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Abstract—We consider the problem of joint channel estimation
and data decoding in uplink massive multiple input multiple
output systems with low resolution analog-to-digital converters
(ADCs) at the base station. The nonlinearities introduced by
the ADCs make the problem challenging: in particular, the
existing linear detectors perform poorly. Also, the channel coding
used in commercial wireless systems necessitates soft symbol
detection to obtain satisfactory performance. In this paper, we
present a low-complexity variational Bayesian (VB) inference
procedure to jointly solve the (possibly correlated) channel
estimation and soft symbol decoding problem. We present the
approach in progressively more complex scenarios, including the
case where even the channel statistics are not available at the
receiver. Finally, we combine our proposed VB procedure with
a belief propagation (BP) based channel decoder, which further
enhances the performance without any additional complexity. We
numerically evaluate the bit error rate (BER) and the normalized
mean squared error (NMSE) in the channel estimates obtained
by our algorithm as a function of various system parameters,
and benchmark the performance against genie-aided and state-
of-the-art receivers. The results show that VB procedure is a
promising technique for the design of low-complexity advanced
receivers in low resolution ADC based systems.

Index Terms—ADC, channel estimation, massive MIMO, soft
symbol decoding, variational Bayes.

I. INTRODUCTION

Massive multiple input multiple output (MIMO) wireless
communication systems, where the base station (BS) or
access point (AP) is equipped with hundreds or thousands of
antennas, and simultaneously serves tens or hundreds of users,
is one of the key enabling technologies to meet the increasing
demand for the data rate and energy efficiency [3], [4].
However, the advantages of massive MIMO come at the cost
of increased power consumption and hardware complexity
due to the large number of RF chains, high precision analog-
to-digital converters (ADCs), etc. In particular, the power
consumption of ADCs grow exponentially with the number of
quantization bits per sample [5]–[7]. For example, a commer-
cial 1 Gsamp/s 12-bit ADC from Texas Instruments consumes
over 1 W of power [8]. Also, full precision ADCs require
correspondingly high rate data processing at the receiver (for
example, with 100 antennas, 500 Msamp/s, the data rate at
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the remote radio head is more than 1 Tb/s.) This motivates
the need for employing low resolution ADCs in the BS of
a massive MIMO system [9]–[13]. On the other hand, the
capacity analysis of coarsely quantized MIMO systems shows
that, under the assumption of perfect channel state information
at the receiver (CSIR), at low signal to noise ratio (SNR)
and up to a first order approximation in SNR, the mutual
information of a MIMO system employing 1-bit ADCs is
2/π times that of a MIMO system without quantization.
Also, quardrature phase shift keying (QPSK) is the optimal
modulation scheme in terms of the achievable rate at low
SNRs, and under i.i.d. Rayleigh fading, the ergodic capacity
of a 1-bit quantized system increases linearly with the number
of receive (rx) antennas [14]–[17]. Due to this promise of
close to optimal performance despite the coarse quantization
introduced by the ADCs, the receiver design in multiuser
massive MIMO systems with low resolution ADCs is of great
practical interest.

The nonlinearities introduced by low resolution quantiza-
tion leads to three challenges in receiver design. First, linear
receive processing techniques like zero forcing (ZF), regular-
ized ZF (RZF), and minimum mean square error (MMSE)
become highly suboptimal [18]. Second, the received train-
ing symbols are also subject to low resolution quantization,
leading to poor channel estimates. In practice, a large training
overhead is needed to obtain reliable channel estimates [6],
[19]. We note that although the primary task of the receiver is
to correctly decode the data symbols, obtaining accurate CSIR
is important for other tasks such as link adaptation. Third,
practical channel decoders exhibit significantly lower code-
word error rates when they are provided soft symbol estimates
(i.e., log likelihood ratios of the coded data bits) as input,
compared to the case where hard decisions are performed
on the data symbols prior to channel decoding. Obtaining
high-quality soft symbol estimates from coarsely quantized
samples is challenging. These considerations motivate the
need to devise novel techniques for joint channel estimation
and soft symbol decoding with low resolution ADCs, which
is the focus of this paper.

The problem of data detection in massive MIMO systems
with low resolution ADCs has been studied in the literature
[20]–[32]. Most of these studies assume the availability of
perfect CSIR, and perform data decoding in multiuser mas-
sive MIMO systems with low resolution ADCs [20]–[26].
Techniques for joint channel estimation and data detection
with low resolution ADCs have been developed based on
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convex optimization [27] and approximate message passing
(AMP) [28], [29]. Under the assumption of perfect CSIR,
[30] and [31] explore weighted Hamming distance based soft
detection and minimum mean square error (MMSE) detection,
respectively, along with successive interference cancellation
(SIC) under 1-bit quantization, while [32] proposes approx-
imate belief propagation (BP) based MIMO detection in
coarsely quantized systems. Variational Bayesian inference
(VBI) has been used to develop high-performing algorithms
for channel estimation and data decoding, without considering
the nonlinearities introduced by the low resolution ADCs [33],
[34]. It is worth noting that algorithms based on AMP
or expectation propagation (EP) are not numerically stable,
requiring heuristic modifications to address such issues [33].
In contrast, in this paper, we employ a more principled VBI
based approach that is globally convergent to a local optimum.

To the best of our knowledge, most of the existing studies
on massive MIMO systems do not consider joint channel
estimation and soft symbol decoding, spatial correlation,
and coarse quantization together. Our solution allows us to
intrinsically learn the channel statistics from the quantized
observations, which is potentially useful for power control
and/or link adaptation also. Moreover, using VBI to compute
the posterior distributions of the data leads to low complexity,
high performing receivers. Preliminary versions of this work
have appeared in [1], [2]. Both these works were restricted
to independent and identically distributed (i.i.d.) channels.
While [1] considered soft symbol decoding with perfect CSIR,
[2] extended the approach to joint channel estimation and
soft symbol decoding. We present several advances in this
paper, including the extension to correlated Rayleigh fading
channels, unknown channel statistics, etc. We also merge the
VB receiver with a BP based LDPC channel decoder and
utilize its extrinsic information to adapt the data prior, which
further improves the performance.

We formulate the channel estimation and data decoding
as a statistical inference problem in a directed probabilistic
graphical model and solve it using a VBI approach. The
quantized received signal is the observed variable, while the
wireless channel and the M−QAM modulated data symbols
are the latent variables. The goal is to jointly infer the
posterior distributions of both the channel state and the data
symbols given the quantized received signal consisting of pilot
and data symbols. Since direct computation of the posterior
distribution is intractable, we approximate the posterior with a
factorized variational approximation over the latent variables,
and compute the factors by maximizing the evidence lower
bound (ELBO). The ELBO is maximized by minimizing
the Kullback-Leibler (KL) divergence between the exact and
the factorized distributions. The resulting iterative algorithm
converges to a stationary point of the ELBO. This method of
using factorized distributions originates from the mean-field
approximation in statistical physics; we refer the reader to
[35] for an excellent introduction to VBI. A key novelty in
our solution lies in the introduction of appropriately chosen
latent variables. This leads to closed-form, computationally
simple updates, and the resulting iterative algorithm has low
complexity and is also fast.

The main contributions of our paper are:

1) We model the channel estimation and data decoding
problems in the uplink of a massive MIMO system with
low resolution ADCs as a statistical inference problem.
We derive the posterior distributions of the channel
and the data symbols obtained from the pilot and data
observations using the VB framework. We consider the
following two cases:

a) The correlated Rayleigh fading case, where UEs’
channels are independent of each other, but the entries
of the channel vector between a UE and the BS are
correlated. In this case, our algorithm exploits the
channel correlation to improve the channel estimation
and data detection performance. In the absence of
correlation, the algorithm becomes computationally
very simple, with no matrix inversions.

b) The no CSIR case, in which the BS is unaware of
the large scale fading coefficients (LSFCs) between
the UEs and the BS. We infer the LSFCs using a
non-informative inverse Gamma prior. We empirically
show that the resulting receiver is only marginally
inferior to a receiver that has perfect knowledge of
the LSFCs. Learning the LSFCs is potentially useful
for downlink precoding and link adaptation.

