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OVERVIEW OF THE JOURNAL

@ 49 papers in 6 categories, about 190 pages long.

@ The field Wireless Comm has major number of papers: 32

(probably the reason for a dedicated publication of WC
Letters!)

@ A number of interesting papers. Can carry over to one more
journal watch.

o We see 4 specific papers from the interesting pool of papers
from the issue.



DISTRIBUTION OF DIAGONAL ELEMENTS
OF
A GENERAL CENTRAL COMPLEX WISHART
MATRIX

Natalia Y. Ermolova & Olav Tirkkonen

Dept. of Comm. and Networking,
Aalto University, Finland
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BACKGROUND - RANDOM VECTORS

@ A complex Gaussian Random vector.

@ Simplest case: Circular symmetry — i.e. X ~ X.e/® in C"

o Complete characterization: “Covariance matrix E[XX*]"
[ = 0, a conseq. of circular symmetry]

@ In general.. a 2n-dimensional Real Gaussian.
o No further obvious insights.
o Non-trivial to see it natively as a simple function of X only
(without Re(.) and Im(.) functions).
@ It is shown that it needs three arguments to characterize it
completely [Picinbono’1996].
o The mean vector (1)

o The covariance matrix or correlation matrix (K £ E[XX*])
o The pseudo-covar. matrix or relation matrix (C = E[XXT])

@ In case of circular Gaussians, C =0 and p = 0.



BACKGROUND-RANDOM MATRICES

e Random Matrices with Gaussian elements
(correlated or uncorrelated elements).

@ Columns are mutually independent.

e Each column is Complex Gaussian (correlated elements within)

Simplification: “Circularly Gaussian”.

(]

Reduces a lot of complexity.

(]

Wide literature on this assumption.
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(]

Wishart Matrix — a function on matrices:
If X € C"™" then Z £ X X! is the Wishart matrix of X.

Diagonal elements of Z are:

Zii = ||i*" Row of X||?
= > IX?
j=1

Simple of case of circular symmetry implies, Z; ~ c. X%n'

The vector of diagonal elements w = [Z;]7_, is
characterizable.

Importance: Characterize effective SNR in MIMO, under
various Tx policies.

Lot of works devoted to such analysis on diagonals of Wishart
matrices.



@ Practical random matrices are seen to contain non-circularly
symmetric elements.

@ An active area of research. Many new distributions and
models are being proposed in this direction.

@ This paper:

Non-circularly symmetric elements for Random matrix X.

Characterizing diag(Z) completely.

Derived: PDF,CDF and MGF.

Complex enough expressions with lot of special functions &

multi-level summations, products.



A NEwW POWER ALLOCATION METHOD

FOR
PARALLEL AWGN CHANNELS
IN THE
FINITE BLOCK LENGTH REGIME

Jung-Hyun Park and Dong-Jo Park

Dept. of Electrical Engg.
Korea Advanced Institute of Science Technology (KAIST),
Korea.



MAIN ARGUMENTS

Achieving Capacity of Parallel Gaussian Channels:
Waterfilling.

(]

Capacity maximization (vs) Achievable-rate maximization

(]

The block length constraint

Series of papers by Polyanskiy on achievable rates for finite
blocklengths.



THE CONTRIBUTIONS

o Maximization of latest lower bounds on achievable rate of a
Gaussian channel with finite block length.

o For a given power allocation p the achievable rate is
[Polyanski etal],

R(p) = —V/V(p) Q Ollog, n)

n

where, C(p) Waterfllllng capacity,
( is the desired codeword error prob,

n is block length.

@ A non-convex optimization formulation using a lowerbound of

R(p)
o A new modified waterfilling power-allocation scheme.



OPTIMALITY OF HOMOGENEOUS SENSING
RANGE ASSIGNMENT IN LARGE-SCALE
WIRELESS SENSOR NETWORK DEPLOYMENTS

Dogu Arifler

Dept of Computer Engg.,
Eastern Mediterranean University,
Cyprus.

October 14, 2012



THE PROBLEM

Sensor deployment scenario

(]

Coverage problem with total power constraint

(]

Optimal coverage subject to an overall power constraint in the
network.

@ Does diversity in sensing ranges of sensor nodes help??



@ The deployment(location of sensors) follows a Poisson point
process.

@ From stochastic geometry results for the popular boolean
model, the fraction of area not covered by any sensor is given

by: exp (—a>_;_; Npiwr?)
@ Two optimization problems are formed:

1) Minimizing uncovered area under power constraint,
minimize  exp (—a Z p,-7rr,-2)
subject to ip; =1,
OZZ’Pir,-" <pB
ri > 0,p; > 0 for i,: 1,...,N.



2) Power minimization under coverage area constraint,
minimize « g iri!
Pif;
i

subject to Z pi=1,

1

exp (—az p,-7rr,-2> <40
i

ri>0,pp>0fori=1,..,N.

@ From KKT conditions, optimality is achieved when each
r;i = r for both the problems.



RESULTS

o If all sensors deployed have the same sensing range then
o The uncovered area is minimized for a power constraint
e The overall power is minimized for a coverage constraint
o Optimum sensing range depends on the density of deployment
« as well as the parameters 5,7 and 0



SUB-MODULARITY AND ANTENNA SELECTION
IN MIMO SYSTEMS

Rahul Vaze! and Harish Ganapathy?

1 School of Technology and Computer Science,
TIFR, Mumbai

2 Dept of ECE,
University of Texas, Austin.



SUB-MODULARITY

DEFINITION: [NEMHAUSER ETAL., 1958]

Let N be a set and f a real-valued function defined on the set of
sub-sets of N. Then f is called sub-modular if:

f(S)+f(T)>f(SUT)+f(SNT), VS, TCN
or, equivalently:

f(Su{a}) —f(S) > f(Tu{a}) - f(T),
VSCTCN, Yae N

@ Sub-modular functions are studied a while ago.

@ Such functions can be optimized (sub-optimally) by simple
iterative Greedy algorithms with theoretical guarantees. Hence
are of interest.



RECEIVE ANTENNA SELECTION PROBLEM:

maximize

RuC{1,2, N} [Re| =1 C(RU

where,

P
C(RL) £ log det <I 4 NHRLH,?{,L>
t

@ Select an optimum subset of antennas R; C {1,2,..., N}
such that it maximizes the capacity over that set of antennas.
@ No elegant solution.

o Bruteforce search requires O(NL) MIMO capacity
computations.



RESULTS

@ Proves that C(R) is a monotonic, sub-modular function over
sub-sets of {1,2,..., N}

© Proposes a simple greedy iterative search algorithm to solve
antenna selection problem.

e Starting with a null-set, at each iteration, add that specific
antenna from the remaining antennas, which maximizes the
Capacity.

o Stop when L antennas are selected.

@ Main result:

If S is the set output by above algorithm, and S* is the optimal

subset then
C(S)>(1-12)C(s%)

@ First algorithm with theoretical guaratees.

@ Extension to 'Relay selection problem’ in a network of relays,
where the similar approach infact gives precisely optimal
performance.



