d] for large M,N; they might
work well even for the non-asymptotic AAoI optimization
problem. The locally optimal finite degree f ∗

D,d f
obtained

for (8) are another set of candidates for fD[d] in the non-
asymptotic regime. In order to evaluate the usefulness of
these candidates for the repetition distribution in the non-
asymptotic case, we compare the Anorm of the truncated soli-
ton distributions (with different maximum repetition degrees
dm) and f ∗

D,d f
from Table II using simulations. In Table III,

we present the minimum Anorm for the distribution O8 (since
O8 has the minimum Anorm of O4-O8) and truncated soliton
distributions with dm ∈ {8,20,50,100,200}. From Table III
we observe that at M = 200, the truncated soliton distribution
with dm = 20 offers the least Anorm, while at M = 500,
dm = 50 outperforms dm = 20. This shows that, among the
truncated soliton distributions, using a larger value of dm is
helpful as M gets large (which matches with the achievability
result in Theorem V.1.) However, for non-asymptotic M , we
observe that distribution O8 and a truncated soliton distribution
with dm either being 20 or 50 have lower Anorm compared
with truncated soliton distributions with dm = 100 or 200.
Even though Theorem V.1 suggests that a truncated soliton
distribution achieves an AAoI close to 3/2 as M → ∞ with
dm = M , choosing dm = M for finite M is sub-optimal. For
non-asymptotic M , having a larger number of repetitions leads
to an increase in the number of collisions, which causes the
SIC process to fail.

We observe that for f ∗
D,d f

from Table II, A∗
norm,d f

decreases
as Λmax increases. We conjecture that A∗

norm,d f
→ 1.5, which

is the asymptotic lower bound, as Λmax →∞. We also expect
that G∗

d f
→ 1 in this case. An important property of f ∗

D,d f
is

that they are irregular distributions. We do not expect such
convergence results for regular fD[d] with Λ(x) = xn,n ∈
{2,3, · · ·}, which use a fixed number of repetitions. We explain
this by drawing a parallel between SIC in IRSA and LDPC
decoding [3] and using the observations in Luby et al. [24]
for LDPC codes. The irregularity leads to a better balance
of competing requirements of high repetition degree for UEs
(message-nodes in the LDPC terminology) and low degree
(or collisions) for slots (check-nodes in LDPC terminology),
which is needed for improved SIC performance.
Non-asymptotic M and N: For non-asymptotic M and N

we consider the AAoI minimization problem (7), with Pde
s

replaced by the actual packet success probability Ps . The
minimization is carried out over the choice of fD[d] and N
for a fixed M . The optimization problem is not tractable since
at finite M , Ps can only be obtained from simulations. We
propose the following two-step approach to obtain a good
choice of fD[d] and N: (a) we solve the asymptotic problem
with Ps ≈ Pde

s for finite degree distributions using differential
evolution; the solution yields a candidate distribution f ∗

D.d f
as well as an operating point G∗

d f
, (b) we then do a one-

dimensional grid search over the value of G (or equivalently
N for a fixed M) starting with G∗

d f
in order to minimize

the simulated value of AAoI further. In this minimization,
the AAoI is evaluated using simulations. The solution is
then f ∗

D,d f
obtained in (a), with the operating point G (or

equivalently N = M/G) obtained via grid search in (b).

We illustrate the performance of our pragmatic approach
with an example. We consider O8 for this example. Table II
suggests that a good choice of G for O8 is G∗

d f
= 0.939

for minimum Anorm. That is, for a given number of UEs
M , the frame length N can be chosen as dM/0.939e. In
Figure 5, we illustrate that such a choice results in a larger
A (by comparing A from (3) with Ps replaced by Pde

s and
N =

⌈
M/G∗

d f

⌉
against A

sim
for N =

⌈
M/G∗

d f

⌉
). Thus, the

use of N =
⌈
M/G∗

d f

⌉
is clearly sub-optimal for finite M . We

note that Ps is less than 1 for G close to G∗
d f

for finite M ,
while in the asymptotic case, Pde

s / 1 for all G ≤ G∗
d f

. As
a consequence, operating at G = G∗

d f
leads to a low value

of Ps and the corresponding A
sim

is significantly higher that
obtained in the asymptotic case. Therefore, step (b) reduces the
AAoI by choosing G < G∗

d f
using a grid search. In Figure 5,

we refer to this as the minimum A
sim

. We observe that this
minimum A

sim
is 6% away from the asymptotic minimum.