2) We provide theoretical insights on the structure of the so-
lution by relating it to the MMSE channel estimation and
successive interference cancellation based receiver. We
show that, when the interference is perfectly cancelled,
the resulting channel estimate is the Bayes’ optimal
MMSE estimator.

3) We merge the VB receiver with a (BP) channel decoder
and utilize its extrinsic information to adapt the data
prior, which further improves the performance.

4) We study the bit error rate (BER) and channel normalized
mean squared error (NMSE) performance of the VB
algorithms with respect to different system parameters
such as the ADC resolution, data power, pilot power
boosting etc. and provide key insights into system de-
sign. We also evaluate the performance for both the
correlated and uncorrelated fading cases as a function of
channel parameters such as the coherence interval, and
benchmark it against state-of-the-art bilinear generalized
approximate message passing (BiGAMP) based joint
channel and data estimator [28] and MMSE soft decoder
[36]. Our numerical results show that the VB soft symbol
decoder offers excellent performance and fast conver-
gence, and even outperforms an unquantized BiGAMP
joint channel estimator and data detector, making it an
attractive choice for high data rate applications.

One of the main takeaways from our work is that VBI is
a powerful and flexible technique for designing receivers for
massive MIMO systems, particularly when the BS employs
low resolution ADCs. Using VBI to infer the required poste-
rior distributions helps to reduce the pilot overhead required to
achieve a given BER. Further, since the algorithm yields soft
symbol estimates, it is well suited for coded communications.
Another crucial takeaway is that the assumption of perfect
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CSI at the receiver significantly overestimates the system
performance, which we illustrate through empirical studies
in Sec. IV. Therefore, in a low resolution ADC setup, since
both the pilots and data are coarsely quantized, it is crucial
to account for channel estimation errors while designing
receivers and evaluating performance.

Notation: Matrices and vectors are denoted by boldface
uppercase and boldface lowercase letters. A⊗B denotes the
Kronecker product of A and B. E denotes the expectation op-
erator. 〈f(X)〉 denotes the expectation of f(X) with respect
to an approximate distribution q(X). φ(x) and Φ(x) denote
the probability density and cumulative distribution functions
of a standard normal random variable evaluated at x. IM ,0M
denote an identity and a zero matrix of size M ×M , respec-
tively. Q(·) denotes an elementwise quantization operation of
the real and imaginary components of the argument.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the uplink (UL) of a single cell massive MIMO
system with Nr rx antennas at the BS and K single transmit
antenna user equipments (UEs), where Nr ≥ K. The UEs
encode their raw data bits using a channel code, interleave
the coded bits, map the interleaved data bits to the signal
constellation, insert the pilot symbols, then up-convert the
signal to the carrier frequency and transmit it to the BS. The
signal received at the BS is down-converted to the baseband,
sampled, and quantized using a b-bit ADC before passing it
to the digital front-end of the receiver, as shown in Fig. 1.

The UEs transmit data simultaneously over a frame con-
sisting of τp known pilot symbols (τp ≥ K) followed by τd
unknown data symbols. The complex baseband pilot and data
symbols received at the BS, denoted by Zp ∈ CNr×τp and
Zd ∈ CNr×τd , respectively, are given by

Zp = [zp,1, . . . , zp,τp ] = HXp + Wp,

Zd = [zd,1, . . . , zd,τd ] = HXd + Wd,
(1)

where H = [h1, . . . ,hK ] ∈ CNr×K , Xp =[
xp,1, . . . ,xp,τp

]
∈ CK×τp , and Xd = [xd,1, . . . ,xd,τd ] ∈

MK×τd denote the channel matrix, pilots, and the M−QAM
modulated transmit data symbols of the K users, respectively.
Here, hk ∈ CNr is the channel between the kth UE and
the BS, and xp,t ∈ CK and xd,t ∈ MK the pilot and
data symbols transmitted by the K UEs at the tth symbol,
respectively, where M denotes the M -QAM constellation.
Also, Wp ∈ CNr×τp ,Wd ∈ CNr×τd are the additive white
Gaussian noise at the receiver during the pilot and data phases,
with i.i.d. CN (0, σ2

w) entries, where CN (µ, σ2) denotes the
circularly symmetric complex normal distribution with mean
µ and variance σ2.

We assume that the data symbols are i.i.d. and are drawn
from a uniform probability distribution PX defined on the
signal constellation M. The average data transmit power
E(|xd,kt|2) of the kth UE is set to PT,k. The pilot transmission
power is set to be the same as the data transmit power.
Mathematically, PXd

(Xd) =
∏K
k=1

∏τd
t=1 PX(xd,kt).

The channel hk is modeled as a correlated Rayleigh
flat fading channel, which remains constant over a frame

consisting of τp pilot symbols and τd data symbols. That
is, hk is distributed as CN (0,Rk), where Rk ∈ CNr×Nr
is a positive semidefinite covariance matrix. Also, with-
out loss of generality, we include the path loss compo-
nent in Rk. We denote R , {R1, . . . ,RK}, and thus,
PH(H; R) =

∏K
k=1

1
πNr det(Rk)

exp
(
−hHk R−1k hk

)
. The

LSFC of the channel from the kth UE to the BS (i.e., the
diagonal entries of Rk) is denoted by βk. We define the SNR
of the system as

∑
k PT,kβk
Kσ2

w
, where PT,k is the transmit power

of the kth UE.
Under the low resolution ADC architecture, the signals

Zp and Zd are quantized using a b−bit ADC to obtain the
baseband observations Yp and Yd as follows:

Yp = Q (Zp) = Q (HXp + Wp)

Yd = Q (Zd) = Q (HXd + Wd) .
(2)

The function Q(·) denotes a quantizer operated element-wise
on both the real and imaginary parts of the complex input.
A b-bit quantizer on a real valued input z is defined as
Q(z) = Li, z ∈ [zi, zi+1), i = 0, 1, . . . , B − 1, where
B = 2b is the number of quantization levels, z0 < z1 < · · · <
zB are the quantization thresholds, and L0, L1, . . . , LB−1
are the quantizer outputs. In this paper, for simplicity and
concreteness, we consider a uniform quantizer, where zl =
(−B/2 + l)∆, l = 0, . . . , B, ∆ is the quantization step size,
and Ll = (zl+zl+1)/2, l = 0, . . . , B−1. We set the dynamic
range of the real and imaginary parts of the quantizer using the
expected received signal power, PR, as z0 = −2.5

√
PR/2,

zB = 2.5
√
PR/2.1 Our choice of z0 and zB is motivated

by the fact that the absolute value of a Gaussian distributed
zero mean real-valued random variable with variance PR/2
exceeds 2.5

√
PR/2 with probability less than 0.01, i.e., the

quantizer gets overloaded with low probability. However, the
design of quantizers for low resolution ADC based systems
is an interesting problem for future research.

Our goal is to recover the posterior probabilities of the
transmitted data symbols from the quantized received signal
Yp and Yd. The posterior beliefs are fed to the channel
decoder to obtain the decoded data bits. In practice, the
equalizer (or detector) and channel decoder can be designed
either jointly or as separate blocks. We adopt both approaches
to obtain a decoder that is flexible, and comment on their
relative merits.

III. VARIATIONAL BAYESIAN JOINT CHANNEL
ESTIMATION AND SOFT SYMBOL DECODING

In this section, we derive the joint channel estimation and
soft symbol decoding algorithm for an uplink massive MIMO
system with low resolution ADCs. We treat the data symbols
and channel as the latent variables and the quantized received
samples as the observations. We represent the quantized
received signal model in (2) as a Bayesian network graphical

1In practice, we quantize any value below z0 to L0, and any value above
zB to LB−1. Also, in practical wireless systems, an automatic gain control
(AGC) and a variable gain amplifier (VGA) are used to ensure that the power
in the analog baseband signal is approximately equal to a predefined value,
PR, before quantization.
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Figure 1. Massive MIMO system model with low resolution ADCs.

