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[ Setup

Multiple Measurements

Multiple Signal Realizations

yi:AiXi+Wi, i= {1,2,L} (1)

where,
m A € RN ViwithM <N
wi S N(0,020) Vi
= x;, X CN(0,X)
Examples
By =X+ W
m Joint sparsity (MMYV) setup
m Massive MIMO Uplink

:ZZ\/ﬁhkxzk[” + N

I=1 k=1
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- Spatial correlation

Spatial Correlation

-

Generative model for x (Structure of X2) .

m No spatial correlation
m Diagonal covariance matrix

m Few non-zero diagonals: Sparse . . .
Figure. Diagonal Covariance

m Spatial correlation (Intra-vector
correlation)
m Non-diagonal covariance matrix

m Toeplitz, Compound symmetry,
Autoregressive etc

m K X K non-zero sub matrix: Sparse

m Block sparse structure

Figure. Covariance of sparse signals with spatial
correlation

Pr
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- Spatial correlation

Spatial Correlation - II

Why spatial correlation?
1 Exploiting correlation can lead to better recovery performance
2 Existing algorithms could perform poorly when there is high intra-vector
correlation
Example: Setup and Metrics
S: Support set (Actual) of X Sou: Support set (Recovered) of Xou

m False Alarm percentage= W x 100

S|
m Probability of Detection (%)= 2252l x 100
s NMSE = [1X X ||

[1X][2

m Algorithms: MSBL, RDCMP
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- Spatial correlation

10
Setup: L= RoCHY winout coneaton
a N =100 o0 [S 5L with comelaton
g
= L =200 3
s
s -1
m K=30 g1
H
8
m o’ =01 gw*
Observations: 03
15 20 25 30 35 40
m False alarm increases for Number of Measurements
correlated signals when 100
compared to uncorrelated /
. 90
signals c
K]
. .1 E 80
m Detection probability also g
decreases 2
:
m Support recovery methods 2w - WSBL without co
erform better in false & ROGMP with corlaion
P
©-MSBL with i
alarms 5015 20 25 30 35 40

Number of Measurements

in Pres tion
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- Spatial correlation

T T
-5-MSBL without correlation

-8-RDCMP without correlation
0.3 -©-RDCMP with correlation 1
-©-MSBL with correlation

15 20 25 30 35 40
Number of Measurements
Observations:
m RMSE increases when correlation is present, MSBL performance is better than
RDCMP
m MSBL and RDCMP perform poorly in K > M regime for signals with
correlation

m Performance decrease present even for M slightly greater than K
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L MMV recovery algorithms

Decoupling: /> | Regularized LS

m Multiple measurement vector setup: x(s) = ¥ (s)h(s) + z(s), Vs € [T]
m MMV variant of /;-LS

~ . 1
C = argmin 3 Z Ix(s) — ®(s)Ac(s)|3 + oVT||C|l21

GXT
cec o

m Convex cost function

~ . 1 —1
¥ =arg min |g(v) = = Z X(S)T (‘I’(S)AFAT\IJ(S)T + ,QI,,,) x(s) + tr(T")
’YERSJF T se[T]

G, .
| \/THZ fori € [G]

m Theorem 1: 5; =
= Theorem 2: If h(s) = A¢(s), where ¢(s) = C. . then it is also given by
~ ~ ~ —1
h(s) = ATA @ (s)' (\p(s)ArAT\p(s)* n ,QI,,I) x(s)
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L MMV recovery algorithms

Estimation Model

x(3) MMV Algorithm h(s)
X:‘ms
(a)
Sparse Covariance P Plug-in
x(s) Estimation ~ X MMSE
T
X:,Ns
(b)

Figure. (a) Generic MMV algorithm, (b) Decomposition of MMV into Covariance Estimation and plug-in

MMSE estimator

!Haghighatshoar et al, 2019
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stimation

Sample Complexity Bounds

Setup: Observations { (A,,A,Tx,) }:1:1, where A, € R™™ are orthonormal basis for
m-dim subspace drawn uniformly at random. Consider ®, = A,AT
m Observed covariance

N T
Y1 = W 2 (‘I)txt) ((I)txt)

m Unbiased estimate for covariance considered
m ((d +2)(d— D)8 — (d—m)tr (zl) zd)
d(dm+d—2)

1>

X

= Corollary 1 (Gaussian Upper Bounds): Letxi, ..., x, ~ N(0,%) and
construct 3. Then for any § € (0, 1), there exist universal constants k1, k2 > 0
such that, with probability at least 1 — &, the

A 3 2 3 2
5= S < w5 [d?log”(nd/d) n d’ log”(nd/§) n [dlog(1/6)
nm? nm? n

The bound holds when d > 2 and n > dlog(1/9).
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Covariance Estimation

