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Sparse Signal Recover Problem
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Goal: recover the signal x from observation y
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Sparse Recovery

Geometricl Combinatorial? Probabilistic3
LASSO, I, norm-based IHT, CoSaMP , SP, OMP AMP, SBL

![Donoho '04],[Candes-Tao '04, '06], [Rudelson-Vershynin'06]
2[Needell et al. '08] [Rubinstein et al. '09]
3[Zhou et al. '09] [Donoho et al. '09]
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Probabilistic Approach

@ Impose a prior distribution on x
@ Noise distribution gives p(y|x)
© Find the MAP/MMSE estimate using conditional pdf

Xmap = maxp(x|y)

xmmse = E{x|y}
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Motivation

@ Impose Laplacian prior on x, x; are iid

A
p0) = exp {2}
@ Noise distribution
~ 1 2
plyix) = e {~olly - x|}
@ Laplacian MAP = LASSO

x = argmaxp(x|y)
X

= argmin — log p(x, y)
X

!
= argmin_|ly — Ax]|* + l|x]l
X
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Factor Graphs

@ Joint probability of many variables factors into little pieces

@ Nodes: random variables, factors

@ No normalization: determine all probabilities
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MAP /MMSE using factor graphs

@ Construction of bipartite graph
» Variable nodes: xq,xo,...,xyn

> Factor nodes: p(y1]x), p(y2|x), ... p(ym|x)
» An edge between a variable node i and a factor node a if A,; #0

e Goal: Obtain marginal p(xj|y) or MAP estimate, arg max = p(x|y)
X

Solution: Belief propagation'
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Belief Propagation

@ Intuition: Peer pressure - A node determines a final belief distribution
by listening to its neighbors.

o Keep passing messages (functions of the variable) until a stable belief
state is reached

@ Two versions
» Sum-product: to compute marginals (MMSE), p(x)
» Max-product: to compute maximizer (MAP), arg maxp(x)
X
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Message Passing

@ From a variable node to factor node

mia = p(x;) H Mp—i(Xi)

bedi\a

@ From factor node to variable node:
© Sum-product: estimate marginals

Moy = / plyalx) T misalg)dx

X—i jeda\i

* Marginal: p(xily) = p(x;) Hbeai mp—i(x;)
@ Max-product: scoring functions whose maxima are most likely states

masi = max p(ys|x) I mima(x)
j€da\i

* Maximum: X; = arg maxp(x;) [1,co; Mb—i(xi)

XI
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AMP Algorithms

o AMP: Belief propagation with carefully constructed approximations

» The original AMP*: Laplacian MAP, with iid Gaussian noise, and jid
matrix A

» The Bayesian AMP

» The generalized AMP

» Expectation-Maximization Bernoulli-Gaussian AMP

@ Very fast: = 15 iterations, simple operations

“[Donoho, Maleki, Montanari '09]
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Design: Laplacian MAP estimate

@ Construct a joint distribution on data and write down the
corresponding sum-product algorithm

@ Approximate the sum-product messages by the families with two scalar
parameters

© Use law of large numbers to approximate messages for the large
system limit
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Step 1: Basic Messages
@ Recall: With z = Ax,
N
p(x) = Hexp{—o_z)\|x,-|}
i=1

m
1
plylx) = Hexp{—a\\ya—zall}
a=1

@ Messages in negative log domain are

m:('t—-:_al)(xi) = \x|+ Z mffi,(x,-)
be[m)\a

o1
mOi(x) = min (- 22+ > m) (x)
2 JEIND\

o Each iteration: 2NNm functions on real line
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Assumptions

° x; ~o(1)

e A, iid ~ O(1/y/m)
@ A is normalized
» Column sum: >0 A, =0
» L norm of column Y7 A% =1

@ m scales with N/
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Step 2: Approximation to Family of 2 Scalars

@ Approximation to quadratic function
» Expand the messages using Taylor series, around 0

t
mg—)>i(xi) = g—)HAa’ Xi + Ba—n( a’Xi)2
(t+1) _ 1 L (t4)
m;_a, ( ) = m (X, — Xia )
1—a

e Each iteration: 2Nm real numbers functions of {y, A}

mt P (x) — {X,-(il) ’Yi—>a}
m00) = [al, 5]

e Memory requirements ~ O(mN)
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Further Simplification!

@ Relation between messages:

(1)
Qi
m=—=2=l = = 3 Ay,
/Ba—>i JEINI\i
X,'(i;:l) = 7N Z Ab;rt(,ii;et
be[m]\a
o Law of large numbers: —— 2 —— ~ 0,

Ebe[m]\aﬁl(slliAgi ~
e 7(a;0) is soft thresholding function

a—0 a>¥0
n(a;0) =40 —0<a<f (1)
a+0 a<¥d
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Step 3: Large System Limit

@ Approximation:

PPV O PO S O(1/N)

a—i a—i
Xi(iZa ~ Xi(t) + 5Xi(2a + O(I/N)

@ Approximation steps involve

: : (t+1)
@ Taylor series expansion of x;_,
@ Law of large numbers

e Memory requirements ~ O(m + N)

. t
@ On convergence, declare estimate as x,-( )
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AMP Algorithm

o After simplifications,

where by ~ % vazl U’(XEFI) + [AT"(t_l)]i? O¢-1)

@ Similar to iterative soft thresholding:

xtl = g (xt + AT 0. 0t>

t

rr = y— Ax

Geethu Joseph (SPC Lab, 11Sc) Sparse Recovery: AMP June 4, 2016 17 / 20



Phase Transition Curve
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Covergence

Theorem

@ For Laplacian prior, and A is Gaussian with iid entries, then (for n large

enough) AMP converge within relative distance € from a minimizer in
t = O(log(1/€)) iterations.

?[Bayati, Montanari '11]
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