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General Classes of Performance Lower Bounds for
Parameter Estimation—Part II: Bayesian Bounds
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Abstract—In this paper, a new class of Bayesian lower bounds
is proposed. Derivation of the proposed class is performed via
projection of each entry of the vector-function to be estimated
on a Hilbert subspace of �. This Hilbert subspace contains
linear transformations of elements in the domain of an integral
transform, applied on functions used for computation of bounds
in the Weiss–Weinstein class. The integral transform general-
izes the traditional derivative and sampling operators, used for
computation of existing performance lower bounds, such as the
Bayesian Cramér–Rao, Bayesian Bhattacharyya, and Weiss–We-
instein bounds. It is shown that some well-known Bayesian lower
bounds can be derived from the proposed class by specific choice
of the integral transform kernel. A new lower bound is derived
from the proposed class using the Fourier transform kernel.
The proposed bound is compared with other existing bounds in
terms of signal-to-noise ratio (SNR) threshold region prediction
in the problem of frequency estimation. The bound is shown to
be computationally manageable and provides better prediction of
the SNR threshold region, exhibited by the maximum a posteriori
probability (MAP) and minimum-mean-square-error (MMSE)
estimators.

Index Terms—Bayesian bounds, maximum a posteriori prob-
ability (MAP) estimator, mean-square-error bounds, min-
imum-mean-square-error (MMSE) estimator, parameter estima-
tion, performance bounds, threshold signal-to-noise ratio (SNR),
Weiss–Weinstein class.

I. INTRODUCTION

L OWER BOUNDS on the mean square error (MSE) of
estimators enable performance prediction and constitute

a benchmark for performance evaluation, in the MSE sense.
There are three main categories of lower bounds on the MSE of
estimators: 1) non-Bayesian bounds for cases where the model
parameters are deterministic; 2) Bayesian bounds for cases
where the parameters are random; and 3) hybrid bounds for
cases where the observation model contains deterministic and
random parameters.

In Part I [1], a new class of non-Bayesian bounds was derived
for the case of unbiased estimators by projecting each entry of
the vector of estimation error on a Hilbert subspace of . This
Hilbert subspace contains linear transformations of elements in
the domain of an integral transform of the likelihood-ratio (LR)
function. In this part, a new class of Bayesian bounds is derived
by projecting each entry of the vector-function to be estimated
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on a Hilbert subspace of , which contains linear transforma-
tions of elements in the domain of an integral transform, applied
on functions used for computation of bounds in the Weiss–We-
instein class.

Bayesian lower bounds can be partitioned into two cat-
egories: 1) the Ziv–Zakai class [2], derived from a binary
hypothesis testing problem, and 2) the Weiss–Weinstein
class [3], derived from the covariance inequality [4]. The
Ziv–Zakai class contains the Ziv–Zakai [2], Bellini–Tartara [5],
Chazan–Zakai–Ziv [6], Weinstein [7], extended Ziv–Zakai [8],
and Bell [9] bounds. The Weiss–Weinstein class contains the
Bayesian Cramér–Rao (BCR) [10], Bayesian Bhattacharyya
(BBH) [3], Bobrovsky–Zakai (BZ) [11], Reuven–Messer (RM)
[12], Weiss–Weinstein (WW) [13], Bayesian Abel (BA) [14],
and the combined Cramér–Rao/Weiss–Weinstein (CRWW)
[15] bounds. Since the RM bound is originally hybrid, we note
that it is contained in the Weiss–Weinstein class only under the
assumption that all the parameters to be estimated are random.

Applications of Bayesian bounds to several estimation
problems can be found in [16]–[18], where the Ziv–Zakai and
Weiss–Weinstein bounds were utilized for analyzing estimation
performance in an underwater acoustic scenario. The Ziv–Zakai
class has been applied in other applications, such as time-delay
estimation [19], direction-of-arrival (DOA) estimation [20],
[21] and digital communication [22]. In [23] the Weiss–We-
instein bound was applied to data aided carrier estimation. In
[15] the CRWW was applied for target bearing tracking.

In this paper, we are concerned with the Weiss–Weinstein
class. Bounds in the Weiss–Weinstein class are derived using
particular functions, defined on the observation and parameter
spaces, which are orthogonal to any function of the observa-
tions. Finding such particular functions, for which tight and
computationally manageable bounds are obtained, is not an easy
task. Therefore, to this day, only a limited variety of bounds
in the Weiss–Weinstein class have been introduced. Moreover,
in computation of bounds, such as the RM, WW, BA, and the
CRWW bounds, it is usually required to evaluate these partic-
ular functions at multiple test-points for obtaining tight bounds.
This fact consequences inversion of large matrices, and in ad-
dition, numerical search methods should be utilized for optimal
selection of these test-points.

In this paper, we propose to overcome these disadvantages by
the establishment of a new class of Bayesian lower bounds. We
begin by showing that Bayesian lower bounds can be derived via
projections of each entry of the vector-function to be estimated
on some Hilbert spaces. Let denote the Hilbert space of func-
tions, defined on the observation and parameter spaces, with fi-
nite second-order statistical moments, and let denote
the space of functions, which are orthogonal to any function of
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the observations. We show that a class of Bayesian bounds can
be derived via projections of each entry of the vector-function
to be estimated on closed subspaces of , where projection
on itself yields the tightest Bayesian lower bound, which is
given by the MSE of the minimum mean square error (MMSE)
estimator. Modification of these subspaces yields a variety of
lower bounds.

