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Problem

¢ To study information-theoretic security for DM interference
and broadcast channels

e Secrecy level is measured by the equivocation rate

¢ Inner and outer bounds on the secrecy capacity regions
are derived



Notations

o X =[Xq,...,Xn]

o AE”)(PX): set of weakly jointly typical sequences x with
respect to P(x)



IC with confidential messages
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Figure: IC with confidential message

e Channel is memoryless:

P(y1,Yalx1,%2) = [Tieg P (Yai, Yai [Xai, X2i)
e Stochastic Encoder: Described by a matrix of conditional
prob. fi(xt|w;), where x; € A", w; € W, and

th(xt|Wt) =1



e Decoder: ¢ : Yy — W
o Secrecy level at Rx-t: 2H(W;[Y(),t # ]

e Arate pair (Ry,R>) is said to be achievable for the IC with
confidential messages if, for any ¢y > 0, there exists a

(M1, Mz, n, P{") code such that

o My >2"fort =1,2
¢ Reliability requirement: Pé”) < e

e Security constraints: nR; — H(W1|Y2) < neg and
nR, — H(W2|Y1) < neg
e Capacity region: closure of the set of all achievable rate
pairs (R1,Rz)



e Let U, V1 and V,: auxiliary random variables
e Let mc_, be the class of distributions that factor as

P(U)P (va|u)P (v2|u)P (X1 |v1)P (X2 |v2)P (y1, y2[X1, X2)

e Theorem: Let Ric(mc_;) denote the union of all (R1, Rz)
satisfying

0 < Rl < |(V1;Y1‘U) — |(V1;Y2‘V2,U)
0 < R2 < |(V2;Y2‘U) — |(V2;Y1‘V1,U)

over all distributions P(.) in mc_;. Any rate pair
(R17 RZ) € Rﬂ'lcfl

is achievable for the IC with confidential messages.



Proof

e An auxiliary random variable U is used in the sense of
HK-scheme

e For a given U, two independent stochastic encoders are
considered (one for each message)

e Fix P(u),P(vy]u) and P(v;|u), and
P(X1,X2|V1,V2) = P(X1|v1)P(X2|v2) and let

Ry = 1(V1; Y2|Va,U) — ¢

R |(V2;Y1|V1,U)—61

where €;(> 0) is small for sufficiently large n



Codebook generation

e Randomly generate a typical seq. u with prob.
P(u) = [T, P(u;) and assume that both Tx and Rx know
u

« For Tx-t, generate 2"(R+R0) independent seq. v; each with
prob. P(v¢|u) and labeled as

Vi, ko), we € {1,... M ke € {1,..., M}

where M; = 2"R and M; = 2"R:
o Let Gt = {vi(wi, ki), for all (wi, ki)}: codebook of Tx-t
e |ts with bin or subcodebook

/

Ct(Wt) = {Vt(Wt,kt), for kt = 1, .. '7Mt}



Encoding
e To send a message pair (w1, wp) € Wi x Wh, each Tx
employs a stochastic encoder

e Encoder t randomly chooses an element vi(ws, ki) from the
subcodebook Ci(wt)

e Tx generates the channel input seq. based on mappings
P(Xi |Vi)
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Figure: Code construction for IC-CM



Decoding

e Given a typical seq. u, let AE”)(PVhYt‘U) denote the set of
jointly typical seq. v and y; with respect to P (v, y;|u)

e Decodert chooses w; so that

(Ve(wi, ki), yt) € Agn)(PVt,Yt\U)

when such w; exists and is unique; otherwise, an error is
declared



Error probability analysis

¢ Define the following events
Er(wie, ki) = {(vi(wi, k), y1) € A (Py, v, u)}
Ky ={v1(1,1) sent}

e Union bound on the error probability of receiver 1

Pénl) <P {ﬂEf(lakl)Kl} + Z P{E1(wi,ky)|Ky}

kg w17#Lky

<P{EF(L DK} + > P{Ex(wi,ki)[Ki} (1)
w17#Lky



e From joint AEP:
P{ET(1, 1)K} <e 2)
and
P{Es(wz,ki)[Ky} < 27 M(VaYalu)=d @)

o IfRy + R < 1(V1;Y1]U), then Pé”l) < ¢q for sufficiently
large n.



Equivocation calculation
e Need to show following:
nR; — H(W1[Y2) < neg

o H(W1|Y2) > H(W1|Y2,V2,U)



H(W1[Y2)
> H(W]_,V1|V2, U) — H(V1|Y2,V2, U,Wl)
—H(Y2|V2,U) + H(Y2|V1, V2, U)
> H(V1[V2,U) = H(V1|Y2,V2,U,W1) — 1(V1; Y2|V2,U)(4)

e Consider the first term in (4)

H(V1[V2,U) =H(V1|U)
=logM;M; =n(Ry +R;)  (5)

¢ Using joint-typical argument, it can be shown that

H(V1]Y2,V2,U,W1) < nep (6)



e |t can also be shown that
|(V1;Y2|V2,U) < nI(Vl;Y2|V2,U)+ne3 (7)
e From (5) - (7), (4) becomes:

H(W1|Y2) > n(Ry+Rj)—ne; —nl(Vy; Y2|Va,U) — neg
= NR; — Neg, where, €4 = €1 + €2 + €3(8)



