Restless Multi-arm Bandits and Optimality of Whittle Index

February 25, 2017

Plan

- Background (Infinite horizon average-cost MDPs)
- RMABs and Whittle index
- Example problem

MDPs

- Framework to solve sequential decision making problems, e.g., uplink scheduling problem
- Described by a tuple: $\{\mathcal{S}, \mathcal{T}, \mathcal{A}\}$
- Example: uplink scheduling over N Gilbert-Elliot channels
- Infinite horizon average cost MDP objective:

$$
R_{\pi}(i)=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}\left\{\sum_{k=0}^{N-1} c\left(x_{k}, \mu_{k}\left(x_{k}\right)\right) \mid x_{0}=i\right\}
$$

Bellman Equation [Prop. 7.4.1, Bertsekas]

For average cost per stage problem:

- The optimal average cost R^{*} is the same for all initial states and together with some vector $f^{*}=\left\{f^{*}(1), \ldots\right.$, $\left.f^{*}(n)\right\}$ satisfies Bellman's equation

$$
R^{*}+f^{*}(i)=\min _{u \in U(i)}\left[c(i, u)+\sum_{j=1}^{n} p_{i j}(u) f^{*}(j)\right]
$$

for all $i=1, \ldots, n$, and f^{*} is unique such that $f^{*}(n)=0$.

- If $\mu(i)$ attains the minimum in above for all i, the stationary policy is optimal
- If a scaler R and a vector f satisfy the Bellman's equation then R is the average optimal cost
- Policy iteration: Curse of dimensionality

Multi-armed Bandits

- ' L out of N ' type sequential decision problems
- Simple Multi-armed bandits: only active projects/arms incur the cost and evolve.
- Restless multi-armed bandits: projects/arms which are not scheduled also evolve and incur the cost, e.g., N queues served by L servers
- Other variants: arm-acquiring bandits, hidden Markov bandits etc.
- In principle, can be solved using dynamic programming, but complexity increases exponentially in N
- There is an easier way (since arms are loosely coupled)

Whittle Index based policy for RMABs

- Compute the Whittle index for each arm
- Choose arms with top L whittle index.
- Such policies are near-optimal, and can be shown to be asymptotically optimal as $N \rightarrow \infty$ with $\frac{L}{N}$ fixed.

Example

System Model

- Assumption: The Time is discrete.
- At most L sensors can simultaneously transmit in a time slot.

- Channel : unreliable

For client \mathbf{n} :

- Packet success probability: $P_{n} \in(0,1)$
- Each attempt consumes E_{n} units of energy

Problem statement

- Ojectives: regularity and energy-efficiency
- Designing a wireless scheduling policies that support the inter-delivery requirements of such wireless clients in an energy-efficient way.
- The QoS requirement of client n is specified through an integer, the packet inter-delivery time threshold τ_{n}.

Access point Goal: To select at most L clients to transmit in each time-slot from among the N clients, so as to minimize the cost function.

Cost function

The cost function incurred by the system during the time interval $\{0,1,2, \ldots, \mathrm{~T}\}$ is given by,

$$
\begin{equation*}
E\left[\sum_{n=1}^{N}\left(\sum_{i=1}^{M_{T}^{(n)}}\left(D_{i}^{(n)}-\tau_{n}\right)^{+}+\left(T-t_{\substack{D_{M}^{(n)} \\ M_{T}^{(n)}}}-\tau_{n}\right)^{+}+\eta \hat{M}_{T}^{(n)} E_{n}\right)\right] \tag{1}
\end{equation*}
$$

$D_{i}^{(n)} \quad$: time between the deliveries of the i-th and $(i+1)$-th packets for client n.
$M_{T}^{(n)} \quad$: The number of packets delivered for the n-th client by the time T.
$t_{D_{i}^{(n)}}$: Time slot in which the i-th packet for client n is delivered.
$\hat{M}_{T}^{(n)} \quad$: Total number of slots in $\{0,1, \ldots, \mathrm{~T}-1\}$ in which the n-th client is selected to transmit.
$\eta \quad$: energy efficiency parameter.

