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PART 1: CRAMER RAO
BOUNDS



Cramer-Rao Bound

* Need for bounds:

— Many practical estimation problems: computing
optimal (e.g., MMSE, MAP, ML) estimators is
infeasible

— Typically, we use suboptimal techniques
 EM
* Belief propagation

— So, want to know how good these estimators are!
* So, alternative strategy:

— Find lower bound on MSE among all (unbiased)
estimators

— Check how close we can get to the lower bound



Schur Complement

 Consider
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* Where A;; isthe Schur complement of A ,

A _
All — A22 _ A21A111A12



Decorrelation

* Let the covariance of [X;, X,]"be A >0
 Can decorrelate X:

Y, | A ] T ol [x]| | X,

Y. | | AGAL T | X | | X - AnAX

Cov(Y) =diag{A 1, A1}
A _
A=Ay —AyAAL >0
» Equality iff Xy = AyjA'X; as.



Scalar CRLB Theorem

e LetY ~f(y|O). Let O be an unbiased est. of 8
* Under regularity conditions

Var() > L
1(0)
e |(O) is the Fisher Information
e Equality iff

NN

s(y:0) = == 1n f(y]6) = 1(0)(B(y) — 0



Proof

a | s(y;0)

Consider “~ [é@)-@]
Note Z is zero-mean, with covariance
(6 1
Cov(z) = (9) A
1 Var(0)
Taking the schur complement of I(0):

Var(f) — I71(#) > 0
Equality iff

Oy) — 0 =1 *(0)s(y;0) almost surely




Vector Parameter CRB

Theorem Let 8 be an unbiased estimator of 8. Then
E{(0—6)6—6)"}>1"6)

where 1(0) is the Fisher Information Matrix

10)], - E{alng(e?ﬂe)alnggﬂe)} :_E{aQ?H{éZ|9)}

10) = E{[V,In f(Y|0)][VyIn f(Y|0)]"} = —~E{VIn f(Y|6)}

The equality holds iff
Voln f(Y|0) =1(6)(6 — 6)



Extension to Random Parameters

* Let
(Y. ©)~ f(yl0)p(6) = f(y,0)
o @1 - (_OO;OO> f<y79> >0

. Let ©® be a Bayesian estimator of ©
regularity conditions

1. f(y,0) is absolutely continuous with respect to 6;
2. limg .40, f(y,0;) =0 Vi, or

2" the conditional bias satisfies

A

lim E(©;, —6;(©=0)f(6;) =0, Vi

0;—+o0



Random Parameter CRLB

* The BCRLB is given by
M(O)=E®O® -0)0e -0) >J!

* \Where

J=E{[Vyln f(Y,0)][Vyln f(Y,0)]"}

e (assuming expectations are finite and inverses
exist)




BCRB: Some Remarks

e Also holds for biased estimators

e Need the “weak unbiasedness” condition:

f:r: v%‘ p(r)B(x)] =0

e Where:

B(z) = [ [#(y) — z]p(y|x)dy



BCRB: More Remarks

* |n practice, more interested in BCRB of a
particular component X, :

Ex,v [(@x(Y) — X&) (@(Y) — X&)"]
= Exv[(2x(Y) — Xi)(&x(Y) — Xk)"]
= Exk,

* The CRB is given by

Ere = [J7 'k



PART 2: FACTOR GRAPHS



What is a Factor Graph?

It is a graphical model of a function
— Next question: what is a graphical model?

Graphical model: helps to visualize
interactions between variables

Examples:

— Error control codes

— Communication channel representations
Types of graphical models other than factor
graphs:

— Markov random fields, neural networks, etc



Basic Setup

* Functions = nodes, Edges = variables
* No structure: f,(X,, X,, X;) X3

X1 X3
fa

e Function with structure:

f(ZUl,ZE‘Q,iBg) = f(gjla‘rQ)f<$27 55‘3)

X1 X9 X3
fa /B ——




One More Example

f(z1, 22, 73,74, 75,76) = fa(x1,72) fB(T3, 24) fo (72, T4, 75) fD (25, T6)

X3

/B

X4

X1 X9 X5 Xeg
fa fc ID




Equality Constraint

 Sometimes, the same variable is input to

multiple function

e But if we represent a variable by an edge, it
can only be input to two functions at max!

* So, use equality constraint nodes

X

X/

X//




Summary Propagation Algo

* Suppose we want to compute the
marginalization

f(xf)) é Z f(xlax23x3ax4ax5ax6)

L1,r2,r3,L4,T6

* Suppose, in particular, we are given that

f(zs) = Zﬁ fa(zi,x2) - fB(23,74) - fe(T2,24.75) - fD(T5,6)

T1.r2.Tr3.T4.Tg



Key Step: Use “Brackets”

_ Z fo(za, x4, 75) (Z fA(Il.IQ)> : (Z /B (l’:s-l!t)) '

To.T4

Hfs—xo ( L2 ) Hfp—x4 (24 )

/.l f(" —Ts ( s )
(Z fp(zs. x6 )) '
g

Lfp—as(Z5)




SPA lllustrated
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Sum Product Rule

 Message out of node f along edge Y is the
product of the function f and all messages
towards node f summed over all other edges
(variables) except Y G

L Y

' J =
o
XN

* This rule is the central building block of factor
graph based computations




PART 3: COMPUTING BCRBS



Reference material: Justin Dauwels, “On Graphical Models
for Communications and Machine Learning: Algorithms,
Bounds, and Analog Implementation” Ph.D. Dissertation.

THANK YOU!