Xd

ZdHZp

Xp

Yp Yd

σ2
w

R

Figure 2. Bayesian network graphical model for the quantized massive
MIMO wireless communication system.

model shown in Fig. 2. The pilot and data observations Yp

and Yd are represented by shaded circles, while the latent
variables Zp, Zd, Xd, H are represented by circles, and
deterministic variables Xp, R, and σ2

w are represented by
squares. The goal is to infer the posterior distribution of the
channel H and the data Xd given the observations Yp,Yd

and the pilots Xp.
The posterior distribution of the channel H and the data

Xd given the quantized observations Yp,Yd and the pilots
Xp is given by2

P (H,Xd|Yd,Yp; Xp)

=
P (Yp|Xp,H)P (Yd|Xd,H)P (H)P (Xd)

P (Yp)P (Yd)

where P (Yp) =
∫
P (Yp|Xp,H)P (H) dH and P (Yd) =∫

P (Yd|Xd,H)P (H)P (Xd) dH dXd are the marginal like-
lihoods of Yp and Yd, respectively.

Exact computation of the posterior distributions using the
above is computationally intractable, as it requires solving
high dimensional integrals over H and Xd to obtain the
partition functions P (Yp) and P (Yd). To circumvent this
problem, we approach the joint channel estimation and data
detection using VBI, in which the posterior distributions of
the latent variables are obtained by solving an optimiza-
tion problem. We approximate the exact posterior using a

2Xd comes from a discrete constellation, but we use integrals here for
convenience. In practice, the integrals are replaced by summations.

structured factorized distribution that can be computed in
polynomial time in each iteration. We explain this in detail
in the forthcoming subsections.

The rest of this section is organized as follows. We first
present our algorithm in the simplest case of perfect CSIR
with unquantized received data signal (Sec. III-A), followed
by the case with statistical CSIR and unquantized pilot and
data signals (Sec. III-B), then the case of statistical CSIR
with quantized received signals (Sec. III-C), and finally no
CSIR with quantized pilot and data signals (Sec. III-D).
In Sec. III-E, we combine the VB receiver with a belief
propagation (BP) based channel decoder to further improve
the coded BER. As explained earlier, this gives flexibility in
configuring the VB and BP either jointly or separately. Our
approach of presenting our VB based algorithms by adding
each imperfection one after the other not only eases the
exposition, it also allows us to benchmark results, analytically
interpret the algorithms, and makes it convenient to apply the
algorithms in a variety of settings. In Sec. III-F, we elucidate
the computational complexity of the variational Bayesian
algorithm in the quantized case, and discuss ways to further
reduce the complexity.

A. Perfect CSIR and Unquantized Observations

We assume that the receiver has perfect knowledge of the
channel and has access to unquantized observations Zd =
HXd+Wd. Here, the transmit data symbols Xd are the latent
variables whose posterior distribution needs to be inferred.
The logarithm of the joint distribution of the observations
and the latent variables can be written as

ln p(Zd,Xd|H, σ2
w) = ln p(Zd|Xd,H, σ2

w) + ln p(Xd). (3)

Since the additive noise is complex Gaussian
distributed, p

(
Zd|Xd,H;σ2

w

)
= 1

(πσ2
w)τd Nr

×

exp
(
− 1
σ2
w

∑τd
t=1 ‖zd,t −Hxd,t‖22

)
, and since Xd is

uniformly distributed over the M -QAM constellation,
p(Xd) = 1

M(τd K) . Our goal is to find the posterior
distribution p(Xd|Zd,H, σ2

w). We write the logarithm of the
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model evidence, ln p(Zd), as follows:

ln p(Zd) = L(q) + KL(q ‖ p) ≥ L(q), (4)

where L(q) ,
∫
q(Xd) ln

{
p(Xd,Zd)
q(Xd)

}
dXd and KL(q‖p) ,

−
∫
q(Xd) ln

{
p(Xd|Zd)
q(Xd)

}
dXd ≥ 0 are the evidence lower

bound (ELBO) and the Kullback-Leibler (KL) divergence
terms, respectively. Here, q(Xd) is an approximate posterior
distribution, which is arbitrary and can be optimized. We
formally state the ELBO optimization problem as

qopt = arg max
q∈P

L(q) = arg min
q∈P

KL(q ‖ p), (5)

where P is the space of probability distributions.
In the above, maximizing the ELBO L(q) would render

an approximate distribution q that is close to the original
model evidence, because the KL divergence is non-negative.
The maximum of L(q) occurs when q(Xd) = p(Xd|Zd),
but p(Xd|Zd) is computationally intractable. Therefore, we
impose a factorized posterior structure on q, i.e., q(Xd) =∏K
k=1

∏τd
t=1 qkt(xd,kt). Substituting this into the ELBO, and

considering one of the factors, say qkt , q(xd,kt), we get

L(q) = −KL (qkt‖p̃(Zd, xd,kt)) + const. (6)

where the const. terms do not depend on qkt,
and p̃(Zd, xd,kt) is defined using ln p̃(Zd, xd,kt) ,
E(i,l)6=(k,t) [ln p(Zd,Xd)] + const., where the notation
E(i,l)6=(k,t)[·] denotes the expectation with respect to the
distributions q11(xd,11), . . ., qKτd(xd,Kτd) except qkt(xd,kt).
Now, L(q) is maximized with respect to qkt when the KL di-
vergence term in (6) is minimized, which in turn occurs when
qkt(xd,kt) = p̃(Zd, xd,kt). Therefore, the optimal marginal
distribution is

qkt(xd,kt) = const.× exp
(
E(i,l)6=(k,t) [ln p(Zd,Xd)]

)
, (7)

where the constant is chosen such that qkt becomes a proba-
bility distribution. From (7), the optimal qkt depends on the
distributions {qi`}(i,`)6=(k,t), which also need to be evaluated.
The VBI algorithm proceeds by initializing latent distributions
{qi`}(i,`)6=(k,t) and finding qkt in an iterative manner across
all k and t. This recipe falls in the category of minorization-
maximization (MM), which solves a maximization problem
by iteratively obtaining a lower bound to the objective func-
tion and maximizing it [37]. It is known that MM based
optimization is guaranteed to converge to a stationary point
of the original optimization problem from any initialization.

Thus, based on the above discussion, we impose a fully
factorized structure on the approximate posterior, namely,
p
(
Xd|Zd,H, σ2

w

)
≈
∏K
k=1

∏τd
t qxd,kt (xd,kt). Now, we com-

pute the approximate posterior q(xd,kt), k = 1, . . . ,K, t =
1, . . . , τd. To this end, we compute the following expectation
using the joint distribution in (3):

ln qxd,kt (xd,kt) =
〈
ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (Xd)

〉
, (8)

where 〈·〉 denotes the expectation with respect to all the latent
variables except xd,kt, and is computed using the approximate
posterior distribution q(X). Taking the exponential on both
sides of (8) and normalizing to obtain a probability distribu-

Algorithm 1 VB Soft Symbol Decoding with Perfect CSIR

Input: Zd, {h1, . . . ,hK},M,M = {s1, . . . , sM}, τd, σw
Output: qxd,kt , 〈xd,kt〉 ∀k ∈ [K], t ∈ [τd]

1: Initialize qxd,kt(xd,kt), 〈xd,kt〉 = 0,∀k ∈ [K], t ∈ [τd]
2: repeat
3: for k = 1 to K, t = 1 to τd do
4: for m = 1 to M do
5: Compute qxd,kt(sm) using (9) and (10).
6: end for
7: 〈xd,kt〉 =

∑
s∈M s qxd,kt(s).

8: 〈|xd,kt|2〉 =
∑
s∈M |s|2 qxd,kt(s).

9: end for
10: until a stopping condition is met.

tion, after some algebra, we get

qxd,kt(sm) =
exp

(
fk,t(sm)

)
∑
s′∈M exp

(
fk,t(s′)

) , m = 1, . . . ,M, (9)

with fk,t(s) defined in (10). From (9), we see that qxd,kt
is Boltzmann distributed (it is also known as the softmax
function and is widely used in machine learning applica-
tions as an output activation function.) The mean and mean
squared values of xd,kt under the distribution qxd,kt can be
computed as 〈xd,kt〉 =

∑M
m=1 sm qxd,kt(sm), 〈|xd,kt|2〉 =∑M

m=1 |sm|2 qxd,kt(sm).