This difference is found to decrease further, as M is increased.
We also observe that by backing off from G∗

d f
, we obtain A

close to that expected from asymptotic analysis. We compare
this A with conventional CRDSA (which samples and recovers
packets at the beginning and end of the frame respectively)
with two repetitions [9]. The pragmatic approach that we
have proposed improves the AoI by almost 32% compared to
CRDSA based access. We also note that our approach achieves
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TABLE III: Minimum Anorm in non-asymptotic regime for truncated soliton distribution with dm ∈ {8,20,50,100,200} and O8 from Table
II. The minimum Anorm is obtained for M ∈ {200,300,500} from simulation with ne = 100. Each system is simulated for 10000 frames.

M Minimum Anorm

O8 Truncated soliton distribution with
dm = 8 dm = 20 dm = 50 dm = 100 dm = 200

200 1.889 1.987 1.883 1.890 1.949 2.068

300 1.840 1.956 1.833 1.826 1.873 1.958

500 1.790 1.911 1.785 1.764 1.797 1.852
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Fig. 5: For G1 and REND, a plot of (a) A
sim

for O8 from Table II
at N = dM/0.939e (b) A

sim
for CRDSA with two repetitions at

N = dM/0.668e, (c) A
sim

for O8 at a G chosen via grid search (with
a step size of 0.01) to minimize A

sim
and (d) A from (3) with Pde

s and
N = dM/0.939e, from top to bottom. The CRDSA scheme with two
repetitions has Λ(x) = x2 and A∗

norm,d f
= 2.64 at G∗

d f
= 0.668. The

candidate solution (O8) from Pde
s at N =

⌈
M/G∗

d f

⌉
is not optimal

in the non-asymptotic regime.

an AAoI which is within 20% of the fully centralized TDMA
scheme (in Appendix G) at M = 500.

B. IRSA design for GT and REND

We now consider the case of GT and REND. We consider
Anorm from (4) with Ps replacing Pde

s to obtain the following
optimization problem

minimize
G, fD

1
2G
+

1
GPde

s

−
α( fD)

G
. (9)

In contrast to the optimization problem in (7) for G1-REND,
the optimal distribution and the choice of G here should trade-
off the term −α( fD )G with 1

2G +
1

GPde
s

. Therefore, the truncated
soliton distribution from Theorem V.1 or even a throughput
maximizing fD[d] may not be optimal here. For example, a
soliton distribution (which was optimal for G1 and REND)
has α( fD) = 1

4 , but the CRDSA scheme with two repetitions

has the maximum possible8 α( fD) which is 1
3 . We reuse the

notation A∗norm to denote the optimal solution in GT and
REND. We have the following result.

Theorem V.2. For GT and REND in the asymptotic regime of
M,N →∞,

1) A∗norm is bounded below by 7
6 .

2) A sequence of truncated soliton distributions with maxi-
mum degree dm achieves Anorm of 5

4 as dm →∞.

Proof. We consider the objective function 1
2G +

1
GPde

s
−
α( fD )
G .

From Theorem V.1, we have that 1
2G +

1
GPde

s
≥ 3/2. From our

discussion above, we have that CRDSA with two repetitions
attains α( fD) = 1/3, which is the maximum value among all
distributions with at least two repetitions in a frame. Further-
more, G ≤ 1, so that −α( fD )G ≥ −1/3. Therefore, A∗norm ≥ 7/6.
We now consider a sequence of truncated soliton distributions
for obtaining a characterization of the achievable Anorm. For
a truncated soliton distribution fD[d] =

dm

d(d−1)(dm−1) with dm
being the maximum number of repetitions, from [3], we have
that Gτ = 1 − 1/dm and for any G ≤ Gτ , Pde

s = 1. Then,
at G = Gτ , we have that 1

2G +
1

GPde
s
= 3

2(1−1/dm)
, which has

a limit of 3/2 as dm → ∞. Also, as dm → ∞, we have
that α( fD)/G → 1/4, so that Anorm → 5/4 at G = Gτ as
dm →∞. �

As for G1 and REND, we consider the following con-
strained optimization problem:

minimize
G, fD

1
2G +

1
GPs
−
α( fD )
G (10)

subject to
∑Λmax

d=2 fD[d] = 1,
0 ≤ fD[d] ≤ 1,∀d ≥ 2,

where the repetition distribution is constrained to have a
maximum degree of Λmax . We obtain locally optimal solutions
using DE for Λmax ∈ {4,5,6,7,8}. The results are shown in
Table IV. We note that the notations are similar to that used
for G1 and REND.

Discussion: For large M , from Theorems V.1 and V.2, we
observe that GT achieves an AAoI that is M/4 less than that
of G1 (or 16.67% less than that of G1). Comparing A∗

norm,d f
from Table II and IV, we observe that sampling just-in-time

8CRDSA achieves the maximum value of α( fD ) among all distributions
that at least transmit twice in a frame. We note that IRSA assumes at least
two transmissions. Since α( fD ) =

∑∞
d=2

fD [d]
d+1 , we have that the maximum

is when fD [2] = 1 and fD [d] = 0 for d > 2.
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TABLE IV: Solutions f ∗
D,d f

,G∗
d f

, and local optimum A∗
norm,d f

for the problem (10) obtained using differential evolution. The obtained
f ∗
D,d f

are given labels OT4-8 for easy reference.

