Cyber Physical Systems under Sparse Adversarial Attacks

Chandrasekhar S

SPC Lab, Department of ECE
Indian Institute of Science

October 12, 2019

System Model

$$
\begin{aligned}
x(t+1) & =A x(t)+B[u(t, y(0), y(1), \ldots, y(t))+w(t)] \\
y(t) & =C x(t)+e(t)
\end{aligned}
$$

Here, $x(t) \in \mathbb{R}^{n}, y(t) \in \mathbb{R}^{p}$ and $u(t) \in \mathbb{R}^{m}$, The sparse vector $e(t) \in \mathbb{R}^{p}$ represents attack injected in different sensors, and $w(t) \in \mathbb{R}^{m}$ represents the attack on the actuators.
Assumption The set of attacked nodes do not change with time.

Only Sensor Attacks

Goal

- To estimate the initial state $x(0)$ in the presence of sensor attacks using observations $(y(t))_{t=0,1, \ldots, T-1}$.
- Decoder $D:\left(R^{p}\right)^{T} \rightarrow \mathbb{R}^{n}$.
$\hat{x}(0)=D(y(0), y(1), \ldots, y(T-1))$
- q errors are correctable after T steps if $\forall x(0), \forall$
$K \subset\{1,2, \ldots, p\}$ s.t. $|K| \leq q$ and $\forall e(0), e(1), \ldots, e(T-1)$
s.t $\operatorname{supp}(e(t)) \subset K, \exists D$ s.t $D(y(0), \ldots, y(T-1))=x(0)$

$$
\begin{aligned}
x(t+1) & =A x(t) \\
y(t) & =C x(t)+e(t)
\end{aligned}
$$

Number of Correctable Attacks

Proposition The following are equivalent
(1) There is a decoder that can correct q errors after T steps.
(1) $\forall z \in \mathbb{R}^{n} \backslash\{0\}$, $\left|\operatorname{supp}(C z) \cup \operatorname{supp}(C A z) \cup \ldots \cup \operatorname{supp}\left(C A^{T-1} z\right)\right|>2 q$.
We can write relation between observations and initial state as

$$
\left[\begin{array}{c}
y(0) \\
y(1) \\
\vdots \\
y(T-1)
\end{array}\right]=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{T-1}
\end{array}\right] x(0)=\mathcal{O} \times(0)
$$

By Cayley-Hamilton theorem, one can also see that the number of correctable errors cannot increase beyond $T=n$

Proof.

(i) \Longrightarrow (ii) By contradiction, Take that vector z for which (ii) is false, then $\mathcal{O} z$ has less then $2 q$ elements non-zero for each $y(i)$, an attack of size q which zeros out same q non-zero entries of $y(i)$ makes it indistinguishable from $x(0)=0$

Proposition For almost all pairs $(A, C) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{p \times n}$ the number of correctable errors after $T=n$ steps is maximal and equal to $\frac{p}{2}-1$

Proof.
Consider $\mathcal{O}_{i}=\left[\begin{array}{c}e_{i}^{T} C \\ e_{i}^{T} C A \\ \vdots \\ e i^{T} C A^{n-1}\end{array}\right]$ consider $f_{i}(A, C)=\operatorname{det}\left(\mathcal{O}_{i}\right)$
Note f_{i} is not identically 0 , hence the zero set of f_{i} has measure 0 on $\mathbb{R}^{n \times n} \times \mathbb{R}^{p \times n}$

Question: Can we find a matrix G for feedback such that if we can add $u=G x$ then number of correctable attacks $q=\lceil p / 2-1\rceil$

Lemma Assuming A has n eigen values of distinct magnitudes the following are equivalent
(1) q errors are correctable after n steps.
(1) \forall eigen vector v of $A|\operatorname{supp}(C v)|>2 q$

Proof Sketch Since any vector u can be written as linear combination of eigen vectors of A

$$
\begin{array}{r}
C A^{t} u=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{t} C v_{i} \\
\frac{C A^{t} u}{\lambda_{1}^{t}}=\alpha_{1} C v_{1}+\sum_{i=2}^{n} \alpha_{i} \frac{\lambda_{i}{ }^{t}}{\lambda_{1}} C v_{i}
\end{array}
$$

