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PART-I: Solving constrained convex optimization problem



Conjugate functions

I For a convex function f : Rn → R, its convex conjugate f ∗ is
defined as:

f ∗(z) = sup
x∈dom f

(
zT x− f (x)

)

I Geometric interpretation:
f ∗(z) is the negative intercept on y-axis made by tangent to
curve y = f (x) with slope z.



Lagrangian method
I Standard constraint optimization problem (P):

minimize
x

f (x)

subject to gi(x) ≤ 0, 1 ≤ i ≤ n
hi(x) = 0, 1 ≤ i ≤ m

where x ∈ Rn, and f ,gi ,hi : Rn → R.

I Let p∗ denote the primal optimal value.

I Lagrangian function L is given by:

L(x,λ,ν) = f (x) +
n∑

i=1

λigi(x) +
m∑

i=1

νihi(x)

I λi > 0 are Lagrange multipliers associated with gi(x) ≤ 0.
I νi are Lagrange multipliers associated with hi(x) = 0.



Karush-Kuhn-Tucker (KKT) conditions

I If
1. Slater’s conditions hold.
2. f , gi and hi are differentiable

then, optimal values of (x∗,λ∗,ν∗) must satisy:

I primal feasibility constraints: gi(x∗) ≤ 0 and hi(x∗) = 0.

I dual feasibility constraints: λ∗i ≥ 0 .

I complementary slackness: λ∗i gi(x∗) = 0.

I gradient of Lagrangian with respect to x is zero i.e.,

∇f (x∗) +
n∑

i=1

λ∗i ∇g∗i (x
∗) +

m∑
i=1

ν∗i ∇h∗i (x
∗) = 0



Lagrange dual function
I Lagrange dual function g : Rn × Rm → R is defined as:

g(λ,ν) = inf
x∈dom f

L(x,λ,ν)

= inf
x∈dom f

(
f (x) +

n∑
i=1

λigi(x) +
m∑

i=1

νihi(x)

)

where λ = (λ1 . . . λn) and ν = (ν1 . . . νn) are the dual
variables.

I Dual function g is always concave w.r.t. λi and νi .

I Lower bound property of dual function:

If λ � 0 then, g(λ,ν) ≤ p∗.

where p∗ is the optimal value of objective function in primal
problem (P).



The dual problem

I Lagrange dual problem is given by:

maximize g(λ,ν)
subject to λ � 0

I The dual problem find the best lower bound on p∗.

I λ,ν are dual feasible if λ � 0 and (λ,ν) ∈ dom g

I Question: Why should we care about the dual problem?



Weak and strong duality

I Weak duality: d∗ ≤ p∗
I always holds (for convex and nonconvex problems) can be

used to find nontrivial lower bounds for difficult problems

I Strong duality: d∗ = p∗
I does not hold in general
I usually holds for convex problems
I conditions that guarantee strong duality in convex problems

are called constraint qualifications.



Obtaining primal solution

I Let (λ∗,ν∗) be the solution to the dual problem:

(λ∗,ν∗) = argmax
λ,ν

g(λ,ν)

I Then, x∗, the solution to primal problem is obtained by
solving the minimization problem:

x∗ = argmin
x

L(x,λ∗,ν∗)



A simple example
I Minimum norm solution to an underdetermined system of

linear equations

minimize xT x
subject to Ax = b

I Lagrangian: L(x,y) = xT x + yT (Ax− b).

I Dual function: g(y) = inf
x

L(x,y) = inf
x

(
xT x + yT (Ax− b)

)
= −1

4yT AAT y− yT b.

I Dual optimal y∗ = argmax
y

g(y) = −2
(
AAT )−1 b.

I Primal optimal x∗ = argmin
x

L(x,y∗) = AT (AAT )−1 b.



Lagrange dual function and conjugate function
I Construction of dual problem is simplified if conjugate of

objective function is known.

I For example, consider the convex optimation problem:

minimize f (x)
subject to Ax = b

I Lagrangian L(x,y) = f (x) + yT (Ax− b).

