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Fast Algorithms for Demixing Sparse Signals From

Nonlinear Observations

@ Problem statement
yi=g(<a,ow+Vz>)4+e¢ i=1,2,...m (1)
where,
o x=0bw+Vz
@ O™ and W™ are orthornormal bases
@ aj is ith row of A™*" (measurement operator)

e g (link function) is either known or unknown non-linear function
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Algorithms

@ When g is unknown

Algorithm 1: ONESHOT.
Inputs: &, U, A, y, s.
Outputs: Estimates 7 = @0 + Uz, 0 € K1,z € Ky

3 L T, . -
Iiin — ;-A'y  {form linear estimator}

by — ®* Ty {forming first proxy}

W — Py(b1) {sparse projection}

by — U* Ty, {forming second proxy}
Z «— Py(b2) {sparse projection}

T+ ®w+ vz  {Estimating T}

where,
@ Ps is s-sparse projection

Remarks-:
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Algorithms

@ When g is known
o Let ©'(x) = g(x)
o=[® V], t=[w Z]
F(t) = — O(a/ Tt) — y;ailt
mltrélﬂg;nlze (1) mZ( (a; T't) — y;aiTt)

subject to ||t][o < 2s

o Gradient, VF(t) = LT TAT(g(Art) —y)
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Algorithm 2: Demixing with Hard Thresholding (DHT).

Inputs: ¢, ¥, A, g, y, s, 77'.
Qutputs: Estimates 7 = ®w + Uz, @, 2
Initialization:
(2, w",z") « ARBITRARY, k « 0
while £ < N do
tho— [w";z;"]
k 1 §T AT Lk
tl- - ’i_’(I]TAT(g(A,K.A-) - %‘)
ty — Ut A (g(Az") —y)

m

VFF o [th: 4] {forming gradient}
t* =1F — V" {gradient update}
[w"; 2F] — Py (%) {sparse projection}
b e dwh + Wk {estimating 7}
Ee—k+1

end while

Return: (i, 2) — (w",z")

{forming constituent vector}

Akshay Kumar

November 18, 2017

6/ 15



Scalable and Flexible Multiview MAX-VAR Canonical

Correlation Analysis

@ Problem statement- Finding low-dimensional representations from
multiple views corresponding to the same entities, termed as
Canonical Correlation Analysis (CCA)

@ Consider the word 'Akshay’. It has text and audio representation

@ A view is a high dimensional representation of an entity in some
feature space

@ Helpful in data fusion. Integrating information acquired from different
sources
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Mathematical Formulation

o Consider L entities have different representation in / views

o X; € RE*Mi is the feature matrix for L entities in ith view
I

minimize I1X;Q; — G||%

{Qi}/_1.G ,2_;

subjectto G'G =1

where, G € RPK | K(< min(M;, L)) is number of canonical components

@ The above problem has closed form expression
e Solving wrt Q;, Q; = X!G, X! = (XTX,;)1XT
@ Substituting back, estimating G reduces to

!
imize Tr|GT X;X'| G
mé>T<|6n;|Hze r( (Z I) )

i=1

@ Solution — First K principal eigenvectors of Zl{zl X,-X}L
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Major challenges -:
@ Implementing the solution to large-scale data
@ Incorporating structure in Q;

To circumvent the second issue, add regularizer h;(Q;)

o hi(Q;) =4 -1|Q|12

° hi(Qi) =5 -IQill21

o hi(Qi) =4 -1|Qil|z + Bi - 1|Qill2.1
° hi(Qi)=1.(Q))

The reulting objective,
I
minimize HX,‘Q,‘ — GH%: + h,'(Q,')
{Qi}_;.G ,Z;
subjectto G'G =1

The authors use alternating optimization; solve two subproblems wrt {Q;}
and G
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After r iterations we have Q("), G(")
@ Solving for Q,(.r+1)
minimize |X;Q; — G2 + h(Q))

@ Rewritten as,
minimize £(Q;, G) + gi(Q;)

i

where, f; is continuously differentiable part and g; is non-smooth part of
the objective

@ Use proximal gradient to solve and get Q,(-rH)
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Solving for G(r+1)
I
. Xi (r+1) . 2
minimize §|| Q; G|z
subjectto G'G =1

Rewritten as,

I
. (g7 X (r+1)
mé>T<|6n;|Hze r ( < E Q,

i=1

Closed form update can be found using Procrustes projection
GU+Y) = UVT, where, [U,:, V] = SVD (z,!:l x,-Q,(.’“)), O(LK?)
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Adaptive Subspace Signal Detection with Uncertain Partial

Prior Knowledge

@ Consider the hypothesis testing problem,

Ho:y:d
Hi:y=ks+d

where,
o y € R" is test data, s is known signal with unknown amplitude s
o d is the disturbance signal with low-rank subspace representation
d=HS+n

o H ¢ RV*L consists of L(< N) independent basis vectors, n follows
N(0,0°T)
e s & span(H)
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@ Authors consider the case where H is partially known, i.e.,
HS = Hx
where, H € RV*M is an overcomplete dictionary, x is a sparse vector with
sparsity L
@ We know which columns of H spans the column space of H
@ But, that information is not completely accurate

@ May contain erroneous columns or may miss some columns

@ The likelihood functions under the Hy and H; hypotheses given
observation y are

po(B,H,0?;y) = N(y; HB, o)
pi(%, B, H,0%y) = N(y; is + HB, 0°T)
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@ Under Hy, MLE of k conditioned on H, 5 is,

st(y — Hp)

R =
sfls

@ Substituting it in p; then MLE of noise variance under Hj is,
1
7 = LIPLy — PLHG?

where, P =1 — s(s'’s) s’
@ MLEs of H, 5 under H; ,
{H1, 3} = arg min||Pyy — Py Hp|?
Under Hy,

1
2 2
= _|ly—H
ag = lly —H3
{Ho, 3} = arg min|ly — HB||?
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We need to solve sparse recovery problem,
miny||z — Ax||?

where, z= Pty and A = PZH under H; and z =y and A = # under Hp

@ Once {Hj, 3} and {Hy, 3} are obtained we can substitute them back
to obtain  and o2 .

@ Then perform GLRT
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