Λmax Label f ∗
D,d f

G∗
d f

A∗
norm,d f

4 OT4 0.5624x2 + 0.4376x4 0.8660 1.4146

5 OT5 0.5624x2 + 0.0891x3 + 0.3485x5 0.8964 1.3744

6 OT6 0.5446x2 + 0.1899x3 + 0.2654x6 0.9139 1.3493

7 OT7 0.5276x2 + 0.2321x3 + 0.0007x4 0.929 1.3305
0.0002x5 + 0.0002x6 + 0.2392x7

8 OT8 0.5020x2 + 0.2825x3 + 0.0123x4 + 0.2033x8 0.938 1.31878

offers about 17% lower AAoI compared to sampling at the
beginning of the frame using the best among the finite degree
distributions considered. Also, with the same Λmax of 8, the
optimal distribution O8 is able to achieve a value of A∗

norm,d f
which is 6% away from the asymptotic lower bound for G1,
while the optimal distribution OT8 is 13% away from the
lower bound for GT. Since the first sampling time reduces as
a function of the number of repetitions, one would expect the
optimal repetition distribution to have lower maximum degree,
but we observe from Table IV that the increase in the age
due to Ps has a much larger effect, so that higher degrees
are still preferred. Further, as in the case of G1 and REND,
minimizing the AAoI requires the repetition distributions to
be irregular. We also note that compared to an equivalent
TDMA scheme9 which achieves an asymptotic scaling of M
(from Theorem G.1), the best possible scaling is 7M/6. The
difference represents the loss in AAoI performance due to
the distributed nature of IRSA which necessitates the use of
repeated transmissions.10

Non-asymptotic M and N: Similar to the case of G1, we
propose a pragmatic approach to solve the problem in the
non-asymptotic case using: (a) a solution (consisting of a
finite degree distribution fD[d] and an operating point G)
of the asymptotic problem with Ps = Pde

s using differential
evolution, and (b) a local search over the value of G (or
equivalently over N , for a fixed M) in order to further reduce
the AAoI. We illustrate the performance of this approach
below. Similar to the case of G1, we use the distribution OT8
and N =

⌈
M/G∗

d f

⌉
in the non-asymptotic case (from Table

IV). We show the simulation results for 10000 frames and
ne = 100 in Figure 6. The use of N =

⌈
M/G∗

d f

⌉
results in sub-

optimal AoI performance. A local search over G < G∗
d f

leads
to an improved AAoI performance that is 13% away from
the asymptotic value for M = 500. We also found that this

9For this comparison, we consider a TDMA scheme whose behavior is
equivalent to GT and REND, where each user is scheduled in a unique slot,
and the frame consists of M slots. Like GT, each UE samples its packet at
the start of its scheduled slot, and like REND, the decoding of all packets is
done at the end of the TDMA frame.

10We note that the asymptotic lower bound of 7M/6 is obtained with
the assumption that at least two repetitions are needed in an IRSA frame.
However, if we also allow for the case that a user can have only one
transmission, then we note that the asymptotic lower bound is M (since α( fD )
would have a maximum value of 1/2 under this assumption.)
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Fig. 6: For GT and REND, a plot of (a) A
sim

for OT8 from Table
IV at N = dM/0.938e (since G∗

d f
= 0.938 for OT8), (b) A

sim
for

slotted ALOHA with probability of transmission 1/M , (c) A
sim

for
CRDSA with two repetitions at N = dM/0.62e (for CRDSA with two
repetitions, A

∗

norm,d f = 2.1224 and G∗
d f
= 0.62), (d) A

sim
for OT8

at a G chosen via grid search (with step size of 0.01) to minimize
A
sim

, and (e) A for OT8 from (4) with Pde
s and N = dM/0.938e,

from top to bottom.

difference decreases further as M increases. We also compare
the AoI with that in a slotted ALOHA system and CRDSA
with two repetitions. For slotted ALOHA, the probability of
transmission is chosen to be 1/M to minimize A [4] (plotted
as Figure 6(b)). For CRDSA, we compute the AAoI with just-
in-time packet sampling. At M = 500, the solution based on
OT8 and local search for G achieves an AAoI which is 29%
and 44% lower than that of CRDSA and slotted ALOHA,
respectively. At M = 500, the AAoI is 50% higher than that
of the equivalent TDMA scheme in Appendix G.