Hence, let denote a vector-function, comprised of functions
in . Using the framework described above, it is shown that
the bounds in the Weiss–Weinstein class are obtained by pro-
jection of each entry of the vector-function to be estimated on a
closed subspace of , spanned by the entries of . By choosing
different ’s, different subspaces are obtained and hence a va-
riety of bounds can be derived. However, finding functions in

from which is comprised, such that tight and computa-
tionally manageable bounds are obtained, is not an easy task.
Existing bounds are based on , which is comprised of deriva-
tives and samples of functions in , drawn from a small set, de-
noted by . This fact consequences a limited variety of bounds.
Moreover, in many cases, the functions in are evaluated at
many test points in order to obtain tight bounds at the expense of
high computational complexity. We note that this unification ap-
proach of bounds in the Weiss–Weinstein class is related to the
approach described in [24], according to which lower bounds
in the Weiss–Weinstein class can be obtained via constrained
minimization over . The relation between these approaches
is discussed in this paper.

In order to overcome the disadvantages in existing bounds
in the Weiss–Weinstein class, a new class of Bayesian lower
bounds is proposed. Following the basic idea, which was first
presented in the conference paper [25], the bounds in this class
are obtained via projection of each entry of the vector-function
to be estimated on a closed subspace of . This subspace con-
tains linear transformations of elements in the domain of an in-
tegral transform, which is applied on the functions in the set

. By modifying the kernel of the integral transform, different
subspaces of are derived, and as a consequence, a variety of
bounds is obtained.

The integral transform generalizes the derivative and sam-
pling operators used for computation of some well-known
bounds in the Weiss–Weinstein class. Hence, it is shown that
by specific choice of kernels, some well-known bounds in the
Weiss–Weinstein class can be derived from the proposed class.
In the paper we show that the proposed class is a subclass of the
Weiss–Weinstein class. In comparison to the Weiss–Weinstein
class, instead of modifying , we use a fixed set of functions
in (the set ) and modify only the kernel of the integral
transform.

In order to obtain tight and computationally manageable
bounds, we look for kernels, such that the significant informa-
tion in the functions in is “compressed” into few elements
in the domain of the integral transform. In searching for this
kind of “compressing” integral transform, we note that in
cases where the spectra of the functions in are concentrated
in a small subset of the frequency domain, the significant
information in these functions can be “compressed” into a few
frequency components via the Fourier transform. Motivated
by this fact, a new lower bound is derived from the proposed

class using the kernel of the Fourier transform. It is shown
that the proposed bound is computationally manageable and
provides better prediction of SNR threshold region exhibited
by the maximum a posteriori probability (MAP) and MMSE
estimators, in the problem of frequency estimation.

The paper is organized as follows: In Section II, it is shown
that Bayesian lower bounds in the Weiss–Weinstein class can
be obtained via projections of each entry of the vector-func-
tion to be estimated, on a closed subspace of . In Section III,
we show that the bounds in the Weiss–Weinstein class are ob-
tained by projection of each entry of the vector-function to be
estimated on a specific closed subspace of . In Section IV,
a new class of Bayesian lower bounds is derived by applying
an integral transform on the functions in . The relations of the
proposed class to the Weiss–Weinstein class is discussed as well.
In Section V, it is shown that some well-known Bayesian MSE
bounds can be derived from the proposed class by modifying the
kernel of the integral transform. In Section VI, a new bound is
derived from the proposed class using the kernel of the Fourier
transform. In Section VII, the proposed bound is compared with
some other known bounds in terms of threshold SNR prediction
in the problem of frequency estimation. Section VIII, summa-
rizes the main points of this contribution.

II. BAYESIAN LOWER BOUNDS BASED ON PROJECTIONS IN

SOME HILBERT SUBSPACES OF

Let denote the Hilbert space of functions defined on the
observation and parameter spaces with finite second-order sta-
tistical moments, and let be the space of functions,
which are orthogonal to any function of the observations. In this
section, it is shown that Bayesian bounds can be derived via pro-
jections of each entry of the vector-function to be estimated on
closed subspaces of . We begin by stating some definitions
and assumptions, which will be used in this paper. Afterwards,
the Hilbert subspace, , is constructed. It is then shown that
projection of each entry of the vector-function to be estimated
on any closed subspace of , denoted by , yields an esti-
mator-independent lower bound on the MSE of any estimator.
As a special case, if it is shown that the tightest
Bayesian lower bound, given by MSE of the MMSE estimator,
is obtained.

A. Definitions and Assumptions

1) Parameter space:
We assume that the parameter space, , is a subset of
with finite Lebesgue-measure, .

2) Function to be estimated:
The estimation of , where is determin-
istic known and is random unknown, is considered.
We note that all the functions used in this paper are as-
sumed to be measurable [26].

3) Observation space:
An observation space of points, , is denoted by .

4) Probability measure and probability density function:
Let denote a probability measure on , and let

denote a -finite positive measure on . It is assumed
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that is absolutely continuous w.r.t. the product measure
, such that the Radon–Nikodym derivative [26]

(1)

exists. The function is the joint probability density
function (PDF) of and .