Reduction to Finite state problem

- The system state at time-slot t is denoted by a vector $X(t):=\left(X_{1}(t), \ldots, X_{N}(t)\right)$.
where $X_{n}(t)$: Time elapsed since the latest delivery of client $n^{\prime} s$ packet.
- The Action at time t is $U(t):=\left(U_{1}(t), \ldots, U_{N}(t)\right)$, with $\sum_{n=1}^{N} U_{n}(t) \leq L$

$$
U_{n}(t)= \begin{cases}1 & \text { if client } \mathrm{n} \text { is selected to transmit in slot } \mathrm{t} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The system state evolve as,

$$
X_{n}(t+1)= \begin{cases}0 & \text { if a packet of client } \mathrm{n} \text { is delivered in } \mathrm{t} \tag{3}\\ X_{n}(t)+1 & \text { otherwise } .\end{cases}
$$

- The system forms a controlled Markov chain(MDP-1), with the transition probabilities given by,

$$
\begin{array}{r}
P_{\mathrm{x}, \mathrm{y}}^{M D P-1}(\mathbf{u}):=P[X(t+1)=\mathbf{y} \mid X(t)=\mathbf{x}, U(t)=\mathbf{u}] \\
\quad=\prod_{n=1}^{N} P\left[X_{n}(t+1)=y_{n} \mid X_{n}(t)=x_{n}, U_{n}(t)=u_{n}\right] \tag{4}
\end{array}
$$

$$
P\left[X_{n}(t+1)=y_{n} \mid X_{n}(t)=x_{n}, U_{n}(t)=u_{n}\right]:= \begin{cases}p_{n} & \text { if } y_{n}=0 \text { and } u_{n}=1 \tag{5}\\ 1-p_{n} & \text { if } y_{n}=x_{n}+1 \text { and } u_{n}=1 \\ 1 & \text { if } y_{n}=x_{n}+1 \text { and } u_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

- The optimal cost-to-go function for MDP-2 is,

$$
\begin{gather*}
V_{T}(\mathrm{x}):=\min _{\pi: \Sigma_{n} U_{n}(t) \leq L} \mathrm{E}\left\{\sum _ { t = 0 } ^ { T - 1 } \sum _ { n = 1 } ^ { N } \left(\eta E_{n} U_{n}(t), \forall \mathrm{x} \in \mathbb{Y}\right.\right. \tag{5}\\
\left.+1\left\{Y_{n}(t)=\tau_{n}\right\} \mid Y(0)=\mathrm{x}\right\}
\end{gather*}
$$

- Theorem 4: MDP-2 is equivalent to the MDP-1 in that:

1. MDP-2 has the same transition probabilities as the accompanying process of MDP-1, i.e., the process $X(t) \wedge \tau$;
2. Both MDPs satisfy the recursive relationship in (3); thus, their optimal cost-to-go functions are equal for each starting state \times with $x_{n} \leq \tau_{n}$;
3. Any optimal control for MDP-1 in state x is also optimal for MDP-2 in state $x \wedge \tau$
The Dynamic Programming recursion for the optimal cost in MDP-2 is

$$
\begin{align*}
V_{T}(\mathrm{x})= & \min _{\mathrm{u}: \Sigma_{n} u_{n} \leq L} \mathrm{E}\left\{\sum_{n}\left(\eta E_{n} u_{n}+1\left\{x_{n}=\tau_{n}\right\}\right)\right. \\
& \left.+\sum_{\mathrm{y}} P_{\mathrm{x}, \mathrm{y}}^{\mathrm{MDP}-2} V_{T-1}(\mathrm{y})\right\} \tag{6}
\end{align*}
$$

Formulation of Restless Multi-armed bandit Problem

Notations:

- $\alpha=\frac{L}{N}$, Maximum fraction of clients that can simultaneously transmit.
- $Y_{n}(t)$ associated with client n is denoted as project n.
- $U_{n}(t)=1$, if the project n is active in slot t .
- $U_{n}(t)=0$, if the project n is passive in slot t .

The infinite-horizon problem is to solve, with $Y(0)=\mathbf{x} \in \mathbb{Y}$,

$$
\begin{align*}
& \max _{\pi} \lim _{T \rightarrow+} \inf _{\infty} \frac{1}{T} \mathrm{E}\left[\sum_{t=0 n}^{T-1} \sum_{=1}^{N}-1\left\{Y_{n}(t)=\tau_{n}\right\}-\eta E_{n} U_{n}(t)\right] \tag{7}\\
& \text { s.t. } \sum_{n=1}^{N}\left(1-U_{n}(t)\right) \geq(1-\alpha) N, \forall t \tag{8}
\end{align*}
$$

Relaxations:

We consider an associated relaxation of the problem which puts a constraint only on the time average number of active projects allowed:

$$
\begin{array}{r}
\max _{\pi} \lim _{T \rightarrow+\infty} \inf _{T} \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}-1\left\{Y_{n}(t)=\tau_{n}\right\}-\eta E_{n} U_{n}(t)\right] \\
\text { s.t. } \lim _{T \rightarrow+\infty} \inf \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}\left(1-U_{n}(t)\right)\right] \geq(1-\alpha) N \tag{10}
\end{array}
$$

