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Multiple Signal Realizations

Setup

Multiple Measurements

Multiple Signal Realizations

yi = Aixi + wi, i = {1, 2, ...L} (1)

where,
Ai ∈ RM×N , ∀i with M ≤ N

wi
iid∼ N (0, σ2

nI) ∀i

xi
iid∼ CN (0,Σ)

Examples
yi = xi + wi

Joint sparsity (MMV) setup

Massive MIMO Uplink

Y[n] =

L∑
l=1

K∑
k=1

√
µhlkx>lk [n] + N[n]
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Multiple Signal Realizations

Spatial correlation

Spatial Correlation

Generative model for x (Structure of Σ)

No spatial correlation
Diagonal covariance matrix

Few non-zero diagonals: Sparse

Spatial correlation (Intra-vector
correlation)

Non-diagonal covariance matrix

Toeplitz, Compound symmetry,
Autoregressive etc

K × K non-zero sub matrix: Sparse

Block sparse structure

Figure. Diagonal Covariance

Figure. Covariance of sparse signals with spatial
correlation
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Multiple Signal Realizations

Spatial correlation

Spatial Correlation - II

Why spatial correlation?

1 Exploiting correlation can lead to better recovery performance

2 Existing algorithms could perform poorly when there is high intra-vector
correlation

Example: Setup and Metrics

S: Support set (Actual) of X Sout: Support set (Recovered) of Xout

False Alarm percentage= |Sout|−|S∩Sout|
N−|S| × 100

Probability of Detection (%)= |S∩Sout|
K × 100

NMSE = ||X−Xout||2
||X||2

Algorithms: MSBL, RDCMP
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Multiple Signal Realizations

Spatial correlation

Setup:

N = 100

L = 200

K = 30

σ2 = 0.1

Observations:

False alarm increases for
correlated signals when
compared to uncorrelated
signals

Detection probability also
decreases

Support recovery methods
perform better in false
alarms
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Multiple Signal Realizations

Spatial correlation
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Observations:
RMSE increases when correlation is present, MSBL performance is better than
RDCMP

MSBL and RDCMP perform poorly in K > M regime for signals with
correlation

Performance decrease present even for M slightly greater than K
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Decoupling

MMV recovery algorithms

Decoupling: l2,1 Regularized LS

Multiple measurement vector setup: x(s) = Ψ(s)h(s) + z(s), ∀s ∈ [T]

MMV variant of l1-LS

Ĉ = arg min
C∈CG×T

1
2

∑
s∈[T]

‖x(s)−Ψ(s)Ac(s)‖2
2 + %

√
T‖C‖2,1


Convex cost function

γ̂ = arg min
γ∈RG

+

g(γ) =
1
T

∑
s∈[T]

x(s)†
(
Ψ(s)AΓA†Ψ(s)† + %Im

)−1
x(s) + tr(Γ)


Theorem 1: γ̂i =

‖Ĉi,:‖2√
T

for i ∈ [G]

Theorem 2: If ĥ(s) = Aĉ(s), where ĉ(s) = Ĉ:,s, then it is also given by

ĥ(s) = AΓ̂A†Ψ(s)†
(
Ψ(s)AΓ̂A†Ψ(s)† + %Im

)−1
x(s)
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Decoupling

MMV recovery algorithms

Estimation Model

1

Figure. (a) Generic MMV algorithm, (b) Decomposition of MMV into Covariance Estimation and plug-in
MMSE estimator

1Haghighatshoar et al, 2019
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Covariance Estimation

Analysis

Sample Complexity Bounds

Setup: Observations
{(

At,AT
t xt
)}n

t=1
, where At ∈ Rd×m are orthonormal basis for

m-dim subspace drawn uniformly at random. Consider Φt = AtAT
t

Observed covariance

Σ̂1 ,
d2

nm2

n∑
t=1

(Φtxt) (Φtxt)
T

Unbiased estimate for covariance considered

Σ̂ ,
m
(

(d + 2)(d − 1)Σ̂1 − (d − m) tr
(

Σ̂1

)
Id

)
d(dm + d − 2)

Corollary 1 (Gaussian Upper Bounds): Let x1, . . . , xn ∼ N (0,Σ) and
construct Σ̂. Then for any δ ∈ (0, 1), there exist universal constants κ1, κ2 > 0
such that, with probability at least 1− δ, the

|Σ̂− Σ‖2 ≤ κ2‖Σ‖2

(√
d3 log2(nd/δ)

nm2 +
d3 log2(nd/δ)

nm2 +

√
d log(1/δ)

n

)
The bound holds when d ≥ 2 and n ≥ d log(1/δ).
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Covariance Estimation

Analysis

Setup:

yi = xi + wi ∈ RN

∀i = 1, 2, . . . , L

N = 50

σ2 = 0.1

Compound
symmetric
covariance matrix

Observations:

Error in Covariance
estimation is lower
when covariance is
exploited for all L

Error in signal
recovery does not
match Error in
Covariance
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Covariance Estimation

Analysis

Discussion - I

Summary

Decoupling property: Covariance Estimation and Signal Recovery

Advantage in exploiting correlation

Sample Covariance: Samples of O(N) even with N measurements

Robustness vs Over-fitting trade-off characterization

Adaptive Setup

Metric for covariance estimation output

Σ̃ = f (Σ̂) as estimate for covariance.