C. IRSA design for REARLY-n

For REARLY-n (with G1 or GT) we recall that in addition
to Ps , E [U |S] and E [TU |S] (which appear along with Ps

in the objective function) are characterized using simula-
tions, so that the optimization problem can only be solved
using a simulation based approach. We use the following
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Fig. 7: A plot comparing minimum A
sim

for (a) G1 and REND, (b)
G1 and REARLY-5, (c) GT and REND, and (d) GT and REARLY-5.
In G1, the repetition distribution is O8 from Table II and in GT the
repetition distribution is OT8 from Table IV. The simulations are run
for 1000 frames with ne = 100 and M = 100,200,300 and 500. The
minimum is obtained using grid search over G with step size of 0.01.
GT and REARLY-5 achieves a significantly better AAoI performance
compared to all the other schemes. The minimum A

sim
in case of

G1 and REARLY-5 is similar to GT and REND.

insights and observations obtained in the previous sections
to obtain an IRSA design for Fixed-M in this case. These
are: (a) the methodology of using a repetition distribution
fD[d] obtained from the asymptotic analysis with a local
search based modification to the asymptotic operating point
substantially reduces the AAoI in the non-asymptotic case,
and (b) the AAoI reduction obtained from the SIC iterations
in every slot for REARLY is marginal beyond 5 iterations.
Therefore, we suggest the following solution: (a) obtain a
repetition distribution fD[d] and an operating point G from
the asymptotic analysis with REND and (b) obtain a local
minimum of the simulated AAoI over G = M/N with the
simulation carried out for REARLY-5.
Discussion: The performance of our approach is shown in
Figure 7, where we compare GT-REARLY-5 with G1-REND,
GT-REND, and G1-REARLY-5. We see that GT-REARLY-5
achieves an AAoI reduction of approximately 3M/10 in com-
parison with G1-REARLY-5 or GT-REND, and a significant
reduction in AAoI compared to CRDSA and slotted ALOHA
(see Figure 6). Also, the AAoI is similar for G1-REARLY-n
and GT-REND (which is supported by a similar observation
in Theorem G.1 for TDMA).

We compare the REARLY-n schemes with corresponding
centralized TDMA schemes11 discussed in Appendix G. From
Theorem G.1, we have that for large M , the AAoI performance
of TDMA corresponding to REARLY-n with GT and G1 are
M/2 and M , respectively. However, we expect that these

11We note that a TDMA scheme corresponding to REARLY-n would be one
in which users are decoded at the end of their transmission slots. The sampling
times are either all at the beginning of a TDMA frame (for the comparison
with G1) or at the beginning of their respective transmission slots (for the
comparison with GT).

lower bounds are optimistic for the REARLY-n schemes as
packets are not always decoded in every slot in the case
of IRSA. For example, from Figure 7, we observe that the
AAoI of GT and G1 (with REARLY-n) scale approximately
as 6M/5 and 3M/2, respectively. This deviation from the
TDMA performance is due to a larger fraction of packets
getting decoded at the end of the frame for REARLY-n
when G is large (which is usually the case when AAoI is
minimized) and is the price to pay for having a decentralized
transmission scheme. With just-in-time sampling and early
recovery of packets, our proposed scheme reduces the AAoI
by 54% compared to SA, and 53% compared to conventional
CRDSA. In comparison with an equivalent CRDSA scheme
(in which we use the CRDSA repetition distribution from [9]
but with just-in-time sampling and early recovery) we observe
a reduction of 16% for our proposed scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of minimizing the
AAoI for an mMTC system which uses frame-based IRSA.
We first analyzed a basic IRSA scheme where packets are
generated by the users at the beginning of a frame and are
recovered at the BS using SIC at the end of a frame. Then we
proposed and analyzed just-in-time sampling and early recov-
ery schemes which improve the AAoI performance of IRSA.
For each combination of sampling and recovery schemes,
we obtained semi-analytical AAoI expressions as a function
of the number of UEs, the frame duration, and the IRSA
repetition distribution. In all cases, for a given IRSA repetition
distribution, the AAoI initially decreases and then sharply
increases, as a function of the normalized channel traffic. We
also considered the challenging problem of optimizing the
IRSA repetition distribution and the normalized channel traffic
for minimizing the AAoI. For the case where packet recovery
is done at the end of the frame, we showed that tractable AAoI
minimization problems can be formulated in the asymptotic
regime where the number of UEs is large.

We obtained upper and lower bounds on the minimum
AAoI: they scale linearly with the number of users. We
compared the minimum AAoI achieved by IRSA with a
equivalent centralized TDMA scheme. In the case where the
sampling is done at the beginning of a frame, the asymptotic
scaling of AAoI with number of UEs for IRSA is the same as
that of TDMA. In the case where sampling is just-in-time, we
showed that there is a fundamental difference in asymptotic
scaling of AAoI for IRSA in comparison to TDMA due to
the distributed nature of IRSA. Using differential evolution,
we also obtained locally optimal normalized channel traffic
and repetition distribution for IRSA. In the non-asymptotic
case, we judicially modified the above solutions via a one-
dimensional search procedure, and evaluated them empirically
via simulations. The IRSA scheme which samples just in time
and does early decoding of packets achieves a significantly
better AAoI scaling with the number of users M compared to
CRDSA, slotted ALOHA, and basic IRSA.

