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Examples[Ferguson, 2006]

Optimal Stopping Theory (OST): It is concerned with the
problem of choosing a time to take a given action based on
sequentially observed random variables in order to
maximize (minimize) an expected payoff (cost).

Examples
1 Maximizing the average in coin tossing problem.

2 House selling Problem.

3 Classical secretary problem.

(1). Ch.1. http://www.math.ucla.edu/ tom/Stopping/Contents.html
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Introduction

Stopping rule problems are defined by two objects
1 A sequence of random variables, X1,X2, . . ., whose joint

distribution is assumed to be known.
2 A sequence of real-valued reward functions (may be -ve or even -∞),

y0, y1(x1), y2(x1, x2), . . . , y∞(x1, x2, . . . )

where,

y0 := reward received if you choose not to take any observation.

y1(x1) := reward for stopping at 1st-stage after observing x1.

3 Goal: To choose a stopping time to maximize the expected
reward.
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Stopping Rule

A (randomized) stopping rule is a sequence of probabilities
of stopping and is represented as,

Φ = (φ0, φ1(x1), φ2(x1, x2), . . .).

Probability of stopping at stage n, given that you have
observed X1 = x1,X2 = x2, . . . ,Xn = xn, is given by,

0 ≤ φn(x1, . . . , xn) ≤ 1 ∀ n.

For non-randomized stopping rules,

φn(x1, . . . , xn) = 0 or 1 ∀ n.
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Probability Mass Function (pmf) of Stopping Time N

The pmf of N given X = x = (x1, x2, . . .) is denoted by,

Ψ = (ψ0, ψ1, ψ2, . . . , ψ∞).

Where

ψn(x1, . . . , xn) = P (N = n|X = x) for n = 0, 1, 2, . . .

This may be related to stopping rule as follows,

ψ0 = φ0

ψ1(x1) = (1− φ0)φ1(x1)

...

ψn(x1, . . . , xn) =





n−1
∏

j=1

(1− φj(x1, . . . , xj))



 φn(x1 . . . , xn)
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Problem

Problem, then, is to choose a stopping rule Φ to maximize the
expected return, V (Φ), given as,

V (Φ) = E [yN (x1, . . . , xN )]

V (Φ) = E





=∞
∑

j=0

ψj(x1, . . . , xj)yj(x1, . . . , xj)



 .

” = ∞” corresponds to the case when stopping never occurs.
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Finite Horizon Problems (FHP)[Ferguson, 2006]

If it is compulsory to stop after observing x1, . . . , xT , we
say the problem has horizon T

FHP may be obtained as a special case of the general
problem by setting,

yT+1 = . . . = y∞ = −∞

Such problems can be solved by method of Backward
Induction

(2). Ch.2. http://www.math.ucla.edu/ tom/Stopping/Contents.html



Optimal Stopping Theory Opportunistic Scheduling E2OTS − I E2OTS − II

Backward Induction

Define
V

(T )
T (x1, . . . xT ) = max{yj(x1, . . . , xj), A}

Where,

A = E
(

V
(T )
j+1(x1, . . . xj,Xj+1)|X1 = x1, . . . ,Xj = xj)

)

,

is the expected return obtained by continuing and using the
optimal rule for stages j + 1 through T , given that we have
observed X1 = x1, . . . ,Xj = xj , and

V
(T )
j (x1, . . . xj),

represents the maximum return one can obtain starting from
stage J and having observed X1 = x1, . . . ,Xj = xj.
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Opportunistic Scheduling[Poulakis, 2013]

Considering basic channel capacity equation

R =W log2

(

1 +
g.PTx

No.W

)

(1)

⇒ PTx ∝
1

g

Good channel conditions are explored to get better
utilization of energy.

OST is used to find the optimal time instants, to transmit
with minimum energy, depending on channel conditions.

(3). Marios I. Poulakis etal. , "Channel-Aware Opportunistic Transmission Scheduling for
Energy-Efficient Wireless links" IEEE Trans. of Vehicular Technology, vol.62, pp.192-204,
January 2013.
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Problem Setup

Figure: Problem setup for single-hop point-to-point wireless link

Assumptions:

Pdf of channel under consideration is known.

Transmitter is aware of instantaneous CSI at the receiver.

τ > channel coherence time,
and T < channel coherence time.
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Energy-Efficient Opportunistic Transmission Scheduler
(E2

OTS)

First, we consider that the OTS problem is executed for
one time (E2OTS)− I.

