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Interference in wireless networks

Shannon provides the basis for modern day
communication system

In point-to-point communication system noise is the
primary concern

Wireless networks are interference limited rather than
noise limited
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Where interference occurs?

Cellular networks: inter cell interference, interference
between macro, pico and femto cell

Ad-hoc networks: interference from simultaneous
transmissions

Wireless LANs: interference from adjacent networks

Cognitive networks: between primary and secondary and
among secondary users
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Generalized degrees of freedom (GDOF)

GDOF is a measure of the high SNR capacity obtainable
from a given channel

For the symmetric case, it is defined as

dsym(α) = limρ→∞
1
K

C∑(ρ, α)

log ρ
, where α =

log γ

log ρ

Roughly measures interference free dimension accessible
in a network

When SNR(ρ) = INR(γ), degrees of freedom (DOF) is
obtained as a special case of GDOF
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Interference Channel (IC)
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Hij : channel from jth transmitter to ith receiver

M and N: antenna at transmitter and receiver respectively
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Problem statement

Multiple antennas help to mitigate the effect of interference
e.g: When N ≥ KM, ZF - receiving is sufficient to achieve
the interference free GDOF

When N < KM, trivial techniques are found to be
sub-optimal

Focus of this work: To characterize GDOF of K user
symmetric MIMO Gaussian IC
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Contributions

A new outer bound is derived for the MIMO-IC
Cooperation
Providing noisy side information

Inner bound is derived for the symmetric MIMO-IC as a
combination of

Han-Kobayashi (HK) scheme
Interference Alignment (IA)
Treating interference as noise
Zero - Forcing receiving

HK scheme is extended to multiuser MIMO scenario

Interplay between the HK and IA schemes is explored
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Outer bound

Fano’s Inequality:

For any estimator X̂ such that X → Y → X̂ , with
Pe = Pr{X 6= X̂}, we have:

H(X |Y ) ≤ H(X |X̂ ) ≤ H(Pe) + Pe log |X |

Weaker Form:
H(X |Y ) ≤ 1 + Pe log |X |

How to use:

nR1 = H(W1)

= I(W1;Y
n
1 ) + H(W1|Y

n
1 )

≤ I(W1;Y
n
1 ) + nǫn (Fano’s inequality)

≤ I(X n
1 ;Y

n
1 ) + nǫn (Data processing inequality)
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Outer bound based on cooperation

Cooperation does not hurt capacity

Outer bound is derived for a modified system

Different possible ways of cooperation is taken in to
account
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Outer bound: cooperation
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Figure: Four user Gaussian IC
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Outer bound: cooperation
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L1 and L2: number of users in group - 1 and group -2

Hij ∈ C
LiN×Lj M , X1 and X2: two set of messages
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Outer bound: cooperation
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Equivalent to a two user MIMO Z - interference channel
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Outer bound: cooperation

System model:

Y1 = H11X1 + H12X2 + Z1,

Y2 = H22X2 + Z2,

where

Y1 ,
[

Y1, · · · ,YL1

]T
, Y2 ,

[
YL1+1, · · · ,YL

]T
,

X1 ,
[

X1, · · · ,XL1

]T
, X2 ,

[
XL1+1, · · · ,XL

]T
,

Z1 ,
[

Z1, · · · ,ZL1

]T
and Z2 ,

[
ZL1+1, · · · ,ZL

]T
.

H11 = blkdiag (H11 H22 . . . HL1,L1)

H22 = blkdiag (HL1+1,L1+1 HL1+2,L1+2 . . . HL,L)

H12 =








H1,L1+1 H1,L1+2 · · · H1,L

H2,L1+1 H2,L1+2 · · · H2,L
...

...
HL1,L1+1 HL1,L1+2 · · · HL1,L







, L1 + L2 ≤ K

(1)
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Outer bound: cooperation

Theorem - 1:
The sum rate of the K -user Gaussian MIMO interference
channel is upper bounded as follows:

L∑

i=1

Ri ≤ log
∣
∣
∣IL1N + H11P1H

H
11 + H12P2H

H
12

∣
∣
∣+

log

∣
∣
∣
∣
IL2N + H22P

1/2
2

{

IL2M + P
1/2
2 H

H
12H12P

1/2
2

}−1
P

1/2
2 H

H
22

∣
∣
∣
∣
+ ǫn

where L1 + L2 = L ≤ K , 0 ≤ L1 ≤ K , 0 ≤ L2 ≤ K ,

IL : L × L identity matrix
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Proof outline: cooperation

By using Fano’s inequality, the sum rate of the modified system
is upper bounded as given below:

n
L∑

i=1

Ri − nǫn

≤ I
(

X
n
1,Y

n
1

)

+ I
(

X
n
2;Y

n
2

)

,

≤ I
(

X
n
1,Y

n
1

)

+ I
(

X
n
2;Y

n
2,S

n
)

, where S = H12X2 + Z1,

= h
(

Y
n
1

)

− h
(

S
n
)

+ h
(

S
n
)

− h
(

Z
n
1

)

+ h
(

Y
n
2|S

n
)

− h
(

Z
n
2

)

,
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Proof outline: cooperation

Lemma

Let xn = {x1, x2, . . . , xn} and yn = {y1, y2, . . . , yn} be two
sequences of random vectors and let x∗, y∗, x̂ and ŷ be
Gaussian vectors with covariance matrices satisfying

Cov
[

x̂
ŷ

]

=
1
n

n∑

i=1

Cov
[

x i

y i

]

� Cov
[

x∗

y∗

]

,

then we get the following bound

h(xn) ≤ nh(x̂) ≤ nh(x∗),

h(yn|xn) ≤ nh(ŷ|x̂) ≤ nh(y∗|x∗).
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Proof outline: cooperation

Sum rate is bounded as:

L∑

i=1

Ri − ǫn ≤ h
(

Y
∗

1

)

− h
(
Z1

)
+ h

(

Y
∗

2|S
∗
)

− h
(
Z2

)

It can be shown that:

h
(

Y
∗

1

)

= log
∣
∣
∣πe

[

IL1N + H11P1H
H
11 + H12P2H

H
12

]∣
∣
∣

h
(

Y
∗

2|S
∗
)

= log

∣
∣
∣
∣
πe

[

IL2N + H22P
1/2
2

{

IL2M + P
1/2
2 H

H
12H12P

1/2
2

}−1

P
1/2
2 H

H
22

]∣
∣
∣ .

Need to minimize sum rate over all possible values of L1

and L2.

Difficult task !
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Outer bound: cooperation

Lemma
In the symmetric case, the GDOF of the K user Gaussian
MIMO-IC M ≤ N is upper bounded as follows:

1 When 0 ≤ α ≤ 1:

di(α) ≤ min
L1,L2

1
L

[
L1M + min {r , L1(N − M)}α+ (L2M − r)++

min
{

r , L2N − (L2M − r)+
}
(1 − α)

]
,

2 When α > 1:

di(α) ≤ min
L1,L2

1
L

[
rα+ min {L1M, L1N − r}+ (L2M − r)+

]
,

where r = min {L2M,L1N}.
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Outer bound: Noisy side information

Noisy side information is provided
Define the following quantity:

Sj,B =
∑

i∈B

HjiXi + Zj

where B ⊆ {1, 2, . . . ,K} is the set of users.
Consider first and third user:

nR1 + nR3 − nǫn

≤ I (Xn
1;Y

n
1) + I (Xn

3;Y
n
3)

≤ I
(
Xn

1;Y
n
1,S

n
2,1

)
+ I

(
Xn

3;Y
n
3,S

n
4,3

)

= h(Yn
1|S

n
2,1) + h(Yn

3|S
n
4,3) + h(Sn

2,1) + h(Sn
4,3)

︸ ︷︷ ︸

unwanted terms

− h(Sn
1,{2,3,4})− h(Sn

3,{1,2,4})
︸ ︷︷ ︸

unwanted terms

−h(Zn
1)− h(Zn

3)
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Outer bound: Noisy side information

Consider 2nd and 4th user:

nR2 + nR4 − nǫn

≤ I
(
Xn

2;Y
n
2,S

n
1,2

)
+ I

(
Xn

4;Y
n
4,S

n
3,4

)

= h(Yn
2|S

n
1,2) + h(Yn

4|S
n
3,4) + h(Sn

1,2) + h(Sn
3,4)

︸ ︷︷ ︸

unwanted terms

− h(Sn
2,{1,3,4})− h(Sn

4,{1,2,3})
︸ ︷︷ ︸

unwanted terms

−h(Zn
2)− h(Zn

4)

Summing and by conditioning further:

4∑

i=1

Ri ≤ h(Yn
1|S

n
2,1) + h(Yn

3|S
n
4,3) + h(Yn

2|S
n
1,2) + h(Yn

4|S
n
3,4)

+
4∑

i=1

h(Zn
i ) + nǫn
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Outer bound: Noisy side information

Theorem

The sum rate of the K user Gaussian MIMO-IC is upper bounded as
follows:

1 When K is even:

K
∑

i=1

Ri ≤
∑

i odd

log |INi
+

K
∑

j=1, j 6=i

Hij Pj H
H
ij + Hii P

1/2
i {IMi

+ P1/2
i HH

i+1,i Hi+1,i P
1/2
i }

−1P1/2
i HH

ii |+

∑

i even

log |INi
+

K
∑

j=1, j 6=i

Hij Pj H
H
ij + Hii P

1/2
i {IMi

+ P1/2
i HH

i−1,i Hi−1,i P
1/2
i }

−1P1/2
i HH

ii | + ǫn

2 When K is odd:
R1 + 2

K−1
∑

i=2

Ri + RK

≤

K−1
∑

i=1

log |INi
+

K
∑

j=1, j 6=i

Hij Pj H
H
ij + Hii P

1/2
i

(

IMi
+ P1/2

i HH
i+1,i Hi+1,i P

1/2
i

)−1
P1/2

i HH
ii | +

K
∑

i=2

log |INi
+

K
∑

j=1, j 6=i

Hij Pj H
H
ij + Hii P

1/2
i

(

IMi
+ P1/2

i HH
i−1,i Hi−1,i P

1/2
i

)−1
P1/2

i HH
ii | + ǫn
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Outer bound: Noisy side information

Lemma

The GDOF of the K user MIMO-IC in the symmetric case is
upper bounded as follows:

dj (α) ≤



















M(1 − α) + min {min (N, (K − 1)M) , N − M}α if 0 ≤ α ≤
1

2

min (N, (K − 1)M)α + min {M, N − min (N, (K − 1)M)} (1 − α) if
1

2
≤ α ≤ 1

min {N, (K − 1) M} if α ≥ 1

when M ≤ N.
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Outer bound: Noisy side information

Theorem

The sum rate of the K user Gaussian MIMO-IC is upper bounded as
follows:

R1 +

K−1
∑

i=2

Ri + RK ≤ log

∣

∣

∣

∣

∣

∣

IN1
+

K
∑

j=2

H1j Pj H
H
1j + H11P1/2

1

{

IM1
+ P1/2

1 HH
K 1HK 1P1/2

1

}−1
P1/2

1 HH
11

∣

∣

∣

∣

∣

∣

+

K−1
∑

i=2

log

∣

∣

∣

∣

INi
+ Hi1P1/2

i1

{

IMri
+ P1/2

i1 HH
Ki HKi P

1/2
i1

}−1
P1/2

i1 HH
i1+

Hi,i+1P1/2
i2

{

IMsi
+ P1/2

i2 HH
1,i+1H1,i+1P1/2

i2

}−1
P1/2

i2 HH
i,i+1

∣

∣

∣

∣

+

K−1
∑

i=2

log

∣

∣

∣

∣

INi
+ HiK P1/2

i3

{

IMri
+ P1/2

i3 HH
1i H1i P

1/2
i3

}−1
P1/2

i3 HH
iK +

Hi,K−1P1/2
i4

{

IMsi
+ P1/2

i4 HH
K ,i+1HK ,i+1P1/2

i4

}−1
P1/2

i4 HH
i,K−1

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

∣

INK
+

K−1
∑

j=1

HKj Pj H
H
Kj + HKK P1/2

K

{

IMK
+ P1/2

K HH
1K H1K P1/2

K

}−1
P1/2

K HH
KK

∣

∣

∣

∣

∣

∣

+ ǫn

where Mri =

i
∑

j=1

Mj and Msi =

K
∑

j=i+1

Mj
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Outer bound: Noisy side information

Variables are defined as follows:

Hi1 =
[

Hi1 Hi2 . . . Hii
]
, Hi,i+1 =

[
Hi,i+1 Hi,i+2 . . . HiK

]
,

HKi =
[

HK 1 HK 2 . . . HKi
]
, H1,i+1 =

[
H1,i+1 H1,i+2 . . . H1K

]

H1i =
[

H1K H12 . . . H1i
]
, HK ,i+1 =

[
HK 1 HK ,i+1 . . .HK ,K−1

]
,

HiK =
[

HiK Hi2 . . . Hii
]
, Hi,K−1 =

[
Hi1 Hi,i+1 . . . Hi,K−1

]

Pi1 = blockdiag (P1 P2 . . . Pi) , Pi2 = blockdiag (Pi+2 Pi+3 . . . PK )

Pi3 = blockdiag (PK P2 . . . Pi ) and Pi4 = blockdiag (P1 Pi+1 . . . PK−1) .

