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Optimal Stopping Theory
°

Exam pIeS[Ferguson, 2006]

@ Optimal Stopping Theory (OST): It is concerned with the

problem of choosing a time to take a given action based on
sequentially observed random variables in order to
maximize (minimize) an expected payoff (cost).

@ Examples

© Maximizing the average in coin tossing problem.
@ House selling Problem.
© Classical secretary problem.

(1).

Ch.1. http://ww. math. ucl a. edu/ ton Stopping/ Contents. htm
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Introduction

Stopping rule problems are defined by two objects

© A sequence of random variables, X1, X», ..., whose joint
distribution is assumed to be known.

@ A sequence of real-valued reward functions (may be -ve or even-sc),
Y0, y1(71), Y2(T1,2), - - -, Yoo (21, T2, - - )
where,
yo := reward received if you choose not to take any observation.

y1(z1) := reward for stopping at 1%!-stage after observing ;.

© Goal: To choose a stopping time to maximize the expected
reward.
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Stopping Rule

@ A (randomized) stopping rule is a sequence of probabilities
of stopping and is represented as,

® = (¢o, p1(21), P2(1,72), .. .).

@ Probability of stopping at stage n, given that you have
observed X| = z1, X9 = 9,...,X,, = x,, iS given by,

0< dp(z1,...,20) <1 V n.

@ For non-randomized stopping rules,

¢n(x17"'7xn):0 or1l A4 n.
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Probability Mass Function (pmf) of Stopping Time N

The pmf of N given X = = = (21,9, ...) is denoted by,
U = (0,%1,%2, ., Poo)-
Where
Yn(1,...,2p) = P(N=n|X=2) for n=0,1,2,...
This may be related to stopping rule as follows,
Yo = ¢o
Yi(z1) = (1 — ¢o) o1 (1)

n—1
Un (21, ..., Tpn) = {H(l — gbj(xl,...,mj))] On(x1 .. Tp)
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Problem

Problem, then, is to choose a stopping rule ® to maximize the
expected return, V(®), given as,

V(‘I’) = E[yN(l'l, e ,mN)]

Z’lpj Llyeeoy X y](xl’ ,xj)

” = oo” corresponds to the case when stopping never occurs.
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Finite Horizon Problems (FHP)iraguson 2009

@ If it is compulsory to stop after observing z1, ..., z7, we
say the problem has horizon T’

@ FHP may be obtained as a special case of the general
problem by setting,

YT+l =+ = Yoo = — OO0

@ Such problems can be solved by method of Backward
Induction

(2). Ch.2. http://ww. math. ucl a. edu/ tonf Stopping/ Contents. htni
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Backward Induction

Define T’
VT( N(@1,...27) = max{y; (a1, ..., z;), A}

Where,

A=F (Vj(fl)(xl,...xj,XjJrlﬂXl = :cl,...,Xj = $J)> s

is the expected return obtained by continuing and using the
optimal rule for stages j + 1 through T', given that we have
observed X; = z1,...,X; = z;, and

VI (1, ay),

represents the maximum return one can obtain starting from
stage J and having observed X| = z1,..., X; = ;.
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Opportunistic Schedulingrouais 213

@ Considering basic channel capacity equation

g-PTx
R =Wlog, (1 + NO.W> Q)

1
=>PTxOC—
g

@ Good channel conditions are explored to get better
utilization of energy.

@ OST is used to find the optimal time instants, to transmit
with minimum energy, depending on channel conditions.

(3). Marios |. Poulakis etal. , "Channel-Aware Opportunistic Transmi ssion Scheduling for
Energy-Efficient Wreless links" |EEE Trans. of Vehicular Technol ogy, vol.62, pp.192-204,
January 2013.
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Problem Setup

T
e
: : : : e t
t=0 t=7 t=2%r t=3r ... i Dise
| l | | |
J=0 j=1 j=2 j=3 j=m

Figure: Problem setup for single-hop point-to-point wireless link

Assumptions:
@ Pdf of channel under consideration is known.
@ Transmitter is aware of instantaneous CSI at the receiver.

@ 7 > channel coherence time,
and T' < channel coherence time.
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Energy-Efficient Opportunistic Transmission Scheduler

(E20TS)

@ First, we consider that the OTS problem is executed for
one time (E?0TS) — I.

@ The problem is to choose a stopping rule, 1 < N < m, to
minimize the expected energy consumption, E[Ey], of the
device. Where,

R
2w —1

Ey=PyT+N.E, = ( ) N,WT +N.E. (2)

gN

where, E. = energy required for channel measurement
@ Finite horizon problem with horizon D,,,4..



Multithreshold Policy for E20T'S — I

Using the backward induction to find the optimal stopping rule,
we write
Vj(m> = min{P;T, Ay,_;} + E., (3)

where,
Am—j =F ‘/}(ﬁ)((gl,...,gj,Gj+1)‘Gl =g1,---,Gj :gj) : (4)

Hence, the optimal stopping rule suggests stopping and
transmitting at stage j if

PT < Ap_j.
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Multithreshold Policy for £20OTS — I (contd.)

An average cost of continuing can be considered to be
associated with each stage j, given as,

Ap_i

Py, T for 7=0,1,...,m—1, (5)
A
Pth,m = Pmaz = ?0 (6)

Using backward induction we can compute A,,_; for each
individual stage, as following

Amyt Prax
= / pTdFp + /4 L AmfjfldFP + E. (7
0 m—g—1

where, Fp(p) is Py hormalized cdf of transmission power.
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Multithreshold Policy for £20OTS — I (contd.)