Outer bound for IC-CM
Theorem
Let Ro(mc_o) denote the union of all (R, R;) satisfying
R < mln{I(Vl,Y1|U) — |(V1;Y2|U),
1(V1; Y1[V2,U) = 1(V1; Y2[V2,U)}  (9)
Rz < min{l(Vz2; Y2[U) — 1(V2; Y1]U),
|(V2; Yz‘Vl, U) — |(V2; Y1|V1, U)} (10)
over all distributions P(.) in mc_g. For the IC

(X1 x X5, P(y1,Y2]X1,X2), V1 x Vo) with confidential messages,
the capacity region

Cic € Ro(mc-o0)
mic_o IS the class of distributions that factor as:

P(u)P(vy,Vo|u)P(x1|v1)P (X2|V2)P(y1,Y2[X1,X2)



Outer bound for IC-CM

e First outer bound
e Reliable transmission requirement
e Security constraint

e Second outer bound

e Genie gives Rx-1 message W,

e Rx-2 evaluates the equivocation with W, as side information



Switch channel (SC)

1:(t4)

X1D\=’ ‘ %Y1

2: (1-14)

1: (1-12)

D/—'>—éy/{j

e SC can not listen to both transmissions at the same time
e Each Rx has a random switch s; € {1,2}

P(Stj=t)=m, andP(Sy; =t)=1-7n, i=1,...,n



Switch channel

Theorem
For the switch channel with confidential messages, the capacity
region Csc is the union of all (R1, Ry) satisfying

Rl § |(V1;Y1|U) — |(V1;Y2|V2,U)
R2 § |(V2;Y2|U) — |(V2;Y1|V1,U)

over all distributions P(.) in mc_

e When 11 = » = 1, SC-CM reduces to two independent
parallel channels without the secrecy constraints

e When 11 =1 and , = 0, SC-CM reduces to wiretap
channel



Broadcast channel
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Figure: BC with confidential messages



Inner bound

o Consider the class of distributions P (u,v1,V2,X,Y1,Y2)
(denoted as (7gc)) that factor as

P(u)P(vy,Vv2|u)P(x|v1,Vv2)P(y1,Y2|X)

e Theorem: Let Rgc(mgc) denote the union of all (R, R2)
satisfying

Ri,R2 >0
Ry < 1(V1; Y1|U) — [(V1; V2|U) — 1(Vy; Y2 |V, U)
R < 1(V2; Y2|U) — [(V1; V2|U) — 1(Va2: Y1|Vq, U)

over all distributions P(.) in mgc. Any rate pair

(R1,R2) € Rec(mae)

is achievable for the BC with confidential messages.



Proof

e Based on: double-binning scheme which combines
Gel'fand-Pinsker binning and the random binning

e A joint encoder is used to generate two codewords v; and
Vo, one for each messages W; and W»
e Fix P(u),P(v1]u), P(v2|u) and P(x|v1,V») and define
R; = 1(V1; Y2[V2,U) — ¢
R2 = |(V2;Y1|V1, U) — 61
R = 1(V; V2 |U) +¢;
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Figure: Code construction for BC-CM



Codebook generation

e Generate randomly a typical sequence u with probability
P(u) = [[; P(uj) and assume that both the Tx and Rx
know the seq. u

o Generate 2R tR+R" independent seq. v, each with prob.
P(v¢|u) and label them

Vt(Wt,St,kt), Wt € {1,...,Mt},5t € {17 JJt} and
k¢ E{l,...,Gt}

where M; = 2" J, = 2"R{ and G = 2"R



o Ci = {v¢(w,st, ki), forall (wi,st, ki)}: Tx-t codebook
e The codebook C; is partitioned into M; bins, and the w;th
bin is
Ct(Wt) = {Vt(Wt,St, kt), for St € {1, ... ,Jt}.
kt € {177Gt}}

e Each bin C;(w;) is divided into J; sub-bins and the (w;, st)th
sub-bin is:

Ct(Wt,St) = {Vt(Wt,St,kt), for kt € {1, R ,Gt}}



bin 1<

bin M<

vi(1,1,1)

vi(1,1,Gy)

vi(1,,1)

vi(1,J1, Gy

Vt(Mt,1 ,1)

vi(M;,1,Gy)

V‘(Mt,Ji, 1)

Vi(M;,J1,Gy)

e T

sub-bin (1,1)

sub-bin (1,Jy)

sub-bin (M, 1)

sub-bin (M, Jy)



Encoding

e To send message pair (wy,W;) € Wy x W, the Tx
employs a stochastic encoder

e Randomly choose a sub-bin C;(wy, st) from the bin C(w),
fort =1,2

e Select a pair (kg, kz) so that
(Vi(wi,s1,K1), (V2(W2,S2,k2)) € Agn)(Pvl,vz\u)

where AE”)(PVLVZN): set of jointly typical seq. v, and v,
with respect to P(v1, V»|u) given u

e Generate the channel input seq. according to P(x|v1, V2)



Decoding
e Decodert chooses w; so that

(Ve(wy, st, ki), yt) € Agn)(PVt,Yt‘U)

where Agn)(Pvt,mu)i set of jointly typical seq. v; and y;
with respect to P(v¢,y:|u) for a given typical seq. u

e If w; is not unique or no such w; exists, then an error is
declared



e Decoding and encoding error
e Equivocation calculation is similar to IC-CM

e Outer bound expression is same but difference in the input
distribution over which it is optimized