Extension of SIMO-IC outer bound to MIMO-IC
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Inner bound

Inner bound is derived for the symmetric MIMO
interference channel as a combination of

Han-Kobayashi (HK) scheme
Interference Alignment (IA)
Treating interference as noise
Zero - Forcing receiving

Interplay between the HK and IA schemes is explored
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Interference alignment(IA)
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Idea of IA for IC originated in the seminal work by
Cadembe

For MIMO IC, DOF achieved by IA:

dj =
MN

M + N
, KM > N (2)

Requires global channel knowledge

Relative strength between signal and interference does not
matter
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Han-Kobayashi (HK) scheme

Based on the idea of splitting message in to two parts:
1 Private part
2 Public part

A simple HK scheme proposed by ETW: achieves capacity
with in 1 bit (two user IC)

Different variants of HK - scheme has been proposed
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Extension of HK - scheme

HK scheme is extended to K user MIMO IC for symmetric
case
Following interference regime are considered:

1 Strong interference case (α > 1)
2 Moderate interference case ( 1

2 ≤ α ≤ 1)
3 Weak interference case (0 ≤ α ≤ 1

2 )
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HK Scheme: Strong interference case

Every receiver tries to decode the unintended messages
along with the intended one

There is no private part

K - user MAC channel is formed at every receiver

Achievable rate region: intersection of K - MAC regions
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HK Scheme: Strong interference case

Theorem

The following GDOD is achievable in case of K user Gaussian
MIMO-IC:

1 When
N
M

< K ≤
N
M

+ 1:

dj(α) = min
{

M,
1
K

[(K − 1)Mα+ N − (K − 1)M]

}

2 When K >
N
M

+ 1:

dj(α) = min
{

M,
αN
K

}
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Proof outline: Strong interference case

It is sufficient to consider any particular user due to
symmetry of the problem

For S ⊆ {1,2, . . . ,K} a MAC channel is formed
The rate that can be achieved at user - i :

∑

j∈S

Rj = log

∣
∣
∣
∣
∣
∣

I + ρH11HH
11 + ρ

α
∑

j 6=1

H1jHH
1j

∣
∣
∣
∣
∣
∣

= αmin {(K − 1)M,N} log ρ+

min {M,N − min {(K − 1)M,N}} log ρ+O(1)

Simplified based on the value of K , M and N
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HK scheme: moderate interference case

Message is split in to private and public part

Private power is set such that it is received at the noise
floor of the unintended receiver

Both messages are encoded using Gaussian code book
Decoding order:

While decoding the common message all private messages
are treated as noise
Private message is decoded last: treat other user’s private
message as noise

Rate achieved: Rj = Rp,j + Rc,j
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HK scheme: moderate interference case

Theorem

In case of K user Gaussian MIMO-IC, following GDOF are achievable
under the following conditions.

1 When N

M
< K <

N

M
+ 1:

dj (α) = M(1 − α) + min
{

Nα

K
,

1

K − 1
[M {α(2K − 1)− K} + N(1 − α)] ,

(2α − 1)M +
(N − M)(1 − α)

K − 2

}

2 When K ≥
N

M
+ 1:

dj(α) = M(1 − α) + min
{

Nα

K
, (2α − 1)M +

(N − M)(1 − α)

K − 2

1

K − 1
[Nα− M(1 − α)]

}
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HK scheme: weak interference case

Theorem

In case of Gaussian MIMO-IC, following GDOF is achievable:

dj(α) = M(1 − α) +
1

K − 1
(N − M)
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Treating interference as noise and ZF - receiving

Trivial techniques to mitigate the effect of interference

dZF
j = min

{

M,
N
K

}

Theorem
The following GDOF is achievable in case of Gaussian
MIMO-IC

1 When
N

M
< K ≤

N

M
+ 1:

dj(α) = M + α(N − KM)

2 When K >
N

M
+ 1:

dj (α) = M(1 − α)
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Comparison of different schemes
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Results
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Figure: K = 3 user IC with
M = N = 2
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Figure: K = 3 user IC with
M = 2 and N = 4
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Some insights

Treating interference as noise is GDOF optimal when
M = N in weak interference case

When M < N, splitting message into private and public part
helps in weak interference regime

When K >
N
M

+ 1, a combination of IA and HK scheme

performs better

When
N
M

< K ≤
N
M

+ 1, HK scheme is GDOF optimal

Unlike two user IC, ZF - receiving is found to be GDOF

optimal at α = 1 when
N
M

< K ≤
N
M

+ 1
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Conclusion

Derived outer bound based on the notion of cooperation
and providing noisy side information

Derived achievable GDOF using a combination of HK -
scheme, IA, treating interference as noise and ZF -
receiving

Explored the interplay between HK and IA

Future Work

Proposing a scheme which combines IA and HK :
deterministic model

Relaxing the assumption of the same SNR and INR on the
direct link and cross link, respectively
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