5) The Hilbert space of :
The Hilbert space of absolutely square integrable func-
tions, , w.r.t. is denoted by .
The inner-product of and in is
defined by

(2)

where and denote the complex-conjugate
and the expectation w.r.t. , respectively. Hence,

if and only if the squared norm

(3)

is finite.
6) Estimation error and MSE:

Let denote an estimator of . The vector
of estimation error and the MSE matrix are given by

(4)

and

(5)

respectively, where it is assumed that
and

B. Construction of the Hilbert Subspace,

In this subsection, the following Hilbert subspace of
is constructed.

(6)

where it is assumed that is complete, i.e., any Cauchy se-
quence in converges to a limit in . Observing (6), one
can notice that

(7)

C. Bayesian Lower Bounds Based on Projections on Closed
Subspaces of

Let denote an estimator of . In this sub-
section, it is shown that projection of each entry of on any
closed subspace of yields a lower bound on .

Theorem 1: Let denote an estimator of
, and let

(8)

where is the projection of on
, and is closed. Then

(9)

Proof: The Cauchy–Schwartz inequality [26] implies that

(10)

where by the definition of in (4)

(11)

According to the Hilbert projection theorem, stated in
Appendix A

(12)

Moreover, since according to (12) and
, then

(13)

Hence, substitution of (12) and (13) into (11) yields

(14)

Therefore, according to (10) and (14),

(15)
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Fig. 1. Geometric interpretation of Bayesian bounds for the one-dimensional
case i.e., � � �. The spaces � �� ���� � and � are illustrated by the
spheroid, plane and the white axis, respectively. The terms � ������� � � � and
� ������� �� � (marked by thick dashed arrows) denote the projections of ������
(marked by a thick solid arrow) on� and� � � , respectively. The terms
� and � are the squared norms of � ������� �� � and � ������� � � �
in � �� ���, respectively.

Thus, by (2) and (3) it is implied that

(16)

Finally, since the matrices and
are Hermitian, it is

implied by (5) and (16) that the semi-inequality in (9) holds.

Geometric interpretation of is depicted in Fig. 1 for the
one-dimensional case, i.e., .

D. The Tightest Bayesian Lower Bound

In this subsection, it is shown that projection of each entry of
on yields the tightest Bayesian lower bound,

which is given by the MSE matrix of the MMSE estimator.

Theorem 2: Let

(17)

denote the MMSE estimator of , where is the con-
ditional expectation given . Then

(18)

Proof: Since , then by
using (6) and (17), one can verify that

(19)

where . According to the Hilbert pro-

jection theorem, stated in Appendix A, there exists a unique
, such that

(20)

Hence, according to (7) and (19), one can notice that (20) holds
for

(21)

Therefore, according to (5), it is concluded that the equality in
(18) holds.

Geometric interpretation of is depicted in Fig. 1 for the
one-dimensional case, i.e., .

In conclusion, by Theorems 2 and 3, it is implied that

(22)

Hence, by modifying , a variety of bounds can be obtained,
where is the tightest lower bound on the MSE of any esti-
mator in . However, according to (17), calculation of

requires the derivation of . In many cases this
task is analytically impossible and consequently is prac-
tically incomputable. Therefore, it is preferable to use in-
stead of , though it is less tight than . In the following
section, we use the framework presented above, for derivation
of the Weiss–Weinstein class of bounds.

III. THE WEISS–WEINSTEIN CLASS

In this section, it is shown that the Weiss–Weinstein class
of bounds is obtained via projection of each entry of on
a closed subspace of , which contains linear combinations
of elements in . Derivation of some existing bounds in the
Weiss–Weinstein class is described, and their disadvantages are
discussed as well. Finally, the relation between this approach
for unification of bounds in the Weiss–Weinstein class and the
approach described in [24] is discussed.

A. Construction of a Closed Subspace of

In this subsection, a closed subspace of is constructed in
the following manner. Let , where

and . The following space is con-

structed:

(23)

Since any Cauchy sequence in converges to a limit in
, it is concluded that is complete, and hence, it is a

closed subspace of .
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B. Derivation of the Weiss–Weinstein Class

In this subsection, the Weiss–Weinstein class of bounds is
derived in the following manner. First, the vector of projections

(24)

is obtained. According to the Hilbert projection theorem stated
in Appendix A, is the unique solution of the
following system of equations:

(25)

Hence, since , let

(26)

where the second equality in (26) stems from (23). According
to (2), (25) and (26)

(27)

Therefore, it is concluded from (27) that

(28)

where it is assumed that is nonsingular.
Hence, substitution of (28) into (26) and using the definition of

in (24) yields

(29)

Second, according to (9) and (29), the Weiss–Weinstein class
[3] is given by

(30)

By modifying , the subspace is modified and a va-
riety of bounds can be obtained from (30).

C. Existing Bounds in the Weiss–Weinstein Class

Existing bounds in the Weiss–Weinstein class can be derived
by choosing , which is composed of derivatives and sam-
ples of functions drawn from the set

(31)

where is a subset of with finite Lebesgue-measure

(32)

(33)

otherwise
(34)

, and it is assumed that
. Similar to the proof of Proposition 1

in Part I [1], it can be shown using Holder’s inequality [26],
and the Tonelli and Fubini theorems [26], that

implies that
, for a.e. and , where

denotes the space of absolutely integrable functions
on . We note that given s.t. the
condition . One can also notice

that .
For example, the Bayesian Cramér–Rao bound [10] is ob-

tained by choosing

(35)

s.t. some conditions on and , which are de-
tailed in Section V, where the partial derivative w.r.t.

is defined as .
The Reuven–Messer bound [12] is obtained by choosing

(36)

where , denote test points in .
The Weiss–Weinstein bound [13] is obtained by choosing

(37)

One can notice that due to the fact that the set contains
only two functions and is composed of only derivatives
and samples of functions in , a small variety of ’s can be ob-
tained, which consequences a limited variety of bounds. More-
over, in many cases, the functions in are evaluated at many
test points in order to derive tight bounds at the expense of high
computational complexity. In Section IV, we propose to over-
come these disadvantages by the establishment of a new class
of bounds. This class of bounds is based on applying an integral
transform, which generalizes the derivative and sampling oper-
ators, applied on the functions in .

D. Relation to the Unification Approach Described in [24]

In [24], a different approach for unifying the bounds in
the Weiss–Weinstein class was proposed. According to this
approach, lower bounds in the Weiss–Weinstein class can
be obtained via constrained minimization over .
Using some equivalent sets of constraints, denoted by

, it was shown that the tightest Bayesian lower
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bound is obtained. Moreover, by specific choice of subsets of
these constraints, it was proved in [24] that some well-known
bounds in the Weiss–Weinstein class can be derived. In relation
to the proposed unification approach described above, it can be
shown by the Hilbert projection theorem, stated in Appendix A,
that projection of each entry of on closed subspaces of
is equivalent to the constrained minimization over
using subsets of . For example, it can be shown
that derivation of the Bayesian Cramér–Rao bound [10] via
projection on , where is defined
in (35), is equivalent to the constraint minimization using

, where and are defined in (10) and (20) in [24],
respectively.

IV. A NEW CLASS OF BAYESIAN LOWER BOUNDS

In this section, a new class of Bayesian lower bounds is de-
rived via projection of each entry of on a closed subspace
of . This subspace contains linear transformation of elements
in the domain of an integral transform, which is applied on the
functions in the set , defined in (31). Derivation of the pro-
posed class is carried out via the following steps. First, a closed
subspace of is constructed. Second, the result of Theorem 2
is applied in order to derive the proposed class. The relation of
the proposed class to the Weiss–Weinstein class is discussed as
well.

A. Construction of a Closed Subspace of

In this subsection, a closed subspace of is constructed via
the following steps. First, let

(38)

where and are defined in (32) and (33),
respectively. An integral transform on is defined by

(39)

where is the kernel of is a
measurable space with finite Lebesgue-measure, and .

Second, given , the following space is constructed:

(40)

where , and

denotes the space of absolutely integrable functions in
. In Appendix B, it is shown that s.t. the condi-

tion that ,
i.e., , each entry of the matrix-function is abso-
lutely integrable in . Hence, assuming that the above condition

holds and is complete, i.e., any Cauchy sequence in
converges to a limit in , then is a closed subspace of

.

B. The Proposed Class of Bounds

In this subsection, we use the result of Theorem 2 in order to
derive the proposed class of bounds. Since is a closed sub-
space of , then according to (9) the proposed class is given
by

(41)

In Appendix C, it is shown that a closed form expression of
is given by

(42)

where

(43)

(44)

is the solution of the following integral equation:

(45)

and

(46)

The bound in (42) constitutes a new class of lower bounds. By
modifying , the subspace is modified and a variety
of bounds can be obtained from the proposed class. In order to
obtain tight and computationally manageable bounds, we look
for kernels, such that the significant information in
is compressed into few elements in the domain of the integral
transform. Finally, let and denote closed subspaces of

. According to Theorem 5 in Appendix D, if
then . Therefore, it is concluded that order relation
between any two bounds, and can be obtained

by comparing the Hilbert subspaces and .

C. Relation of the Proposed Class to the Weiss–Weinstein Class

In this subsection, the relation of the proposed class of bounds
in (41) to the Weiss–Weinstein class in (30) is discussed. First,
we prove the following identity.

Proposition 1:

(47)
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Proof: According to the Hilbert projection theorem stated
in Appendix A

(48)

Therefore, since

it is implied that

(49)

. Rewriting (49) in a matrix form and using
the definitions in (2) and (8) yields the desired identity in (47).

Second, by substituting in (30)
and using the identity in (47), it is concluded from (41) that

. Hence, the proposed class of bounds is a
subclass of the Weiss–Weinstein class. In comparison to the
Weiss–Weinstein class, instead of modifying , we use
the functions in and modify only the kernel of the integral
transform. Using this approach, a wide variety of bounds can be
easily obtained. In Section V, it is shown that some well-known
bounds in the Weiss–Weinstein class can be derived from

, via specific choices of .