Future work could aim towards deriving bounds on the
AAoI and obtain better insight into the behaviour of AAoI,
and extend this work to fading wireless channels.
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APPENDIX A
PROOF OF THEOREM IV.1

For a particular UE in the system, let Fk ∈ {1,2,3, ...} denote
the number of frames between (k − 1)th and k th successful
packet recovery. For G1 and REND, the sampling instant is
fixed (T = 1) and collisions are resolved at the end of the
frame. We note that Ps is dependent on the repetition distri-
bution and the SIC decoding process; it is independent of the
frame index. We have that E[Fk] =

1
Ps

and E[F2
k
] =

2−Ps

P2
s

, for

any k. Let Jk =
∑k

j=1 Fj denote the number of frames elapsed
before the kth successful update. Then Xi = sup{k : Jk ≤ i},
the number of successful updates up to frame i, is a renewal
process.

In the k th epoch, the AoI starts from N (since T = 1 and R =
N at Jk−1 due to successful recovery at the end of the frame)
and increases linearly up to NFk slots. After the successful
update at frame Jk , the AoI drops to N . The cumulative AoI
for the kth epoch, Wk =

∑NFk−1
j=0 N+ j = N2Fk+

NFk

2 (NFk−1).
As Fks are iid, {W1,W2,W3, ...} is a also sequence of positive
iid random variables with

E[Wk] = N2E[Fk] +
N2

2
E[F2

k ] −
N
2
E[Fk]

=
N2

Ps
+

N2

2
2 − Ps

P2
s

−
N

2Ps
< ∞.

(11)

Wk can be considered as rewards of the renewal process
Xi . Let Yi =

∑Xi

k=1 Wk . Then, from the renewal reward
theorem [25] the AAoI is

A = lim
I→∞

YI
NI
=
E[Wk]

NE[Fk]
=

N
Ps
+

N
2
−

1
2
. (12)

APPENDIX B
DISTRIBUTION OF SAMPLING INSTANT IN GT

In GT, a UE samples just-in-time before the first transmis-
sion in a frame. The sampling instant is random, independent
of the frame index, and is determined by the repetition
distribution. We recall that the number of repetitions is denoted
by D ∈ {2, · · · ,N} (which follows the distribution fD) and the
sampling instant (i.e., the slot of first transmission by the UE)
is denoted by the random variable T . In a frame, for a UE with
D = d, the first slot can only be selected from 1 to N − d + 1
slots. As the d slots are chosen uniformly,

P(T = j |D = d) =

( j−1

0 )(
N− j
d−1 )

(Nd )
, for j ∈ {1,2, ...,N − d + 1}

0, j ∈ {N − d + 2, ...,N}

and

P(T = j) =
∑
d

P(T = j |D = d)P(D = d)

=

N−j+1∑
d=1

(N−j
d−1

)(N
d

) fD[d].

We compute the expectation of T as

E[T] =
N∑
j=1

j
N−j+1∑
d=2

(N−j
d−1

)(N
d

) fD[d]. (13)

Exchanging the limits of summation

E[T] =
N∑
d=2


N−d+1∑
j=1

j

(N−j
d−1

)(N
d

)  fD[d] =
N∑
d=1

gd fD[d] (14)

where gd =
∑N−d+1

j=1 j (
N− j
d−1 )

(Nd )
. In order to simplify gd , we

consider β1(x) =
∑N

j=d(1 + x)j and β′1(x) =
∑N

j=d j(1 + x)j−1.
From the expansion of β′1(x) we obtain that the coefficient
of the term where exponent of x is (d − 1) is given by∑N−d+1

j=1 j (
N− j
d−1 )

(Nd )
. Since β1(x) =

(1+x)N+1−(1+x)d
x and

β′1(x) =
(N + 1)(1 + x)N− d(1 + x)d−1

x
−
(1 + x)N+1− (1 + x)d

x2 ,

in the compact form of β′1(x), the coefficient of the term where
x’s exponent is (d − 1) is (N + 1)

(N
d

)
−

(N+1
d+1

)
. Equating the

coefficients, we get
N−d+1∑
j=1

j

(N−j
d−1

)(N
d

) = (N + 1)
(
N
d

)
−

(
N + 1
d + 1

)
. (15)

Similarly, we consider β2(x) =
∑N−1

j=d (1 + x)j . In the
expansion of β2(x), the coefficient of the term where x has
exponent (d − 1) is given as

