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Generative Modeling
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Maximum Likelihood

0 = arg;naxEmwpdm 10g Prodel (| 8)

Credit: Goodfellow NIPS 2016
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Credit: Thomas Paula



Adversarial Networks Framework

@ D(x;604) : Multilayer discriminator
e G(z;0g) : Multilayer generator
@ z : Random vector

D tries to make
D(G(z)) near 0,
G tries to make

D(G(z)) near 1

D(x) tries to be
near 1
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Minimax Game

® Pyara(x) @ distribution of input data
@ p.(z) : distribution of random noise

@ pg(x) : distribution of model data

min max V(D, G) = Expy,y,(x)[108 D)+ Ezrp,(z)[log(1 — D(G(2)))] (1)



Minimax Game

@ Pyata(X) : distribution of input data
@ p.(z) : distribution of random noise
® pg(x) : distribution of model data

m(j‘n mDaX V(D7 G) = IEerpdat‘.,(x)[log D(X)] + IEzwpz(z)[log(]- - D(G(Z)))]

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

» Sample minibatch of m noise samples {z(!), ..., 2™} from noise prior Pg(2)-
o Sample minibatch of m examples {z) ..., (™)} from data generating disiribution
Paaal@).

» Update the discriminator by ascending its stochastic gradient:

S 32 (29) 1012 (0 (=)

end for
« Sample minibatch of 1 noise samples {z(1), .. .. z(™)} from noise prior pg(z).
« Update the generator by descending its stochastic gradient:

v, L gmg(l_u ((=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Credit: Generative Adversarial Nets. |. Goodfellow et al. NIPS 2014



Minimax Game

@ pgata(X) : distribution of input data - (Black dotted curve)
@ p,(z) : distribution of random noise

@ pg(x) : distribution of model data - (Green solid curve)

min max V(D, G) = Bx_p,,llog D(X)] + Exp () llog(1 — D(G(2)))]
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Credit: Generative Adversarial Nets, |. Goodfellow et al. NIPS 2014



Theoretical Results

Proposition 1. For G fixed, the optimal discriminator D is,

* o pdata(x)
P = a0 + el .

Proof.

V(D, ) = / Paata(x) log D(x)dx + / p:(2)log(1 — D(G(2))dz  (3)

z

- / Pata(x) log D(x)dx + pg(x) log(1 — D(x))dx (4)

For any (a, b) € R?\{0, 0}, the function y — alog(y) + blog(1 — y)

achieves its maximum in [0, 1] at ;%;.




Theoretical Results

Theorem 1. The global minimum of the virtual training criterion C(G) is
achieved at p; = pgata. At that point, C(G) achieves the value -log(4).
where,

C(G) = max V(D, G)

Proof .

C(G) = max V(D, G)
= B 001108 D (x)] + Eqp (o) l08(1 — D(G(2)))
= Exmapdata(x)[log DZ‘(X)] + IExwpg(x) [|0g(1 - DZ’((X))]

Pdata(X) :| |: Ps(x)
== EXN X |O + EXN X Io
Pdata(X) |: g€ Pdata(x) + pg(x) Pe(x) g Pdata(x) + pg(x)

ataX) + ata(X) +
= —log(4) + KL (pdatade =(x) pg(x)) + KL <ngPdt(x)Pg(x

5 2
= —log(4) + JSD(pg||paata)



@ New samples, not memorized

Credit: Generative Adversarial Nets, |. Goodfellow et al. NIPS 2014



Bedroom Dataset

Credit: Unsupervised Representation Learning with DCGAN, Alec Radford et al.



Moving in Latent space
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Vector arithmetic
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Image inpainting
Reconstruct
\yJ

@ Train GAN on face dataset to get G and D

M

@ Find the closest point in the latent space
2= mzin Lc(zly,M) + L,(z) (5)
where, L (zly,M) = |[[W © (G(z) —y)||1 and L(z) = Alog(1 — D(G(2)))

1-M; .
w;, =  Zjen() ey i Mi 70
0 i M; =0

Semantic Image Inpainting with Deep Generative Models, Raymond A. Yeh et al.



Image inpainting
Reconstruct
\y]

@ Train GAN on face dataset to get G and D

M
@ Find the closest point in the latent space
2 =min Lc(z]y,M) + L,(z)
z

where, Lc(zly, M) = [[W® (G(z) —y)[l1 and L,(z) = Alog(1 — D(6(2)))
1-M; .
w; — { 2jen) ey Mi# 0
0 if M; =0
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Image inpainting

Real Input Ours NN

Figure 6. Comparisons with local inpainting methods TV and LR - :
inpainting on examples with random 30% missing. Figure 7. Comparisons with nearest patch retrieval.



Image inpainting

Figure 9. Comparisons with CE on the CelebA dataser.



Compressed Sensing using Generative Models

Image compression using sparse signal processing:
@ Sparse in DCT or wavelet basis
@ Pre-multiply by random (Gaussian) matrix
@ Reconstruct using sparse recovery
e Exact recovery m = O(slog(n))
Image compression using generative models:
@ Train a GAN network to get G
o G:RK— R (kis fixed)
e Minimize ||y — AG(z)|| using gradient descent

A. Bora, A. Jalal, E. Price, and A. Dimakis, Compressed sensing using generative
models, Proc. Int. Conf. Machine Learning, 2017.



Theorem

Let G : RK — R" be a generative model from a d-layer neural network
using ReLU activations. Let A € R™*" be a random Gaussian matrix for
m = O(kd log(n)), scaled so A;j ~ N(0,L). For any x* € R" and any
observations y = Ax* + n, let ||y — AG(2)||2 < e. Then with 1 — e=(m)
probability,

16(2) = x"ll2 < 6 min, G(2) = x"ll2 + 3| nll2 + 2¢




CelebA Dataset

@ 200,000 face images. 64 x 64 x 3 = 12288 inputs per image, k=100.
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Figure 1 : Plot of per pixel reconstruction error as we vary the number of
measurements. The vertical bars indicate 95% confidence intervals.



CelebA Dataset

@ 200,000 face images. 64 x 64 x 3 = 12288 inputs per image, k=100.
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Figure 3. Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We show original images
(top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis (third row), and our algorithm (last row).
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o Generalization and Equilibrium in Generative Adversarial Nets
(GANSs) - Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma and, Yi
Zhang

@ Learning to Protect Communications with Adversarial Neural
Cryptography - Martin Abadi and David G. Andersen

o Deep Generative Adversarial Networks for Compressed Sensing
(GANCS) Automates MRI - Morteza Mardani, Enhao Gong,
Joseph Y. Cheng, Shreyas Vasanawala, Greg Zaharchuk, Marcus Alley,
Neil Thakur, Song Han, William Dally, John M. Pauly, and Lei Xing