V. DERIVATION OF EXISTING BOUNDS FROM THE PROPOSED

CLASS OF BOUNDS

The integral transform generalizes the derivative and sam-
pling operators used for computation of some well-known lower
bounds in the Weiss–Weinstein class. Hence, in this section it is
shown that some well-known bounds can be derived from the
proposed class in (42) by specific choices of the kernel, .
We begin with derivation of a new subclass of bounds from the
proposed class in (42), using a class of kernel functions with a
specific form. It is then shown that some well-known bounds
are the limits of convergent sequences of bounds, which are ob-
tained from the proposed subclass.

A. Subclass of Lower Bounds Using Structured
Kernel Functions

In this subsection, a new subclass of Bayesian lower bounds
is derived from the proposed class in (42) for the case where

is of the form

(50)

where . Hence, according to (42), (43), and
(50)

(51)

where

(52)

Using (43), (45), and (50) it is implied that

(53)

where

(54)

and it is assumed that is nonsingular. Therefore, substi-
tuting (53) into (51) yields the following subclass:

(55)

By modifying , a variety of bounds can be derived from
(55).

B. Derivation of Existing Bayesian Bounds From the
Subclass

In this subsection, it is shown that some well-known Bayesian
bounds are the limits of convergent sequences of bounds, which
are obtained from the proposed subclass in (55). In a more de-
tailed manner, derivation of each bound is carried out via the
following procedure:

1) A sequence of functions, , is constructed using
the following sequence of auxiliary “test-functions.” Let

denote an infinitely differentiable, symmetric, and
compactly supported “test-function,” such that

. A sequence of “test-functions” is given by

(56)

We note that , where is the Dirac’s
delta function. For example, we can choose

(57)

where denote the entries of , such
that

(58)

and

otherwise
(59)

For each bound, is constructed using in a
different manner, as will be detailed in the sequel.

2) Using , a sequence of bounds, is derived
from (55). The desired bound is given by

(60)
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where it is assumed that and converge as
, and the matrix is nonsingular. The second

equality in (60) can be verified using basic properties of conver-
gent sequence limits. In Appendix E, it is shown that

(61)

and

(62)

where

(63)

and

(64)

We note that the limit notation in (63) means that
for a.e. .

Hence, substitution of (61) and (62) into (60) yields

(65)

By applying the approach described above, we show that
some well-known bounds in the Weiss–Weinstein class [3] can
be obtained from (65).
1) The Bayesian Cramér–Rao bound [10]: The BCR bound
is obtained via the following steps:

a) Construction of : The th member of
is given by

(66)

where is an vector with zero entries.
b) Calculating the limit of : According to (38),

(64), and (66)

(67)

Hence, assuming that , where de-
notes the support set, then applying integration by parts on the
r.h.s. of (67) yields

(68)

where denotes an evaluation point of the convolution
integral. Therefore, according to Theorem 7 in Appendix G, re-
garding the limit of the convolution integral, one obtains

(69)

Therefore, substitution of (69) into (65) yields

(70)

where

(71)

and

(72)

We note that the BCR bound is obtained subject to the following
regularity conditions:

• are absolutely continuous in .
• is absolutely continuous in for a.e. .
• Let denote the boundary set of . Then for every

and for a.e.
.

• is nonsingular.
2) The Bayesian Bhattacharayya bound [3]: The th-order
BBH bound is obtained via the following steps:

a) Construction of : The th member of

is given by

(73)

where

(74)

denotes the vector of derivatives,

, and denotes the th entry of .
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b) Calculating the limit of : Using the same tech-

niques described in (67)–(69) it can be shown that

(75)

Thetefore, substitution of (75) into (65) yields

(76)

where

(77)

and

(78)

We note that the BBH bound is obtained subject to the following
regularity conditions.

• The derivatives
, are absolutely continuous

in .
• The derivatives

, are absolutely continuous in , for a.e.
.

• Let denote the boundary set of . Then for every
and for a.e.

.
• The matrix is nonsingular.

3) The Weiss–Weinstein bound [13]: The th-order WW
bound is obtained via the following steps:

a) Construction of : The th member of

is given by

(79)

b) Calculating the limit of : According to (38),

(64), and (79)

(80)

Therefore, according to Theorem 7 in Appendix G, regarding
the limit of the convolution integral, one obtains

(81)

Therefore, substitution of (81) into (65) yields

(82)

where

(83)

and

(84)

We note that the WW bound is obtained subject to the condition
that is nonsingular.
4) The Reuven–Messer bound [12]: The th-order RM bound
is derived via the following steps:

a) Construction of : The th member of

is given by

(85)

b) Calculating the limit of : Using the same tech-

niques described in (80) and (81) it can be shown that

(86)

Therefore, substitution of (86) into (65) yields

(87)

where

(88)

and

(89)

We note that the RM bound is obtained subject to the fol-
lowing regularity conditions.

• .

• The matrix is nonsingular. One can notice that by
choosing , the Bobrovsky–Zakai bound [11] is ob-
tained from (87).

