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I Motivation and System Model.
I Error Exponents with a confidence level.
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I Detection at the Fusion Center.

I Lower bounds on the error exponents.
I Actual error exponents.

I Application : Narrowband vs. Wideband Sensing.
I Numerical and Simulation results.
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System Model
I N sensors with M observations each.
I At the individual sensors under low SNR,

Vy , 1
M
∑M

i=1 |yi |2 − 1, and

H0 : Vy ∼ N
(

0,
1
M

)
,

H1 : Vy ∼ N
(
|h|2P,

1
M

)
.

I Interest : Wideband (WB) primary signals with a strong
pilot.

I NB signals undergo Rayleigh fading, WB signals undergo
Lognormal fading [Shellhammer et al. 2006]
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Primary Signals of Interest - An Example
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The Bayesian ED Problem

I Bayesian problem⇒ minimize pe. LRT is optimal.

I LR(Vy ) =

1√
2π/M

∫
|h|2 exp

(
−M(Vy−|h|2P)2

2

)
f|h|2 (|h|

2)d |h|2

1√
2π/M

exp
(
−

MV2
y

2

) .

I Closed form analysis of pe becomes difficult.
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Error Exponents

I Error exponent gives the exponential rate of decay on pe.
Mathematically,

εe , − lim
M→∞

log pe

M
and ε

(N)
E , − lim

M→∞

log PE

M
.

I Turns out that the error exponents under both WB and NB
sensing are zero. Therefore, in terms of the error
exponents, WB and NB sensing problems are equivalent.

I Discount the low channel gains?
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Error Exponent With A Confidence Level (EECL)

Definition
Let Sq denote a set of channel instantiations such that
P(h ∈ Sq) = q. The highest error exponent achievable over all
possible choices of Sq is the error exponent with confidence q.

I This novel concept is used to answer the question of WB
vs. NB SS.
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EECL at the Sensor Level

Theorem
For the above SS problem, a positive error exponent of
(|h0|2P)2/8 is achievable with a confidence level q, where |h0|2
satisfies P

(
|h|2 > |h0|2

)
= q.

I Note that the above is valid for a general fading model.
Also, note that EECL = 0, with q = 1.

I It follows that,
I For Rayleigh fading case, an EECL of (α0P)2

8 is achievable
with confidence exp(−α0).

I For lognormal shadowing case, an EECL of (`0P)2

8 is

achievable with confidence 1−Q
(

log(`0/P)
σs

)
.
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Outline of the Proof
I Let α = |h|2. It is straightforward to show that

pe = π0Q(x
√

M) + π1

x∫
−∞

∞∫
α0

fN

(
v − αP,

1√
M

)
fα(α)

q
dαdv .

I Further simplification yields

qπ0

π1
=

∞∫
α0

exp
(

M
(

xαP − α2P2

2

))
fα(α)dα.

I The rest of the proof involves showing that x → α0P
2 as

M →∞ and examining the exponent of pf (obtained
through direct analysis) which is x2

2 .
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I Upper bound : Let g(x , α) , xαP − α2P2

2 . Observe that

g
(
α0P

2 , α
)
< 0, for α ≥ α0. For xM < α0P

2 , g(xM , α) < 0, for

α ≥ α0. Let gmax , maxα≥α0 g(xM , α). ⇒ The integral
would then→ zero.

I Lower bound : Let x0 >
α0P

2 . Therefore, g(x0, α) > 0, when
α < 2x0

P . By assumption, α0 ≤ α. ⇒, g(x0, α) > 0, when
α0 ≤ α < 2x0

P . Therefore, for xM > x0, g(xM , α) > 0. There
exists a δ > 0, such that g(xM , α) > 0, for α0 ≤ α < 2x0

P − δ.
Let gmin , min

α0≤α<
2x0
P −δ

g(xM , α). ⇒ The integral would

then→ +∞.
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EECL at the FC

I Question : Can EECL be improved with a decentralized
detection scheme?

I OR rule is considered for analytical tractability. The FC
should exploit even if one of the N sensors experiences a
“good” channel state.

EE for Bayesian ED under fading



Model/Intro EECL Main Results WB vs. NB SS Num/Sim Results Conclusions Reference

The analysis

I Obtain exponent on PF (direct) and the same on PM
(multinomial expansion and analyzing term-by-term) i.e.,

I εF = α2
minP/8 and εM =

∑N
j=1

1
2

(
αjP − αminP

2

)2
I{ 2αj

αmin
>1
}.

I Equating both and bringing in the notion of confidence,

P

{∑N
j=1
(
αj − αmin

2

)2 I{ 2αj
αmin

>1
} ≤ α2

min
4

}
= 1− q.
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LB on EECL using OR rule for Rayleigh fading

Theorem
When the channel between the primary and sensors is
Rayleigh faded, given that the FC combines decisions from N
sensors using the OR rule, the error exponent with confidence
level q at the FC for the HT is lower bounded by (αminP)2/8
with confidence q, where αmin satisfies

αmin = 2
(

1− q
CN

) 1
N

, CN ,
N∑

k=0

(
N
k

)
Vk

2k ,

where Vk = πk/2/Γ
(

1 + k
2

)
is the volume of a k dimensional

unit sphere.
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LB on EECL using OR rule for Lognormal fading
Theorem
When the channel between the primary and sensors is
lognormal faded, given that the FC combines the decisions
from N sensors using the OR rule, the error exponent with
confidence level q at the FC for HT is lower bounded by (`minP)2

