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An Empirical Bayes Approach to Recovering
Linearly Constrained Non-Negative Sparse Signals

> Problem Statement:

> Non-Negative linearly constrained sparse signal recovery: Recover sparse
x from y, where
y=Ax+w

and, x; > 0, and x statisfies Bx = ¢
» Conventional approach: ¢4 penalized constrained NN least squares
problem:

o 1
% = arg min ||y — Ax|3 + X[[x||; st Bx=c
x=0 2
»> Main results:
» Proposes three variants of Generalized Approximate Message Passing

Algorithms (GAMP) based algorithms
» Augmented measurement model

[vic] = [A; B]x + [w; 0]

fix(¥mlx) = N(ALX0B) m=1...M
5(ym—BIX) m=M+1..M+P



An Empirical Bayes Approach to Recovering
Linearly Constrained Non-Negative Sparse Signals

» Main results: (contd..)

1. NN Least Squares GAMP
Improper non negative prior: &(x) =1,x >0, 0o.w.
Equivalent unconstrained optimization:

N
1
arg min S|y — AX|[3 — loglax-c — Y. 10g L, >0
X n=1

2. NN LASSO GAMP
Non negative prior: fx(x) = vexp(—~vx),x >0, 0o.w.
Equivalent constrained optimization:
arg>n(1)in 25 Iy — Ax|Z +~]IX||s st Bx=c
X=
3. NN Gaussian Mixture GAMP
L
Non negative prior: f(X) = (1 — 7)(x) + 7 > _ WN(X;0;,¢1), 0o.w.
=1
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A Measurement Rate-MSE Tradeoff for
Compressive Sensing Through Partial Support
Recovery

> Problem Statement:
> Find relation between MSE and measurement rate for k—sparse signal
recovery problem

- Mmp
> Measurement rate r = lim inf ——
n—oo logn

> Asymptotic setting: n, m — oo, but k is kept fixed
» Partial support recovery: (v support set Sy)

2 2
Do x> AlxI3 M
i€Sy
> Main results:
1. Partial support set recovery: For given noise variance, ~ and the non-zero

coefficients w € R¥, an expression for measurement rate r is found, such
that Perr(support recovery) < o(1/m)

2. MSE: Given some T C S, it is possible to acheive
1
MSE(T) = |[x7c|5 + O(E)

3. Measurement Rate vs MSE tradeoff: Staircase like acheivable region
found (has staircase like shape)




A Variational Bayes Framework for Sparse Adaptive Estimation.

Authors: Konstantinos E Themelis, Athanasios A. Rontogiannis and Konstantinos D.
Koutroumbas

Affiliations: Inistitute of Astronomy, National Observatory of Athens



A Variational Bayes Framework for Sparse
Adaptive Estimation

> Problem Statement:
> Estimate and track w(n) € RN in time by observing a stream of sequential
data y(n)
y(n) = xT (mw(n) + ¢(n)
where, x(n) is a known N x 1 regression vectors
> w(n) is known to be sparse
» Seeking Bayesian motivated recursive least squares type solution
Main results:
Impose prior on w(n) ~ N (0, 3~TA) where A = diag(aq, @z . . . an)
Generalized Inverse Gaussian prior assumed on «;
Mean field variational Bayesian inference used to obtain update equations for
w7 a7 B
For batch processing, derives update equation when effective prior on w(n) is
taken to be Student-t and Laplacian
» For recursive processing, at each iteration n, a regularized LS cost function
TLs—pr(N) is minimized

vyvyyy

v

75— A(n) = 142 (n) (y(n) — X(n)W(n)) |3 + W (n)A(n — 1)i(n)

> Nice trick to obtain iterative scheme for weight update...(discuss)
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Convex Optimization Approaches for Blind Sensor
Calibration Using Sparsity

» Problem Statement:

vie €C died?
£=1,...,L 0; € [0,27), d; € R+

» Measurement model at sensor /

yig=de%mlx, i=1...M, d >0, ¢; €[0,2r)
> Three scenarios considered

1. Amplitude calibration
2. Phase calibration

3. Complete calibration



Convex Optimization Approaches for Blind Sensor
Calibration Using Sparsity

> Amplitude calibration
> Rearrange gain terms to rewrite meas model as:

; T
Yimh=m; X

> Assume Z,M i = 1 to remove gain ambiguity between signal and
distortion term
> Phase calibration
> Note that gj k1 = yi k) = m!x,xHm,;

» Try to recover joint matrix X = xx", where x = (x4 ... x!")
> A convex optimization problem is formulated to find X

H

arg min |2
z
subjectto Z > 0
ikt = YikYir = m]xex/'m;
» Recover x from X (nice trick here!)

» Complete calibration
» A combination of above two approaches
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> Hierarchical Interference Mitigation for Massive MIMO Cellular Networks

> Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility



