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Poisson Point Process (PPP)

◮ Spatial generalisation of a Poisson Process

◮ Stationary: Defined over complete plane R
2

◮ Definition

1. The number of points in two bounded and disjoint sets
A1 ∈ R

2 and A2 ∈ R
2 are independent

2. The number of points in a bounded set A ⊂ R
2 are poisson

distributed with mean λ|A|

P(φ(A) = n) = exp(−λ|A|)
(λ|A|)n

n!

where λ is the density of point process φ and |A| represents
the area of the bounded region



Properties of PPP

◮ First Contact Distance Distribution

◮ Probability Distribution Function (PDF)

fR(r) = 2πrλexp(−πr2λ)

◮ Thinning of PPP of density λ

◮ Select a point with probability p independently
◮ Results in two independent PPPs of density pλ and (1− p)λ

◮ Slivnyak’s Theorem
P
!o = P

Reduced palm distribution is same as PPP distribution itself.



Theorem

◮ Campbell’s Theorem: Sums over PPP

◮ If φ is a PPP of density λ and f (x) : R2 → R
+, then

E[
∑

x∈φ

f (x)] = λ

∫

R2

f (x)dx

◮ Probability Generating Functional (PGFL): Products
over PPP

◮ If φ is a PPP of density λ and f (x) : R2 → [0, 1], then

E[
∏

x∈φ

f (x)] = exp

(

−λ

∫

R2

(1− f (x))dx

)



System Model

◮ Time Division Duplex (TDD) system

◮ Training
◮ Uplink Training: Training duration is Lτ symbol interval
◮ Pτ , Training Power per Symbol
◮ Lτ set of orthogonal sequences
◮ Randomly choose sequence

◮ Downlink
◮ Base Stations (BS): PPP φB of density λB

◮ Mobile Users (MU): Independent PPP φm of density λm

◮ MU connects to the nearest BS
◮ BS transmits with power PD

◮ Rayleigh Fading
◮ Path Loss Model: min{1, r−α}



Problem Statement

◮ Coverage Probability: The probability that a randomly
selected user can achieve a target SINR , say θ

Pc = P(SINR > θ)

Outage Probability: Randomly selected user is in outage

Po = 1− Pc = P(SINR < θ)

◮ Ergodic Capacity: Average rate achieved by typical user

C =
(L− Lτ )

L
E[ln(1 + SINR)]

where L is the Coherence interval



Goal

◮ To Compute: Coverage probability Pc|r conditioned over first
contact distance

◮ Uncondition by using PDF of first contact distance (Previous
Slides: First Contact Distribution)

◮ Study the effect of training duration and SINR threshold θ on
the coverage probability

◮ Comparison with the perfect channel state case



Training Selection, Thinning of PPP

◮ Select a training sequence form a set (ti) of Lτ orthogonal
training sequences randomly

tHi tj = 0 if i 6= j

= 1 if i = j

for i , j = 0 to Lτ − 1, where ti is Lτ × 1 training symbol vector

◮ Thinning: PPP φm is divided into two independent PPPs:

◮ Interferers Using Training to:
PPP φto

m with density λm

Lτ

◮ Interferers Using Training other than to:

PPP φti
m with density λm(Lτ−1)

Lτ



Training Phase

◮ Assuming the uplink transmission to be interference limited

◮ WLOG assuming typical user selects training sequence to

◮ Data yτ received at a typical BS (Slivnyak’s Theorem) located
at the origin ’o’

yτ =
√

PτLτ l2ouhouto +
∑

v∈φto
m \u

√

PτLτ l2ovhov to

◮ hou , hov ∼ CN (0, 1)

◮ yτ is Lτ × 1

◮ l2ou = min(1, r−α) where r is the distance of the BS form the
typical user u

◮ l2ov = min(1, ‖v‖−α) where ‖v‖ is the distance of the
interferers using training to from the BS

◮ α is the pathloss coefficient



Channel Estimation: LMMSE

Linear Minimum Mean Square Error Estimate (LMMSE)

◮ Observation Signal: yτ = tHo yτ (Scalar)

◮ LMMSE Estimate of hou : ĥou = E[houy∗

τ
]

E[yτy∗

τ
] yτ

◮ We get the estimate conditioned over r (First Contact
Distance) as:

ĥou =

√

PτLτ l2ou
PτLτ l2ou + E[

∑

v∈φto
m \u PτLτ l2ov |hov |

2]
yτ

Now to compute E[
∑

v∈φto
m \u PτLτ l

2
ov |hov |

2]



Channel Estimate

◮ Use Campbell’s Theorem

E[
∑

v∈φto
m \u

PτLτ l
2
ov |hov |

2] = Pτπλm

(

α

α− 2

)

therefore

ĥou =

√

PτLτ l2ou

PτLτ l2ou + Pτπλm

(

α
α−2

)yτ

E[|ĥou|
2] =

Lτ l
2
ou

Lτ l2ou + πλm

(

α
α−2

)



Estimation Error

◮ Now
hou = ĥou + h̃ou

where h̃ou is the estimation error

◮ Estimation Error Variance(σ2
e )

Using the orthogonality of ĥou and h̃ou

σ2
e = E[|h̃ou |

2] =
1

1 + Lτ l2ou
πλm( α

α−2)

◮ Note: The pilot symbols are getting corrupted by the MUs
using same training sequence as typical user ’u’.

◮ The considered model inherently captures the effect of Pilot
Contamination



λm vs σe for different Lτ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Mobile User Density /m2

C
ha

nn
el

 E
st

im
at

io
n 

E
rr

or

 

 

Training Duration=1 Symbol
Training Duration=5  Symbol
Training Duration=10 Symbol

Figure : Plot of λm vs σe , for α = 3, distance r = 2 and Lτ = 1, 5 and 10

◮ Higher the MU density, higher the pilot contamination

◮ High estimation error



Lτ vs σe for different λm
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Figure : Plot of Lτ vs σe , for α = 3, distance r = 2 and λm = 0.01, 0.05
and 0.1

◮ As Lτ increases, thinning of PPP takes place

◮ Hence, pilot Contamination decreases and estimate becomes
more accurate



Downlink Transmission

◮ Suppose the typical MU to be at the origin ’o’

◮ BS ’b’ will now transmit and set of BS ’y’ will interfere

◮ The signal yD received at the MU will be

yD =
√

PD l
2
bohbosbo +

∑

y∈φB\b

√

PD l2yohyosyo + n

◮ hbo , hyo ∼ CN (0, 1)
◮ hbo = hou (reciprocity), also l2bo = l2ou
◮ l2yo = min(1, ‖y‖−α) where ‖y‖ is the distance of the

interfering Base Stations form the MU
◮ Assume n to be AWGN ∼ CN (0, σ2

n)



Precoding

◮ BS sends precoded signal as:

sbo =
ĥ∗ou

|ĥou |
xbo

◮ Using
hou = ĥou + h̃ou

◮ Therefore, the signal becomes

yD =
√

PD l
2
ou|ĥou |xou +

√

PD l
2
ouh̃ou

ĥ∗ou

|ĥou |
xou

+
∑

y∈φB\b

√

PD l
2
yohyosyo + n



Signal to Interference Plus Noise Ratio

◮ Signal To Noise + Interference Ratio (SINR)

SINR =
PD l

2
ou|ĥou |

2

PD l
2
ou|h̃ou |

2 + PDIB + σ2
n

where
IB =

∑

y∈φB\b

l2yo |hyo |
2

◮ Note: The above SINR expression is a Random Variable

◮ Here, we can analyse the system in two ways
◮ Coverage Probability Analysis
◮ Worst Case Capacity: Using Worst Case Noise Theorem

◮ Here, we perform the analysis on Coverage Probability



Coverage conditioned on r

◮ Probability of Coverage (Pc|r ), conditioned over the
nearest neighbour distance (r)

Pc|r = P(SINR > θ|r)

= P

(

PD l
2
ou|ĥou |

2

PD l2ou |h̃ou|
2 + PDIB + σ2

n

> θ

∣

∣

∣

∣

∣

r

)

= P

(

|h̄ou|
2 >

θ

(1− σ2
e )
|h̃ou |

2 +
θ

l2ou(1− σ2
e )
IB +

θσn

PD l2ou(1− σ2
e )

∣

∣

∣

∣

r

)

