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Super-Resolution Compressed Sensing for Line
Spectral Est.: An Iterative Reweighted Approach
Authors: Jun Fang, Feiyu Wang, Yanning Shen, Hongbin Li, and Rick S. Blum

I Line spectral estimation problem in compressive sensing framework.
I Generative model for signals with line spectrum:

ym =
K∑

k=1

αk e−jωk m + em m = 1, . . . ,M

where ωk ∈ [0, 2π] and αk is complex amplitude.
I Vectorized form:

y = A(ω)α+ e

where A(ω) , [a(ω1)a(ω2) . . . a(ωK )]), a matrix with steering vectors as
columns.

I How to handle the case when the frequencies ωi belong to a continuous set.

I Typical solution: Discretize the search space using a finite sized grid and
construct a finite sized dictionary.

I Erroneous estimates of present frequencies due to grid mismatch
I Question

How to estimate continuous frequencies accurately while still using a finite sized
dictionary ?



Super-Resolution Compressed Sensing for Line
Spectral Est.: An Iterative Reweighted Approach

I Proposed solution: Joint estimation of dictionary and sparse coefficient vector α.

min
z,θ

G(z, θ) =
N∑

n=1

log
(
|zn|2 + ε

)
+ λ ||y− A(θ)z||22

I Majorization-minimization approach used to minimize G(z, θ).
I Log-sum penalty replaced by its convex upper bound obtained by its Taylor’s

expansion around previous iterate.
I In each iteration, for fixed θ, z is updated as a solution to a weighted least

squares problem.
I Dictionary parameters θ are updated by moving along the gradient descent

direction.
I Cost G(x, θ) is shown to reduce with each iteration.
I Connection between SBL and Iter. Reweight. approach is exploited to update λ

as a function of noise variance estimate in each iteration.
I As ε→ 0, algorithm is shown to converge to the correct frequencies.



Efficient Algorithms on Robust Low Rank Matrix
Completion Against Outliers Authors: Licheng Zhao, Prabhu Babu

and Daniel P. Palomer

I Robust Matrix completion in presence of outliers.
I Data model:

M̃ = Ω ◦ (M + N)

where N is the noise matrix and Ω is the sparse binary sampling matrix.
I M is the low rank matrix to be estimated.

I N models two kinds of outliers:
1. Dense outliers from certain elliptical distributions.
2. Sparse spike like outliers with small additive Gaussian noise.

I Low rankness of M is promoted by imposing a bilinear factorization form.

M︸︷︷︸
m×n

= XT︸︷︷︸
m×r

Y︸︷︷︸
r×n

where r < min(m, n)

I Matrix Factorization Formulation:

min
X,Y

J(X,Y) ,
m∑

i=1

n∑
j=1

Ωi,j f
(

M̃i,j − xT
i yj

)
+ γ

(
||X||2F + ||Y||2F

)



Efficient Algorithms on Robust Low Rank Matrix
Completion Against Outliers

I Matrix Factorization Formulation:

min
X,Y

J(X,Y) ,
m∑

i=1

n∑
j=1

Ωi,j f
(

M̃i,j − xT
i yj

)
+ γ

(
||X||2F + ||Y||2F

)
I For dense outliers from certain elliptical distributions.

f (x) = log
(

1 +
x2

ν

)
ν > 0

I For sparse spike like outliers with small additive Gaussian noise.

f (x) =
1
β

log
(

eβx + e−βx

2

)
β > 0

I Parallel minimization algorithm is proposed.
I Do a second order convex approximation of J(X,Y).
I Compute gradient descent direction which reduces the convex

approximation.
I Execute optimal stepsize based update of X and Y such that J(X,Y)

decreases in every iteration.



Robust Hypothesis Testing with α-Divergence
Authors: Gokhan Gul and Abdelhak M. Zoubir (TU Darmstadt, Germany).

I Robust Hypothesis Testing problem is considered in which probability distribution
F0 and F1 of observations under H0 and H1 hypothesis is partially known.

I Due to imprecise knowledge of F0,F1, one possible approach is to extend the
model by accepting a set of distributions Gj under hypothesis Hj , where

Gj =
{

G : Dα(G,Fj ) ≤ εj
}

j ∈ {0, 1} .

I Distance metric Dα is chosen to be α-divergence.
I Tradeoff between robustness and detection performance via choice of ε0 and ε1.
I Modified binary (composite) hypothesis testing problem:

H0 : G ∈ G0

H1 : G ∈ G1

I Given observations y ∈ Ω, a detector output is given by δ : Ω→ [0, 1].

PFA(δ,F0) =

∫
Ω
δ(y)F0(y)dy

PMD(δ,F1) =

∫
Ω

(1− δ(y))F1(y)dy

PE (δ,F0,F1) = P(H0)PFA + P(H0)PMD



Robust Hypothesis Testing with α-Divergence

I Saddle Point Specification (Game Theoretic Approach)
I By Sion’s minimax theorem

sup
(G0,G1)∈G0×G1

min
δ

PE (δ,G0,G1) = min
δ

sup
(G0,G1)∈G0×G1

PE (δ,G0,G1)

I Based on Sion’s minimax theorem, there exists a saddle value for the objective
PE , i.e.,

PE (δ, Ĝ0, Ĝ1) ≥ PE (δ̂, Ĝ0, Ĝ1) ≥ PE (δ̂,G0,G1)

I (δ̂, Ĝ0, Ĝ1) are found by solving below constrained optimizations simultaneously.

Ĝ0 = arg sup
G0∈G0

PFA(δ,G0)

Ĝ0 = arg sup
G0∈G0

PFA(δ,G0)

δ̂ = arg min
δ

PE (δ, Ĝ0, Ĝ1)

I Optimal closed form expressions derived via KKT for (δ̂, Ĝ0, Ĝ1).



Joint Independent Subspace Analysis Using
Second-Order Statistics Authors: Dana Lahat and Christian Jutten

(GIPSA-Lab, Gernoble, France)
I Joint Independent Subspace Analysis:

I Consider T observations of K vectors x[k ](t), modeled as

x[k ](t) = A[k ]s[k ](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K .

I Each s[k ](t) can be partitioned into N blocks of known sizes. s[k ]
i (t) denotes the

i th block/partition.
I The blocks s[k ]

i (t) and s[k ]
j (t) are statistically independent for i 6= j .

I The blocks s[k ]
i (t) and s[l]

i (t) are statistically dependent (modelled by same
covariance matrix).



Joint Independent Subspace Analysis Using
Second-Order Statistics

I By stacking all data sets as one vector, we get

x(t) = Ax(t)

I An interesting viewpoint obtained by rearranging terms.

where N is the number of blocks/partitions of s[k ](t), and

Ai ,
[
A[1]

i |A
[2]
i | . . . |A

[K ]
i

]
, and xi ,

[
x[1]

i
T |x[2]

i
T | . . . |x[K ]

i
T
]T

.



Other Interesting Papers:

I An Iterative Reweighted Method for Tucker Decomposition of Incomplete
Sensors.

I Steady-State Statistical Performance Analysis of Subspace Tracking Methods.

I An Opportunistic Sensor Scheduling Solution to Remote State Estimation Over
Multiple Channels.

I Closed Form and Near Closed Form Solutions for TOA based Joint Source and
and Sensor Localization.


