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Introduction

The detection problem in a typical DS-CDMA (GNSS) system is
a composite hypothesis testing problem,

Under H1 , parameter space is characterized by time,
frequency and noise variance.
Under H0, it is parameterized by the noise variance.

The test statistic is a combination of coherent and post-coherent
technique (known as Post Detection Integration - PDI).

The coherent integration exploits the deterministic part of the
signal and is similar to matched filtering.

Coherent integration duration is limited due to,

Frequency Uncertainty.
Navigation data bits.
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Introduction

The limitation results in a block PDI technique, and the test
statistic is expressed as,

T (Y ) =
M∑

k=1

f (Y [k ]) (1)

where Y [k ] is the coherent integration output.

The final test statistic is a function of the coherent integration
output and typically is of a quadratic form.

The required dwell time (or the sample complexity) is
determined from the Neyman-Pearson criterion.

Further, in order to detect weak signals with a minimum
guaranteed performance i.e, (Pfa, Pd ), longer dwell times are
required.
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Signal Model

The distribution of Y [k ] is

Y [k ] ∼
{

CN(0, σ2), Under H0
CN(µY , σ

2), Under H1

µY =
√

PNcoh
sin(π∆fTcoh)
π∆fTcoh

R(∆τ) exp(j∆θ).

P, ∆f , ∆τ , and ∆θ are the signal power, offset in time,
frequency and phase, respectively.

The null hypothesis (H0), is that the estimated doppler and code
phase are not close to the true values

The alternate hypothesis (H1), is that the estimated doppler and
code-phase match the true values.

Mathematically, H0 ∈ (f 6= f̂ , τ 6= τ̂) and H1 ∈ (f = f̂ , τ = τ̂).
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Signal Model

The Log-likelihood ratio after averaging phase as a nuisance
parameter leads to a test statistic of the form.

T (Y ) =

∣∣∣∣∣
M∑

k=1

Y [k ]exp(−j2π∆fkTcoh)

∣∣∣∣∣
2

(2)

If ∆f → 0, then T (Y ) =
∣∣∣∑M

k=1 Y [k ]
∣∣∣2, coherent integration.

The false alarm and detection probability,

Pfa = P0{T (Y ) > γ} =
∫∞
γ

fT (Y )|H0 (z|H0)dz
Pd = P1{T (Y ) > γ} =

∫∞
γ

fT (Y )|H1 (z|H1)dz

Pfa and Pd depend on the noise variance σ2.
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Noise Uncertainty Model

Nominal distribution of noise, w [n] ∼ CN(0, σ2
n)

Noise variance fluctuation is assumed deterministic but unknown
and is bounded as σ2 ∈ [ 1

βσ
2
n , βσ

2
n], where β ≥ 1.

Under noise uncertainty model,

Pfa = maxσ2∈[ 1
β σ

2
n ,βσ

2
n ] Pfa(σ2)

Pd = minσ2∈[ 1
β σ

2
n ,βσ

2
n ] Pd (σ2)

Sensitivity limit exists, if,

min
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

E1{T (Y )} ≤ max
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

E0{T (Y )}

The noise uncertainty model captures the residual uncertainty
due to imprecise noise variance calibration and/or temperature
variations.
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Coherent Integration

The test statistics of coherent integration is expressed as,

TA =

∣∣∣∣∣∑
M

Y [k ]

∣∣∣∣∣
2

, (3)

Coherent integration is non-robust to frequency uncertainty and
unknown data-bits.

Asymptotically robust to noise uncertainty.

min
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

N2
cohP + 2Ncohσ

2 ≤ max
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

2Ncohσ
2, (4)

The SNR limit for reliable detection is thus

SNRL ≤
2

Ncoh

(
β − 1

β

)
, (5)
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NC-PDI (Quadratic)

The test statistics of Non-coherent PDI(NC-PDI) is expressed as,

TB1 =
∑

M

|Y [k ]|2, (6)

Non-coherent PDI is similar to energy detection.

Under H0, T (Y ) is distributed as central χ2 and is distributed as
non-central χ2 under H1, with 2M degrees of freedom.

The Pfa and Pd are expressed as,

Pfa = exp
(
− γ

2Ncohσ2

)M−1∑
k=0

1
k !