∑N−d+1
j=1

(N−j
d−1

)
. In compact form,

β2(x) =
(1+x)N−(1+x)d−1

x the coefficient of the term where x’s
exponent is (d − 1) is

(N
d

)
. Hence,

N−d+1∑
j=1

(
N − j
d − 1

)
=

(
N
d

)
. (16)

From (15) and (16),

gd =

∑N−d+1
j=1 j

(N−j
d−1

)(N
d

)
=

∑N−d+1
j=1 (N + 1)

(N−j
d−1

)
− (N − j + 1)

(N−j
d−1

)(N
d

)
=

(N+1
d+1

)(N
d

) = N + 1
d + 1

,

and from (14), we arrive at

E[T] = (N + 1)
N∑
d=2

fD[d]
d + 1

. (17)

APPENDIX C
PROOF OF THEOREM IV.2

We follow the notation of Appendix A. The samples are
obtained just before transmission and the distribution of sam-
pling instant T is as given in Appendix B. We identify a
renewal process where the renewal epochs are the times at
which packets are successfully recovered. We now obtain the
cumulative reward in every renewal cycle. For a UE, at the
end of (k − 1)th successful packet recovery, the AoI drops to
N − T[Jk−1] + 1, where we recall that T[i] is the sampling
slot in the ith frame. Thus, the AoI in k th epoch starts from
N − T[Jk−1] + 1 and increases linearly up to NFk slots. The
cumulative AoI for k th epoch Wk =

∑NFk−1
j=0 N − T[Jk−1] +
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1 + j = NFk(N − T[Jk−1] + 1) + NFk

2 (NFk − 1). We note
that Fk and T[Jk−1] are mutually independent and iid random
variables. Therefore, the rewards associated with successive
renewal cycles are also iid random variables.12 Hence,

E[Wk] =
N
PS
(N − E [T[Jk − 1]] + 1) + N2 2 − Ps

2P2
s

−
N

2Ps

=
N2

P2
s

+
N2

2Ps
−

N(N + 1)
Ps

α( fD) +
N

2Ps

where E[T] is obtained from (17) and α( fD) =
∑N

d=2
fD [d]
d+1 .

Similar to Appendix A, Wk can be considered as rewards of
the renewal process Xi . Then for Yi =

∑Xi

k=1 Wk , from the
renewal reward theorem [25], the AAoI is obtained as

A = lim
I→∞

YI
NI
=
E[Wk]

NE[Fk]
=

N
2
+

N
Ps
− (N + 1)α( fd)+

1
2
. (18)

APPENDIX D
PROOF OF THEOREM IV.3

The notation is the same as in Appendix A. Samples are
taken in the beginning of every frame and T = 1. We identify
a renewal process in the evolution where a renewal cycle
corresponds to the time between the (k − 1)th and k th packet
recovery for a UE. As the SIC process is used in every slot,
the recovery instant R is not always the end of the frame.
At the end of (k − 1)th epoch, the AoI of the UE is N and
increases linearly for (N − 1)Fk + R[Jk] slots in kth epoch.
At Jk the UE is recovered at slot R[Jk] and the AoI drops
to R[Jk]. Afterwards the AoI increases linearly for N − R[Jk]
slots till the end of frame Jk . The cumulative age in Fk , i.e.,

Wk =

(N−1)Fk+R[Jk ]−1∑
j=0

N + j +
N−R[Jk ]−1∑

j=0
R[Jk] + j

=
N2

2
F2
k + NFkR[Jk] −

NFk

2
, and

E[Wk] =
N2

2
2 − Ps

P2
s

+ NE[FkR[Jk]] −
N
2

1
Ps
.

We note that R[Jk] depends on the frame Jk or more gener-
ally on event of successful update S. Thus, E[FkR[Jk]] =
E[Fk]E[R[Jk]|Fk] = E[Fk]E[R[Jk]|S]. Hence, for Yi =∑Xi

k=1 Wk and U = N−R, applying the renewal reward theorem
[25], we obtain the AAoI as

A = lim
I→∞

YI
NI
=
E[Wk]

NE[Fk]
= N

2 − Ps

2Ps
+ E[R|S] −

1
2

=
N
2
+

N
Ps
− E[U |S] −

1
2
.