I Dual function g(y) = inf
x

(
f (x) + yT (Ax− b)

)
= inf

x

(
f (x)− (−AT y)x)

)
− yT b

= f ∗(−AT y)− yT b

I Recall definition of convex conjugate
f ∗(y) = sup

x∈dom f

(
yT x− f (x)

)
.



Fenchel’s duality - conjugate functions

I For a convex function f : Rp → R, its convex conjugate f ∗ is
defined as:

f ∗(z) = sup
x∈RP

(zT x− f (x)) (1)

I For a concave function f : Rp → R, its concave conjugate
g∗ is defined as:

g∗(z) = inf
x∈RP

(zT x− g(x)) (2)



Fenchel’s duality - conjugate functions

I Geometric interpretation of conjuate function.

I Conjugate function f ∗(z) is the negative intercept on y-axis
made by tangent to curve y = f (x) with slope z



Fenchel’s duality

Fenchel’s duality theorem
For any convex function f and concave function g, we have,

min
x∈Rp

(f (x)− g(x)) = max
z∈Rp

(g∗(z)− f ∗(z))

I Geometric interpretation of Fenchel’s duality theory.

(a)

min
x∈Rp

(f (x)− g(x))

(b)

max
z∈Rp

(g∗(z)− f ∗(z))



Complementary slackness condition

I Let x∗ be the primal optimal and (λ∗,ν∗) be the dual
optimal for standard convex optimization problem (P).

I If strong duality holds, we have,

f (x∗) = g(λ∗,ν∗) = min
x

L(x,λ∗,ν∗) ≤ L(x∗,λ∗,ν∗)

= f (x∗) +
n∑

i=1

λ∗i gi(x∗) +
m∑

i=1

ν∗i hi(x∗)

= f (x∗) +
n∑

i=1

λ∗i gi(x∗)

⇒ 0 ≤
n∑

i=1

λ∗i gi(x∗)

I Since
∑n

i=1 λ
∗
i gi(x∗) ≤ 0, we have

∑n
i=1 λ

∗
i gi(x∗) = 0.



Strong duality tells relation between primal and
dual solutions

I If Slater’s conditions (constraint qualifications) hold, strong
duality holds.

I If strong duality holds, we have

f (x∗) = g(λ∗,ν∗)
f (x∗) = min

x
L(x,λ∗,ν∗)

I Since x∗ is the unique minimizer of f in the given feasibility
set, following must hold:

x∗ = min
x

L(x,λ∗,ν∗)



PART-II: Introduction to ADMM



Dual Ascent (1/3)
I Consider the convex optimization

minimize f (x)
subject to Ax = b

where x ∈ Rn, A ∈ Rm×n and f : Rn → R is a convex
function.

I The Lagrangian is given by

L(x,y) = f (x) + yT (Ax− b)

where y is the dual variable or Lagrangian multiplier.

I The dual function is given by

g(y) = inf
x

L(x,y) = f ∗(−AT y)− bT y

where f ∗ is convex conjugate of f .



Dual Ascent (2/3)

I The dual problem is
max

y
g(y)

I The primal optimal point x∗ can be found from a dual
optimal point as

x∗ = argmin
x

L(x,y∗)

I A unique minimizer exists if f is strictly convex.



Dual Ascent (3/3)

I Dual Ascent method is as follows:

xk+1 = argmin
x

L(x,yk )

yk+1 = yk + αk (Axk+1 − b)

I For proper choice of stepsize αk , the value of dual function
increases in each iteration.

I αk is a non-increasing sequence.

I Under assumptions on f , yk converges to dual optimal y∗

and xk converges to primal optimal x∗, as k →∞.



Dual decomposition (1/2)
I If objective function f is separable, them dual ascent

method can lead to a decentralized algorithm.

I Say f is separable such that,

f =
N∑

i=1

fi(xi) (3)

where x = (x1,x2 . . . xN) and the variables xi ∈ Rni are
subvectors of x.

I The equality constraint Ax = b can also be split as:

N∑
i=1

(Aixi −
1
N

b) = 0

where A = [A1 . . . . . .AN ].