The distribution qxd,kt depends only on the means of the
other latent variables {xd,k′t}k′ 6=k taken with respect to their
approximate distributions. Therefore, we initialize the means
of the distributions qxd,kt , k = 1, . . . ,K and t = 1, . . . , τd
arbitrarily and apply (9) iteratively across k and t till the log
likelihood in (8) converges for all k and t. As mentioned
earlier, this procedure converges to a stationary point of the
original optimization problem of choosing q to maximize the
model evidence in (4). The pseudocode for the VB procedure
for the soft symbol decoding is shown in Algorithm 1.

Remark 1: In an uncoded system, the receiver decodes
the transmitted symbol by solving an optimization problem
mentioned in (11). Given the aprori distribution of the data
symbols p(xd,kt = s), the above equation can be interpreted
as successive interference cancellation followed by maximum
aposteriori probability (MAP) decoding of a single user’s data
symbol. This reduces the exponential complexity of a MAP
receiver to linear complexity in the number of UEs. However,
in low resolution quantized systems (discussed later), the
analog input to the receiver is not observed, and the above
approach may lead to suboptimal performance. In this case,
VBI provides a systematic approach to updating the soft
symbol estimates by incorporating the posterior distribution
induced by the quantization.

In the next subsection, we remove the perfect CSIR as-
sumption and infer the posterior distributions of the channel as
well as the data symbols given the unquantized observations.
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fk,t(s) , −
1

σ2
w

(
‖hk‖2 |s|2 − 2<

[
hHk

(
zd,t −

K∑
k′=1
k′ 6=k

hk′
〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s). (10)

sopt
k,t = arg min

s∈M

1

σ2
w

(
‖hk‖2 |s|2 − 2<

[
hHk

(
zd,t −

K∑
k′=1
k′ 6=k

hk′
〈
xd,k′t

〉)
s∗
])
− ln p(xd,kt = s). (11)

B. Statistical CSIR and Unquantized Observations

In this subsection, we solve the joint channel estima-
tion and soft symbol decoding problem in an unquantized
setup. Therefore, the unquantized received signals Zp =
[zp,1, . . . , zp,τp ] = HXp + Wp and Zd = [zd,1, . . . , zd,τd ] =
HXd + Wd are the observations. The channel H and the
data symbols Xd are the latent variables whose posterior
distributions need to be inferred. For this problem, a message
passing based approach is adopted in [33], [34] in a MIMO
OFDM setup where the channel has a diagonal structure,
whereas we use an iterative VBI framework which can be
used for arbitrary channels. Similar to the perfect CSIR case,
we impose a factorized structure on the posterior as fol-
lows: p

(
Xd,H|Zp,Zd,Xp; R, σ

2
w

)
≈ q (Xd) q (H) ,3 where

q (H) =
∏K
k=1 q (hk) , q (Xd) =

∏K
k=1

∏τd
t=1 qxd,kt (xd,kt) .

Using the structure of the model in Fig. 2, we factorize the
joint distribution of the observations and latent variables as

P
(
Zp,Zd,H,Xd|Xp; R, σ

2
w

)
= P

(
Zp|Xp,H;σ2

w

)
P
(
Zd|Xd,H;σ2

w

)
P (H|R)P (Xd) .

(12)

The likelihood functions of the pilot and data observations
Zp and Zd given the channel H, the pilots Xp, and the data
Xd are

P
(
Zp|Xp,H;σ2

w

)
=

1

(πσ2
w)τpNr

exp

(
− 1

σ2
w

τp∑
t=1

‖zp,t −Hxp,t‖2
)
,

P
(
Zd|Xd,H;σ2

w

)
=

1

(πσ2
w)τdNr

exp

(
− 1

σ2
w

τd∑
t=1

‖zd,t −Hxd,t‖2
)
,

respectively. Also, the prior distribution on the channel H is

p (H|R) =
K∏
k=1

1

πNr det(Rk)
exp

(
−

K∑
k=1

hHk R−1k hk

)
.

As before, the data symbols Xd are drawn i.i.d. uniformly
from the M -QAM constellation.

Our goal is to compute the approximate posterior dis-
tributions q(Xd) and q(H). As mentioned in the previous
section, we optimize the distributions by minimizing the KL
divergence between the original and approximate posterior.
We present the steps associated in obtaining the approximate
posterior distributions q(Xd) and q(H) below.

3We drop the subscripts on q for notational simplicity.

1) Computation of q(hk): We compute the approximate
posterior distribution q(hk) of the channel between the kth

user and the BS using the joint distribution in (12), as follows:

ln q (hk) ∝
〈
ln p

(
Zp|Xp,H;σ2

w

)
+ ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (H|R)〉 , (13)

where 〈·〉 denotes the expectation of the joint distribution over
all the latent variables excluding hk. In (13), we only include
the terms involving hk. Upon simplification, we get (14).
Taking the exponential on both sides of (14), we see that
the structure is that of a complex normal distribution with
covariance and mean given by (15) and (16), respectively.

Remark 2: We provide an interesting interpretation of the
channel estimate in (16). Consider a single user MIMO chan-
nel estimation problem with pilots xp ∈ Cτp×1 transmitted
over a duration of τp symbols. The received pilot symbols are
given by Yp = hxHp + Wp ∈ CNr×τp , where h ∈ CNr×1 is
the channel distributed as CN (0,R) and Wp ∈ CNr×τp is
the additive noise whose entries are i.i.d. CN (0, σ2

w). Post-
multiplying Yp with xp, we get Ypxp = h‖xp‖22 + Wpxp.
The MMSE estimate of h can be computed to be

ĥMMSE =
(
‖xp‖22INr + σ2

wR−1
)−1

Ypxp. (17)

Now, comparing the solution obtained in (16) and (15) with
(17), we see that the channel estimate 〈hk〉 of the kth user in
(16) is an MMSE estimate assuming the interference caused
by the remaining K − 1 users is cancelled successfully.
Therefore, by using a factorized structure on the posterior
distribution, and assuming successful interference cancella-
tion, the channel estimate obtained in (16) matches with the
Bayes’ optimal MMSE estimator.

2) Computation of qxd,kt(xd,kt): In this subsection, we
present the steps involved in the computation of the approxi-
mate posterior distribution qxd,kt(xd,kt) of the kth user’s data
symbol transmitted during the tth symbol interval. Similar
to the computation of q(hk), we use the joint distribution
(12) to compute the expectation in (18) with respect to all
the latent variables except xd,kt. We substitute the values of
xd,kt from the M−QAM constellation in the above equation
to get qxd,kt(xd,kt = s) in the same form as (9), with
fk,t(s) defined in (19), where s belongs to a symbol from
the M−QAM constellation. Similar to the perfect CSIR case,
qxd,kt(xd,kt) is Boltzmann distributed. We compute the mean
and mean squared values of xd,kt in the same manner as in
the previous subsection. We present the pseudocode for the
above procedure in Algorithm 2.
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ln q (hk) ∝ −
[
hHk

{∑τp
t=1 |xp,kt|2 +

∑τd
t=1〈|xd,kt|2〉

σ2
w

INr + R−1k

}
hk

− 2<
{

hHk

(
1

σ2
w

( τp∑
t=1

(
zp,t −

K∑
k′=1
k′ 6=k

〈hk′〉xp,k′t
)
x∗p,kt +

τd∑
t=1

(
zd,t −

K∑
k′=1
k′ 6=k

〈hk′〉〈xd,k′t〉
)
〈x∗d,kt〉

))}]
. (14)

Σhk =

(∑τp
t=1 |xp,kt|2 +

∑τd
t=1〈|xd,kt|2〉

σ2
w

INr + R−1k

)−1
, (15)

〈hk〉 =
1

σ2
w

Σhk

( τp∑
t=1

(
zp,t −

K∑
k′=1
k′ 6=k

〈hk′〉xp,k′t
)
x∗p,kt +

τd∑
t=1

(
zd,t −

K∑
k′=1
k′ 6=k

〈hk′〉〈xd,k′t〉
)
〈x∗d,kt〉

)
. (16)

ln qxd,kt (xd,kt) ∝ −
1

σ2
w

(〈
‖hk‖2

〉
|xd,kt|2 − 2<

[〈
hk
〉H(

zd,t −
K∑
k′=1
k′ 6=k

〈
hk′
〉〈
xd,k′t

〉)
x∗d,kt

])
+ ln p(xd,kt). (18)

fk,t(s) = − 1

σ2
w

(〈
‖hk‖2

〉
|s|2 − 2<

[〈
hk
〉H(

zd,t −
K∑
k′=1
k′ 6=k

〈
hk′
〉〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s). (19)

Remark 3: Both the channel estimate in (16) and the soft
symbol estimator in (19) depend on all the data symbols.
Since the channel remains constant over the entire frame,
iterative channel estimation and data detection entails using all
the data symbols. Symbol-by-symbol detection is not optimal
here, unlike the case where either perfect CSIR is assumed
to be available or pilot-only based channel estimates are used
for data detection.