8
with confidence q, where `min satisfies

N∑
k=0

(
N
k

)
Dk

ADN−k
B
Vk

2k = 1− q, with Vk = πk/2/Γ

(
1 +

k
2

)

DA ,
1

2σs
√

2π
exp

−
(

log
(
`min
P

))2

2σ2
s

 ,DB , Q
(

1
σs

log
(

2P
`min

))
.
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EECL at the FC - OR rule and Rayleigh
Theorem
When the channel between the primary transmitter and sensors
is Rayleigh faded, given that the FC combines decisions from N
sensors using the OR rule, the error exponent on the probability
of error at the FC for the above SS problem is positive and is
given by (αminP)2

8 with confidence q, where αmin satisfies

N∑
l=1

(
N
l

)[
1− exp

(
−αmin

2

)]N−l
P

{
l∑

k=1

a2
k ≤ 1

}
e−

αmin
2 l

+
[
1− exp

(
−αmin

2

)]N
= 1− q,

where, ak ∼ exp
(αmin

2

)
.
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EECL at the FC - OR rule and Lognormal

Theorem
The same detector under lognormal fading achieves an error
exponent of (`minP)2

8 with confidence q, where `min satisfies

N∑
l=1

(
N
l

)Q

−µs + log
(

2
`min

)
σs

N−l

P

{
l∑

k=1

(tk − 1)2 ≤ 1

}

+

Q

−µs + log
(

2
`min

)
σs

N

= 1− q,

where, tk ∼ LN
(
µs + log

(
2
`min

)
, σs

)
.
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Application : WB and NB SS
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Figure: DTV Power Spectral Density
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Quantifying in terms of error exponents with
confidence

I Let εNB and εWB represent the error exponents by
detectors under NB and WB SS, respectively.

I At the individual sensors, with the same confidence level q,
NB sensing is “better” than WB sensing whenever,
(α0PNB)

2

8 > (l0PWB)
2

8 ⇒
(

PNB
PWB

)2
>
(

l0
α0

)2
.

I Similarly, at the FC, NB sensing is better than WB sensing
with the same confidence level whenever
(αminPNB)

2

8 > (`minPWB)
2

8 ⇒
(

PNB
PWB

)2
>
(
`min
αmin

)2
.
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List of αmin and `min for Different q and N

N q=0.9 N q=0.95 N q=0.99
αmin `min αmin `min αmin `min

2 0.3937 0.5268 2 0.2635 0.4111 2 0.1109 0.2578
3 0.6579 0.7497 3 0.4878 0.6078 3 0.2612 0.4119
4 0.8824 0.9442 4 0.6890 0.7799 4 0.4153 0.5502
5 1.07489 1.1200 5 0.8665 0.9358 5 0.5610 0.6771
6 1.2428 1.2875 6 1.02403 1.0819 6 0.6958 0.7949
7 1.3916 1.4500 7 1.1652 1.2235 7 0.8201 0.9062
8 1.5251 1.6062 8 1.2930 1.3602 8 0.9349 1.0144
9 1.6462 1.7655 9 1.4097 1.4971 9 1.0412 1.1209

10 1.7571 1.9230 10 1.5171 1.6308 10 1.1403 1.2257
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Theoretical and Simulated Error Exponents (1/2)

P (dB) q=0.9 P (dB) q=0.95 P (dB) q=0.99
Th Sims Th Sims Th Sims

−3 34.69 35.912 0 32.888 34.189 5 11.364 14.495
−4 22.02 23.556 −0.5 26.6639 28.232 4 7.8913 9.3611
−5 12.488 13.633 −1 21.048 22.301 3 5.0505 7.3419
−7 5.5504 6.5754 −1.5 16.115 17.642 2 2.8409 4.3919
−10 1.3876 2.1998 −2.25 11.84 14.282 0 1.2626 2.3234

Table: εe for different q. All EECL values have to be multiplied by
×10−5.
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Theoretical and Simulated Error Exponents (2/2)

N q=0.9, P=-10 dB N q=0.95, P=-10 dB
Th Sims Th Sims

2 1.9373 2.1102 2 0.86768 0.88057
3 5.4111 6.1154 3 2.9749 3.5199
4 9.7329 10.2832 4 5.9349 6.3426

Table: ε(N)
E for different q. All EECL values have to be multiplied by

×10−4.
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Conclusions

I Proposed a novel concept called error exponent with a
confidence level. Using this, it was shown that the ED
achieves a zero error exponent under a general fading
model.

I This generalized concept was extended to the
decentralized setup and performance under the OR rule
was studied in detail.

I The question of WB vs. NB sensing was successfully
answered using this novel metric.

EE for Bayesian ED under fading



Model/Intro EECL Main Results WB vs. NB SS Num/Sim Results Conclusions Reference

Reference

I Sanjeev G., Chandra R. Murthy and Vinod Sharma, Error
Exponent Analysis of Energy-Based Bayesian Spectrum
Sensing Under Fading Channels, Journal draft.

EE for Bayesian ED under fading


	System Model
	Error Exponents with a confidence level
	Detection at Sensors and FC
	Wideband vs. Narrowband Sensing
	Num/Sim Results
	Conclusions
	Reference