Let us consider the Lagrangian associated with the problem (9)-(10), with $Y(0)=\mathbf{x} \in \mathbb{Y}$,

$$
\begin{aligned}
I(\pi, \omega): & =\lim _{T \rightarrow+} \inf _{\infty} \frac{1}{T} \mathrm{E}_{\pi}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}-1\left\{Y_{n}(t)=\tau_{n}\right\}-\eta E_{n} U_{n}(t)\right] \\
& +\omega \lim _{T \rightarrow+\infty} \inf \frac{1}{T} \mathrm{E}_{\pi}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}\left(1-U_{n}(t)\right)\right]-\omega(1-\alpha) N
\end{aligned}
$$

π : History dependent scheduling policy.
$\omega \geq 0$: Lagrangian multiplier

The Lagrangian dual function is $d(\omega):=\max _{\pi} l(\pi, \omega)$:

$$
\begin{array}{r}
d(\omega) \leq \max _{\pi} \lim _{T \rightarrow+\infty} \inf \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}-1\left\{Y_{n}(t)=\tau_{n}\right\}\right. \\
\left.-\eta E_{n} U_{n}(t)+\omega\left(1-U_{n}(t)\right) \mid Y(0)=\mathrm{x}\right]-\omega(1-\alpha) N \\
\leq \max _{\pi} \lim _{T \rightarrow+\infty} \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1} \sum_{n=1}^{N}-1\left\{Y_{n}(t)=\tau_{n}\right\}\right. \\
\left.-\eta E_{n} U_{n}(t)+\omega\left(1-U_{n}(t)\right) \mid Y(0)=\mathrm{x}\right]-\omega(1-\alpha) N \\
\leq \max _{\pi} \sum_{n=1}^{N} \lim _{T \rightarrow+} \sup _{\infty} \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1}-1\left\{Y_{n}(t)=\tau_{n}\right\}\right. \\
\left.-\eta E_{n} U_{n}(t)+\omega\left(1-U_{n}(t)\right) \mid Y(0)=\mathrm{x}\right]-\omega(1-\alpha) N, \tag{11}
\end{array}
$$

equation (11) is the unconstrained problem.

It can be viewed as a composition of N independent ω-subsidy problems interpreted as follows: For each client n, besides the original reward $-\mathbf{1}\left\{Y_{n}(t)=\tau_{n}\right\}-\eta E_{n} U_{n}(t)$, when $U_{n}(t)=0$, it receives a subsidy ω for being passive.
Thus, the ω-subsidy problem associated with client n is defined as,

$$
\begin{align*}
R_{n}(\omega) & =\max _{\pi_{\mathrm{n}}} \lim _{T \rightarrow+} \sup _{\infty} \frac{1}{T} \mathrm{E}\left[\sum_{t=0}^{T-1}-1\left\{Y_{n}(t)=\tau_{n}\right\}\right. \\
& \left.-\eta E_{n} U_{n}!(t)+\omega\left(1-U_{n}(t)\right) \mid Y_{n}(0)=x_{n}\right] \tag{12}
\end{align*}
$$

where π_{n} is a history dependent policy which decides the action $U_{n}(t)$ for client n in each time-slot.
We first solve this ω-subsidy problem, and then explore its properties to show that strong duality holds for the relaxed problem (9)-(10), and thereby determine the optimal relaxed policy.

- For $\theta \in\left\{0,1, \ldots, \tau_{n}\right\}$ and $\rho \in[0,1]$, we define $\sigma_{n}(\theta, \rho)$ to be a threshold policy for project n, as follows:The policy $\sigma_{n}(\theta, \rho)$
at time t ,
$Y_{n}(t)<\theta$:Project is Passive i.e., $U_{n}(t)=0$
$Y_{n}(t)>\theta$: Project is Active i.e., $U_{n}(t)=1$
If $Y_{n}(t)=\theta$: then, Project stays Passive with Probability ρ, and is activated with probability $1-\rho$.
- For each project n, associate a function defined as,

$$
\begin{equation*}
W_{n}(\theta):=p_{n}(\theta+1)\left(1-p_{n}\right)^{\tau_{n}-(\theta+1)}-\eta E_{n} \tag{13}
\end{equation*}
$$

