Computing Bayesian Cramer-Rao Bounds

Chandra R. Murthy 26 March 2011

Outline

- Part 1: Cramer-Rao Bounds
- Part 2: Factor Graphs
- Part 3: Computing CRBs from Factor Graphs

PART 1: CRAMER RAO BOUNDS

- Recap of Cramer-Rao Bounds
- Bayesian Cramer-Rao Bounds

Cramer-Rao Bound

- Need for bounds:
 - Many practical estimation problems: computing optimal (e.g., MMSE, MAP, ML) estimators is infeasible
 - Typically, we use suboptimal techniques
 - EM
 - Belief propagation
 - So, want to know how good these estimators are!
- So, alternative strategy:
 - Find lower bound on MSE among all (unbiased) estimators
 - Check how close we can get to the lower bound

Schur Complement

• Consider
$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

Can diagonalize:

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Delta}_{11} \end{bmatrix}$$

• Where Δ_{11} is the Schur complement of A_{11}

$$\Delta_{11} \stackrel{\Delta}{=} \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$

Decorrelation

- Let the covariance of $[X_1, X_2]^T$ be A > 0
- Can decorrelate X:

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{X}_1 \end{bmatrix}$$
$$\mathbf{Cov}(\mathbf{Y}) = \mathbf{diag}\{\mathbf{A}_{11}, \mathbf{\Delta}_{11}\}$$
$$\mathbf{\Delta}_{11} \stackrel{\triangle}{=} \mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \geq 0$$

• Equality iff $\mathbf{X}_2 = \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{X}_1$ a.s.

Scalar CRLB Theorem

- Let Y ~ $f(y|\theta)$. Let $\hat{\theta}$ be an unbiased est. of θ
- Under regularity conditions

$$\mathrm{Var}(\hat{\theta}) \geq \frac{1}{I(\theta)}$$

- I(θ) is the *Fisher Information*
- Equality iff

$$s(y;\theta) \stackrel{\Delta}{=} \frac{\partial}{\partial \theta} \ln f(y|\theta) = I(\theta)(\hat{\theta}(y) - \theta)$$

Proof

• Consider
$$\mathbf{z} \triangleq \begin{bmatrix} \mathbf{s}(\mathbf{y}; \theta) \\ \hat{\theta}(y) - \theta \end{bmatrix}$$

Note Z is zero-mean, with covariance

$$\mathsf{Cov}(\mathbf{z}) = \begin{bmatrix} I(\theta) & 1 \\ 1 & \mathsf{Var}(\hat{\theta}) \end{bmatrix}$$

• Taking the schur complement of $I(\theta)$:

$$\mathsf{Var}(\hat{\theta}) - I^{-1}(\theta) \ge 0$$

Equality iff

$$\hat{\theta}(y) - \theta = I^{-1}(\theta)s(\mathbf{y}; \theta)$$
 almost surely

Vector Parameter CRB

Theorem Let $\hat{\theta}$ be an unbiased estimator of θ . Then

$$E\{(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^{\mathsf{T}}\} \geq \mathbf{I}^{-1}(\boldsymbol{\theta})$$

where $I(\theta)$ is the Fisher Information Matrix

$$[I(\theta)]_{ij} = \mathbb{E}\left\{\frac{\partial \ln f(\mathbf{Y}|\boldsymbol{\theta})}{\partial \theta_i} \frac{\partial \ln f(\mathbf{Y}|\boldsymbol{\theta})}{\partial \theta_j}\right\} = -\mathbb{E}\left\{\frac{\partial^2 \ln f(\mathbf{Y}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right\}$$
$$\mathbf{I}(\boldsymbol{\theta}) = \mathbb{E}\left\{\left[\nabla_{\theta} \ln f(\mathbf{Y}|\boldsymbol{\theta})\right]\left[\nabla_{\theta} \ln f(\mathbf{Y}|\boldsymbol{\theta})\right]^{\mathsf{T}}\right\} = -\mathbb{E}\left\{\nabla^2 \ln f(\mathbf{Y}|\boldsymbol{\theta})\right\}$$

The equality holds iff

$$\nabla_{\theta} \ln f(\mathbf{Y}|\boldsymbol{\theta}) = \mathbf{I}(\theta)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

Extension to Random Parameters

Let

$$(\mathbf{Y}, \mathbf{\Theta}) \sim f(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta}) = f(\mathbf{y}, \boldsymbol{\theta})$$

- $\Theta_i \in (-\infty, \infty)$ $f(\mathbf{y}, \boldsymbol{\theta}) > 0$
- Let Θ be a Bayesian estimator of Θ regularity conditions
 - 1. $f(y, \theta)$ is absolutely continuous with respect to θ ;
 - 2. $\lim_{\theta_i \to \pm \infty} \theta_i f(\mathbf{y}, \theta_i) = 0 \quad \forall i$, or
 - 2' the conditional bias satisfies

$$\lim_{\theta_i \to \pm \infty} \mathbb{E}(\hat{\Theta}_i - \theta_i | \mathbf{\Theta} = \boldsymbol{\theta}) f(\theta_i) = 0, \quad \forall i$$

