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Sparse Signal Estimation by Maximally Sparse Convex
Optimization.

Authors: Ivan W. Selesnick and llker Bayram



» Problem Statement:

>
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» To find “non convex” penalties ¢, which induce sparsity more strongly than
¢1 norm regularization such that overall objective function F(.) is convex.

» Main Idea:

» Balance the +ve second derivative of fit error term against -ve second
derivative of penalty terms.

> Select ¢n(x) to be parameterized functions én(x; an), with parameter ap.

» Candidates for ¢n:

1
> logarithm penalty: p log (1 + a|x|)

> arc-tangent penalty: 2 (tan*‘ (1;23\“))
“av3 V3



» How to find a,
> Rewrite F(x) as
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n

where R is a +ve definite diagonal matrix
> For ¢, being logarithmic penalty, the second term is convex if

I'n
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where r, = R(n, n). So, we need to find R which satisfies (1).

> How to find R

> Larger rp synonymous with more non-convex ¢n and therefore more
sparsity inducing.
» R found via optimization problem:
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such that rp > Amin(H'H)and HTH—R > 0



Near Optimal Sensor Placement for Linear Inverse Problems.

Authors: Juri Raniieri and Amina Chebira and Martin Vetterli



Problem Statement:
> Linear inverse problem: Find x fromy = Wx.
» There are N measurements from different sensors, y € RV,
» Which are best L meaurements out of N total meaurements? (MSE wise)

» Combinatorial complexity.
Contributions:
> Fast greedy algorithm to pick best L measurements.
> Near optimality of greedy algorithm shown. (optimization in terms of MSE)

Main Idea: Use Frame potential(FP) used as cost function.
What is frame potential

» ForGc (1,2...N)and |G| = L, FP(Vg) = 3, icg | < ¥ty > 2

where ; and v; are rows of submatrix V.

> FP is a measure of orthogonality of rows. (Lower FP =- tighter frame).
Why frame potential?

» MSE based cost functions suffer from local minimas.

> |t is shown that FP(\UG) — FPUNTF |mpI|es MSE(\UG) — MSEUNTF-
> FP is easy to compute.
>

FP is shown to be submodular in G and greedy algorithms are known to
be optimal in optimization of submodular functions.
FrameSense - a greedy algorithm to pick best L out of N measurements
> In each iteration, remove the row that maximizes
FP(Ws) = FP(V) — FP(Wp 5)-
» S = set of unwanted rows/measurements and N = (1,2,...N)



Distributed Sparse Recursive Least-Squares Over Networks.

Authors: Zhaoting Liu, Ying Liu and Chunguang Li



» Problem Statement:

> Distributed online learning of sparse vector
> Measurement model at time instant /.

On,i = Up W +1p

» w e RMis sparse, dy,i is measurement taken at node nn, ; ~ N(0, o2).
» Contributions: Distributed RLS algorithm for learning w.

» Main ideas:
» Each node n minimizes local cost function

Yo =argmax » > u'~/logp(dy,;/w) — vJ(w) (2)

W IeN, j=1

> J(w) is sparsity inducing penalty term.
» Local cost function (2) simplifies to:

i — U w)TA(d; — Uy w)
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+ vd(w)

where d;; = (dy1,...dy ;) and U, ; = col(upy,...u, ;) and
A = diag(pj—1, pi—2... 1)

> As iincreases, dimensions of d; ;,U; ;, A; increase. So RLS type algorithm
is needed!



Main ideas (contd):
Combined measurement model for i time instances at node n:

dn,i = Un,iw + ﬁn,i

Trick: Decompose noise vector &, ; into two parts:
%
En,i = OénUn,ilJ‘n,i + /\,' Vn,i

1 1
where vy, j ~ N(0,021 — a2AZUp U AZ) and s = N(O, D).

n,i' i
Using (3) and (4), we can write

2 =W+ anflp
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Using (5) and (6), we can now formulate EM algorithm !
E-step:

Q(W,Wp;_1) = Ez[log p(d; ;,2; ;/W)|d,j, Wn i_1].

modified M-step:

arg max > QW Wy i—q) — yJ(W).
1ENp



Decentralized Dynamic Optimization Through the Alternating
Direction Method of Multipliers

Authors: Qing Ling and Alejandro Ribeiro



> Problem Statement:

» Dynamic optimization problem with separable cost function @ time instant

k:
L

mn 314
=

where x € RP.
» Can be formulated as a decentralized consensus optimization problem,
given by

min ‘" Z (x;) such that x; = x;Vi,j € (1,2...L)

> Need a decentralized algorithm whose iterations consider same time scale
as the evolution of the functions ££(.).

> Main Results:
» Decentralized ADMM suggested for above problem (run single ADMM
iteration in each time instant).
> In steady state, bounds on tracking error provided.
> Steady state tracking error and decay of primal gap before reaching steady
state depends on:
1. Condition number of underlying graph
2. Condition number of objective function of primal problem
3. m;(axHx;: —X;_4ll2
4

. ml:axHka(x;) = Vi1 (X _ll2



Interesting papers...

> (4 Sparsity penalized Linear Regression With Cyclic Descent

» Estimation for Linear Model With Uncertain Covariance Matrices

» On Kronecker and Linearly Structured Covariance Matrix Estimation

> Detection of Spatially Correlated Time Series From a Network of Sensor Arrays

» A Factor Graph Approach to Joint OFDM Channel Estimation and Decoding in
Impulsive Noise Environments

» Joint Power and Antenna Selection Optimization in Large Cloud Radio Access
Networks
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