- The Whittle Index $W_{n}(i)$ of project n at state i is defined as the value of the subsidy that makes the passive and active actions equally attractive for the ω-subsidy problem associated with project n in state i .
When $\omega=W_{n}(i)$ The following holds the optimality,

$$
-\eta E_{n}+p_{n} f(0)+\left(1-p_{n}\right) f\left((i+1) \wedge \tau_{n}\right)=\omega+f\left((i+1) \wedge \tau_{n}\right)
$$

- The n-th project is said to be indexable if:
- $B_{n}(\omega)$ be the set of states for which project n is passiveunder an optimal policy corresponding ω-subsidy problem.
- Project n is indexable if, as ω increases from $-\infty$ to $+\infty$, the set $B_{n}(\omega)$ increases monotonically from ϕ to the whole space.
- Lemma 5: Consider the ω-subsidy problem(12), for project n . Then,
- $\sigma_{n}(0,0)$ is optimal iff the subsidy $\omega \leq W_{n}(0)$.
- For $\theta \in\left\{1, \ldots, \tau_{n}-1\right\}$ is optimal iff the subsidy ω satisfies $W_{n}(\theta-1) \leq \omega \leq W_{n}(\theta)$.
- $\sigma_{n}\left(\tau_{n}, 0\right)$ is optimal iff $\omega=W_{n}(\tau-1)$.
- $\sigma_{n}\left(\tau_{n}, 1\right)$ is optimal iff $\omega \geq W_{n}(\tau-1)$.

In addition, for $\theta \in\left\{1, \ldots, \tau_{n}-1\right\}$, the policies $\left\{\sigma_{n}(\theta, \rho): \rho \in[0,1]\right\}$ are optimal when, 1. $0 \leq \theta \leq \tau-1$ and $\omega=W_{n}(\theta)$, 2. $\theta=\tau$ and $\omega=W_{n}(\tau-1)$.

Furthermore, for any $\theta \in\{1, \ldots, \tau\}$, under the $\sigma(\theta, 0)$ policy, the average reward earned is,

$$
\begin{equation*}
\frac{p_{n} \theta \omega-\eta E_{n}-\left(1-p_{n}\right)^{\tau_{n}-\theta}}{1+\theta p_{n}} \tag{14}
\end{equation*}
$$

- Consider the ω subsidy problem for project n , and denote by $a_{n}(\theta, \rho)$ the average proportion of time that the active action is taken under the policy $\sigma_{n}(\theta, \rho)$,i.e.,
$a_{n}(\theta, \rho):=\lim _{T \rightarrow+\infty} \frac{1}{T} E_{\sigma_{n}(\theta, \rho)}\left[\sum_{t=0}^{T-1} U_{n}(t)\right]$.
Let $a_{n, \min }(\omega):=\min _{\theta, \rho}\left\{a_{n, \min }(\theta, \rho)\right.$:
$\sigma_{n}(\theta, \rho)$ is optimal when the subsidy is $\left.\omega\right\}$.
- Theorem 7:For the relaxed problem (9)-(10) and its dual Fd(ω), the following results hold:
- The dual function $d(\omega)$ satisfies,

$$
\begin{equation*}
d(\omega)=\sum_{n=0}^{N-1} R_{n}(\omega)-\omega(1-\alpha) N \tag{13}
\end{equation*}
$$

- Strong duality holds, i.e., the optimal average reward for the relaxed problem, denoted $R_{\text {rel }}$, satisfies, $R_{r e l}=\min _{\omega \geq 0} d(\omega)$
- Define policy $\sigma(\theta, \rho)$ as the one that applies $\sigma_{n}\left(\theta_{n}, \rho_{n}\right)$ to each project n . Then, for each $\alpha \in[0,1]$, there exist vectors θ^{*} and ρ^{*} such that $\sigma\left(\theta^{*}, \rho^{*}\right)$
- In addition, $d(\omega)$ is a convex and piecewise linear function of ω. Thus, the value of $R_{r e l}$ can be easily solved.

Properties of $d(\omega)$:

- Each $R_{n}(\omega)$ is a piecewise linear function.
- To prove convexity of $R_{n}(\omega)$, note that the reward earned by any policy is a linear function of ω, and the supremum of linear functions is convex. Thus, $d(\omega)$ is also convex and piecewise linear.
- The value of $R_{\text {rel }}$, which is the minimum value of this known,convex, and piecewise linear function $d(\omega)$, can be easily obtained.

Whittle index policy: At the beginning of each time slot t , client n is scheduled if its whittle index $W_{n}\left(Y_{n}(t)\right)$ is positive, and moreover, is within the top αN index values of all clients in that slot. Now not more than αN clients are simultaneously scheduled.

Thank you