L Analysis
Setup: Signal Recovery Error
0.096 b
By =X+ W € RY 0.004 ]
Vi= L,2,...,L 0092 S SR W D G GRS
> 0.09 ML full cov est
n N = 50 £0.088 Diag cov est ]
I-le = Genie full cov
) = 0.086 < Genie diag
m o =0.1 0.084
0.082 |
[ Compoupd T P S PO S
symmetric 100 200 300 400 500
. . L
covariance matrix
Observations: 100
m Error in Covariance
estimation is lower £
. . o
when covariance is <
exploited for all L g’
m Error in signal g
[
recovery does not ©
match Error in 102
. 0 100 200 300 400 500
Covariance L

in Pres tion
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Discussion - I

Summary

m Decoupling property: Covariance Estimation and Signal Recovery
m Advantage in exploiting correlation

m Sample Covariance: Samples of O(N) even with N measurements

Robustness vs Over-fitting trade-off characterization

m Adaptive Setup
m Metric for covariance estimation output

S (ﬁ) as estimate for covariance.

m Chen, et al. proposed Masked Sample Covariance

m Exploit structure in Covariance matrix
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Massive MIMO System

m L cells
m Base Station with M antenna

m K users with single antenna

m Uplink channel
m Block flat-fading channel

m Coherence time T,

m Coherence Bandwidth B,

L K
Yin] = > iy [n] +N[n]

=1 k=1 2

szornson, etal, 2016
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ystem Model

Variations in Channel Statistics

m Rayleigh fading: hy ~ CA (0, R)
Constant for 7. = T.B. channel uses

m Channel Covariance matrix Ry L
m Independent Rayleigh fading:
Ry = Buly 4 %ﬂ } B
m In practice, Correlated Rayleigh Plts \ Data
fading

Optional: Extra pilots

m Ry constant for 7; channel blocks .
(a) Coherence block

m Two orders of magnitude slower
variations

Pilot sequences

(b) Grid with fixed statistics
3

m Pilot associated with UE k in cell j: ¢ € C¥ with ||gu]|* = 1

m Reused across cell

m Total pilot power p" per UE

3Bjornson, etal, 2016
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Channel Estimation and Spectral Efficiency

Channel Estimation

LMMSE estimation of hj
hy = RiQ; 'y},
with
L
yn =hi + Z hje + #qubﬁc

i=1,ij

and Qy = E {yfk (yfk)H} given by

L
1
Q= ZRik + EIM
i=1

Spectral efficiency (Linear receive combining

m Channel capacity of UE £ in cell / can be lower bounded by SE
K .
s = (1= £ ) B Qlogy (1 40} o/
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Covariance Estimation - I

Estimation of Q

m Estimation using pilot signal yfk over Ng < 7, coherence blocks

[Q(sample)} N1~QNZQ {yfk [1] (yj')k [n])H}

= Z Vil ()] 2 [Qul

n—l ’
From Law of Large numbers, Standard deviation decays as ﬁ
°
m Regularization using a convex combination

ij (77) Q(sample) ( )Q(dlagonal)
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Covariance Estimation - 1T

Estimation of Ry

R direct: Specific training phase for Ry
m Every UE uses set of unique orthogonal pilots

m Implemented using pattern of NzKL extra pilots, N for each UE

m Sample covariance estimate and regularization same as above

Via Q: Two stage estimation procedure
m Each UE associated with unique orthogonal pilots, with total N pilots

m All UE’s that cause pilot contamination will send the pilot

m BS estimates sample covariance Qfgfj‘f’” of Qi — h;h

(sample ) __ A (sample ) (sample )
R};{amp & Q]ksamp c Q/ Sa:ﬂi €

m Regularization

R N 1 dia al
Ry (1) = pRG™) | (1~ pyRUosons)
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Spectral Efficiency: Imperfect Covariance

m Lemma 2. The channel capacity of UEk in cell j is lower bounded by

SE; = <1 _K_ a> log, (1 +ljk) [bit/s/Hz]

Te
with o = N"KL
estimation and

accounting for the extra pilots used for covariance matrix

= [E {vjth} |
S s B v} B (v} P 25 (el

where the expectations are with respect to channel realizations.

m Closed form expressions for MRC type schemes, where vj; = ijyﬁ

/k Q! MMSE estimator
1
Wi = ¢ Ri(p) (Qk( )) Approximate MMSE estimator
Iy LS estimator.
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Discussion - 11

Summary

m Imperfect Channel Covariance Estimation
® Aim to maximize Spectral efficiency

m LMMSE vs element wise LMMSE estimation (Kocharlakota, et al.)
Future Scope

m Exploit structure (Eg. Toeplitz)
m mmWave Massive MIMO

m Modified pilot transmission scheme
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