(19)

APPENDIX E
DISTRIBUTION OF R IN REARLY-0

We denote the M UEs by u1,u2, ...,uM . In REARLY-0, the
singleton slots in {1,2, ...,N − 1} are recovered in the same

12We note that for the k th renewal cycle, the duration of the cycle is
determined by Fk . However, the reward is partly determined by T [Jk−1]
which is sampled in the previous renewal cycle. We associate T [Jk−1] to the
reward in the k th renewal cycle. There is no dependence across renewal cycles
since T [Jk−1] is independent of T [Jk−2] as well as Fk .

slot where they are received. The recovery instant Rum [i] for
UE um in frame i is a random variable which can take values
in {1,2, ...,N} if the UE is successful in frame i. Since the
recovery method does not depend on the frame index and
the UEs are identical, without loss of generality, we drop
the frame index and derive the distribution of the sampling
instant for u1. We denote the event of successful recovery
by S. In REARLY-0, the UE can be recovered successfully
either from a singleton slot or via the SIC process carried
out at the end of the frame. Since all singleton slots are
recovered in first iteration using SIC, the event S is the
same as the event that the packet is successfully recovered.
Therefore, the probability of successful recovery P {S} = Ps ,
the probability of success in the SIC process. Furthermore,
P

{
Ru1 = j |S

}
=
P{Ru1=j∩S}
P{S} =

P{Ru1=j}
P{S} for j ∈ {1,2, ...,N}

(as the recovery instant is defined only when the UE is
successful in delivering a packet).

Let the random variables D1,D2, ...,DM denote the number
of repetitions in a frame by u1,u2, ...,uM respectively, which
are independent of the frame index. In a particular frame, let
D1 = d1,D2 = d2, ...,DM = dM . For UE u1, we denote the d1
selected slots as c1 < c2 · · · < cd1 . Then for j ∈ {1,2, ...,N−1},
P

{
Ru1 = j |D1 = d1, ...,DM = dM

}
is given by (20) at the top

of the next page, and

P
{
Ru1 = j |S

}
=

1
Ps

( ∑
d1 ,...,dM

P
{
Ru1 = j |D1 = d1, ...,DM = dM

}
fD(d1) . . . fD(dM )

)
.

At the last slot, u1 can either be recovered from a sin-
gleton slot or via the SIC process. Thus, at j = N ,
since

∑N
j=1 P

{
Ru1 = j |S

}
= 1, P

{
Ru1 = N |S

}
= 1 −∑N−1

j=1 P
{
Ru1 = j |S

}
.

APPENDIX F
PROOF OF THEOREM IV.4

We use the same notation as in Appendix A. The samples
are taken just-in-time before transmission and the sampling
instant T depends on the repetition distribution as described
in Appendix B. In every slot, the SIC process is employed
to recover the UEs’ packets. The recovery instant R[Jk] is
a random variable which depends on the slot selection and
SIC process. We proceed as in the case of GT and REND
by considering the cumulative age in a duration between the
(k − 1)th and k th successful packet recovery times. In the k th

epoch, the AoI of the UE starts from N − T[Jk−1] + 1 and
increases linearly for (N − 1)Fk + R[Jk] slots. In frame Jk ,
packet recovery occurs at slot R[Jk], and the AoI drops to
R[Jk] − T[Jk] + 1. Thereafter, the AoI increases linearly to
N − R[Jk] at the end of frame Jk . The cumulative AoI Wk is
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P
{
Ru1 = j |D1 = d1, ...,DM = dM

}
= P {c1 = j; j is singleton} +

∑
c1< j

P {c2 = j; j is singleton but c1 is selected by others}

+ · · · +
∑

c1<...<ck−1< j

P {ck = j; j is singleton but c1, . . . , ck−1 are selected by others}

+ · · · +
∑

c1<...<cd1−1< j

P
{
cdu1
= j; j is singleton but c1, ..., cd1−1 are selected by others

}
=

(N−j
d1−1

)(N
d1

) M∏
n=2

(N−1
dn

)( N
dn

) + (N−j
d1−2

) ( j−1
1

)(N
d1

) [
M∏
n=2

(N−1
dn

)( N
dn

) − M∏
n=2

(N−2
dn

)( N
dn

) ]
+ ... +

(N−j
d1−k

) ( j−1
k−1

)(N
d1

) [
M∏
n=2

(N−1
dn

)( N
dn

) − (
k − 1

1

) M∏
n=2

(N−2
dn

)( N
dn

) +(
k − 1

2

) M∏
n=2

(N−3
dn

)( N
dn

) − ... + M∏
n=2

(N−k
dn

)( N
dn

) ]
+ · · · +

( j−1
d1−1

)(N
d1

) [
M∏
n=2

(N−1
dn

)( N
dn

) − (
d1 − 1

1

) M∏
n=2

(N−2
dn

)( N
dn

) + (
d1 − 1

2

) M∏
n=2

(N−3
dn

)( N
dn

) − ... + M∏
n=2

(N−d1
dn

)( N
dn

) ]
(20)

obtained as

Wk =

(N−1)Fk+R[Jk ]−1∑
m=0

N − T[Jk−1] + 1 + m +

N−R[Jk ]−1∑
n=0

R[Jk] − T[Jk] + 1 + n =
N2F2

k

2
+ NR[Jk]Fk−

NFk

2

− (T[Jk−1]−1)(NFk − N + R[Jk])−(T[Jk]−1)(N − R[Jk]).

