Sensor Placement for Structural Health Monitoring

Framework and Algorithms

Geethu Joseph

Joint work with

- Prof. Chandra R. Murthy, Indian Institute of Science, Bangalore
- Prof. John V. Mathews, Oregon State University

Why SHM?

Many infrastructure uses fiber reinforced laminate composite materials

Aircrafts

Oil pipes

1

- Lightweight and strong
- Excellent fatigue and corrosion resistance

Why SHM?

Many infrastructure uses fiber reinforced laminate composite materials

Aircrafts

Oil pipes

Lightweight and strong
 Excellent fatigue and corrosion

resistance

Why SHM?

Many infrastructure uses fiber reinforced laminate composite materials

Aircrafts

Oil pipes

Lightweight and strong

Excellent fatigue and corrosion resistance

X Damage is invisible to naked eye

Safety and maintenance \Rightarrow SHM!

Structural health is continuously monitored

Real-time inspection

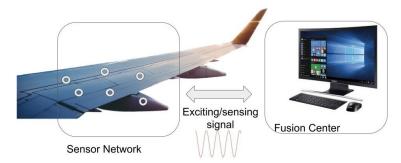
Ground maintenance

What is SHM?

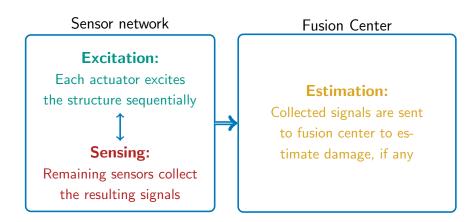
Structural health is continuously monitored

Real-time inspection

Ground maintenance



How is SHM implemented?



 $n \text{ sensors} \implies n(n-1) \text{ measurements}.$

Sensor Coverage

Ρ

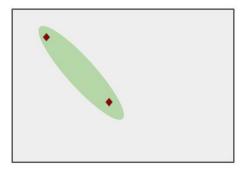
Coverage of (i, j) actuator-sensor pair

Area:
$$\mathcal{R}_{ij} = \left\{ \mathbf{x} \in \mathcal{A} : \underbrace{\frac{\|\mathbf{x} - \mathbf{s}_i\| + \|\mathbf{x} - \mathbf{s}_j\|}{\|\mathbf{s}_j - \mathbf{s}_i\|}}_{r_{ij}(\mathbf{x})} \leq \beta \right\}$$

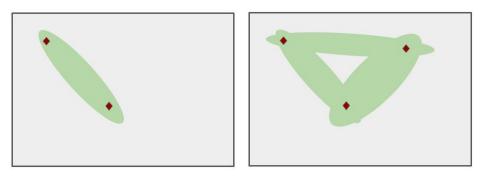
robability: $p_{ij}(\mathbf{x}) = \left\{ \begin{aligned} \frac{\beta - r_{ij}(\mathbf{x})}{\beta - 1} e^{-\eta \|\mathbf{s}_j - \mathbf{s}_i\|} & \text{if } \mathbf{x} \in \mathcal{R}_{ij} \\ 0 & \text{otherwise.} \end{aligned} \right\}$

- s_i, s_j : Sensor locations
- β, η : Known constants

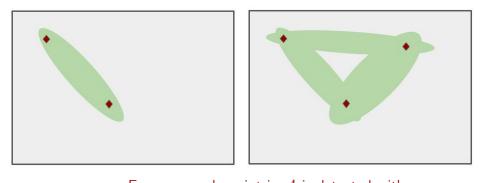
Illustrative Example



Illustrative Example



Illustrative Example



Goal:	Every anomaly point in ${\mathcal A}$ is detected with
	probability at least p_{\min}
Problem:	Find minimum number of sensors and their
	placement

Framework

Grid Based Approach

 \mathcal{A} is discretized to N grid points Grid locations: $\mathbf{x}_m, m = 1, 2..., N$