Note that the approximate marginal posterior distributions
of the latent variables are dependent on each other. The
algorithm runs by randomly initializing the statistics of the
factorized distributions of the latent variables, and cycling
through to iteratively update the distributions.

C. Statistical CSIR and Quantized Observations

In this subsection, we infer the marginal posterior dis-
tributions of the data symbols and the channel given the
quantized observations Yp = Q(Zp) = Q (HXp + Wp),
Yd = Q(Zd) = Q (HXd + Wd) and the pilot symbols Xp.
The joint distribution of the observations and latent variables
is factorized as

p
(
Yp,Yd,H,Xd|Xp;σ

2
w,R

)
= p

(
Yp|Xp,H;σ2

w

)
p
(
Yd|Xd,H;σ2

w

)
p (H|R) p (Xd) .

The conditional distribution of the quantized observations Yd

given H,Xd is given by

p
(
Yd|Xd,H;σ2

w

)
=

∫
Zd

p (Yd |Zd) p
(
Zd|Xd,H;σ2

w

)
dZd

=

∫ Z(hi)
d

Z(lo)
d

1

(πσ2
w)Nrτd

exp

(
− 1

σ2
w

‖Zd −HXd‖2F

)
dZd,

(20)

Algorithm 2 VB Joint Channel Estimation and Soft Symbol
Decoding with Statistical CSIR

Input: Zp,Zd, {R1, . . . ,RK},Xp,M , M = {s1, . . . , sM},
τp, τd, σw

Output: {〈h1〉, . . . , 〈hK〉}, qxd,kt , 〈xd,kt〉 ∀k ∈ [K], t ∈ [τd]
1: Initialize qxd,kt(xd,kt), 〈xd,kt〉 = 0,∀k ∈ [K], t ∈ [τd]
2: repeat
3: for k = 1 to K, t = 1 to τd do
4: for m = 1 to M do
5: Compute qxd,kt(sm) using (9) and (19).
6: end for
7: 〈xd,kt〉 =

∑
s∈M s qxd,kt(s).

8: 〈|xd,kt|2〉 =
∑
s∈M |s|2 qxd,kt(s).

9: end for
10: for k = 1 to K do
11: Compute Σhk and 〈hk〉 using (15) and (16), respec-

tively.
12: end for
13: until a stopping condition is met.

where Z(lo)
d and Z(hi)

d are the lower and upper thresholds
of the quantizer corresponding to the observation Yd. The
conditional distribution of the quantized pilot observations
also has a similar structure as (20). Now, to obtain a closed
form expression for the approximate posterior distributions of
the latent variables using VBI, it is necessary to compute the
expectation of the logarithm of the difference of two cumula-
tive distribution functions of a complex normal random vector,
which is not straightforward. We circumvent this problem by
introducing the unquantized pilot and data observations as
latent variables. We will see that this leads to a convenient
analytical expression for the posterior distribution.
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The conditional distributions of the unquantized obser-
vations and the channel are as derived in Sec. III-B. The
conditional distributions of the quantized observations, given
the unquantized received signals, are given by

p (Yd|Zd) = 1
(
Zd ∈ [Z

(lo)
d ,Z

(hi)
d ]
)
,

p (Yp|Zp) = 1
(
Zp ∈ [Z(lo)

p ,Z(hi)
p ]
)
,

(21)

where 1(·) is the indicator function and the arguments of the
indicator function Z

(lo)
d ,Z

(hi)
d and Z

(lo)
p ,Z

(hi)
p are the lower and

upper limits of the quantizer corresponding to the observations
Yd and Yp, respectively. To elaborate, let us take an example
of quantization of a scalar z (z(lo) ≤ z ≤ z(hi)) to a value
y that takes values from a discrete set Q with cardinality
2b, where b is the number of bits of the quantizer. Note
that this discrete set depends on the choice of the quantizer.
For example, a uniform quantizer contains uniformly spaced
values. Now, the value to be quantized fully specifies the
output of the quantizer, i.e., the probability mass function of
the quantizer output is a Kronecker delta function.

We impose a factorized structure on the posterior distribu-
tion of the latent variables:

p
(
Zp,Zd,Xd,H|Yp,Yd,Xp,R, σ

2
w

)
≈ q (Zp) q (Zd) q (Xd) q (H) , (22)

where q (H) =
∏K
k=1 q (hk),

q (Xd) =
∏K
k=1

∏τd
t=1 qxd,kt (xd,kt), q (Zd) =

∏τd
t=1 q (zd,t),

and q (Zp) =
∏τp
t=1 q (zp,t). We compute the approximate

marginal posterior distributions of the latent variables in a
similar manner as in Sections III-A and III-B, and outline the
differences below.

1) Computation of q(hk): We compute the approximate
posterior distribution q(hk) of the channel between the kth

user and the BS by taking expectation of the natural logarithm
of the joint probability distribution with respect to the approx-
imate distributions of all the latent variables excluding hk.
This computation is similar to that in Sec. III-B, except that
the unquantized observations Zp and Zd are latent variables.
The final expression is as shown in (23).

Taking the exponential on both sides of (23), we see that
the structure is that of a complex normal distribution with
covariance and mean given by (24) and (25), respectively.

2) Computation of qxd,kt(xd,kt): Following a similar ap-
proach as in Sections III-A and III-B, qxd,kt(xd,kt), k =
1, . . . ,K, t = 1, . . . , τd is given by the Boltzmann distribution
in (9), where s is an M−QAM symbol, with fk,t(s) defined
in (26). We compute the mean and mean square values of
qxd,kt in a similar manner as in Sec. III-A.

3) Computation of q(zd,t) and q(zp,t): We obtain the
distribution q(zd,t) as follows:

ln q (zd,t)

=
〈
ln p (Yp|Zp) + ln p (Yd|Zd) + ln p

(
Zp|Xp,H;σ2

w

)
+ ln p

(
Zd|Xd,H;σ2

w

)
+ ln p (H|R) + ln p (Xd)

〉
,

∝
〈

ln1
(
zd,t ∈ [z

(lo)
d,t , z

(hi)
d,t ]
)
− 1

σ2
w

‖zd,t −Hxd,t‖2
〉
.

Thus, we see that q (zd,t) is a truncated complex normal
distribution with mean

〈zd,t〉 = µzd,t +

φ

(
z
(lo)
d,t−µzd,t

σw/
√
2

)
− φ

(
z
(hi)
d,t−µzd,t

σw/
√
2

)
Φ

(
z
(hi)
d,t−µzd,t

σw/
√
2

)
− Φ

(
z
(lo)
d,t−µzd,t

σw/
√
2

) σw√
2
,

(27)

where µzd,t = 〈H〉 〈xd,t〉. The division operation is a scalar
element-wise division operated individually on real and imag-
inary components. We compute the approximate posterior
distribution q(zp,t) of the unquantized received pilot symbols
in the same manner as q(zd,t), and its mean is given by

〈zp,t〉 = µzp,t +

φ

(
z
(lo)
p,t−µzp,t

σw/
√
2

)
− φ

(
z
(hi)
p,t−µzp,t

σw/
√
2

)
Φ

(
z
(hi)
p,t−µzp,t

σw/
√
2

)
− Φ

(
z
(lo)
p,t−µzp,t

σw/
√
2

) σw√
2
,

(28)

where µzp,t = 〈H〉xp,t. Note that computing q(zp,t) and
q(zd,t) does not involve an expectation of the logarithm of
integrals, as mentioned earlier.