Dual decomposition (2/2)
I The Lagrangian can be written in split form as

L(x,y) =
N∑

i=1

Li(xi ,y) =
N∑

i=1

(
fi(x) + yT (Aixi −

1
N

yT b)
)

I The dual ascent method leads to a decentralized algorithm:

xk+1
i = argmin

xi

Li(xi ,yk ) 1 ≤ i ≤ N

yk+1 = yk + αk (Axk+1 − b)

I Decentralized Implementation:
1. Each node performs primal update step.
2. Each node broadcasts its residual Aixi − 1

N b to other nodes.
3. Each node sums the residuals from individual nodes and

performs dual update step.



Augmented Lagrangian and Method of Multipliers
(1/2)

I Consider primal problem (P1):

minimize f (x)
subject to Ax = b

I We construct Augmented Lagrangian:

Lρ(x,y) = f (x) + yT (Ax− b) +
ρ

2
||Ax− b||22

I Augmented Lagrangian can be viewed as the Lagrangian
for a different primal problem (P2)

minimize f (x) +
ρ

2
||Ax− b||22

subject to Ax = b

I Primal problems (P1) and (P2) have same optimal point
but (P2) has a more well behaved cost function.



Augmented Lagrangian and Method of Multipliers
(2/2)

I By applying dual ascent method:

xk+1 = argmin
x

Lρ(x,yk )

yk+1 = yk + ρ(Axk+1 − b)

I By using ρ as stepsize in dual ascent step, the iterate
(xk+1,yk+1) is dual feasible.
Proof: We work out.

I Positives: Convergence under more relaxed conditions.
I f need not be unbounded or strictly convex

I Negatives: Due to quadratic penalty term in augmented
Lagrangian, separability of f no longer results in a
decentralized algorithm!



ADMM: Alternating Directions Method of
Multipliers (1/2)

I ADMM problem setup:

minimize f (x) + g(z)
subject to Ax + Bz = c

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp.

I f and g are convex functions.

I Augmented Lagrangian is given by:

Lρ(x, z,y) = f (x)+g(z)+yT (Ax+Bz−c)+
ρ

2
||Ax+Bz−c||22



ADMM: Alternating Directions Method of
Multipliers (2/2)

I The primal and dual update equations are given by:

xk+1 = argmin
x

Lρ(x, zk ,yk )

zk+1 = argmin
z

Lρ(xk+1, z,yk )

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)

I Primal variable update equation is executed in Gauss
Siedel fashion.

I Dual variable update equation is similar to Method of
Multipliers.

I If f is separable, a decentralized algorithm is possible.



Some questions..
I Does this iterative algorithm converge?

I If the algorithm converges, does it converge to correct
value?

I How fast is the convergence?
I How does primal gap ||f (xk )− f (x∗)||2 decays with each

iteration.

I What is a reasonable stopping criterion?
I ||xk − xk−1||2 ≤ ε is an overkill !

I How sensitive is the algorithm with respect to changes in
algorithm parameters?

I Sensitivity of ADMM’s convergence with respect to
augmented Lagrangian parameter ρ.



Convergence of ADMM

I Under assumptions:
1. The functions f and g are closed, proper and convex.
2. The unaugmented Lagrangian L0 has a saddle point.

I We have:
I Residual convergence:

as k → 0, Axk + Bzk − c→ 0.

I Objective convergence:

as k → 0, f (xk ) + g(zk )→ p∗).

I Dual variable convergence:

as k → 0, yk → y∗.

where y∗ is the dual optimal point.



ADMM and optimality conditions (1/2)

I Optimality conditions for ADMM problem consists of three
conditions:

1. Primal feasibility condition

Ax∗ + Bz∗ − c

2. First dual feasibility condition:

0 ∈ ∂f (x∗) + AT y∗

3. Second dual feasibility condition:

0 ∈ ∂g(z∗) + BT y∗



ADMM and optimality conditions (2/2)

I Primal and first dual feasibility are achieved as k →∞.

I (xk+1, zk+1,yk+1) always satisfy second dual feasibility
condition.