Goal:Every grid point is detected with
probability at least p_{min} Problem:Find minimum number of sensors and their
placement on grid points

Formulation

Constraint

A grid point is missed if all the actuator-sensor pairs miss it

$$1 - \prod_{i,j=1}^{N_s} [1 - p_{ij}(\mathbf{x}_m)] \ge p_{\min}, \text{ for } m = 1, 2, \dots, N.$$

 N_s : Number of sensors placed

Equivalent constraint

$$\sum_{i,j=1}^{N_s} \log\left[1-p_{ij}(oldsymbol{x}_m)
ight] \leq \log(1-p_{\min}), \quad ext{for } m=1,2,\ldots,N.$$

 N_s : Number of sensors placed

Formulation

$$\sum_{i,j=1}^{N_s} \log\left[1-p_{ij}(\boldsymbol{x}_m)\right] \leq \log(1-p_{\min}), \quad \text{for } m=1,2,\ldots,N.$$

Indicator vector for sensor placement: $z \in \{0, 1\}^N$ Sensor-sensor pair mapping function: $g: \{0,1\}^N \to \{0,1\}^{\binom{N}{2}}$

Sensing matrix: $\mathbf{A}^{\text{cover}} \in \mathbb{R}^{N \times {N \choose 2}}$

$$oldsymbol{\mathcal{A}}_{m,n}^{ ext{cover}} = rac{\log\left[1-p_{f^{-1}(n)}\left(oldsymbol{x}_{m}
ight)
ight]}{\log(1-p_{\min})}.$$

Equivalent Constraint

$$m{A}^{ ext{cover}}g(z)\geq m{1}$$

Final Problem

$$m{A}^{ ext{cover}}g(m{z})\geq m{1}$$

If we replace A^{cover} with A, constraint remains unchanged

$$\boldsymbol{A}_{m,n} = \min\left\{1, \frac{\log\left[1 - p_{f^{-1}(n)}\left(\boldsymbol{x}_{m}\right)\right]}{\log(1 - p_{\min})}\right\}.$$

Optimization Problem

$$z^* = \operatorname*{arg\,min}_{z\in\{0,1\}^N} \|z\|_0$$
 subject to $Ag(z)\geq 1$.

Some Observations

1 The size of the smallest anomaly area that can be detected depends on the grid size

2 The framework does not depend on the model

3 The feasible set is always nonempty as it always contains the all-one vector.

Solution

Optimization Problem

$$oldsymbol{z}^* = rgmin_{oldsymbol{z}\in\{0,1\}^N} \|oldsymbol{z}\|_0$$
 subject to $oldsymbol{A}g(oldsymbol{z}) \geq oldsymbol{1}.$

Key challenges:

- z is constrained to have only 0 or 1 as entries
- g(z) is a non-convex function of z

Solution

Optimization Problem

$$oldsymbol{z}^* = \mathop{\mathrm{arg\,min}}_{z\in\{0,1\}^N} \|oldsymbol{z}\|_0 \,$$
 subject to $oldsymbol{A}g(oldsymbol{z})\geq 1.$

Key challenges:

- z is constrained to have only 0 or 1 as entries
- g(z) is a non-convex function of z

What Next?

Algorithms

Our Options

Optimization Problem

$$oldsymbol{z}^* = \mathop{\mathrm{arg\,min}}_{z\in\{0,1\}^N} \|oldsymbol{z}\|_0$$
 subject to $oldsymbol{A}g(oldsymbol{z})\geq 1.$

1 Convex Relaxation Gives poor results imes

Our Options

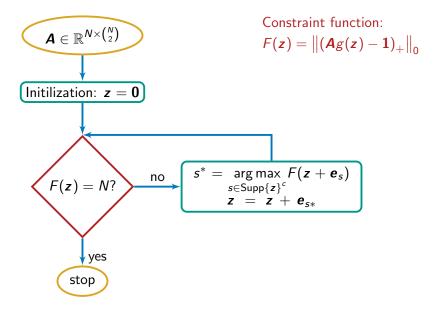
Optimization Problem

$$oldsymbol{z}^* = rgmin_{oldsymbol{z}\in\{0,1\}^N} \|oldsymbol{z}\|_0 \,$$
 subject to $oldsymbol{A}g(oldsymbol{z})\geq oldsymbol{1}.$

