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Super-Resolution Compressed Sensing for Line
Spectral Est.: An Iterative Reweighted Approach

Authors: Jun Fang, Feiyu Wang, Yanning Shen, Hongbin Li, and Rick S. Blum

> Line spectral estimation problem in compressive sensing framework.
> Generative model for signals with line spectrum:
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where wy € [0, 2x] and oy is complex amplitude.
» Vectorized form:
y=Aw)a+e
where A(w) £ [a(wy)a(wz) . .. a(wk)]), @ matrix with steering vectors as
columns.
» How to handle the case when the frequencies w; belong to a continuous set.

» Typical solution: Discretize the search space using a finite sized grid and
construct a finite sized dictionary.

» Erroneous estimates of present frequencies due to grid mismatch

> Question
How to estimate continuous frequencies accurately while still using a finite sized
dictionary ?



Super-Resolution Compressed Sensing for Line
Spectral Est.: An Iterative Reweighted Approach

» Proposed solution: Joint estimation of dictionary and sparse coefficient vector a.
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> Majorization-minimization approach used to minimize G(z, 9).

» Log-sum penalty replaced by its convex upper bound obtained by its Taylor’'s
expansion around previous iterate.

> In each iteration, for fixed 0, z is updated as a solution to a weighted least
squares problem.

> Dictionary parameters 6 are updated by moving along the gradient descent
direction.

> Cost G(x, 6) is shown to reduce with each iteration.

» Connection between SBL and lter. Reweight. approach is exploited to update A
as a function of noise variance estimate in each iteration.

» As e — 0, algorithm is shown to converge to the correct frequencies.



Efficient Algorithms on Robust Low Rank Matrix
Completion Against Outliers authors: Licheng zhao, Prabhu Babu

and Daniel P. Palomer

» Robust Matrix completion in presence of outliers.
> Data model: .
M=CQo(M+N)
where N is the noise matrix and Q is the sparse binary sampling matrix.
> M is the low rank matrix to be estimated.

»> N models two kinds of outliers:
1. Dense outliers from certain elliptical distributions.
2. Sparse spike like outliers with small additive Gaussian noise.

> Low rankness of M is promoted by imposing a bilinear factorization form.
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where r < min(m, n)

» Matrix Factorization Formulation:
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Efficient Algorithms on Robust Low Rank Matrix
Completion Against Outliers
» Matrix Factorization Formulation:
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> For dense outliers from certain elliptical distributions.
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> For sparse spike like outliers with small additive Gaussian noise.
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> Parallel minimization algorithm is proposed.
» Do a second order convex approximation of J(X,Y).
» Compute gradient descent direction which reduces the convex
approximation.
» Execute optimal stepsize based update of X and Y such that J(X,Y)

decreases in every iteration.



Robust Hypothesis Testing with o-Divergence

Authors: Gokhan Gul and Abdelhak M. Zoubir (TU Darmstadt, Germany).
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Robust Hypothesis Testing problem is considered in which probability distribution
Fo and Fy of observations under #, and #1 hypothesis is partially known.

Due to imprecise knowledge of Fy, F;, one possible approach is to extend the
model by accepting a set of distributions G; under hypothesis #;, where

gj:{G:Da(G,Fj)SEj} j€{071}'

Distance metric D, is chosen to be a-divergence.
Tradeoff between robustness and detection performance via choice of ¢y and €.
Modified binary (composite) hypothesis testing problem:

Ho : Ge Gy
Hi: Ge gy

Given observations y € Q, a detector output is given by § : Q — [0, 1].
P Fo) = [ sFoy)ay

Pup(s,F1) = /Q (1= 6(y))Fi (y)dy
Pe(0, Fo, F1) = P(Ho)Pra + P(Ho)Pup



Robust Hypothesis Testing with a-Divergence

» Saddle Point Specification (Game Theoretic Approach)
> By Sion’s minimax theorem

sup min Pg(d, Gp, G1) = min sup Pe(6, Go, Gy)
(Go,G1)EGox Gy 9 5 (Gp,G1)€Go X Gy

> Based on Sion’s minimax theorem, there exists a saddle value for the objective
PE, i.e., R R o R R
Pe(8, Go, Gi) > Pe(9, Go, Gt) > Pe(9, Go, G1)

> (5, éo, é1) are found by solving below constrained optimizations simultaneously.

Go = arg sup Pa(8, Go)
Go€eGo

Go = arg sup Pra(é, Go)
Go€Go

§ = arg min Pg(6, Go, Gy)
5

» Optimal closed form expressions derived via KKT for (3, G07 é1 ).



Joint Independent Subspace Analysis Using
Second-Order StatisticS authors: Dana Lahat and Christian Jutten

(GIPSA-Lab, Gernoble, France)
» Joint Independent Subspace Analysis:
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» Consider T observations of K vectors x¥I(t), modeled as
xK(t) = AIsiK (1) 1<t<T, 1<k<K.

» Each sl¥l(t) can be partitioned into N blocks of known sizes. sEk](t) denotes the
" block/partition.
» The blocks s,[-k](t) and s][.k](t) are statistically independent for i # j.

> The blocks s,[.k](t) and sy](t) are statistically dependent (modelled by same
covariance matrix).



Joint Independent Subspace Analysis Using
Second-Order Statistics

» By stacking all data sets as one vector, we get
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» An interesting viewpoint obtained by rearranging terms.
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where N is the number of blocks/partitions of sl(t), and
A= [AAR A and x 2 [T |x[K1T] :



Other Interesting Papers:

» An lterative Reweighted Method for Tucker Decomposition of Incomplete
Sensors.

> Steady-State Statistical Performance Analysis of Subspace Tracking Methods.

> An Opportunistic Sensor Scheduling Solution to Remote State Estimation Over
Multiple Channels.

» Closed Form and Near Closed Form Solutions for TOA based Joint Source and
and Sensor Localization.