The pseudocode for the VB procedure for the joint channel
estimation and soft symbol decoding is shown in Algorithm 3.
The VBI algorithm starts by randomly initializing the latent
variables and maximizing the ELBO by fixing all but one
hidden variable. Once the probabilities qxd,kt are obtained, we
choose the symbol with the highest probability as the decoded
symbol for each k ∈ {1, . . . ,K} and t ∈ {1, . . . , τd} in the
case of uncoded communication. For coded communication
applications, it is straightforward to compute the LLRs of the
data bits from qxd,kt and pass them as inputs to the channel
decoder [36]. Also, the mean of the marginal posterior of
the channel can be used as a channel estimate for SNR
computation, CSI feedback etc.

D. No CSIR and Quantized Observations

In this subsection, we extend the VB approach to the case
where there is no information about the channel statistics
also. This situation may arise in massive machine type
communication applications where a large number of low
power UEs sporadically wake up and transmit data to the
BS or AP. In such scenarios, the assumption of knowledge
of channel statistics at the BS or AP may not be appropriate.
We assume that the channels between a UE and the different
antennas at the BS are uncorrelated and that the LSFCs are the
same across all BS antennas. We impose a non-informative
conjugate Gamma prior for the inverse of the LSFCs. Let αk
denote the inverse of the LSFC between the kth UE and the
BS and let α = [α1, . . . , αK ]T . The prior on αk is given by

p(αk; a, b) =
ba

Γ(a)
αa−1k exp(−bαk), (29)

where a and b are the parameters of the Gamma distribution.
Conditioned on αk, the channel hk of the kth UE is distributed
as CN (0, α−1k INr ). The joint distribution of the observed and
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ln q (hk) ∝ −

[
hHk

{∑τp
t=1 |xp,kt|2 +

∑τd
t=1〈|xd,kt|2〉

σ2
w

INr + R−1k

}
hk

− 2<

{
hHk

(
1

σ2
w

( τp∑
t=1

(
〈zp,t〉 −

K∑
k′=1
k′ 6=k

〈hk′〉xp,k′t
)
x∗p,kt +

τd∑
t=1

(
〈zd,t〉 −

K∑
k′=1
k′ 6=k

〈hk′〉〈xd,k′t〉
)
〈x∗d,kt〉

))}]
.

(23)

Σhk =

(∑τp
t=1 |xp,kt|2 +

∑τd
t=1〈|xd,kt|2〉

σ2
w

INr + R−1k

)−1
, (24)

〈hk〉 =
1

σ2
w

Σhk

( τp∑
t=1

(
〈zp,t〉 −

K∑
k′=1
k′ 6=k

〈hk′〉xp,k′t
)
x∗p,kt +

τd∑
t=1

(
〈zd,t〉 −

K∑
k′=1
k′ 6=k

〈hk′〉〈xd,k′t〉
)
〈x∗d,kt〉

)
. (25)

fk,t(s) = − 1

σ2
w

(〈
‖hk‖2

〉
|s|2 − 2<

[〈
hk
〉H(〈

zd,t
〉
−

K∑
k′=1
k′ 6=k

〈
hk′
〉〈
xd,k′t

〉)
s∗
])

+ ln p(xd,kt = s). (26)

Algorithm 3 QVB Joint Channel Estimation and Soft Symbol
Decoding with Statistical CSIR

Input: Yp,Yd, {R1, . . . ,RK},Xp,M , M = {s1, . . . , sM},
τp, τd, σw

Output: {〈h1〉, . . . , 〈hK〉}, qxd,kt , 〈xd,kt〉 ∀k ∈ [K], t ∈ [τd]
1: Initialize 〈Zp〉, 〈Zd〉, qxd,kt(xd,kt), 〈xd,kt〉 = 0,∀k ∈

[K], t ∈ [τd]
2: repeat
3: for k = 1 to K, t = 1 to τd do
4: for m = 1 to M do
5: Compute qxd,kt(sm) using (9) and (26).
6: end for
7: 〈xd,kt〉 =

∑
s∈M s qxd,kt(s).

8: 〈|xd,kt|2〉 =
∑
s∈M |s|2 qxd,kt(s).

9: end for
10: for k = 1 to K do
11: Compute Σhk and 〈hk〉 using (24) and (25), respec-

tively.
12: end for
13: for t = 1 to τp do
14: Compute 〈zp,t〉 using (28).
15: end for
16: for t = 1 to τd do
17: Compute 〈zd,t〉 using (27).
18: end for
19: until a stopping condition is met.

the latent variables is given by

p
(
Yp,Yd,Zp,Zd,H,Xd,α; Xp, σ

2
w, a, b

)
= p (Yp|Zp) p (Yd|Zd) p

(
Zp|Xp,H;σ2

w

)
× p

(
Zd|Xd,H;σ2

w

)
p (H|α) p (Xd) p (α; a, b) . (30)

We impose a factorized structure on the posterior distribution:

p
(
Zp,Zd,Xd,H,α|Yp,Yd; Xp, σ

2
w, a, b

)
≈ q (Zp) q (Zd) q (Xd) q (H) q (α) , (31)

where q (H) =
∏K
k=1 q (hk), q (Xd) =

∏K
k=1

∏τd
t=1 q (xd,kt),

q (Zd) =
∏τd
t=1 q (zd,t), q (Zp) =

∏τp
t=1 q (zp,t), and

q (α) =
∏K
k=1 q (αk).

The computation of q(Zp), q(Zd), q(H) and q(Xd) is
the same as in Sec. III-C. We obtain q(α) by taking the
expectation of the logarithm of the joint distribution in (30)
with respect to all the latent variables except α to get

ln q(αk) ∝ (a+Nr − 1) lnαk − αk(b+ 〈‖hk‖2〉). (32)

Taking the exponential on both sides, we observe that q(αk)
is Gamma distributed with shape and rate parameters (a+Nr)
and (b+ 〈‖hk‖2〉), respectively. The mean of q(αk) is

〈αk〉 =
a+Nr

b+ 〈‖hk‖2〉
. (33)

If we denote the LSFC of the kth UE by βk, then 〈βk〉 =
1/〈αk〉 =

(
b+ 〈‖hk‖2〉

)
/] (a+Nr). We set a = 0 and b =

10−4 in our simulations. The pseudocode for joint channel
estimation and soft symbol decoding with no CSIR is similar
to Algorithm 3; we highlight the changes in Algorithm 4. Note
that the QVB with no CSIR algorithm does not have any
matrix inverse operations, which makes it computationally
attractive. Also, the estimation of 〈αk〉 involves only K scalar
divisions and does not add much complexity to the procedure.

E. VB-BP Receiver

In order to improve the BER of a communication system, a
typical engineering approach is to employ an iterative receiver
architecture where the posterior beliefs of the output bits
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Algorithm 4 QVB Joint Channel Estimation and Soft Symbol
Decoding with No CSIR

Input: Yp,Yd,Xp,M ,M = {s1, . . . , sM},τp,τd,σw,a, b,Nr
Output: {〈h1〉, . . . , 〈hK〉}, qxd,kt , 〈xd,kt〉 ∀k ∈ [K], t ∈ [τd]

1: Initialize 〈Zp〉, 〈Zd〉, qxd,kt(xd,kt), 〈xd,kt〉 = 0,∀k ∈
[K], t ∈ [τd], {〈α1〉, . . . , 〈αK〉}

2: repeat
3: Computation of qxd,kt , 〈xd,kt〉, 〈|xd,kt|2〉: Follow steps

3 to 8 of Algorithm 3.
4: for k = 1 to K do
5: Compute

Σhk =
(∑τp

t=1 |xp,kt|
2+
∑τd
t=1〈|xd,kt|

2〉
σ2
w

+ 〈αk〉
)−1

INr .
6: Compute 〈hk〉 using (25).
7: Compute 〈‖hk‖2〉 = Trace(Σhk) + ‖〈hk〉‖2 and

〈αk〉 = a+Nr
b+〈‖hk‖2〉 .