Chen, et al. proposed Masked Sample Covariance

Exploit structure in Covariance matrix
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Massive MIMO

System Model

Massive MIMO System

L cells

Base Station with M antenna

K users with single antenna

Uplink channel
Block flat-fading channel

Coherence time Tc

Coherence Bandwidth Bc

Y[n] =
L∑

l=1

K∑
k=1

√
µhlkx>lk [n] + N[n]

2

2Bjornson, et al, 2016
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Massive MIMO

System Model

Variations in Channel Statistics

Rayleigh fading: hlk ∼ CN (0,Rlk)
Constant for τc = TcBc channel uses

Channel Covariance matrix Rlk

Independent Rayleigh fading:
Rlk = βlkIM

In practice, Correlated Rayleigh
fading

Rlk constant for τs channel blocks

Two orders of magnitude slower
variations

3

Pilot sequences

Pilot associated with UE k in cell j: φjk ∈ CK with ‖φjk‖2 = 1

Reused across cell

Total pilot power ρtr per UE

3Bjornson, et al, 2016
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Massive MIMO

Channel Estimation and Spectral Efficiency

Channel Estimation

LMMSE estimation of hjk

ĥlk = RlkQ−1
k yp

lk

with

yp
lk = hlk +

L∑
i=1,i 6=j

hik +
1√
ρtr

Np
j φ

?
jk

and Qk = E
{

yp
lk (yp

lk)
H
}

given by

Qk =
L∑

i=1

Rik +
1
ρtr IM

Spectral efficiency (Linear receive combining

Channel capacity of UE k in cell l can be lower bounded by SE

SElk =

(
1− K

τc

)
E {log2 (1 + γlk)} [bit/s/Hz]
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Massive MIMO

Channel Estimation and Spectral Efficiency

Covariance Estimation - I

Estimation of Qk

Estimation using pilot signal yp
jk over NQ ≤ τs coherence blocks

[
Q̂(sample )

jk

]
=

1
NQ

NQ∑
n=1

[
yp

jk[n]
(
yp

jk[n]
)H
]

1
NQ

NQ∑
n=1

[
yp

jk[n]
(
yp

jk[n]
)H
]

m,m

a.s.−→ [Qjk]m,m

From Law of Large numbers, Standard deviation decays as 1√
NQ

Regularization using a convex combination

Q̂jk(η) = ηQ̂(sample )
jk + (1− η)Q̂(diagonal )

jk

Main Presentation



Main Presentation

Massive MIMO

Channel Estimation and Spectral Efficiency

Covariance Estimation - II

Estimation of Rlk

R direct: Specific training phase for Rjk

Every UE uses set of unique orthogonal pilots

Implemented using pattern of NRKL extra pilots, NR for each UE

Sample covariance estimate and regularization same as above

Via Q: Two stage estimation procedure
Each UE associated with unique orthogonal pilots, with total NR pilots

All UE’s that cause pilot contamination will send the pilot

BS estimates sample covariance Q(sample)
jk,−k of Qjk − hjkhH

jk

R̂(sample )
jjk = Q̂(sample )

jk − Q̂(sample )
jk,−k

Regularization

R̂jjk(µ) = µR̂(sample )
jjk + (1− µ)R̂(diagonal )

jjk

Main Presentation



Main Presentation

Massive MIMO

Channel Estimation and Spectral Efficiency

Spectral Efficiency: Imperfect Covariance

Lemma 2. The channel capacity of UEk in cell j is lower bounded by

SEjk =

(
1− K

τc
− α

)
log2

(
1 + γ

jk

)
[bit/s/Hz]

with α = NRKL
τs

accounting for the extra pilots used for covariance matrix
estimation and

γ
jk

=

∣∣E{vH
jkhjjk

}∣∣2∑L
l=1

∑K
i=1 E

{∣∣vH
jkhjli

∣∣2}− ∣∣E{vH
jkhjjk

}∣∣2 + 1
ρ
E
{
‖vjk‖2

}
where the expectations are with respect to channel realizations.

Closed form expressions for MRC type schemes, where vjk = Wjkyp
jk

Wjk =


RjkQ−1

k MMSE estimator

R̂jk(µ)
(

Q̂k(η)
)−1

Approximate MMSE estimator
IM LS estimator.
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Massive MIMO

Channel Estimation and Spectral Efficiency

Discussion - II

Summary

Imperfect Channel Covariance Estimation

Aim to maximize Spectral efficiency

LMMSE vs element wise LMMSE estimation (Kocharlakota, et al.)

Future Scope

Exploit structure (Eg. Toeplitz)

mmWave Massive MIMO

Modified pilot transmission scheme
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