Proof.
From primal update equation for z, we have:

0 ∈ ∂g(zk+1) + BT yk + ρBT
(

Axk+1 + Bzk+1 − c
)

⇒ 0 ∈ ∂g(zk+1) + BT
(

yk + ρ
(

Axk+1 + Bzk+1 − c
))

⇒ 0 ∈ ∂g(zk+1) + BT yk+1



Stopping criterion for ADMM

I Primal gap at k th iteration can be upper bounded as:

f (xk ) + g(zk )− p∗ ≤ −(yk )T rk + (xk − x∗)T sk (4)

where rk is the primal residual and sk is the residual for
first dual optimal condition.

Proof: We work out..

I Upper bound on primal gap can be used to design
stopping criterion.



PART-III: Distributed optimization using ADMM - A simple
example



Distributed optimization using ADMM (1/5)
I Consider an unconstrained convex optimization problem

(P1):
min
x∈R

f (x)

I Goal is to minimize the f using multiple computing nodes in
a distributed fashion.

I Say, f is separable as: f (x) =
∑L

j=1 fj(x).

I Then we can formulate an equivalent constrained
optimization problem (P2):

min
x1...xL

L∑
j=1

fj(xj)

subject to xj = xj ′ ∀j , j ′ ∈ (1,2 . . . L)



Distributed optimization using ADMM (2/5)

I Use auxilliary variables to express (P2) as a standard
ADMM problem (P3):

min
x1...xL

L∑
j=1

fj(xj)

subject to xj = zb ∀j ∈ (1,2 . . . L), b ∈ Bj

where Bj is the set of bridge/anchor nodes connected to
node j .

I Augmented Lagrangian can be split w.r.t x1, x2 . . . xL !



Distributed optimization using ADMM (3/5)

I A more compact representation of (P3):

min
x

fext(x)

subject to E1x + E2z = 0

where
I x = (x1, x2 . . . ) and z = (z1, z2 . . . ) are concatenated

vectors.
I the rows of E1x + E2z = 0 correspond to individual

constraints in (P2).



Distributed optimization using ADMM (4/5)
I Let {x∗, z∗} and λ∗ denote the unique primal and dual

optimal solutions, then the following holds
1. Sequence uk is Q-linearly convergent to u∗ i.e.,

‖uk+1 − u∗‖G ≤
1

1 + δ
‖uk − u∗‖G

where u is constructed as u = [(E2z)T λT ]T and δ is
evaluated as

δ = min
µ≥1,ν≥1

 2mf
νM2

f
ρ(ν−1)σ2

min
+ µρσ2

max

,
σ2

min

νσ2
max

,
µ− 1
µ

 .

2. The primal sequence xk is R-linearly convergent to x∗, i.e.,

‖xk+1 − x∗‖2 ≤
1

2mf
‖uk − u∗‖G

where ‖ · ‖G is the matrix norm with respect to the diagonal
matrix G = diag(ρIn|B|, ρ−1INC ), mf is the strong convexity
constant of fext and Mf is the Lipschitz constant of ∇fext .



Distributed optimization using ADMM (5/5)

I To speedup convergence, ρ is chosen such that δ is
maximized.

I Optimized values of ρ and corresponding δ are given by:

ρopt =
Mf

σmaxσmin


√

(κ− 1)2 + 4κκ2
f + (κ− 1)√

(κ− 1)2 + 4κκ2
f − (κ− 1)


1
2

and δopt = 2
(
κ+ 1 +

√
(κ− 1)2 + 4κκ2

f

)−1

I κf =
Mf
mf

denotes the condition number of the objective
function fext .

I κ = σ2
max
σ2

min
= max no. of bridge nodes connections per node

min no. of bridge nodes connections per node
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Backup slides



Linear convergence of a sequence

I Suppose a sequence xk converges to L.

I xk is said to be Q-linearly convergent to L, if there exists
µ ∈ (0,1) such that

lim
k→∞

|xk+1 − L|
|xk − L|

= µ

I xk is said to be R-linearly convergent to L, if there exists
Q-linearly convergent sequence yk which converges to
zero such that

lim
k→∞
|xk − L| ≤ yk