(
γ

2Ncohσ2

)k

(7)
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NC-PDI (Quadratic)

Pd = QM

(√
λ

Ncohσ2 ,

√
γ

Ncohσ2

)
, (8)

where λ is the non-centrality parameter and is related to the signal
power, γ is the detection threshold.

Inverting the marcum-Q function to evaluate the sample
complexity M, is not feasible as no closed form solution exists.

In general, the sample complexity of M to detect weak signal is
moderate to high, so the statistics of T(Y) is approximated by
Gaussian distribution using CLT.

The mean and variance of the test statistics under both H0 and
H1 are well known.
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NC-PDI (Quadratic)

Under H0,

E{TB1|H0} = 2M(Ncohσ
2)

Var{TB1|H1} = 4M(Ncohσ
2)2

Under H1,

E{TB1|H1} = M(N2
cohP) + 2M(Ncohσ

2)
Var{TB1|H1} = 4M((Ncohσ

2)2 + (N3
cohPσ2))

The expressions for Pfa and Pd simplify to,

Pfa ≈ Q
(
γ − 2M(Ncohσ

2)√
4M(Ncohσ2)

)
, (9)

Pd ≈ Q

 γ −M(N2
cohP + 2(Ncohσ

2))√
4M((Ncohσ2)2 + (N3

cohPσ2))

 (10)
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NC-PDI

In the presence of noise uncertainty, the Pfa and Pd are
expressed as,

Pfa = max
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

Q
(
γ − 2M(Ncohσ

2)√
4M(Ncohσ2)

)
,

= Q
(
γ − 2M(Ncohβσ

2
n)√

4M(Ncohβσ2
n)

)
, (11)

Pd = min
σ2∈[ 1

β σ
2
n ,βσ

2
n ]

Q

 γ −M(N2
cohP + 2(Ncohσ

2))√
4M((Ncohσ2)2 + (N3

cohPσ2))


= Q

 γ −M(N2
cohP + 2(Ncoh

1
βσ

2
n))√

4M((Ncoh
1
βσ

2
n)2 + (N3

cohP 1
βσ

2
n))

 (12)

Chandrasekhar J Analysis of PDI techniques



NC-PDI(Quadratic)

Simplifying the Pfa and Pd expressions, the sample complexity of
the NC-PDI technique is expressed as,

M =
4
(

Q−1(Pfa,nu)β −Q−1(Pd,nu)
√

1
β ρcoh + 1

β2

)2

(
ρcoh − 2(β − 1

β )
)2 , (13)

where, ρcoh = NcohP
σ2 , SNR at the coherent integration output.

As ρcoh → 2
(
β − 1

β

)
, M →∞ i.e., sample complexity becomes

unbounded.

SNRlimit = 2
Ncoh

(
β − 1

β

)
.

Noise Uncertainty imposes fundamental sensitivity limits, when
the NC-PDI technique is used as the test statistic.

Chandrasekhar J Analysis of PDI techniques



NC-PDI (Non-Quadratic)

The test statistics of Non-coherent PDI(non-quadratic) is
expressed as,

TB2 =
∑

M

|Y [k ]|, (14)

The performance is similar to that of quadratic case (non-robust
to noise uncertainty).

Analytical characterization for Pfa and Pd is not known in closed
form.

The mean and variance of TB2 under both the hypotheses are
expressed as:

E{TB2|H0} = M

√
πNcohσ2

2
, (15)

Var{TB2|H0} = M
(

4− π
2

)
Ncohσ

2, (16)
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NC-PDI (Non-Quadratic)

E{TB2|H1} = M

√
πNcohσ2

2
e−

ρs
4

[(
1 +

ρs

2

)
I0
(ρs

4

) ρs

2
I1
(ρs

4

)]
,

Var{TB2|H1} = M
(

2Ncohσ
2
(

1 +
ρs

2

)
− (E {TB2|H1})2

)
,

Using polynomial approximation and assuming low SNR,

1√
β

(
βρcoh

4
− (βρcoh)2

96
+

(βρcoh)3

768

)
≤
(√

β − 1√
β

)
. (17)

Neglecting higher order terms in the above expression, the SNR
limit can be evaluated as ρcoh → SNRL , 4

(
1− 1

β

)
.
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Simulation Results (NC-PDI SNR WALL)
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Figure: SNR wall: exact expression versus the approximation for the
non-quadratic NC-PDI technique, and the comparison of theoretical
and simulation-based values for the quadratic NC-PDI.