1 Convex Relaxation Gives poor results imes

2 Greedy Algorithm Gives near optimal results! 🗸 (Surprising?)

Greedy Algorithm



Assume that the algorithm stops after N_S^* iterations

Greedy Algorithm

$$\mathcal{O}(N_s^*N^4)$$

Exhaustive search

Assume that the algorithm stops after N_S^* iterations

Greedy Algorithm \mathcal{O}

$$P(N_s^*N^4)$$

Exhaustive search

$$\mathcal{O}(2^N)$$

Even faster?

Fast Greedy Algorithm

1 Elimination of rows of A

- Once a grid point is covered, it will remain covered
- Eliminate rows corresponding to the covered grid points

2 Recursive update of constraint function

• When a new sensor is placed, compute the change in the coverage function

Comparison

Assume that the algorithm stops after N_S^* iterations

Fast Greedy Algorithm $\mathcal{O}(N_s^*N^3)$

Greedy Algorithm $\mathcal{O}(N_s^* N^4)$

Exhaustive search $\mathcal{O}(2^N)$

Comparison

Assume that the algorithm stops after N_S^* iterations

Fast Greedy Algorithm $\mathcal{O}(N_s^*N^3)$ SuboptimalGreedy Algorithm $\mathcal{O}(N_s^*N^4)$ SuboptimalExhaustive search $\mathcal{O}(2^N)$ Optimal

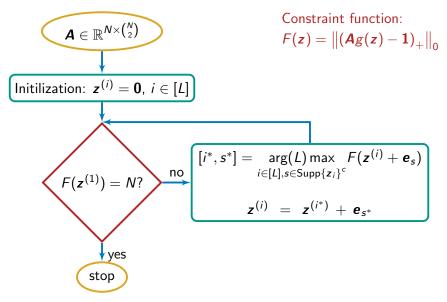
Comparison

Assume that the algorithm stops after N_S^* iterations

Fast Greedy Algorithm
$$\mathcal{O}(N_s^*N^3)$$
SuboptimalGreedy Algorithm $\mathcal{O}(N_s^*N^4)$ SuboptimalExhaustive search $\mathcal{O}(2^N)$ Optimal

Improve performance?

Group Greedy Algorithm



C. Jiang, et al., Group Greedy Method for Sensor Placement, TSP, May, '19.

Example: N = 5, L = 2

	Choices	$\{1\},\{2\},\{3\},\{4\},\{5\}$
k = 1	Best two	$\{1\}, \{3\}$
	Selection	$\{1\}$
<i>k</i> = 2	Choices	$\{1,2\},\{1,3\}\{1,4\},\{1,5\},\{3,2\},\{3,4\},\{3,5\}$
	Best two	$\{1,2\},\{1,3\}$
	Selection	$\{1, 2\}$
<i>k</i> = 3	Choices	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\}$
	Best two	$\{1,3,5\},\{1,2,4\}$
	Selection	$\{1, 3, 5\}$

Assume that the algorithm stops after N_S^* iterations

Group Greedy Algorithm
$$\mathcal{O}(N_s^* N^3 \underbrace{L}_{\text{Extra}})$$

Fast Greedy Algorithm $\mathcal{O}(N_s^* N^3)$

Greedy Algorithm $\mathcal{O}(N_s^* N^4)$

Problem Coverage of an area using sensor pairs

Framework Grid-based approach

1. Greedy algorithm

Algorithms 2. Fast greedy algorithm L

3. Group greedy algorithm

Least computations

Thank You!