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Poisson Point Process (PPP)

» Spatial generalisation of a Poisson Process

» Stationary: Defined over complete plane R?
» Definition
1. The number of points in two bounded and disjoint sets
A1 € R? and A; € R? are independent
2. The number of points in a bounded set A C R? are poisson
distributed with mean \|A|

P(0(4) = n) = exp(~AA) XAV

where )\ is the density of point process ¢ and |A| represents
the area of the bounded region



Properties of PPP

» First Contact Distance Distribution
» Probability Distribution Function (PDF)

fr(r) = 2mriexp(—mr?\)

» Thinning of PPP of density A

» Select a point with probability p independently
» Results in two independent PPPs of density pA and (1 — p)A

» Slivnyak’'s Theorem
]P)!O )

Reduced palm distribution is same as PPP distribution itself.



Theorem

» Campbell’s Theorem: Sums over PPP
> If ¢ is a PPP of density A and f(x) : R2 — R™*, then

E[) " f(x)] =X . f(x)dx

XEP

» Probability Generating Functional (PGFL): Products
over PPP

> If ¢ is a PPP of density A and f(x) : R? — [0, 1], then

B[ F(x)] = exp (—A/Rz(l - f(x))dx>

XEP



System Model

» Time Division Duplex (TDD) system

» Training

Uplink Training: Training duration is L, symbol interval
P, Training Power per Symbol

L, set of orthogonal sequences

Randomly choose sequence

» Downlink

Base Stations (BS): PPP ¢g of density Ag

Mobile Users (MU): Independent PPP ¢, of density A,
MU connects to the nearest BS

BS transmits with power Pp

Rayleigh Fading

Path Loss Model: min{1, r—*}
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Problem Statement

» Coverage Probability: The probability that a randomly
selected user can achieve a target SINR, say 6

P. = P(SINR > 0)
Outage Probability: Randomly selected user is in outage
P, =1—P.=P(SINR < 6)

» Ergodic Capacity: Average rate achieved by typical user

c= LLLT)E[In(l + SINR)]

where L is the Coherence interval



Goal

To Compute: Coverage probability P.|, conditioned over first
contact distance

Uncondition by using PDF of first contact distance (Previous
Slides: First Contact Distribution)

Study the effect of training duration and SINR threshold 6 on
the coverage probability

Comparison with the perfect channel state case



Training Selection, Thinning of PPP

» Select a training sequence form a set (t;) of L, orthogonal
training sequences randomly

fori,j=0to L, —1, where tj is L, x 1 training symbol vector
» Thinning: PPP ¢, is divided into two independent PPPs:
> Interferers Using Trammg to:

PPP ¢t with density 2 v
> Interferers Using Trammg other than t,:

Am(Lr—
PPP 6% with density 2=(t=—1)



Training Phase

» Assuming the uplink transmission to be interference limited
» WLOG assuming typical user selects training sequence tq

» Data y, received at a typical BS (Slivnyak’'s Theorem) located
at the origin "o’

yr =/ PrLs 12, houto + Z v/ PrLr 12, houto

vEPR

> hoy, hoy ~ CN(0,1)

> yris L x1

» 12, = min(1,r=%) where r is the distance of the BS form the
typical user u

» 12, = min(1,]||v|]|~) where ||v| is the distance of the
interferers using training t, from the BS

v

« is the pathloss coefficient



Channel Estimation: LMMSE

Linear Minimum Mean Square Error Estimate (LMMSE)
» Observation Signal: y, = tHy, (Scalar)

» LMMSE Estimate of hoy: hoy = IIEE[[%VE]] v,

» We get the estimate conditioned over r (First Contact
Distance) as:

P VP-L 12,

e PTLTlgU + E[Zv@bfﬁ\u PTLTl§v|hOV|2]yT

Now to compute E[}_ e\, P-L.12,|hoy|?]



Channel Estimate

» Use Campbell’'s Theorem

(6%
E[ Y PrLlol,lhou[’] = PrAm <ﬁ>

vEPR\u

therefore
R VP-L 2
hou = o Yr
PrlelBy+ Prmdm (525

L.12,

e = e an (2)




Estimation Error

» Now
hou = hou + hou
where 7701, is the estimation error

» Estimation Error Variance(o?2)
Using the orthogonality of h,, and hy,

1
L"’ IC2>u
™n(3%3)

Ug = EWN’OUF] =

> Note: The pilot symbols are getting corrupted by the MUs
using same training sequence as typical user 'u’.