Chandrasekhar J Analysis of PDI techniques



Simulation Results (NC-PDI - Quadratic)
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Figure: ROC of the NC-PDI (Quadratic form) with and without noise
uncertainty, M = 100, coherent SNR = −2dB
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Simulation Results (NC-PDI - Non-Quadratic)
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Figure: ROC of the NC-PDI (Non-Quadratic form) with and without
noise uncertainty, M = 100, coherent SNR = −2dB
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D-PDI

The test statistics of Differential PDI (D-PDI) is expressed as,

TC = Re

{
M∑

m=1

Y [m](Y [m − 1])?

}
(18)

Let Y [m] = I[M] + jQ[m], then the test statistics becomes,

TC =
M∑

m=1

I[m]I[m − 1] + Q[m]Q[m − 1] (19)

The test statistic is not robust to navigation data-bits and as well
as large frequency offset. An alternative is to use D-PDI (Abs)
i.e.,

T =

∣∣∣∣∣
M∑

m=1

Y [m](Y [m − 1])?

∣∣∣∣∣ (20)

However, the above detector is analytically intractable.
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D-PDI

The Pfa expression is given by:

Pfa =


∑M

k=1,λk>0 Ck exp
(
− γ

2λk Ncohσ2

)
, γ > 0,

1−
∑M

k=1,λk<0 Ck

(
exp

(
− γ

2λk Ncohσ2

))
, γ < 0.

(21)

The Pd expression is evaluated numerically as:

Pd =
1
2

+
1
π

∫ ∞
0

sin(θ(u))

uc(u)
du, (22)

where, θ(u) and c(u) are derived from the characteristic function
as

θ(u) =
M∑

k=1

[
tan−1(2λk Ncohσ

2u) +
µ2

yk
λk Ncohσ

2u
(1 + 4λ2

k N2
cohσ

4u2)

]
− γu,

c(u) =
M∏

k=1

[(1 + 4λ2
k N2

cohσ
4u2)

1
2 ] exp

(
1
2

M∑
k=1

(µyk 2λk Ncohσ
2u)2

(1 + 4λ2
k N2

cohσ
4u2)

)
.
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D-PDI

To evaluate the sample complexity, the mean and variance are
given by:

E{TC |H0} = 0;
Var{TC |H0} = 2(M − 1)N2

cohσ
4,

E{TC |H1} = (M − 1)N2
cohP;

Var{TC |H1} = 2(M − 1)N2
cohσ

4 + 2(2M − 3)N3
cohPσ2.

The sample complexity in the presence of noise uncertainty:

M = 1 +
2
(

Q−1(Pfa,nu)β −Q−1(Pd,nu)
√

2ρcoh
β + 1

β2

)2

ρ2
coh

. (23)

The D-PDI technique is robust to uncertainty in the noise
variance. The same analysis can be extended to test-statistic
with different spans.
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Simulation Results (D-PDI)
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Figure: ROC of the D-PDI method with and without noise uncertainty,
Tcoh = (Tb/2)ms, M = 50, coherent SNR = −2dB
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Modified-PDI (Data)

The test statistic is expressed as,

TD1 =
M∑

k=1


∣∣∣∣∣

N∑
n=1

xk [n]

∣∣∣∣∣
2

−
N∑

n=1

|xk [n]|2
 , (24)

where xk [n] is the output of the Tcoh milliseconds of coherent
integration in the k th PDI block

Tcoh typically a fraction of Tb, the data bit duration;

N is the number of coherent integration outputs within a data bit
duration.

The coherent integration duration is limited and hence it is robust
to frequency uncertainty.