5) The Bayesian Abel bound [14]}: The th-order BA
bound is derived via the following steps:

a) Construction of : The th member of

is given by

(90)

where



TODROS AND TABRIKIAN: GENERAL CLASSES OF PERFORMANCE LOWER BOUNDS FOR PARAMETER ESTIMATION—PART II 5073

(91)

b) Calculating the limit of : Using the same tech-

niques described in (67)-(69) and in (80), (81), it can be shown
that

(92)

where and are defined in (75) and (86),
respectively. Therefore, substitution of (92) into (65) yields

(93)

where

(94)

and

(95)

We note that the BA bound is obtained subject to the regularity
conditions of the Bayesian Bhattacharayya and Reuven–Messer
bounds.
6) The combined Cramér–Rao/Weiss–Weinstein bound
[15]: The th-order CRWW bound is obtained via the fol-
lowing steps:

a) Construction of : The th member of

is given by

(96)

where

(97)

b) Calculating the limit of : Using the same

techniques described in (67)-(69) and in (80), (81), it can be
shown that

(98)

where and are defined in (69) and (81),
respectively. Therefore, substitution of (99) into (65) yields

(99)

where

(100)

and

(101)

The CRWW bound is obtained subject to the regularity condi-
tions of the BCR and WW bounds.

One can notice that any two bounds and obtained
via the procedure described above, constitute the limits of two
convergent sequences of bounds, and ,

where and are two sequences of kernel
functions in . Hence, using the result of Theorem 5 in
Appendix D it can be shown in similar to [31] that order relation
between and can be obtained by comparing the limits of
the Hilbert subspace sequences, and , i.e.,
if , then .

The disadvantage of bounds, such as the RM, WW, BA, and
CRWW stems from the fact that in many cases,
and should be evaluated at large amount of test
points in order to obtain tight bounds. Since there is no analytical
procedure for optimal selection of test points, numerical search
methods, which become computationally cumbersome as the
number of test points and the dimensionality of the parameter
increase, are often used. In order to overcome this disadvantage,
a new Bayesian bound is derived from (55), using the kernel of
the Fourier transform.

VI. A NEW BAYESIAN BOUND USING THE KERNEL OF THE

FOURIER TRANSFORM

In this section, a new lower bound is derived from (55) using
the kernel function of the Fourier transform. We show that the
proposed bound is computed by applying the discrete Fourier
transform (DFT) of the sequence . In
cases where the DFT of this sequence is concentrated in few
frequency components, a computationally manageable bound,
which exploits all the information in
is obtained. The proposed bound is derived via the following
steps:
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1) Construction of :

The th member of is given by

(102)

where

(103)

and

(104)

The set contains equally spaced test-points in ,
where is a sampling interval,

denotes a test-point index in the
th dimension of , the index is a unique combination of

, i.e., , and .
The -dimensional DFT matrix with frequency
components is denoted by , such that

(105)

is a frequency test-bin,
denotes a test-bin index in the

th dimension of the frequency domain, , the index is a
unique combination of , i.e., ,
and denotes an index set of the selected
frequency test-bins with cardinality .

2) Calculating the limit of :

Using the same techniques described in (67)-(69) and in (80),
(81), it can be shown that

(106)

where and are defined in (69) and (81),
respectively. Therefore, substitution of (106) into (65) yields

(107)

where

(108)

and

(109)

In Appendix H, it is shown that substitution of
into (107), yields the following bound:

(110)

where and are defined in (71) and (72),
respectively,

(111)

(112)

and

(113)

The matrices and are defined in (83) and (84),
respectively.

The bound in (110) is composed of the BCR bound, sup-
plemented by a positive-semidefinite term. Therefore, the reg-
ularity conditions for the BCR bound are required also here.
In cases where these conditions are not satisfied,

may be chosen
and the bound in (110) becomes

(114)

Observing (110), one can notice that
is the DFT of the th

column of evaluated at , and that
is the two-dimensional DFT of , evalu-

ated at . Hence, implementation of the bound can
be easily performed using the fast Fourier transform (FFT).

The bound in (110) is computed using equally spaced
test-points in and frequency test-bins in . For a
given scenario, the frequency test-bins are selected such that the
bound is maximized. According to (105), (106), and the defini-
tion of in (81), one can notice that the transform

in (106) is actually the -dimensional DFT of
the sequence , evaluated at fre-
quency test-bins. Hence, let

(115)

denote the -points -dimen-
sional-DFT of the sequence , and let

denote the index set of the selected
frequency test-bins with cardinality . If

(116)
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for a.e. and , such
that , then a computationally manageable bound,
which exploits all the information in
is obtained. In this case, the computational complexity of the
proposed bound is significantly lower in comparison to the
RM, WW, BA, and CRWW bounds in (82), (87), (93), and
(99), respectively, in which inversion of ,
matrices is carried out, and maximization w.r.t.
test-points in is required in order to obtain tight bounds.
Since by the norm properties [26] for
a.e. , the
condition in (116) is equivalent to

(117)

where is the -norm of the
spectrum of at , which is given
by . Hence, similar to [31, Prop. 4], it can
be shown that if the condition in (117) is satisfied, then

. Therefore, under this condition, if the
CRWW bound is computed with test-points, then

.

VII. EXAMPLE

In this section, the proposed bound is compared with the WW
[3], BCR [10], BA [14], and CRWW [15] bounds, in the problem
of frequency estimation with zero-mean additive white circular
complex Gaussian noise. The comparison criterion is prediction
of the threshold SNR region exhibited by the MAP and MMSE
estimators. The observation model is given by

(118)

where denotes a observation vector, is a known
complex amplitude

(119)

is the normalized sinusoid signal, denotes a complex
circular Gaussian noise vector, with zero-mean and known co-
variance , and is the param-
eter of interest, i.e., . The a priori distribution of is
zero-mean Gaussian with variance , such that the tails
of the PDF for are negligible. Moreover, it is assumed
that and are statistically independent.

