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\ N Preliminaries

[

Diversity-Multiplexing Tradeoff(DMT) is essentially the
tradeoff between Error Probability and Data Rate of the
System.

. R(SNR)
lim =gmn
SNR—oolog SNR
I
. log P.(SNR) _ 4
SNR—oo  log SNR
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L y Preliminaries (cont.)

m Zheng and Tse [1] showed that DMT (in absence of CSIT)
is a linear piecewise function of the multiplexing gain.

m If perfect CSIT, then we can achieve co diversity.

: f(SNR)
lim =
SNR—oolog SNR

is denoted as
f(SNR) = SNR”

Similarly > and < is defined
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L y Preliminaries (cont.)

[

Acquiring CSIT

m Training for Reciprocal Channels (Analog Feedback)
m Finite Rate Feedback (Quantized/Digital Feedback)

m Quantized feedback shown to be superior to Analog
Feedback in presence of CSIT errors[2]

| A\

Challenges

Best quantity to be fed back to the transmitter that optimizes
the system performance (e.g. minimizing outage) is largely
OPEN.
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X y Preliminaries (cont.)

[

m Zheng and Tse[Lemma 5] proved that the probability of
error is lower bounded by the outage probability.

P.(SNR) > SNR~%u(")

m We will charachterize Outage Probability instead of
Probability of error.
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"y Outage Formulation

C

m An encoder Z is a mapping from the channel state H to a
covariance matrix Q;, such that trace(Q;) < P;

m QOutage Definition.
Pout k(R) = Pr [log det (In, + HQz(mH' < R)]
m Picking Qi = P;ln, gives an lower bound on the outage

probability.

m Picking Q; = %/Nt gives a upper bound on the outage
probability.
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\\\\«POutage Formulation (cont.)

C

m Outage Probabilty satisfies
Pr [log det (Iy, + PrHH" < R)] < Pou(R)

P
<P [Iog det </ + NIHHT> < R]
t

m We will restrict our analysis to power codebook of form
{Pr
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5"y Two Lemmas

C

m Define F(p,7) £ Pr(I(H,n) < p), where
I(H,7) £ log det (//vt + 7THHT)
m Lemma 1: For a given SNR and rate R, the outage

minimizing power codeboook {P;}X  solves the following
optimization problem.

max Pk
s.t[F(R,Pk)+1—F(R,Py)] P,

+ S [F(R, Piy) — F(R.P)] P; < SNR,

0< P << Py
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5"y Two Lemmas (cont.)

The optimal deterministic mapping is given by

1 if I(H,PL) <R
"(H)y=q ...
min{i :i€1,2,--- K, I(H,P}) > R}
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‘\\\\\“ Two Lemmas (cont.)

C

m Lemma 2: For r € (0,n), let 7 be a function of SNR such
that 1 = SNRP, where p is a finite constant and p > 1.
Denoting (x)© = max(x,0), we have

F(r log SNR,7) = SNR™P(")

and

D(r,p) = inf (2i =14+ m—n)a;

where,

AL {af!oq > >, 20, (p-an)t < r}

Anup Aprem — Group Presentation 14/27



)

5"y Outline

Optimal DMT Tradeoff

Anup Aprem — Group Presentation 15/27



N
\\\«]\Optimal DMT Tradeoff Theorem

Theorem

Kim[3]: The optimal D-M tradeoff of a single-rate MIMO
system with K quantization regions in the feedback link is
upper bounded by the outage bound

d:ut,K(r) - D(f 1+doutK 1( ))

where dpuio(r) = 0, Vr
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5y Optimal DMT Tradeoff Theorem (copt':) ),

C

Let P; be the solution of the following optimization problem,
which is a relaxed version of the previous problem

max Py
s.t[F(R,Pk)+1—F(R,P)] PL < SNR
[F(R,Pi—1) — F(R,P;))] P; < SNR i >2
0<P < Px

Px > P;. due to relaxation.
Summing up the constraints, we have

K
> 2
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) b =
.\ Optimal DMT Tradeoff Theorem (coptJil,

We must have P; < K SNR, otherwise

Hence,
P, < SNR
F(R, By) > SNR-PUD — SNR=aua(r)
Second Constraint implies that
SNR

P,

+ F(R7 P_2) % SNRfd;um(r)
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y \’\—?Optimal DMT Tradeoff Theorem (cor)t':) |,

Suppose P, = SNR*u1(*€ Then
SNR

P,

+ F(R, Py) = SNR™%uea (=2 GNR™P(n1Hdauea(n)F2) (1)

which contradicts 9 because
D(r,1+d},.1(r) +¢) > D(r,1) = d,.1(r). Therefore, we
require

Py < SNRY*%uea(r)

and thus,

F(R, P>) > SNR=C(r1+5ues (1) — GNR=ur ()
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) b =
.\ Optimal DMT Tradeoff Theorem (coptJil,

C

Following this procedure, we get for k = K,

*

F(R, Px) > SNR™Pr-+ i a()) = GNR= ek (")

Going back to the original problem. If,

SNR
Pi=—%
p__ SNR
=7 K F(R,P,)
b SNR
—< 7 K F(R, Px_1)
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) b =
.\ Optimal DMT Tradeoff Theorem (coptJil,

satisfy the constraints and hence we have a lower bound.
Therefore by construction.

P, = SNR
P, = SNRt%ua(r)

Py = SNR™ ek (")
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D — M Tradeoff of single rate transmission over a 2 x 2
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Diversity order vs feedback bits for multiplexing gain 1

10

Diversity(log log scale)

—%— Ny =4 N, =
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"y Problem

m DMT performance in the case of generalized covariance
codebooks.

m Following the above approach, we have been able to
extend the proof for the case of {P; D},Kzl, where D is a

diagonal matrix.
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