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Overview of the Journal

49 papers in 6 categories, about 190 pages long.

The field Wireless Comm has major number of papers: 32

(probably the reason for a dedicated publication of WC
Letters!)

A number of interesting papers. Can carry over to one more
journal watch.

We see 4 specific papers from the interesting pool of papers
from the issue.
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Distribution of Diagonal Elements
of

A General Central Complex Wishart
Matrix

Natalia Y. Ermolova & Olav Tirkkonen

Dept. of Comm. and Networking,
Aalto University, Finland



Background - Random Vectors

A complex Gaussian Random vector.

Simplest case: Circular symmetry — i.e. X ∼ X .e jφ in Cn

Complete characterization:“Covariance matrix E[XX ∗]”
[µ = 0, a conseq. of circular symmetry]

In general.. a 2n-dimensional Real Gaussian.

No further obvious insights.
Non-trivial to see it natively as a simple function of X only
(without Re(.) and Im(.) functions).

It is shown that it needs three arguments to characterize it
completely [Picinbono’1996].

The mean vector (µ)

The covariance matrix or correlation matrix (K , E[XX ∗])
The pseudo-covar. matrix or relation matrix (C , E[XXT ])

In case of circular Gaussians, C = 0 and µ = 0.
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Background-Random Matrices

Random Matrices with Gaussian elements
(correlated or uncorrelated elements).

Columns are mutually independent.

Each column is Complex Gaussian (correlated elements within)

Simplification: “Circularly Gaussian”.

Reduces a lot of complexity.

Wide literature on this assumption.



Wishart Matrix – a function on matrices:

If X ∈ Cn×n, then Z , X XH is the Wishart matrix of X.

Diagonal elements of Z are:

Zii = ||i th Row of X ||22

=
n∑

j=1

|Xij |2

Simple of case of circular symmetry implies, Zii ∼ c . χ2
2n.

The vector of diagonal elements w = [Zii ]
n
i=1 is

characterizable.

Importance: Characterize effective SNR in MIMO, under
various Tx policies.

Lot of works devoted to such analysis on diagonals of Wishart
matrices.
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Practical random matrices are seen to contain non-circularly
symmetric elements.

An active area of research. Many new distributions and
models are being proposed in this direction.

This paper:

Non-circularly symmetric elements for Random matrix X .
Characterizing diag(Z ) completely.
Derived: PDF,CDF and MGF.
Complex enough expressions with lot of special functions &
multi-level summations, products.
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A New Power Allocation Method
for

Parallel AWGN Channels

in the

Finite Block Length Regime

Jung-Hyun Park and Dong-Jo Park

Dept. of Electrical Engg.
Korea Advanced Institute of Science Technology (KAIST),

Korea.



Main Arguments

Achieving Capacity of Parallel Gaussian Channels:
Waterfilling.

Capacity maximization (vs) Achievable-rate maximization

The block length constraint

Series of papers by Polyanskiy on achievable rates for finite
blocklengths.



The Contributions

Maximization of latest lower bounds on achievable rate of a
Gaussian channel with finite block length.

For a given power allocation p the achievable rate is
[Polyanski etal],

R(p) = C (p)−
√

V (p)
Q−1(ζ)√

n
+

O(logb n)

n

where, C (p) waterfilling capacity,

ζ is the desired codeword error prob,

n is block length.

A non-convex optimization formulation using a lowerbound of
R(p)

A new modified waterfilling power-allocation scheme.
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Optimality of Homogeneous Sensing
Range Assignment in Large-Scale

Wireless Sensor Network Deployments

Dogu Arifler

Dept of Computer Engg.,
Eastern Mediterranean University,

Cyprus.

October 14, 2012



THE PROBLEM

Sensor deployment scenario

Coverage problem with total power constraint

Optimal coverage subject to an overall power constraint in the
network.

Does diversity in sensing ranges of sensor nodes help??



The deployment(location of sensors) follows a Poisson point
process.

From stochastic geometry results for the popular boolean
model, the fraction of area not covered by any sensor is given
by: exp (−α

∑
i=1 Npiπr2i )

Two optimization problems are formed:

1) Minimizing uncovered area under power constraint,

minimize exp

(
−α

∑
i

piπr2i

)
subject to

∑
i

pi = 1,

α
∑
i

pi r
η
i ≤ β

ri ≥ 0, pi ≥ 0 for i = 1, ...,N.



2) Power minimization under coverage area constraint,

minimize α
∑
i

pi r
η
i

subject to
∑
i

pi = 1,

exp

(
−α

∑
i

piπr2i

)
≤ θ

ri ≥ 0, pi ≥ 0 for i = 1, ...,N.

From KKT conditions, optimality is achieved when each
ri = r for both the problems.



Results

If all sensors deployed have the same sensing range then

The uncovered area is minimized for a power constraint
The overall power is minimized for a coverage constraint

Optimum sensing range depends on the density of deployment
α as well as the parameters β, η and θ
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Sub-Modularity and Antenna Selection
in MIMO Systems

Rahul Vaze1 and Harish Ganapathy2

1 School of Technology and Computer Science,
TIFR, Mumbai

2 Dept of ECE,
University of Texas, Austin.



Sub-modularity

Definition: [Nemhauser etal., 1958]

Let N be a set and f a real-valued function defined on the set of
sub-sets of N. Then f is called sub-modular if:

f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ), ∀S ,T ⊆ N

or, equivalently:

f (S ∪ {a})− f (S) ≥ f (T ∪ {a})− f (T ),

∀S ⊆ T ⊆ N, ∀a ∈ N

Sub-modular functions are studied a while ago.

Such functions can be optimized (sub-optimally) by simple
iterative Greedy algorithms with theoretical guarantees. Hence
are of interest.



Receive Antenna Selection Problem:

maximize
RL ⊂ {1, 2, ...,Nr}; |RL| = L

C (RL)

where,

C (RL) , log det

(
I +

P

Nt
HRL

H∗
RL

)

Select an optimum subset of antennas RL ⊂ {1, 2, ...,Nt}
such that it maximizes the capacity over that set of antennas.

No elegant solution.

Bruteforce search requires O(NL
r ) MIMO capacity

computations.



Results

1 Proves that C (RL) is a monotonic, sub-modular function over
sub-sets of {1, 2, ...,N}

2 Proposes a simple greedy iterative search algorithm to solve
antenna selection problem.

Starting with a null-set, at each iteration, add that specific
antenna from the remaining antennas, which maximizes the
Capacity.
Stop when L antennas are selected.

3 Main result:

If S is the set output by above algorithm, and S∗ is the optimal
subset then

C (S) ≥ (1− 1
e )C (S∗)

4 First algorithm with theoretical guaratees.
5 Extension to ’Relay selection problem’ in a network of relays,

where the similar approach infact gives precisely optimal
performance.


