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System Model

x(t+1) = Ax(t) + Blu(t, ¥(0),y(1), ..., ¥(t)) + w(t)]
y(t) = Cx(t) + e(t)

Here, x(t) € R", y(t) € RP and u(t) € R™, The sparse vector
e(t) € RP represents attack injected in different sensors, and
w(t) € R™ represents the attack on the actuators.

Assumption The set of attacked nodes do not change with time.
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Only Sensor Attacks

Goal

e To estimate the initial state x(0) in the presence of sensor
attacks using observations (y(t))¢=01,..,7-1-

o Decoder D : (RP)T — R".
%(0) = D(y(0), ¥(1),- -, ¥(T = 1))

@ q errors are correctable after T steps if V x(0),V
Kc{1,2,...,p}st. |[K|<qgandV e(0),e(l),...,e(T—1)
s.t supp(e(t)) C K, 3 D s.t D(y(0),...,y(T —1)) = x(0)

x(t+1) = Ax(t)
y(t) = Cx(t) + e(t)



Number of Correctable Attacks

Proposition The following are equivalent
@ There is a decoder that can correct g errors after T steps.

QO VzeR"\ {0},
Isupp(Cz) U supp(CAz) U ... Usupp(CAT~1z)| > 2q.

We can write relation between observations and initial state as

¥(0) ¢
g (:1) _ | D x0) = ox(0)
y(T-1) CAT-1

By Cayley-Hamilton theorem, one can also see that the number of
correctable errors cannot increase beyond T = n



(i) = (ii) By contradiction, Take that vector z for which (ii) is
false, then Oz has less then 2q elements non-zero for each y(i), an
attack of size g which zeros out same g non-zero entries of y(/)
makes it indistinguishable from x(0) =0 O
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Proposition For almost all pairs (A, C) € R™" x RP*" the number
of correctable errors after T = n steps is maximal and equal to

£-1
e,-TC
e,-TCA
Consider O; = , consider f;(A, C) = det(O;)
ei T CAr—1
Note f; is not identically 0, hence the zero set of f; has measure 0
on R™M x RP*N O
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Question: Can we find a matrix G for feedback such that if we can
add u = Gx then number of correctable attacks g = [p/2 — 1]
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Lemma Assuming A has n eigen values of distinct magnitudes the
following are equivalent

@ g errors are correctable after n steps.
@ V eigen vector v of A |supp(Cv)| > 2q

Proof Sketch Since any vector u can be written as linear
combination of eigen vectors of A

CA'u = Z ai\Cv;
i=1

CAtu S
T{ = Oé]_CV]_ + Iz_;a,)\l CV,'



Optimization Formulation of the Decoder

min K|
QER”7RC{177P}
subject to  supp(y(t) — CA'R) C K

fort €{0,..., T —1}
But the above optimization problem is NP-hard in general.

o(T) . R" — RPXT
—>[Cx CAx ... CAT_lx]
Y(T)=[y(0) y(1) ... y(T-1)]

Then the above optimization problem is

. . (T)A
arg min [|Y(T) — & VXlg



Consider a ¢1 decoder for r > 1 that solves

D1 (y(0), y(1),- . /(T = 1)) = arg.min |Y(T) = &R,
P
IMllese, = > IMill,
i=1

Proposition The following are equivalent
@ The decoder Dj , can correct q errors after T steps.
QO VKc{1,2,...,p} with |kl =gand V z € R"\ {0}

>[[(7z) ], < Z(e72),
ick M ke '

0



Proof

Prove (i) = (ii) through contradiction choose x(0) = 0 and let
K and z be such that (ii) is false and choose attack nodes as set
K, then

IY(T) =Dz, = |1 Y( )Hzl/e

DI =0 Dz2)illg, + > 1T 2)ille, > Y NV (T))ille,

ieK ieKe ieK

Choosing (Y(T)); = (¢(Mz); for i € K = contradiction. O

v
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Prove (ii) = (i) through contradiction, 3 x(0), z = x(0) + e
and set of attacked nodes K such that

IY(T) = & Dzlg, g, <[ Y(T) = & Dx(0) 1y,
DI (T) = e Mz)ille, + > (@ De)ille, <

ieK ieke
DY (T) = Tx(0))ille,
ieK
Y@ Me)ille, < DI (T) = Tx(0))ille,
icke ieK

ICY(T) = @(Dz2);]1¢,]

==,

ieK
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ieKe
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