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Sparse Signal Recovery Using Iterative Proximal
Projection
» Sparse signal recovery problem:
m)i(n J(x) s.t|ly—Ax|,<e

J is non-smooth sparsity promoting function, e.g., £p-norm,
£1-norm.

» Existing liteature has focussed on J being convex.
» This work focusses on J being nonconvex & non-smooth.
» Approach: use proximal algorithms.
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Existing liteature has focussed on J being convex.

This work focusses on J being nonconvex & non-smooth.
Approach: use proximal algorithms.

Proximal mapping of function g is defined as

v

v

v

. 1
proxg(x) = arg min { [1x — ull3 + g(u)}
uedom(g) 2
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Examples:
» g(x) = A||x||o, proxy is the hard thresholding operator
» g(x) = \||x||1, proxg is the soft thresholding operator



Sparse Signal Recovery Using lterative Proximal
Projection
» Splitting methods
)r(ryﬂgnf(x) + g(x)

f is smooth, convex/nonconvex and g is non-smooth,
nonconvex

» Forward-Backward Splitting
Xk+1 = ProX,,.g (xk - ,LLka(XK))
» Backward-Backward Splitting

Xk41 = Proxg (prox,, (X))



Sparse Signal Recovery Using Iterative Proximal
Projection
» Splitting methods
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f is smooth, convex/nonconvex and g is non-smooth,
nonconvex
» Forward-Backward Splitting
Xk1 = ProXu,g (Xx — pcVFH(Xk))
» Backward-Backward Splitting

Xk41 = Proxg (prox,, (X))

» Accelerations

A

Xk = Xk + W(Xk — Xg_1)
Xkr1 = ProXug (Xx — pkVFI(Xk))



Learning Convex Regularizers for Optimal
Bayesian Denoising
Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser
» Recover stochastic x from its noisy observations
y=Xx+n
» nis AWGN of variance o2.
» MAP inference is the way to solve this

» Revisit MAP from perspective of estimation accuracy
instead of deviation from prior model
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» Recover stochastic x from its noisy observations
y=x+n

» nis AWGN of variance o2.

» MAP inference is the way to solve this

» Revisit MAP from perspective of estimation accuracy
instead of deviation from prior model

» Typical MAP formulation:

N
Xviap = argmin {;Hy —x|5+0%> <1>U([Lx],-)} ,
x i=1
» L = Whitening filter
» &y = —log py is called the penalty function
» The penalty function is designed such that it captures the
statistics of collection of clean signals.



Learning Convex Regularizers for Optimal
Bayesian Denoising

Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser

» Recover stochastic x from its noisy observations

y=x+n

» ADMM based denoising solution is proposed.
» Remarks:

Assumed that x can be whitened by some matrix L.
u = Lx has i.i.d. entries.

Penalty function ¢ is separable.

ADMM formulation of MAP:

vV vy VvVYyy

1
51y = x[3 + o?0u(u) — (e, Lx — u) + 5 |1Lx — ul}



Learning Convex Regularizers for Optimal
Bayesian Denoising

Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser
» ADMM formulation of MAP:
1 2 2 H 2
51Y = XI5+ Pou(u) — (o Lx - u) + 5[ Lx - ul}

» Update for u looks like:

u(k+1) — prOXUQ/“ch <Lx(k+1) _ ;a(k-ﬂ)) .

» Update for u is typically a pointwise shrinkage operation.
» Shrinkage operator depends on the choice of penalty ¢.
» Key Idea: Learn optimal shrinkage directly from the data.



Learning Convex Regularizers for Optimal
Bayesian Denoising
Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser

» Learning the shrinkage function from data:
» Parameterized model for shrinkage function 7: R — R.

M
X
T(x)= > cmt (Z - m) :
m=—M
» Given a collection of ground-truth signals {x,},L:1, the

parameters of shrinkage function can be learned by
minimizing:

1o 2
J(e) =53 [xMe.y) - x| -
£=1

» Shrinkage operator learned at one noise level works for all
noise levels!



A Geometric Approach to Covariance Matrix
Estimation and Applications to Radar Problems

Authors: Augusto Aubrey, Antonio De Maio and Luca Pallotta

» Given data vectors rq, 12k, estimate the underlying true
covariance matrix subject to certain constraints.
» Step-1: First compute the sample covariance matrix
S=4xiinr.
» Step-2: Project Sinto a specific set in some matrix norm
sense (unitary invariant).

» The constraints encompasses p.d. matrices which can be
modeled as sum of an unknown psd matrix(interference +
clutter) and a term proportional to Identity matrix (white
noise).
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» Proposed covariance matrix estimation flow
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