8: end for
9: Computation of 〈zp,t〉 , 〈zd,t〉 ∀t: Follow steps 13 to 18

of Algorithm 3.
10: until a stopping condition is met.

of the channel decoder (belief propagation (BP) decoder in
our case) are fed back to the detector block. However, in
commercial wireless systems, the stringent time requirements
to complete the detection and channel decoding task within
the transmission interval needs fast detection and decoding.
Our VB approach makes it convenient to implement such a
receiver without additional complexity. Instead of running the
VB algorithm till convergence, we execute only one iteration
of Algorithms 2, 3 or 4 and feed the LLRs obtained to the
channel decoder. The BP decoder also runs only one iteration
and outputs the aposteriori LLRs that are used to compute
the extrinsic information.4 We use this to adapt the data
prior probability distribution in the next VB iteration. This
approach is also guaranteed to converge as the VB converges
to a stationary point from any initialization, and BP also
converges if the associated factor graph is cycle-free. We
illustrate this using an LDPC code with a cycle-free sparse
parity check matrix. We find that the approach converges
fast and also leads to a performance improvement of around
0.5 dB compared to performing soft symbol estimation and
channel decoding one after the other. Hence, we use this
receiver architecture in our simulations.

F. Computational Complexity

In this subsection, we analyze the per-iteration computa-
tional complexity of the variational Bayesian algorithms. We
provide the complexity of the VB algorithm with statistical
CSIR and quantized observations, as the algorithms for the
perfect CSIR and unquantized observations are special cases
with lower complexity. Table I shows the order (O) of the
per-iteration computational complexity of the steps involved
in one iteration of the VB algorithm. The per-iteration com-
plexity of the overall algorithm scales cubically with the

4The extrinsic information is obtained by subtracting the LLRs output by
the VB receiver from the LLRs output by the channel decoder.

TABLE I.
PER-ITERATION COMPLEXITY OF THE VB ALGORITHM

Matrix Order Complexity

〈Xd〉 MK2Nrτd

{Σhk}Kk=1 K(N3
r + τd)

〈H〉 KN2
r +K2Nr(τp + τd)

〈Zp〉 KNrτp

〈Zd〉 KNrτd

number of rx antennas, quadratically with the number of
users, and linearly with the constellation size and number of
pilot and data symbols. In particular, the complexity is linear
in the number of data symbols τd, unlike maximum likelihood
approaches where the complexity grows exponentially with
τd. The total time taken by VB algorithm is low due to
its fast and guaranteed convergence to a local optimum. In
our experiments, we find that the VB algorithm typically
converges within 16 iterations, and the improvement from
running further iterations is negligible.

IV. SIMULATION RESULTS

In this section, we evaluate the normalized mean square
error (NMSE) in channel estimation and the data bit error rate
(BER) of the VBI algorithms in an uplink massive MIMO
wireless communication system with low resolution ADCs
at the BS. We use an LDPC channel code from 3GPP 5G
NR specifications [38]. We use the parity check matrix from
LDPC base graph 0 with a lifting size Zc set to 8 and set
index 0, which results in 176 message bits and 544 coded
bits per block. We set Nr = {100, 200},K = {25, 50}.
We vary τd from 100 to 450 and set the ADC resolution
to 3 bits. We also evaluate the performance with pilot power
boosting in which pilots are transmitted at a slightly higher
power level to improve the channel estimation (see Fig. 9).
Throughout this section, the data symbols are drawn i.i.d.
from a 4-QAM constellation with unit energy. With higher
order constellations, the performance is similar, with an
expected shift in the SNR required to achieve a given BER.
Except in Fig. 7b, we fix the maximum number of iterations to
16, as the BER improvement beyond 16 iterations is marginal.

The channel coefficient between the kth UE and the
nth rx antenna at the BS is denoted by hnk, and hk ,
[h1k, h2k, . . . , hNrk]T . We assume that the LSFCs between
the kth UE and each antenna at the BS are the same due to the
close spacing between the BS antennas. We also assume that
the transmit antennas at each UE are spatially uncorrelated.
We model the spatial correlation between the rx antennas at
the BS using a Kronecker spatial fading correlation model
[39]–[41]. The channel vector hk is expressed as hk =

R
1
2

k hiid
k , where hiid

k is distributed as CN (0, INr ), and Rk ∈
CNr×Nr is the spatial correlation matrix of the kth UE’s chan-
nel. The (m,n)th element of Rk is given in (34), where βk
is the LSFC of the kth UE, a = 2πd

λ

√
νelk (n−m) cos

(
θelk
)
,

b = 1 + νazk a
2sin2 (θazk ) and c = 2πd

λ (n−m) sin
(
θelk
)
. Here,

λ is the carrier wavelength, d is the antenna spacing; θazk and
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[Rk]mn =
βk√
b
exp

(
− 1

2b

[
a2cos2 (θk

az)− 2jc cos (θazk ) + νazk c
2sin2 (θazk )

])
. (34)
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θelk are the means of horizontal angle of arrival (AoA) and
vertical AoA, respectively; νazk and νelk are the variances of
horizontal AoA and vertical AoA, respectively. We consider
a uniform linear antenna array with the spacing between its
elements set to λ. We set the mean and standard deviation of
the horizontal and vertical AoA to be uniformly distributed
between −π/3 and π/3 radians, and 0 and π/6 radians,
respectively. The UEs adopt path loss inversion based transmit
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Figure 6. Coded BER vs. ADC resolution (bits), with K = 25, τd = 100,
and Rk = INr ∀k.

power control that compensates for the LSFCs,5 i.e., the
diagonal entries of the channel covariance matrix are close to
1 [42], [43]. Without power control, if the LSFCs of the UEs’
channels are very different, the UEs that have small LSFCs
will suffer high quantization noise. This leads to low signal
to quantization noise ratio and therefore poor BER. Taking
into account possibly imperfect power control, we assume
that the diagonal entries of the channel covariance matrix are
uniformly distributed between 1 and 1.2. For the uncorrelated
case, we set the channel covariance to be INr .

We benchmark the coded BER and NMSE performance of
the quantized VB algorithm with that of a genie channel aided
unquantized VB algorithm, an unquantized BiGAMP based
joint channel and data estimator [28] and a unquantized linear
MMSE soft-decoder [36]. We set the maximum number of
iterations for the BiGAMP receiver to 500. The unquantized
VB algorithm with perfect CSIR serves as a lower bound
for the BER of the quantized algorithm. We note that there
are variants of MMSE decoder such as MMSE-SIC, but their
computational complexities are much higher due to the matrix
inversions involved in every iteration of SIC [31]. Hence, we
do not compare against these methods here.

Figure 3 shows the coded BER when SNR (dB) is varied
for Nr = 200, K = 50, τd = 450 and 3 bits quantization
when the channel covariance matrix is set to INr . We compare
the performance of the VB algorithm with perfect CSIR
(labeled UQVB-CSIR, QVB-CSIR for the unquantized and
quantized cases, respectively) with the performance with
statistical CSIR (labeled UQVB-StCSIR, QVB-StCSIR in the
unquantized and quantized cases, respectively) and no CSIR
case (labeled QVB-NoCSIR).

There are three groups of curves. The best performance is
achieved by the genie-aided receivers that have perfect CSIR
(QVB-CSIR and UQVB-CSIR). With 3-bit quantization in
the ADCs, the gap between QVB-CSIR and UQVB-CSIR
is less than 0.4 dB. The next set of curves correspond to
the VB algorithm with statistical CSIR and no CSIR. There

5The LFSCs can be estimated at the UEs, for example, using the primary
synchronization signals that are periodically transmitted by the BS.
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is almost no performance gap between the quantized VB
algorithm with and without statistical CSIR. Further, as in
the perfect CSIR case, the loss due to 3-bit quantization
compared to the unquantized VB algorithm is less than
0.4 dB. We also note that the performance gap between the
first and second set of curves is around 2.5 dB, in both
the quantized and unquantized cases. This illustrates that it
is important to account for the effect of channel estimation
errors, in order to realistically estimate the performance.
The performance gap can be reduced by employing pilot
power boosting or longer pilot sequences. UQVB-StCSIR
outperforms unquantized BiGAMP (labeled UQ-BiGAMP) by
more than 0.5 dB. Moreover, with only 3 bits quantization,
both QVB-StCSIR and QVB-NoCSIR marginally outperform
UQ-BiGAMP. Finally, the worst performance is achieved by
the MMSE based receivers [36], with the gap between the

quantized MMSE receiver and the quantized VB algorithm
with no CSIR being nearly 3 dB at a BER of 10−4. The signif-
icantly better performance achieved by the VB algorithms is
clear from the plot. In addition, the gap between the quantized
MMSE and the unquantized MMSE receivers shows that
linear receivers can result in suboptimal performance, even
if the channel state is made available to the receiver. For the
quantized and unquantized MMSE detectors, the channels are
estimated using the quantized and unquantized pilot received
signals, respectively.

