## Introduction to GANs

Akshay Kumar

March 3, 2018



# Generative Modeling

Density estimation Sample generation Training examples Model samples

Credit: Goodfellow NIPS 2016

# Maximum Likelihood



$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Credit: Goodfellow NIPS 2016

#### Intuition



Goal: produce counterfeit money that is as similar as real money.



Goal: distinguish between real and counterfeit money.

Credit: Thomas Paula

#### Adversarial Networks Framework

- $D(\mathbf{x}; \theta_d)$ : Multilayer discriminator
- $G(\mathbf{z}; \theta_g)$ : Multilayer generator
- z : Random vector



Credit: Goodfellow NIPS 2016

### Minimax Game

- $p_{data}(\mathbf{x})$ : distribution of input data
- $p_z(\mathbf{z})$ : distribution of random noise
- $p_g(\mathbf{x})$ : distribution of model data

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$
 (1)

#### Minimax Game

- $p_{data}(\mathbf{x})$ : distribution of input data
- $p_z(\mathbf{z})$ : distribution of random noise
- $p_g(\mathbf{x})$ : distribution of model data

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

#### for number of training iterations do

#### for k steps do

- Sample minibatch of m noise samples {z<sup>(1)</sup>,...,z<sup>(m)</sup>} from noise prior p<sub>q</sub>(z).
- Sample minibatch of m examples  $\{x^{(1)}, \dots, x^{(m)}\}$  from data generating distribution  $p_{\text{than}}(x)$ .
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[ \log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

#### end for

- Sample minibatch of m noise samples  $\{z^{(1)}, \dots, z^{(m)}\}$  from noise prior  $p_g(z)$ .
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left( 1 - D\left( G\left( \mathbf{z}^{(i)} \right) \right) \right).$$

#### end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Credit: Generative Adversarial Nets. I. Goodfellow et al. NIPS 2014

### Minimax Game

- $p_{data}(\mathbf{x})$ : distribution of input data (Black dotted curve)
- $p_z(\mathbf{z})$ : distribution of random noise
- $p_g(\mathbf{x})$ : distribution of model data (Green solid curve)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$



Credit: Generative Adversarial Nets, I. Goodfellow et al. NIPS 2014

#### Theoretical Results

**Proposition 1**. For G fixed, the optimal discriminator D is,

$$D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$$
(2)

Proof.

$$V(D,G) = \int_{x} p_{data}(\mathbf{x}) \log D(\mathbf{x}) dx + \int_{z} p_{z}(\mathbf{z}) \log(1 - D(G(\mathbf{z}))) dz$$
(3)  
= 
$$\int p_{data}(\mathbf{x}) \log D(\mathbf{x}) dx + p_{g}(\mathbf{x}) \log(1 - D(\mathbf{x})) dx$$
(4)

For any  $(a, b) \in R^2 \setminus \{0, 0\}$ , the function  $y \to a \log(y) + b \log(1 - y)$  achieves its maximum in [0, 1] at  $\frac{a}{a+b}$ .

#### Theoretical Results

**Theorem 1**. The global minimum of the virtual training criterion C(G) is achieved at  $p_g = p_{data}$ . At that point, C(G) achieves the value  $-\log(4)$ . where,

$$C(G) = \max_{D} V(D, G)$$

Proof.

$$\begin{split} C(G) &= \max_{D} V(D,G) \\ &= \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})} [\log (1 - D_G^*(G(\mathbf{z})))] \\ &= \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{x} \sim p_g(\mathbf{x})} [\log (1 - D_G^*((\mathbf{x}))] \\ &= \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} \left[ \log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim p_g(\mathbf{x})} \left[ \log \frac{p_g(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} \right] \\ &= -log(4) + KL \left( p_{data} || \frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2} \right) + KL \left( p_g || \frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2} \right) \\ &= -log(4) + JSD(p_g || p_{data}) \end{split}$$

#### Results

New samples, not memorized





Credit: Generative Adversarial Nets, I. Goodfellow et al. NIPS 2014

### Bedroom Dataset



Credit: Unsupervised Representation Learning with DCGAN, Alec Radford et al.

