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Image Denoising - Classical Methods

Signal Model

Y = X+N

where X is an image corrupted with additive noise N

Objective

Recover X from noisy measurements Y

Techniques for Recovery

1 Spatial domain techniques

2 Transform domain techniques
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Dictionary Learning

Signal Model

Y = AX

where Y is a set of measurements, A is dictionary and X is sparse
representation of Y

Problem formulation

minA,X ‖Y − AX‖2F such that ‖Xj‖0 ≤ k ∀j ∈ [l]
Find both dictionary and sparse representation from measurements

where Y ∈ <mxl is l no of the measured vectors
A ∈ <mxn Dictionary with unit norm columns with m < n
X ∈ <nxl with sparsity of each columns ≤ k(k < m < n)
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Dictionary Learning Algorithms

Popular Iterative Algorithms

1 MOD

2 K-SVD

Once the dictionary is learned, use any of the compressive sensing
recovery algorithms to recover the Denoised image.

If the dictionary is constructed from multiple images, that can be
widely used for denoising.
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Quality Metrics

PSNR - Peak SNR

MSE = 1
mn

∑m−1
i=0

∑n−1
j=0 [X (i , j)− Y (i , j)]2

where X and Y are true and estimated images
m, n are no of rows and columns of images X and Y

PSNR = 10 · log10
(
MAX2

x
MSE

)
Higher the value of PSNR ⇒ better the reconstruction.
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Quality Metrics -Continues

SSIM (Structural SIMilarity) Index

A Combination of luminance, contrast and structure comparisons are used

l(x , y) =
2µxµy + c1
µ2x + µ2y + c1

c(x , y) =
2σxσy + c2
σ2x + σ2y + c2

s(x , y) =
σxy + c3
σxσy + c3

SSIM(x , y) =
[
l(x , y)α · c(x , y)β · s(x , y)γ

]
α, β, γ > 0 parameters are chosen based on the importance of each metric.
where µx , µy are average intensity of the images x and y.
σx , σx and σxy standard deviation of x , y and cross covariance of x and y
c1, c2, c3 are non zero constants used for avoiding instability.
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DNN Based Image Denoising
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Universal Approximation Theorem

Theorem

Let φ : < → < be non-constant, bounded and continuous function. Let Im
denotes m dimensional hypercube [0, 1]m. Let C (Im) be space of
continuous real valued functions on Im. Then given any ε > 0 and any
function f ∈ C (Im), ∃ n ∈ N, real constants vi , bi ∈ < and real vectors
wi ∈ <m ∀i ∈ [n] such that we may define:

F (x) =
∑n

i=1 viϕ
(
wT

i x+ bi
)

as an approximate realization of the function f

|F (x)− f (x)| < ε ∀x ∈ Im
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Different Types Of Learning

Supervised Learning

Here data is given in the form of examples with labels. Allowing the
algorithm to predict the label for each example, and giving it feedback as
to whether it predicted it correctly or not.

Unsupervised Learning

Here data is given in the form of examples without labels. This mechanism
learns properties of the data. From there it can learn to group or organise
the data.

Reinforcement Learning
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Autoencoder -Unsupervised

where W and b are weight
matrix and bias

z and x are input and output of
each layer

φ is activation function

Neural Network

z = φ(Wx+ b) Overall output hW,b(x)

Objective

Minimise average cost J(W,b) by iteratively update weights using back
propagation algorithms
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Results - Unsupervised

With Convolutional Neural Network.

1 PSNR (avg) = 20dB

2 SSIM (avg) = 0.88
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Results - Unsupervised continue

1 PSNR (avg) = 17dB

2 SSIM (avg) = 0.55
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Sparse Autoencoder - Regularized Autoencoder

Overall cost function with L1 regularizer

J(W , b) =[
1
m

∑m
i=1

(
1
2

∥∥hW ,b

(
x (i)
)
− y (i)

∥∥2)]+ λ
2

∑nl−1
l=1

∑sl
i=1

∑sl+1

j=1

∣∣∣W (l)
ji

∣∣∣
where m is no of training inputs
nl , sl are no of layers and no of neurons in l th layer
λ is the decay factor.
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Sparse Autoencoder - Results (without noise)

Acivation function used = sigmoid.

1 PSNR (avg) = 30dB

2 SSIM (avg) = 0.94
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Sparse Autoencoder - Results (with noise)

Acivation function used = sigmoid.

1 PSNR (avg) = 19dB

2 SSIM (avg) = 0.79
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Dictionary Learning From Sparse Autoencoder

Autoencoder

If we use linear activation
function and cost function as
MSE then W̃ becomes PCA

Sparse Autoencoder

If we use linear activation
function with unit norm
constraint then W̃ becomes
dictionary
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Conclusion And Future Scope

Conclusion
1 Image denoising can be done using autoencoders and sparse

autoencoders

2 Autoencoders learn approximate PCA

3 Sparse autoencoders learn approximate dictionary

Future Scope

1 Add Unit norm constraint to weights along with regularization criteria
in sparse autoencoder
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The End
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