◮ Normalizing |ĥou |
2 as

|ĥou|
2 = (1− σ2

e )|h̄ou |
2

where, h̄ou ∼ CN (0, 1) and |h̄ou |
2 is exponentially distributed



◮ We get

Pc|r = E

[

exp

(

−
θ

(1− σ2
e )
|h̃ou |

2

)]

E

[

exp

(

−
θ

l2ou(1− σ2
e )
IB

)]

exp

(

−
θσn

PD l2ou(1− σ2
e )

)

◮ Note: All the expectations are conditioned on r

◮ Conditioned on r , exp
(

− θσn

PD l
2
ou(1−σ2

e )

)

is a constant

◮ Calculating each of the terms one by one



First Term

◮ First Term = E

[

exp
(

− θ
(1−σ2

e )
|h̃ou|

2
)]

◮ Laplace transform of |h̃ou|
2 evaluated at s = − θ

(1−σ2
e )

First Term =
1

1 + θσ2
e

1−σ2
e

◮ Using,
|h̃ou |

2 = σ2
e |h̄

′
ou|

2

where, h̄′ou ∼ CN (0, 1) and |h̄′ou |
2 is exponentially distributed



Second Term

◮ Second Term = E

[

exp
(

− θ
l2ou(1−σ2

e )
IB
)]

◮ Replace IB =
∑

y∈φB\b
l2yo |hyo |

2, we get

Second Term = E





∏

y∈φB\b

exp

(

−
θ

l2ou(1− σ2
e )
l2yo |hyo |

2

)





(a)
= E





∏

y∈φB\b

Ehyoexp

(

−
θ

l2ou(1− σ2
e )
l2yo |hyo |

2

)







Second Term

(b)
= E





∏

y∈φB\b

1

1 +
θl2yo

l2ou(1−σ2
e )





where, (a) follows from independence of hyo and (b) follows from

the laplace transform of |hyo |
2 evaluated at s = −

θl2yo
l2ou(1−σ2

e )

◮ Apply PGFL: Products over PPP

Second Term = exp



−λB

∫

R2



1−
1

1 +
θl2yo

l2ou(1−σ2
e )



 dy







Final Expression

Second Term = exp



−2πλB

∫ ∞

r





1

1 + l2ou(1−σ2
e )

θl2yo



 ydy





◮ Note that the integral is from r to ∞

◮ As there are no BS closer than the tagged BS

◮ Probability of Coverage conditioned on r

Pc|r = First Term×Second Term× exp

(

−
θσn

PD l2ou(1− σ2
e )

)



Final Expression: Unconditioning on r

◮ Unconditioning over r

◮ The PDF of r is (First Contact Distance Distribution)

fR(r) = 2πrλBexp(−πr2λB)

◮ Probability of Coverage (Pc)

Pc =

∫ ∞

0
Pc|r fR(r)dr



Lτ vs Pc
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Figure : Plot of Lτ vs Pc , for α = 3, λm = 0.1, λB = 0.01, for SINR
Threshold θ = 0.1, 0.5 and 1, PD

σn
= 20

◮ The coverage probability increases with Lτ

◮ Interference making the coverage to saturate for large training
durations



SINR Threshold θ vs Pc
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Figure : Plot of SINR threshold θ vs Pc , for α = 3, λm = 0.1, λB = 0.02,
Lτ = 10, 20 and 30 and PD

σn
= 20



SNR vs Pc
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Figure : Plot of SIR vs Pc , for α = 3, λm = 0.1, λB = 0.02, Lτ = 10, 20
and 30, θ = 0.5

◮ Only one of the three terms depends on PD

◮ Pc saturates with increasing PD



SNR vs Pc
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Figure : Plot of SIR vs Pc , for α = 3, λm = 0.1, λB = 0.02, Lτ = 20,
θ = 0.1, 0.5 and 1

◮ Again, Pc saturates with increasing PD



Comparison with Perfect Channel Estimate
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Figure : Comparison of Pc with SINR threshold θ for perfect and
imperfect channel knowledge, for α = 3, λm = 0.1, λB = 0.02, Lτ = 30
and PD

σn
= 20



Future Extensions

◮ Multi-tier heterogeneous networks

◮ Study for cell edge users

◮ Uplink Channel Study

◮ Connectivity based on SINR

◮ Dependency between φB and φm



Thank You