Optimization Formulation of the Decoder

$$
\begin{aligned}
\min _{\hat{x} \in \mathbb{R}^{n}, \hat{K} \subset\{1, \ldots, p\}} & |\hat{K}| \\
\text { subject to } & \operatorname{supp}\left(y(t)-C A^{t} \hat{x}\right) \subset \hat{K} \\
& \text { for } t \in\{0, \ldots, T-1\}
\end{aligned}
$$

But the above optimization problem is NP-hard in general.

$$
\begin{aligned}
\Phi^{(T)}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{p \times T} \\
x & \rightarrow\left[\begin{array}{llll}
C x & C A x & \ldots & C A^{T-1} x
\end{array}\right] \\
Y(T) & =\left[\begin{array}{llll}
y(0) & y(1) & \ldots & y(T-1)
\end{array}\right]
\end{aligned}
$$

Then the above optimization problem is

$$
\arg \min _{\hat{x} \in \mathbb{R}^{n}}\left\|Y(T)-\Phi^{(T)} \hat{x}\right\|_{\ell_{0}}
$$

Consider a ℓ_{1} decoder for $r \geq 1$ that solves

$$
\begin{aligned}
D_{1, r}(y(0), y(1), \ldots, y(T-1)) & =\arg \min _{\hat{x} \in \mathbb{R}^{n}}\left\|Y(T)-\phi^{(T)} \hat{x}\right\|_{\ell_{1} / \ell_{r}} \\
\|M\|_{\ell_{1} / \ell_{r}} & =\sum_{i=1}^{p}\left\|M_{i}\right\|_{\ell_{r}}
\end{aligned}
$$

Proposition The following are equivalent
(1) The decoder $D_{1, r}$ can correct q errors after T steps.
(1) $\forall K \subset\{1,2, \ldots, p\}$ with $|k|=q$ and $\forall z \in \mathbb{R}^{n} \backslash\{0\}$

$$
\sum_{i \in K}\left\|\left(\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}}<\sum_{i \in K^{c}}\left\|\left(\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}}
$$

Proof.

Prove (i) \Longrightarrow (ii) through contradiction choose $x(0)=0$ and let K and z be such that (ii) is false and choose attack nodes as set K, then

$$
\begin{aligned}
\left\|Y(T)-\Phi^{(T)} z\right\|_{\ell_{1} / \ell_{r}} & \geq\|Y(T)\|_{\ell_{1} / \ell_{r}} \\
\sum_{i \in K}\left\|\left(Y(T)-\Phi^{(T)}\right)_{i}\right\|_{\ell_{r}}+\sum_{i \in K}\left\|\left(\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}} & \geq \sum_{i \in K}\left\|(Y(T))_{i}\right\|_{\ell_{r}}
\end{aligned}
$$

Choosing $(Y(T))_{i}=\left(\Phi^{(T)} z\right)_{i}$ for $i \in K \Longrightarrow$ contradiction.

Proof.

Prove (ii) \Longrightarrow (i) through contradiction, $\exists x(0), z=x(0)+e$ and set of attacked nodes K such that

$$
\begin{gathered}
\left\|Y(T)-\Phi^{(T)} z\right\|_{\ell_{1} / \ell_{r}}<\left\|Y(T)-\Phi^{(T)} x(0)\right\|_{\ell_{1} / \ell_{r}} \\
\sum_{i \in K}\left\|\left(Y(T)-\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}}+\sum_{i \in K^{c}}\left\|\left(\Phi^{(T)} e\right)_{i}\right\|_{\ell_{r}}< \\
\sum_{i \in K}\left\|\left(Y(T)-\Phi^{(T)} x(0)\right)_{i}\right\|_{\ell_{r}} \\
\sum_{i \in K^{c}}\left\|\left(\Phi^{(T)} e\right)_{i}\right\|_{\ell_{r}}<\sum_{i \in K}\left[\left\|\left(Y(T)-\Phi^{(T)} x(0)\right)_{i}\right\|_{\ell_{r}-}\right. \\
\left.\left\|\left(Y(T)-\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}}\right] \\
\Longrightarrow \sum_{i \in K}\left\|\left(\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}} \geq \sum_{i \in K^{c}}\left\|\left(\Phi^{(T)} z\right)_{i}\right\|_{\ell_{r}}
\end{gathered}
$$