We note that Fk,T[Jk], and R[Jk] are dependent on each other
(their statistics are determined by the repetition distribution).
However, all of them are independent of T[Jk−1].

In contrast to the proof of GT and REND, we observe
that Wk now has dependency across the identified cycles
since T[Jk−1] as well as T[Jk] determine Wk . However, if
we consider the evolution of T[Jk−1] as that of a Markov
chain (even though it is iid), then we have that (T[Jk−1],Fk)

is a Markov Renewal process [25]. Then, Wk is the reward in
a Markov Renewal process which is dependent on the state
T[Jk−1] of the Markov chain. Let U[Jk] = N − R[Jk]. Similar
to Appendix D, E[FkU[Jk]] = E[Fk]E[U[Jk]]|S] and

E[Wk] = N2 2 − Ps

2P2
s

+
N
Ps
(N − E[U[Jk]|S])

−(E[T[Jk−1]] − 1)(
N
Ps
− E[U[Jk]|S])

−E[(T[Jk] − 1)U[Jk]|S] −
N

2Ps
.

Since Wk is the reward in the Markov renewal process, with
Yi =

∑Xi

k=1 Wk , from Appendix B and by applying the renewal
reward theorem [25], the AAoI is given by

A = lim
I→∞

YI
NI
=
E[Wk]

NE[Fk]
=

N
2
+

N
Ps
− E[U |S] − ((N + 1)

α( fD) − 1)(1 −
Ps

N
E[U |S]) −

Ps

N
E[(T − 1)U |S] −

1
2
.

APPENDIX G
AVERAGE AGE OF INFORMATION FOR TIME DIVISION

MULTIPLE ACCESS (TDMA)

In this section, we analyze the AAoI for the fully cen-
tralized TDMA scheme, under packet sampling and decoding

time assumptions which correspond to that of G1, GT and
REND, REARLY-n. The AAoI performance of TDMA forms a
baseline for comparison of the performance of IRSA schemes
discussed in this paper. We note that, in TDMA, a user is
allotted a slot by the base station to transmit its packet without
any collisions. Thus, M users transmit one packet each in M
non-overlapping slots. We define a TDMA frame as consisting
of these M slots (i.e., the frame size N = M). We note that
G1 corresponds to the case where the users sample packets at
the beginning of the frame and GT corresponds to the users
sampling packets at the beginning of their assigned TDMA
slots. Similarly, REND corresponds to the users being decoded
at the end of the TDMA frame, while REARLY-n corresponds
to each user being decoded at the end of its own TDMA slot.
The AAoI for TDMA is given by the following theorem.

Theorem G.1. The AAoI for TDMA with G1-REND is 3M
2 −

1
2 ,

GT-REND or G1-REARLY is M , and GT-REARLY is M
2 +

1
2 .

Proof. For G1 and REND, we note that the age process A[t]
of any user is periodic with period of M = N . Within each
period, the cumulative age can be shown to be M2+

∑M−1
m=0 m =

M2 +M(M − 1)/2. Thus, the AAoI is 3M/2− 1/2. In GT and
REND, the ith user samples a packet at the start of the ith slot
and the packet is decoded only at the end of a TDMA frame.
Then, Au[t] for user u is a periodic function with a period
of M and the total age over the period is uM +

∑M−1
m=0 m =

uM +M(M −1)/2. So the AAoI for UE u is u+ (M −1)/2 and
the AAoI averaged over all users is M . The proof for G1 and
REARLY is similar and is skipped. For GT-REARLY, from
[4, Lemma 1], the AAoI is M/2 + 1/2. �

A. Discussion

We note that the AAoI expressions derived above for TDMA
holds in both asymptotic and non-asymptotic regimes. Thus,
they serve as lower bounds for comparing the performance
of the distributed IRSA schemes in asymptotic and non-
asymptotic regimes. However, since transmitted packets are
always successfully received in the case of TDMA, the age
expressions can be expected to be optimistic compared to that
derived for IRSA. We note that the performance of sampling
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just-in-time but decoding the packets at the end of the frame
is equivalent to sampling at the beginning of the frame but
decoding the packet of a user in the slot of transmission in
the case of TDMA. This is observed to be true in the case of
IRSA as well. For large M , we find that the AAoI decreases
by M/2 when we move from G1-REND to GT-REND or G1-
REARLY and then reduces by an additional M/2 when we
move to GT-REARLY. Even though a reduction of M/2 is not
observed in the case of IRSA, there is a reduction of ≈ 3M/10
when we move from G1-REND to GT-REND or G1-REARLY
and then a further reduction of again ≈ 3M/10 when we move
to GT-REARLY. These gains are approximately the same and
are additive.
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