The optimal thresholds associated with each stage j, can be
calculated as,

. Pt*h,j * * * 2
thyj = /0 pdFp + By, ji1 — P j 1 Fp(Pi i) + 76 ®

for j=0,...,m—1,and

. A

thym — ?0 = Praz- 9)
The policy that minimizes the energy consumption for

E?0TS — I can be given as

. — transmit at j

TP < Py

el se — post pone
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E20TS — I : Rate of Return

@ Problem of E20TS — I is repeated for L rounds.
{EnN,,...,EnN,} — Cost Sequence

{N1,...,Nr} — Stopping time sequence.

With, 1< Ny<m for (=1,...,L.

@ Aim: To minimize the average energy consumption per unit
time, i.e. the average power consumption (rate of return).
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E20TS — I : Rate of Return

@ Average energy consumption per unit time can be
expressed as (by law of large nos.)

S En, | E[EN]
L BT
24:1 TN, [T'n]

(10)

Where,
Ty =Nt +T. (12)

@ An optimal stopping problem of choosing a stopping rule

1 < N < m to minimize the ratio ElEN]
E[TN]
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E20TS — I : Rate of Return

@ If for some A, infyec E (En — ATy) = 0, then
infyee % = \. Moreover, if infyec E(Exy — XTn) =0s

attained at N* € C, then N* is optimal for minimizing
E[EN]
E

ianGC [TN] 0

@ Conversely, if inf yee ?ﬁg}] = A and if the infimum is
attained at at N* € C, then infycc E (Ey — ATy) = 0 and

the infimum is attained at N*.

C is the class of stopping ruless.t. C = {N : N > 1, ETy < oo}
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E20TS — I : Rate of Return

@ From Theorem 1, following two minimization problems are

equivalent
. . EEN] .
f =\ <= inf E(Exy—\'TyN) = 12
Ve B [1y] i BBy =X =0 (12)

@ The optimal return is given by,

V(A) = inf [E[EN] — AE[TN]] = E [Exy] — AE [Tn] »

NeC
(13)
where, N()\) is the stopping rule that achieves minimum for
A
@ Optimal rate of return, A\*, can be found by solving
V(A*) = 0 and hence we can find optimal stopping time
N* = N(\¥).
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E?0TS — 11 : Multithreshold Policy

Let Zy = En— NIy (14)
2w — 1
= NWT + N.E. — ANT— T (15)
gN
R
2w —1
= [( ).NOW)\ T+ N(E.—\) (16)
gN

Given that we have observed G| = g1,...,G; = g, the
minimum rate of return at stage j

V"™ = min{P;T — AT, A—j} + E. — Ar, (17)

where,

Am—j =F V’J(Tnl)((gl,,gj,G]_}_l)’Gl :gl,---7Gj :gj)} :
(18)
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E?0TS — 11 : Multithreshold Policy

Hence, the optimal stopping rule suggests stopping and
transmitting at stage j if

P;T — \T' < Ay
So the transmission power threshold is,

A

P = ’”T‘MFA for j=0,1,...,m—1, (19)
A
Pihan = Prae==—+A for j=m. (20)

T
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E?0TS — 11 : Multithreshold Policy

Following backward induction, we can compute A,,_;(\) for
each individual stage,

Am—i(A) = Emin{P;T — AT, Ap_j_1(\)} + B — At (21)
Amfjflo\) P
T max
_ /0 (pT — NT)dFp + /A o Am i WdFp
T
+ E.—Xr for j=0,1,....m—1. (22)

Consequently we can compute the corresponding power
threshold P, ;(\), for each stage for each ), using (19) and
(20).
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E?0TS — II : Optimal Threshold Policy

@ Optimal policy is the collection of thresholds corresponding
to optimal rate of return, \*, i.e,
Ap—j(X)

A*
T +

tjz,j = Pth,j()‘*) =

@ The policy that minimizes the rate of return for
E?0TS — II is given as,

if P;<Pj,— transmt at j

el se — postpone
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E?0TS — II : Optimal Threshold Policy

Proposition 1

Optimal power thresholds P, ; are increasing on j = ., mie,

wh < Py for j=1,....m-1

proof: Itis equivalent to show that A;;(\*) < A;(\*), for
i1=0,...,m—2. Let Al()\*) > Ao()\*) Then,

As(N*) = Emin[PT — AT, A1(\")]| + E. — At
> Emin[PT — A\T, A1 (\")] + E. — A\t = A1 (\") > Ap(\")

Therefore, inductively we have

Ay (X)) > Ag(N*) = PpgaT — AT. As Ay (V) = 0= X* > Prgs.
Hence, A;(A\*) < Ap(A\*) and rest of the proof follows similarly
by induction.
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E?0TS — II : Optimal Threshold Policy

Proposition 2
VIN)=0< A4,(\) =0

Proposition 3

A;(X) is continuous and monotonically decreases as A
increases from 0 to + o0, V, 0,...,m.

For all j, A;(\) goes from some positive value (for A = 0) to
—oo (for A = 00). Hence, A(\) = 0 has at least one solution.
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More Reading on OTS applications

@ D.Zheng, W.Ge, and J.Zhang, "Distributed opportunistic
scheduling for ad hoc networks with random access : An
optimal stopping approach ", IEEE Trans. Inf. Theory, Vol.
55, no.1, pp 205-222, Jan.2009.

@ D.Zheng, M.Cao, J.Zhang, and P.R.Kumar "Channel-
aware distributed scheduling for exploiting multiuser
diversity in ad hoc networks : A unified PHY/MAC
approach ", in proc. |IEEE 27*" INFOCOM, Phoenix, AZ pp
1454-1462, Apr.2008.

@ S. Chakraborty, Y.Dong, D. K. Y. Lau, and J.C.S Lui, "On
effectiveness of movement prediction to reduce energy
consumption in wireless communication ", IEEE Trans.
Mobile Comput., Vol. 5, no.2, pp 157-169, Feb.2006.
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