» The considered model inherently captures the effect of Pilot
Contamination



Am VS o, for different L,
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Figure : Plot of A, vs e, for a = 3, distance r =2 and L, = 1,5 and 10

» Higher the MU density, higher the pilot contamination

» High estimation error



L, vs o, for different A\,
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Figure : Plot of L, vs 0., for a = 3, distance r = 2 and \,, = 0.01,0.05
and 0.1

» As L. increases, thinning of PPP takes place

» Hence, pilot Contamination decreases and estimate becomes
more accurate



Downlink Transmission

> Suppose the typical MU to be at the origin "o’
» BS 'b’ will now transmit and set of BS 'y" will interfere

» The signal yp received at the MU will be

¥p = \/ Pol2ohbosho + Y/ PplZhyosyo +n
yEpp\b

v

hpo, hyo ~ CN(0,1)

hpo = hou (reciprocity), also 12, = 12,

12, = min(1, ||y[|~*) where ||y]| is the distance of the
interfering Base Stations form the MU

» Assume n to be AWGN ~ CN(0, 02)

v
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Precoding

» BS sends precoded signal as:

hs,
—~Xbo
| hou|

Sho

> Using y
hou = hou + hou
» Therefore, the signal becomes

Yp = PDlgu|i\70u|Xou + PDlgquuﬁXou
ou

+ ) \/Ppl2hyesye +n
y€pg\b



Signal to Interference Plus Noise Ratio

» Signal To Noise + Interference Ratio (SINR)

PD/§u|BOU|2

SINR = -
Ppl2,|hou|?> + PpZg + o2

where
Ig= ) lwlhywol®
yE€pe\b
» Note: The above SINR expression is a Random Variable
» Here, we can analyse the system in two ways

» Coverage Probability Analysis
» Worst Case Capacity: Using Worst Case Noise Theorem

» Here, we perform the analysis on Coverage Probability



Coverage conditioned on r

> Probability of Coverage (P.|;), conditioned over the
nearest neighbour distance (r)
r)

0 Tt Oo,
B
lgu(]' - Jg) PDlgu(l - Ug)

P, = P(SINR>0|r)

- P ~PD/§u|/A70u|2
Ppl2,|hou|? + PpIp + 02

>0

:P<|Bou|2 > |hou|® +

0
5~ r
(1-02)
» Normalizing |hoy|? as

|/A70u|2 = (1 - U§)|/_70u|2

where, hoy ~ CN(0,1) and |hoy|? is exponentially distributed
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We get

Par = o (gl | 2 oo (-

1— 02

exp (— Py

Note: All the expectations are conditioned on r

o

Oo,

Conditioned on r, exp (—%) is a constant

Calculating each of the terms one by one

7|



First Term

» First Term =E [E‘XP (‘(1_0;03)‘770“‘2)]

» Laplace transform of |710u|2 evaluated at s = —(1_0;(73)
. 1
First Term = 5
1 Oo2
1—03_

» Using,
|710u|2 = U§|,_7:)u|2

where, h., ~ CN(0,1) and |h.,|? is exponentially distributed



Second Term

» Second Term =F [exp (—ﬁlg)}

> Replace Zg =3 ¢y b 15| hyol?, we get

0
second Term = E H exp <_ﬁl)%o|hy0|2>
y€¢5\b /ou(]' - Ue)

(a) 0
= E H Ehyoexp< /2( p= yo\hyo|2>

| yEpp\b




Second Term

(5) 1
=B ] ——

yeps\b 1+ /gu(l o2)

where, (a) follows from independence of hy, and (b) follows from
012
the laplace transform of |hy,|? evaluated at s = N )

» Apply PGFL: Products over PPP

1

Second Term = exp —)\B/ l1——— | dy
R? 1+ TE

012,
2, 0-52)



Final Expression

1
— = | ydy
1+ ou(1 ‘72)
yo

o
Second Term = exp —27r)\5/
r
» Note that the integral is from r to oo
> As there are no BS closer than the tagged BS
» Probability of Coverage conditioned on r

0
P, = First Term x Second Term X exp <_$>
Dloy\1 — O¢



Final Expression: Unconditioning on r

» Unconditioning over r
» The PDF of r is (First Contact Distance Distribution)

fr(r) = 2nrigexp(—mr’Ag)

» Probability of Coverage (P.)

PC = / PC‘,fR(r)dr
0



L. vs P,
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Figure : Plot of L. vs P., for a« = 3, A\, = 0.1, A\g = 0.01, for SINR
Threshold 6 = 0.1,0.5 and 1, {j—g =20

» The coverage probability increases with L,

> Interference making the coverage to saturate for large training
durations



SINR Threshold 6 vs P,
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Figure : Plot of SINR threshold 6 vs P., for « =3, A, = 0.1, Ag = 0.02,
L =10,20 and 30 and £2 =20



SNR vs P.
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Figure : Plot of SIR vs P, fora =3, A, =0.1, A\g =0.02, L. = 10,20
and 30,0 =0.5

» Only one of the three terms depends on Pp

> P. saturates with increasing Pp



SNR vs P.
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Figure : Plot of SIR vs P, fora =3, A,, = 0.1, A\g = 0.02, L. =20,
#=0.1,05and 1

» Again, P. saturates with increasing Pp



Comparison with Perfect Channel Estimate

—#— Perfect Channel Knowledge
—©6— Simulations: Imperfect Channel

07 —— Expressions: Imperfect Channel

verage Probability

1
SINR Threshold

Figure : Comparison of P, with SINR threshold 6 for perfect and
imperfect channel knowledge, for a = 3, A\, = 0.1, A\g = 0.02, L, =30
and £2 =20



Future Extensions

v

Multi-tier heterogeneous networks

v

Study for cell edge users
Uplink Channel Study
Connectivity based on SINR

v

v

v

Dependency between ¢g and ¢,
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