The problem is to choose a stopping rule, 1 ≤ N ≤ m, to
minimize the expected energy consumption, E[EN ], of the
device. Where,

EN = PN .T +N.Ec =

(

2
R
W − 1

gN

)

.NoWT +N.Ec (2)

where, Ec = energy required for channel measurement

Finite horizon problem with horizon Dmax.
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Multithreshold Policy for E2OTS − I

Using the backward induction to find the optimal stopping rule,
we write

V
(m)
j = min{PjT,Am−j}+ Ec, (3)

where,

Am−j = E
[

V
(m)
j+1 ((g1, . . . , gj , Gj+1)|G1 = g1, . . . , Gj = gj)

]

. (4)

Hence, the optimal stopping rule suggests stopping and
transmitting at stage j if

PjT ≤ Am−j .
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Multithreshold Policy for E2OTS − I (contd.)

An average cost of continuing can be considered to be
associated with each stage j, given as,

Pth,j =
Am−j

T
for j = 0, 1, . . . ,m− 1, (5)

Pth,m = Pmax =
A0

T
. (6)

Using backward induction we can compute Am−j for each
individual stage, as following

Am−j = Emin [PT,Am−j−1] + Ec for j = 0, . . . ,m− 1,

=

∫

Am−j−1
T

0
pTdFP +

∫ Pmax

Am−j−1
T

Am−j−1dFP + Ec (7)

where, FP (p) is Pmax normalized cdf of transmission power.
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Multithreshold Policy for E2OTS − I (contd.)

The optimal thresholds associated with each stage j, can be
calculated as,

P ∗
th,j =

∫ P ∗

th,j

0
pdFP + P ∗

th,j+1 − P ∗
th,j+1FP (P

∗
th,j+1) +

Ec

T
(8)

for j = 0, . . . ,m− 1, and

P ∗
th,m =

A0

T
= Pmax. (9)

The policy that minimizes the energy consumption for
E2OTS − I can be given as

if Pj ≤ P ∗
th,j → transmit at j

else → postpone



Optimal Stopping Theory Opportunistic Scheduling E2OTS − I E2OTS − II

E2OTS − II : Rate of Return

Problem of E2OTS − I is repeated for L rounds.

{EN1 , . . . , ENL
} → Cost Sequence

{N1, . . . , NL} → Stopping time sequence.

With, 1 ≤ Nℓ ≤ m for ℓ = 1, . . . , L.

Aim: To minimize the average energy consumption per unit
time, i.e. the average power consumption (rate of return).
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E2OTS − II : Rate of Return

Average energy consumption per unit time can be
expressed as (by law of large nos.)

∑L
ℓ=1ENℓ

∑L
ℓ=1 TNℓ

−→
E [EN ]

E [TN ]
(10)

Where,
TN = Nτ + T. (11)

An optimal stopping problem of choosing a stopping rule
1 ≤ N ≤ m to minimize the ratio E[EN ]

E[TN ] .
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E2OTS − II : Rate of Return

Theorem 1

If for some λ, infN∈C E (EN − λTN ) = 0, then
infN∈C

E[EN ]
E[TN ] = λ. Moreover, if infN∈C E (EN − λTN ) = 0 is

attained at N∗ ∈ C, then N∗ is optimal for minimizing
infN∈C

E[EN ]
E[TN ] .

Conversely, if infN∈C
E[EN ]
E[TN ] = λ and if the infimum is

attained at at N∗ ∈ C, then infN∈C E (EN − λTN ) = 0 and
the infimum is attained at N∗.

C is the class of stopping rules s.t. C = {N : N ≥ 1, ETN <∞}
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E2OTS − II : Rate of Return

From Theorem 1, following two minimization problems are
equivalent

inf
N∈C

E [EN ]

E [TN ]
= λ∗ ⇐⇒ inf

N∈C
E (EN − λ∗TN ) = 0 (12)

The optimal return is given by,

V (λ) = inf
N∈C

[E [EN ]− λE [TN ]] = E
[

EN(λ)

]

− λE
[

TN(λ)

]

,

(13)
where, N(λ) is the stopping rule that achieves minimum for
λ.
Optimal rate of return, λ∗, can be found by solving
V (λ∗) = 0 and hence we can find optimal stopping time
N∗ = N(λ∗).
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E2OTS − II : Multithreshold Policy

Let ZN = EN − λTN (14)

=

(

2
R
W − 1

gN

)

.NoWT +N.Ec − λNτ − λT (15)

=

[(

2
R
W − 1

gN

)

.NoW − λ

]

T +N(Ec − λ) (16)

Given that we have observed G1 = g1, . . . , Gj = gj , the
minimum rate of return at stage j

V
(m)
j = min{PjT − λT,Am−j}+ Ec − λτ, (17)

where,

Am−j = E
[

V
(m)
j+1 ((g1, . . . , gj , Gj+1)|G1 = g1, . . . , Gj = gj)

]

.