Hence, by choosing in (33), , it can be shown that
the terms comprising (110) are given by

(120)

SNR (121)

where SNR

(122)

(123)

SNR

Fig. 2. The squared � �� � ��-norm of the spectrum of
�� ��� ���� ��� �� , in the scenario of Bayesian frequency esti-
mation, where the number of observations, � � � , the number of test points,
� � � and SNR � ��� dB.

(124)

SNR

(125)

(126)

(127)

(128)

for , and

(129)

where .
The comparison was carried out under the following condi-

tions. The number of observations was set to . The
proposed bound was computed using a set of equally
spaced test points in , given by

and frequency test-bin, denoted by . For each
SNR, the proposed bound was maximized w.r.t.

. All other compared bounds, except the BCR, were com-
puted using a single test point in , denoted by . For each SNR,
these bounds were maximized w.r.t. .
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Fig. 3. Comparison of Bayesian lower bounds versus SNR. The comparison
criterion is prediction of the SNR threshold regions exhibited by the MAP and
MMSE estimators.

Fig. 2 depicts for SNR of dB,

where
is the DFT of at

. We note that is
the squared -norm of the spectrum of the sequence

at , and it is obtained by evaluating the
two-dimensional DFT of the sequence at

. One can notice that the squared -norm
of the spectrum is concentrated in low frequencies. Therefore,
the sequence can be “compressed” into
a few low frequency components and the use of the proposed
bound is suitable for this scenario. Fig. 3 depicts the compared
bounds on the root MSE (RMSE) as a function of SNR. The
RMSE of the MAP and MMSE estimators are depicted as well
in order to compare the SNR threshold values predicted by the
compared bounds. According to Fig. 3, the proposed bound in
(110) is the tightest and allows better prediction of the SNR
threshold region.

VIII. CONCLUSION

In this paper, a new class of Bayesian lower bounds was
derived by projecting each entry of the vector-function to be
estimated on a Hilbert subspace of . This Hilbert subspace
contains linear transformations of elements in the domain of
an integral transform, applied on functions, which are used
in computations of bounds in the Weiss–Weinstein class.
The integral transform generalizes the traditional derivative
and sampling operators, applied for computation of existing
performance lower bounds. Hence, it was shown that some
well-known Bayesian bounds can be derived from this class via
specific choices of the integral transform kernel. A new lower
bound was derived from the proposed class using the kernel
of the Fourier transform. The bound was shown to be compu-
tationally manageable and in comparison with other existing
bounds, provided better prediction of the SNR threshold region,
exhibited by the MAP and MMSE estimators, in the problem
of frequency estimation. Examining some other integral trans-

forms, for which new computationally manageable and tight
lower bounds will be derived from the proposed class, is a topic
for future research.

APPENDIX A

In this Appendix the Hilbert projection theorem is stated.

Theorem 3: Let denote an abstract Hilbert space, be a
closed subspace of , and v be an element in . Then there exists
a unique element in , denoted by , and termed as the
projection of v on , which satisfies the following equivalent
conditions:

(130)

(131)

The proof can be found in [28].

APPENDIX B

In this Appendix, a sufficient condition, according to which
is derived.

Theorem 4: If
, then .

Proof: According to the definitions of and in (6)
and (40), respectively, if , the
following conditions are satisfied:

1) ,
and

2) .

Proof of Condition 1: Given any , then

(132)

where the first equality stems from (2), (3), (39), and the defini-
tion of in (40), the following inequality stems from
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the triangle inequality and the properties of the Lebesgue inte-
gral, and the last equality stems from Tonelli’s Theorem [26].

Observing (132), one can notice that

(133)

where the first inequality stems from Cauchy–Schwartz in-
equality [26], and the second one stems from the assumption
that . Hence, it is concluded
from (132) and (133) that there exists a positive constant,

, such that

(134)

The integral term in (134) is bounded since

(135)

where the first equality stems from Tonelli’s Theorem [26],
and the following inequality stems from the assumptions that

, and .
Therefore, it is concluded from (134) and (135) that

(136)

Proof of Condition 2: Given any , ac-
cording to (39) and the definition of in (40)

(137)

In the following, it is shown that under the assumptions that
, and , integra-

tion order in the r.h.s. of (137) can be interchanged.
We first show that

(138)

Hence

(139)

where the first equality stems from (1) and the following in-
equality stems from the triangle inequality and the properties of
the Lebesgue integral. By Tonelli’s Theorem, one obtains

(140)

Observing (140), one can notice that

(141)

where the first inequality stems from Hölder’s inequality [26],
and the second one, stems from the assumption that

. Hence, there exists a constant , such
that

(142)

Since , and , it is
concluded from (142) that . Therefore, according to
(138)–(140), .
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Thus, by Fubini’s Theorem [26], for a.e.
, and (137) can be written as

(143)

Therefore, due to the fact that for

a.e. , and , it is concluded from (137) and (143),
that

(144)

