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Sparse Signal Estimation by Maximally Sparse Convex
Optimization.
Authors: Ivan W. Selesnick and Ilker Bayram



I Problem Statement:
I

arg min
x∈Rn

{F (x) =
1
2
||y− Hx||22 +

N−1∑
n=0

λnφn(xn)}

I To find “non convex” penalties φn which induce sparsity more strongly than
`1 norm regularization such that overall objective function F (.) is convex.

I Main Idea:
I Balance the +ve second derivative of fit error term against -ve second

derivative of penalty terms.
I Select φn(x) to be parameterized functions φn(x ; an), with parameter an.
I Candidates for φn:

I logarithm penalty:
1
a

log (1 + a|x |)

I arc-tangent penalty:
2

a
√
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I How to find an
I Rewrite F (x) as

F (x) =

(
1
2

xT (HT H− R)x− yT Hx +
1
2

yT y
)

+

(
1
2

xT Rx +
∑

n
λnφn(xn; n)

)

where R is a +ve definite diagonal matrix
I For φn being logarithmic penalty, the second term is convex if

0 < an <
rn

λn
(1)

where rn = R(n, n). So, we need to find R which satisfies (1).

I How to find R
I Larger rn synonymous with more non-convex φn and therefore more

sparsity inducing.
I R found via optimization problem:

arg max
r1,r2...rn

N−1∑
n=0

rn

such that rn ≥ λmin(HT H) and HT H− R ≥ 0



Near Optimal Sensor Placement for Linear Inverse Problems.

Authors: Juri Raniieri and Amina Chebira and Martin Vetterli



I Problem Statement:
I Linear inverse problem: Find x from y = Ψx.
I There are N measurements from different sensors, y ∈ RN .
I Which are best L meaurements out of N total meaurements? (MSE wise)
I Combinatorial complexity.

I Contributions:
I Fast greedy algorithm to pick best L measurements.
I Near optimality of greedy algorithm shown. (optimization in terms of MSE)

I Main Idea: Use Frame potential(FP) used as cost function.
I What is frame potential

I For G ⊂ (1, 2 . . .N) and |G| = L, FP(ΨG) =
∑

i,j∈G | < ψi , ψj > |2
where ψi and ψj are rows of submatrix ΨG.

I FP is a measure of orthogonality of rows. (Lower FP⇒ tighter frame).
I Why frame potential?

I MSE based cost functions suffer from local minimas.
I It is shown that FP(ΨG)→ FPUNTF implies MSE(ΨG)→ MSEUNTF .
I FP is easy to compute.
I FP is shown to be submodular in G and greedy algorithms are known to

be optimal in optimization of submodular functions.
I FrameSense - a greedy algorithm to pick best L out of N measurements

I In each iteration, remove the row that maximizes
FP(ΨS) = FP(Ψ)− FP(ΨN\S).

I S = set of unwanted rows/measurements and N = (1, 2, . . .N)



Distributed Sparse Recursive Least-Squares Over Networks.

Authors: Zhaoting Liu, Ying Liu and Chunguang Li



I Problem Statement:
I Distributed online learning of sparse vector
I Measurement model at time instant i .

dn,i = un,i w + ηn,i

I w ∈ RM is sparse, dn,i is measurement taken at node n ηn,i ∼ N (0, σ2
n).

I Contributions: Distributed RLS algorithm for learning w.

I Main ideas:
I Each node n minimizes local cost function

ψn,i = arg max
w

∑
l∈Nn

i∑
j=1

µi−j log p(dl,i/w)− γJ(w) (2)

I J(w) is sparsity inducing penalty term.
I Local cost function (2) simplifies to:

ψn,i = arg min
w

∑
l∈Nn

(dl,i − Ul,i w)T Λi (dl,i − Ul,i w)

2σ2
l

+ γJ(w)

where dl,i = (dn,1, . . . dn,i ) and Ul,i = col(un,1, . . .un,i ) and
Λi = diag(µi−1, µi−2 . . . 1)

I As i increases, dimensions of dl,i ,Ul,i ,Λi increase. So RLS type algorithm
is needed!



I Main ideas (contd):
I Combined measurement model for i time instances at node n:

dn,i = Un,i w + ξn,i (3)

I Trick: Decompose noise vector ξn,i into two parts:

ξn,i = αnUn,iµn,i + Λ
1
2
i νn,i (4)

where νn,i ∼ N (0, σ2
n I− α2

nΛ
1
2
i Un,i UT

n,i Λ
1
2
i ) and µn,i = N (0, I).

I Using (3) and (4), we can write

zn,i = w + αnµn,i (5)

dn,i = Un,i zn,i + Λ
1
2
i νn,i (6)

I Using (5) and (6), we can now formulate EM algorithm !
I E-step:

Q(w, ŵn,i−1) = Ez [log p(dl,i , zl,i/w)|dl,i , ŵn,i−1].

I modified M-step:
arg max

w

∑
l∈Nn

Ql (w, ŵn,i−1)− γJ(w).



Decentralized Dynamic Optimization Through the Alternating
Direction Method of Multipliers

Authors: Qing Ling and Alejandro Ribeiro



I Problem Statement:
I Dynamic optimization problem with separable cost function @ time instant

k :

min
x

L∑
i=1

f k
i (x)

where x ∈ Rp .
I Can be formulated as a decentralized consensus optimization problem,

given by

min
x1,x2...xL

n∑
i=1

f k
i (xi ) such that xi = xj∀i, j ∈ (1, 2 . . . L)

I Need a decentralized algorithm whose iterations consider same time scale
as the evolution of the functions f k

i (.).
I Main Results:

I Decentralized ADMM suggested for above problem (run single ADMM
iteration in each time instant).

I In steady state, bounds on tracking error provided.
I Steady state tracking error and decay of primal gap before reaching steady

state depends on:
1. Condition number of underlying graph
2. Condition number of objective function of primal problem
3. max

k
||x∗k − x∗k−1||2

4. max
k
||∇fk (x∗k )−∇fk−1(x∗k−1)||2



Interesting papers...

I `q Sparsity penalized Linear Regression With Cyclic Descent

I Estimation for Linear Model With Uncertain Covariance Matrices

I On Kronecker and Linearly Structured Covariance Matrix Estimation

I Detection of Spatially Correlated Time Series From a Network of Sensor Arrays

I A Factor Graph Approach to Joint OFDM Channel Estimation and Decoding in
Impulsive Noise Environments

I Joint Power and Antenna Selection Optimization in Large Cloud Radio Access
Networks



Thank You !!!