Random Parameter CRLB

The BCRLB is given by

$$\mathcal{M}(\hat{\mathbf{\Theta}}) \stackrel{\Delta}{=} \mathbb{E}(\hat{\mathbf{\Theta}} - \mathbf{\Theta})(\hat{\mathbf{\Theta}} - \mathbf{\Theta})^T \ge \mathbf{J}^{-1}$$

Where

$$\mathbf{J} = \mathbb{E}\{ [\nabla_{\theta} \ln f(\mathbf{Y}, \mathbf{\Theta})] [\nabla_{\theta} \ln f(\mathbf{Y}, \mathbf{\Theta})]^T \}$$

(assuming expectations are finite and inverses exist)

BCRB: Some Remarks

- Also holds for biased estimators
- Need the "weak unbiasedness" condition:

$$\int_{x} \nabla_{x_{j}} [p(x)B(x)] = 0$$

• Where:

$$B(x) \stackrel{\triangle}{=} \int_{y} [\hat{x}(y) - x] p(y|x) dy$$

BCRB: More Remarks

• In practice, more interested in BCRB of a particular component X_k :

$$\begin{aligned} \mathbf{E}_{X_k Y} [(\hat{x}_k(Y) - X_k)(\hat{x}_k(Y) - X_k)^T] \\ &= \mathbf{E}_{XY} [(\hat{x}_k(Y) - X_k)(\hat{x}_k(Y) - X_k)^T] \\ &\triangleq \mathbf{E}_{kk}, \end{aligned}$$

The CRB is given by

$$\mathbf{E}_{kk} \succeq [\mathbf{J}^{-1}]_{kk}$$

PART 2: FACTOR GRAPHS

A brief introduction

What is a Factor Graph?

- It is a graphical model of a function
 - Next question: what is a graphical model?
- Graphical model: helps to visualize interactions between variables
- Examples:
 - Error control codes
 - Communication channel representations
- Types of graphical models other than factor graphs:
 - Markov random fields, neural networks, etc

Basic Setup

- Functions = nodes, Edges = variables
- No structure: $f_A(X_1, X_2, X_3)$

Function with structure:

$$f(x_1, x_2, x_3) \stackrel{\triangle}{=} f(x_1, x_2) f(x_2, x_3)$$

One More Example

$$f(x_1, x_2, x_3, x_4, x_5, x_6) \stackrel{\triangle}{=} f_A(x_1, x_2) f_B(x_3, x_4) f_C(x_2, x_4, x_5) f_D(x_5, x_6)$$

Equality Constraint

- Sometimes, the same variable is input to multiple function
- But if we represent a variable by an edge, it can only be input to two functions at max!
- So, use equality constraint nodes

Summary Propagation Algo

Suppose we want to compute the marginalization

$$f(x_5) \stackrel{\triangle}{=} \sum_{x_1, x_2, x_3, x_4, x_6} f(x_1, x_2, x_3, x_4, x_5, x_6)$$

Suppose, in particular, we are given that

$$f(x_5) = \sum_{x_1, x_2, x_3, x_4, x_6} f_A(x_1, x_2) \cdot f_B(x_3, x_4) \cdot f_C(x_2, x_4, x_5) \cdot f_D(x_5, x_6)$$

Key Step: Use "Brackets"

$$= \sum_{x_2, x_4} f_C(x_2, x_4, x_5) \underbrace{\left(\sum_{x_1} f_A(x_1, x_2)\right) \cdot \left(\sum_{x_3} f_B(x_3, x_4)\right)}_{\mu_{f_A \to x_2}(x_2)} \cdot \underbrace{\left(\sum_{x_3} f_B(x_3, x_4)\right)}_{\mu_{f_B \to x_4}(x_4)} \cdot \underbrace{\left(\sum_{x_4} f_D(x_5, x_6)\right)}_{\mu_{f_D \to x_5}(x_5)}.$$

SPA Illustrated

Sum Product Rule

 Message out of node f along edge Y is the product of the function f and all messages towards node f summed over all other edges

(variables) except Y

 This rule is the central building block of factor graph based computations

PART 3: COMPUTING BCRBS

Switch to paper/thesis

Page numbers: 210-215 in the manuscript

Corresponds to: 238-244 of PDF file

Reference material: Justin Dauwels, "On Graphical Models for Communications and Machine Learning: Algorithms, Bounds, and Analog Implementation" Ph.D. Dissertation.

THANK YOU!