APPENDIX C

In this Appendix, the closed form expression of de-
fined in (42) is derived. Let

(145)

where denotes the projection of
, on and the last equality in (145) stems from

the fact that and from (39) and (40). Ac-
cording to (2), (41) and (145)

(146)

where

(147)

.
Subject to:

1) ;
2) ; and
3) ,

it can be shown using the Tonelli Theorem [26], and the
Cauchy–Schwartz inequality (in similar to the proof of the first

part of Theorem 4), that the term
is absolutely integrable in . Thus, by
the Fubini Theorem [26], integration order in the r.h.s. of (146)
can be interchanged and hence

(148)

Let

(149)

denote the autocorrelation kernel of , and let

(150)

denote the transformed autocorrelation kernel of .
Therefore, according to (148)–(150)

(151)

Let denote the projection error
of on . Since is closed, then by the Hilbert
projection theorem, stated in Appendix A, is unique
and . Therefore, is the unique solution
of the following system of equations:

(152)

Similar to the derivation of (151), it can be shown that

(153)

and

(154)
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Hence, substitution of (153) and (154) into (152) implies that

(155)

and thus, is the solution of the following integral
equation:

(156)

Finally, the closed form expression of in (42) is obtained

by rewriting (151) and (156) in a matrix form, where
, and .

APPENDIX D

Theorem 5: Let and denote closed subspaces of
. If then .

Proof: Let

(157)

and

(158)

denote the projection-errors for and , respectively, where
is defined in (8). According to (157) and (158)

(159)

By the Hilbert projection theorem, stated in Appendix A, it is
implied that

(160)

and

(161)

Therefore, since it is implied by (160) that

(162)

Thus, due to the fact that
, then by (161) and (162)

(163)

Hence, according to (159) and the Pythagorean theorem [26]

(164)

Therefore, due to the fact that

then

(165)

Hence, according to (2) and the definition of in (9),

(166)

Thus, since and are Hermitian matrices, it is implied
by (166) that .

APPENDIX E

In this Appendix, the identities in (61) and (62) are proved.
According to (2), (46), and (54)

(167)

Since ,
and , it can be shown using the Tonelli
theorem and the Cauchy–Schwartz inequality [26] that

. Hence, by
the Fubini theorem [26] integration order in the r.h.s. of (167)
can be interchanged and

(168)

where the second equality in (168) stems from (2) and
. Therefore, according to (2)

and (168)

(169)
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Under the assumption that for
a.e. , as , it is concluded from
Theorem 6 in Appendix F that and

in the -norm. Therefore,
according to proposition (5.21) in [26], regarding the continuity
of the inner-product operator, it is implied that

(170)

Therefore, by rewriting (170) in a matrix form, the equality in
(61) is obtained.

According to (2), (44), and (52)

(171)

Since and
, it can be shown using the Tonelli theorem

and the Cauchy–Schwartz inequality [26] that the term

. Hence, by the Fubini theorem [26] integration order in the
r.h.s. of (171) can be interchanged and

(172)

where the second equality in (172) stems from (2) and the defi-
nition of below (168). Therefore, according to (2) and
(172)

(173)

As shown above, for a.e.
in the -norm.

Therefore, according to in [26, Prop. (5.21)], regarding the con-
tinuity of the inner-product operator, it is implied that

(174)

Therefore, by rewriting (174) in a matrix form, the equality in
(62) is obtained.

APPENDIX F

Theorem 6: let

denote a sequence in , where
is defined in (38), and defined in (6) constitutes

a closed subspace of . If for
a.e. as , then and

in the -norm as .
Proof: First, we find a function in , which

dominates each element of . Let
, then by the definition of above, it is im-

plied that

(175)
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where the second equality stems from the definition of
in (38), the first inequality stems from the triangle

inequality, the second inequality stems from the properties
of the Lebesgue integral, and the third inequality stems from
the fact that and

.
Since , then there exist

positive constants , such that

. Hence, by (175) it is implied that

(176)

Moreover, let

Since the functions
, then as well.

Therefore, each element of is dominated by
. Hence, by the dominated conver-

gence theorem in spaces, stated in Theorem 5.2.2 in [27], it
is concluded that and
in the -norm, as . Since is closed, the
limit of any convergent sequence in is contained in .
Thus, .

APPENDIX G

Theorem 7: ([26, Th. (8.15)]) Suppose
, and . If

, then
, for every in the Lebesgue set of -in particular, for

almost every , and for every at which
is continuous.

The proof can be found in [26].

APPENDIX H

In this Appendix, the proposed bound in (110) is derived via
the following steps. First, substitution of in (106),
into (107) yields

(177)

where and are defined in (71) and (83),
respectively,

(178)

, defined in (72), is the Bayesian Fisher information
matrix

(179)

and is defined in (84).
Second, the inverse of the matrix , in (178) is derived.

Assuming that is positive-definite, then according to for-
mula (7.7.5) in [29]

(180)

where the second equality in (180) stems from the
Sherman–Morrison–Woodbury formula [30]

(181)

(182)

(183)

We note that by [29, Th. (7.7.6)], (183) is positive-definite.
Third, substitution of (180)–(183) into (177) yields

(184)

where , and

.
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