In addition, the coherent integration spans within a data-bit and
hence the technique is also robust to noise uncertainty.
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Modified-PDI (Data)

The Pfa expression is evaluated numerically as in D-PDI,

θPfa (u) =
2∑

k=1

[
MNk tan−1(2λk Ncohσ

2u)
]
− γu,

cPfa (u) =
2∏

k=1

(1 + 4λ2
k N2

cohσ
4u2)

MNk
2 . (25)

Similarly for Pd ,

θPd (u) =
2∑

k=1

[
MNk tan−1(2λk Ncohσ

2u) + K1

]
− γu,

where K1 = MNkµ
2
ykλk Ncohσ

2u(1 + 4λ2
k N2

cohσ
4u2)−1]

cPd (u) =
2∏

k=1

[
(1 + 4λ2

k N2
cohσ

4u2)
MNk

2

]
exp

(
1
2

2∑
k=1

(MNkµyk 2λk Ncohσ
2u)2

(1 + 4λ2
k N2

cohσ
4u2)

)
(26)
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Modified-PDI (Data)

The mean and variance of the test statistic are expressed as,

E{TD1|H0} = 0,
Var{TD1|H0} = 4MN(N − 1)N2

cohσ
4

.E{TD1|H1} = M(N − 1)N2
cohPα2,

Var{TD1|H1} = 4M(N − 1)Ncohσ
2 (NNcohσ

2 + (N − 1)N2
cohPα2) .

The sample complexity in the presence of uncertainty in the
noise variance is given by

M =
4
(

Q−1(Pfa,nu)
√

N
(N−1)β

2 −Q−1(Pd,nu)
√

N
(N−1)

1
β2 + ρcoh

β

)2

ρ2
coh

,

(27)

The modified technique is robust to uncertainty in the noise
variance.

Chandrasekhar J Analysis of PDI techniques



Simulation Results (Modifed-PDI - Data)
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Figure: ROC of the modified PDI for data channel with and without
noise uncertainty, M = 100, coherent SNR = −2dB
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Modified-PDI (Pilot)

The test statistic is expressed as

TD2 =
P∑

p=1

Re


M∑

k=p+1

x [k ]x∗[k − p]sinc(2pfmaxTcoh)

 , (28)

where fmax is the upper bound on the frequency offset which
depends on the frequency uncertainty in the coarse
synchronization stage.

L is the number of D-PDI spans included in the test statistic.

The analytical characterization follows on the similar lines as in
the previous section.

The sample complexity computation is recursive and has to be
evaluated numerically.

Incorporating additional spans in the test-statistic improves
detection performance.
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Simulation Results (Modifed-PDI - Pilot)
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Figure: ROC of the modified PDI for pilot channel with and without
noise uncertainty, M = 50, coherent SNR = −2dB
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Simulation Results (Sample Complexity - 1)
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Figure: Sample complexity versus coherent SNR (NC-PDI quadratic
and NC-PDI non-quadratic): Pfa = 0.1 and Pd = 0.9
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Simulation Results (Sample Complexity - 2)

−10 −8 −6 −4 −2 0 2 4 5

101

102

103

Coherent SNR ( ρ
coh

)

S
a

m
p

le
 C

o
m

p
le

xi
ty

 (
M

)

 

 
D−PDI, β = 1.0 dB (S)

D−PDI, β = 1.0 dB (T)

D−PDI, β = 0.0 dB (T)

Mod. PDI data, β = 1.0 dB (S)

Mod. PDI data, β = 1.0 dB (T)

Mod. PDI data, β = 0.0 dB (T)

Mod. PDI pilot, β = 1.0 dB (S)

Mod. PDI pilot, β = 1.0 dB (T)

Mod. PDI pilot, β = 0.0 dB (T)

Figure: Sample complexity versus coherent SNR (D-PDI, Modified
PDI data, Modified PDI pilot): Pfa = 0.1 and Pd = 0.9
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Conclusion

The performance of the different PDI techniques were analyzed
under noise uncertainty.

It was shown that fundamental sensitivity exists when NC-PDI
(both quadratic and non-quadratic) is used as the test statistics.

The differential PDI (D-PDI) is robust to uncertainty in the noise
variance, but it’s performance degrades in the presence of
data-bits

A modified PDI technique (Data) was proposed and is shown to
be robust to noise, frequency and data-bit uncertainties.

The modified PDI technique for pilot channel is proposed and
the performance improvement obtained by using additional
spans is highlighted.
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