Figure 4 shows the BER vs. SNR performance of the
VB algorithm with correlated channels with and without
CSIR (curves labeled Kron). We also show the performance
under i.i.d. channels (curves labeled iid). We observe that,
in a spatially correlated scenario, the algorithm that has the
knowledge of the channel covariance matrices (Cov-Kron)
performs around 1 dB better at a BER of 10−3 than the
algorithms that do not have the knowledge of the channel
covariance matrices (NoCSIR-Kron and LSFC-Kron). Note
that the VB algorithm with NoCSIR assumes i.i.d. channels,
which results in a degraded performance under spatially
correlated scenarios. This shows the importance of utilizing
the correlation information when designing receiver schemes.
We observe that the performance of the VB algorithm when
the BS has the knowledge of only the LSFCs of the UEs’
channels (LSFC-Kron) is poor compared to Cov-Kronecker.
Thus, utilizing only the knowledge of LSFCs is not sufficient,
and the full correlation information is necessary to obtain
better performance. Also, under an i.i.d. channel scenario, VB
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Figure 10. Run-time (seconds) comparison of QVB and unquantized BiGAMP algorithms.

with NoCSIR (NoCSIR-iid) performs very close to VB with
complete knowledge of channel covariance matrices (Cov-
iid). This shows that VB with NoCSIR is able to estimate the
LSFCs accurately with very little additional computational
complexity. We see an error floor in the spatially correlated
case at high SNRs. This is because, the channel AoAs are
spread within a narrow range (standard deviation of π/6),
which results in non-negligible multiuser interference at high
SNRs. We also observe that, in the spatially correlated sce-
nario, the unquantized BiGAMP based receiver (labeled UQ-
BiGAMP-Kron) performs about 1 dB worse than Cov-Kron
with 3 bit ADCs, and marginally worse than LSFC-Kron with
3 bit ADCs. The BiGAMP receiver assumes i.i.d. channels but
has the knowledge of the LSFCs. Finally, the NoCSIR-Kron
curve, which is obtained without knowledge of the channel
covariance matrices or the LSFCs, but 3 bits quantization,
performs the same as UQ-BiGAMP-Kron.

Figure 5 compares the BER of the QVB algorithms with
and without the knowledge of statistical CSIR for various
values of τd, for uncorrelated channels (Rk = INr ). The
performance of QVB with no CSIR is only marginally worse
than that of QVB with statistical CSIR. Also, we see a
roughly 10-fold improvement BER when the number of data
symbols is doubled. This shows that the VB algorithm is able
to effectively use the data symbols to improve the channel
estimates. We recall that the computational complexity of the
receiver for uncorrelated channels is lower than the correlated
channel case, as the channel covariance matrix is diagonal
and all the matrix operations can be computed using scalar
computations.

Figure 6 shows the BER vs. ADC resolution (in bits) for
various rx antenna and SNR configurations. We set τd = 100,
K = 25 and the spatial correlation matrices to INr . The BER
improves as the ADC resolution increases, as expected, but
the slope of the BER curve decreases and becomes almost
0 beyond 4−bits resolution. This illustrates that low resolu-
tion ADCs are relevant in wireless communication systems,
especially in massive MIMO systems where the number of
antennas are large compared to the number of users. For
example, in order to achieve a BER of 10−3, UEs have
to expend twice the transmit power if the BS is equipped
with 100 antennas and 3 bit ADCs compared to a system
with 200 antennas at the BS and 5 bit ADCs. Thus, a 3 dB
higher transmit power at the UEs can lead to significant power

savings at the BS. On the other hand, if a UE does not have the
power budget to increase its transmit power, using additional
antennas at the BS can provide the required rx antenna gain.
Such tradeoff analyses can be used by a system designer to
configure the system parameters based on the bit budget and
power constraints at the BS and UEs.

We now turn to the channel estimation performance of
the VB algorithms. Figure 7a shows the NMSE of channel
estimation as a function of the SNR (dB), for Nr = 200,
K = 50, τd = 450 and 3 bits quantization. The VBI
algorithms with quantized observations provide around 8 dB
improvement at an NMSE of −10 dB compared to the MMSE
estimation based on unquantized observations. We also see
that the NMSE of the unquantized VB (UQVB) is almost
the same as the 3-bit quantized VB (QVB) algorithm. This is
because the VBI algorithms refine the channel estimates based
on the posterior beliefs of the data symbols. This feature can
be directly translated to a reduction in the training overhead
required in massive MIMO systems with low resolution
ADCs, and thereby improve the achievable spectral efficiency.

Figure 7b shows the convergence behavior of the VB
algorithms, with Nr = 100, K = 25, τd = 200 for both
unquantized and 3 bits quantization cases. The convergence
behaviors for both the unknown CSIR and genie aided case
(with legend suffixed with CSIR) are shown. We use the
means of the estimated data symbols and channel to compute
the normalized error for the perfect CSIR and the unknown
CSIR cases, respectively. We see that the VBI algorithms
converge to a normalized error below −20 dB within about
20 iterations. This illustrates that the proposed algorithms are
of polynomial complexity with fast convergence.

Figures 8a and 8b show the coded BER and NMSE per-
formance of the VB algorithms, respectively, with Nr = 100,
K = 25, SNR = −13.5 dB and 3 bits quantization, as a
function of the data duration τd. As τd increases, the BER and
NMSE of the VBI algorithms improves, unlike the MMSE
receivers. Again, this is because the VBI algorithm uses the
posterior beliefs of the data symbols to refine its channel
estimates, which in turn improves the quality of the posterior
beliefs of the data symbols. Therefore, the performance can
be dramatically improved by jointly decoding a larger number
of data symbols (up to the coherence time of the channel),
leading to a reduced training overhead even in the presence
of low resolution ADCs.
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Figure 9 compares the BER across different algorithms
when the pilot transmit power is boosted (PPB) by a certain
amount above that of the data transmit power, and with τp set
to K, 2K and 4K. We see that, as the pilot duration increases,
the BS is able to estimate the channels better, resulting in
improved performance. A similar performance improvement
occurs with PPB. For example, PPB of 3 dB results in nearly
the same performance as the case when the pilot duration is
doubled. We also show the BER when τd = {250, 300, 350}.
If the coherence interval is large, the VBI approach provides
a system designer the option to avoid PPB or increasing τp
while still meeting the QoS requirements.

Figures 10a and 10b compare the average run times of the
QVB algorithm based on quantized observations with that
of unquantized BiGAMP procedure for various values of the
number of users K and the data duration τd, respectively. The
simulations were executed using MATLAB R2020b in an Intel
core i7, 3 GHz × 8 CPU with 64 GB RAM running an Ubuntu
18.04 LTS 64 bits operating system. We use the normalized
mean squared difference in the channel estimate between two
successive iterations as the convergence metric, and set it to
10−5. We see that the total run time taken by quantized VB
algorithm is far less than that of unquantized BiGAMP, even
though the per iteration complexity of BiGAMP scales lin-
early with system dimensions. This shows that our proposed
quantized VB-BP based joint channel estimation and soft
symbol decoding not only performs better than unquantized
BiGAMP, but is also faster.

V. CONCLUSIONS

We considered joint channel estimation and soft symbol
decoding in a single carrier uplink massive multiple input
multiple output (MIMO) receiver with low resolution ADCs.
We proposed a novel, low-complexity VB procedure that
directly outputs the posterior beliefs of the data symbols. The
channel estimates obtained can potentially be used for signal
to interference noise (SINR) computation and link adaptation.
We provided a flexible approach to integrate the VB receiver
with a BP channel decoder via extrinsic information feedback.
We evaluated the coded data BER and the NMSE in the
channel estimates obtained by our algorithm using Monte
Carlo simulations and benchmarked it against the state-of-
the-art receivers. Our future work would involve combining
various approximate inference techniques for the joint channel
estimation and data decoding, and perform a comparative
study of their performance. We would also like to unfold
the VB receiver in a deep neural network to reduce the
computation time further, and study its performance under
various system configurations.
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