# Moving in Latent space



# Vector arithmetic



















### Vector arithmetic





- Train GAN on face dataset to get G and D
- Find the closest point in the latent space

$$\hat{\mathbf{z}} = \min_{\mathbf{z}} \, \mathcal{L}_{c}(\mathbf{z}|\mathbf{y}, \mathbf{M}) + \mathcal{L}_{p}(\mathbf{z}) \tag{5}$$

where, 
$$\mathcal{L}_c(\mathbf{z}|\mathbf{y}, \mathbf{M}) = ||\mathbf{W} \odot (G(\mathbf{z}) - \mathbf{y})||_1$$
 and  $\mathcal{L}_p(\mathbf{z}) = \lambda \log(1 - D(G(\mathbf{z})))$ 

$$\mathbf{W}_i = \begin{cases} \sum_{j \in \mathcal{N}(i)} \frac{1 - \mathbf{M}_j}{|\mathcal{N}(i)|} & \text{if } \mathbf{M}_i \neq 0 \\ 0 & \text{if } \mathbf{M}_i = 0 \end{cases}$$

Semantic Image Inpainting with Deep Generative Models, Raymond A. Yeh et al.



- Train GAN on face dataset to get G and D
- Find the closest point in the latent space

$$\begin{split} \hat{\mathbf{z}} &= \min_{\mathbf{z}} \ \mathcal{L}_c(\mathbf{z}|\mathbf{y}, \mathbf{M}) + \mathcal{L}_p(\mathbf{z}) \\ \text{where, } \mathcal{L}_c(\mathbf{z}|\mathbf{y}, \mathbf{M}) = ||\mathbf{W} \odot (G(\mathbf{z}) - \mathbf{y})||_1 \ \text{and} \ \mathcal{L}_p(\mathbf{z}) = \lambda \log(1 - D(G(\mathbf{z}))) \\ \mathbf{W}_i &= \begin{cases} \sum_{j \in N(i)} \frac{1 - \mathbf{M}_j}{|N(i)|} & \text{if} \ \mathbf{M}_i \neq 0 \\ 0 & \text{if} \ \mathbf{M}_i = 0 \end{cases} \end{split}$$



Figure 6. Comparisons with local inpainting methods TV and LR inpainting on examples with random 80% missing.



Figure 7. Comparisons with nearest patch retrieval.



Figure 9. Comparisons with CE on the CelebA dataset.

# Compressed Sensing using Generative Models

Image compression using sparse signal processing:

- Sparse in DCT or wavelet basis
- Pre-multiply by random (Gaussian) matrix
- Reconstruct using sparse recovery
- Exact recovery  $m = O(s \log(n))$

Image compression using generative models:

- Train a GAN network to get G
- $G: \mathbb{R}^k \to \mathbb{R}^n$  (k is fixed)
- Minimize ||y AG(z)|| using gradient descent

A. Bora, A. Jalal, E. Price, and A. Dimakis, Compressed sensing using generative models, Proc. Int. Conf. Machine Learning, 2017.

#### Theorem

Let  $G: \mathbb{R}^k \to \mathbb{R}^n$  be a generative model from a d-layer neural network using ReLU activations. Let  $A \in \mathbb{R}^{m \times n}$  be a random Gaussian matrix for

using ReLU activations. Let 
$$A \in R^{m \times n}$$
 be a random Gaussian matrix for  $m = O(kd \log(n))$ , scaled so  $A_{i,j} \sim \mathcal{N}(0, \frac{1}{m})$ . For any  $x^* \in R^n$  and any observations  $y = Ax^* + n$ , let  $||y - AG(\hat{z})||_2 \le \epsilon$ . Then with  $1 - e^{-\Omega(m)}$  probability.

 $||G(\hat{z}) - x^*||_2 \le 6 \min_{z^* \in \mathbb{R}^k} ||G(z) - x^*||_2 + 3||n||_2 + 2\epsilon$ 

#### CelebA Dataset

• 200,000 face images.  $64 \times 64 \times 3 = 12288$  inputs per image, k=100.



Figure 1: Plot of per pixel reconstruction error as we vary the number of measurements. The vertical bars indicate 95% confidence intervals.

#### CelebA Dataset

 $\bullet$  200,000 face images. 64  $\times$  64  $\times$  3 = 12288 inputs per image, k=100.



Figure 3. Reconstruction results on celebA with m=500 measurements (of n=12288 dimensional vector). We show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis (third row), and our algorithm (last row).

#### Other works

- Generalization and Equilibrium in Generative Adversarial Nets (GANs) - Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma and, Yi Zhang
- Learning to Protect Communications with Adversarial Neural Cryptography - Martin Abadi and David G. Andersen
- Deep Generative Adversarial Networks for Compressed Sensing (GANCS) Automates MRI - Morteza Mardani, Enhao Gong, Joseph Y. Cheng, Shreyas Vasanawala, Greg Zaharchuk, Marcus Alley, Neil Thakur, Song Han, William Dally, John M. Pauly, and Lei Xing