(18)



Optimal Stopping Theory Opportunistic Scheduling E2OTS − I E2OTS − II

E2OTS − II : Multithreshold Policy

Hence, the optimal stopping rule suggests stopping and
transmitting at stage j if

PjT − λT ≤ Am−j .

So the transmission power threshold is,

Pth,j =
Am−j

T
+ λ for j = 0, 1, . . . ,m− 1, (19)

Pth,m = Pmax =
A0

T
+ λ for j = m. (20)
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E2OTS − II : Multithreshold Policy

Following backward induction, we can compute Am−j(λ) for
each individual stage,

Am−j(λ) = Emin{PjT − λT,Am−j−1(λ)} + Ec − λτ (21)

=

∫

Am−j−1(λ)

T

0
(pT − λT )dFP +

∫ Pmax

Am−j−1(λ)

T

Am−j−1(λ)dFP

+ Ec − λτ for j = 0, 1, . . . ,m− 1. (22)

Consequently we can compute the corresponding power
threshold Pth,j(λ), for each stage for each λ, using (19) and
(20).
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E2OTS − II : Optimal Threshold Policy

Optimal policy is the collection of thresholds corresponding
to optimal rate of return, λ∗, i.e,

P ∗
th,j = Pth,j(λ

∗) =
Am−j(λ

∗)

T
+ λ∗

The policy that minimizes the rate of return for
E2OTS − II is given as,

if Pj ≤ P ∗
th,j → transmit at j

else → postpone
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E2OTS − II : Optimal Threshold Policy

Proposition 1

Optimal power thresholds P ∗
th,j are increasing on j = 1,. . . , m i.e,

P ∗
th,j ≤ P ∗

th,j for j = 1, . . . ,m− 1.

proof: It is equivalent to show that Ai+1(λ
∗) ≤ Ai(λ

∗), for
i = 0, . . . ,m− 2. Let A1(λ

∗) > A0(λ
∗). Then,

A2(λ
∗) = Emin[PT − λT,A1(λ

∗)] + Ec − λτ

≥ Emin[PT − λT,A1(λ
∗)] + Ec − λτ = A1(λ

∗) > A0(λ
∗)

Therefore, inductively we have
Am(λ∗) > A0(λ

∗) = PmaxT − λT. As Am(λ∗) = 0 ⇒ λ∗ > Pmax.

Hence, A1(λ
∗) ≤ A0(λ

∗) and rest of the proof follows similarly
by induction.
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E2OTS − II : Optimal Threshold Policy

Proposition 2

V (λ∗) = 0 ⇔ Am(λ∗) = 0

Proposition 3

Aj(λ) is continuous and monotonically decreases as λ
increases from 0 to +∞, ∀, 0, . . . ,m.

For all j, Aj(λ) goes from some positive value (for λ = 0) to
−∞ (for λ = ∞). Hence, A(λ) = 0 has at least one solution.
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More Reading on OTS applications

D.Zheng, W.Ge, and J.Zhang, "Distributed opportunistic
scheduling for ad hoc networks with random access : An
optimal stopping approach ", IEEE Trans. Inf. Theory, Vol.
55, no.1, pp 205-222, Jan.2009.

D.Zheng, M.Cao, J.Zhang, and P.R.Kumar "Channel-
aware distributed scheduling for exploiting multiuser
diversity in ad hoc networks : A unified PHY/MAC
approach ", in proc. IEEE 27th INFOCOM, Phoenix, AZ pp
1454-1462, Apr.2008.

S. Chakraborty, Y.Dong, D. K. Y. Lau, and J.C.S Lui, "On
effectiveness of movement prediction to reduce energy
consumption in wireless communication ", IEEE Trans.
Mobile Comput., Vol. 5, no.2, pp 157-169, Feb.2006.
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