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Unlabeled Sensing With Random Linear Measurements

Jayakrishnan Unnikrishnan, Saeid Haghighatshoar, and Martin Vetterli

Setup: System of linear equations

y = Ax

where A ∈ Rm×n, when observations are unlabeled
We have access to all entries of y, but not their labels

Main result: When A has iid entries drawn from a continuous
distribution, then x can be recovered exactly w.p. 1, without
knowledge of labels of y, if m ≥ 2n
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An example.

Let A =

0 1
1 0
1 0

, and x =
[
x1
x2

]
. Then y =

x2
x1
x1

.

In this case, x can be recovered exactly, by counting the number of
times an entry appears in the unordered observations.

However, it can be shown that there exist A ∈ R3×2 for which
different x give rise to the same unordered observation.

Unique recovery of x is guaranteed if A is a 2n× n matrix with iid
entries from a continuous probability distribution.
Proof constructive, uses a combinatorial algorithm
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Linear Regression With Shuffled Data: Statistical and Computational Limits of
Permutation Recovery

Ashwin Pananjady, Martin J. Wainwright, and Thomas A. Courtade

Setup: Noisy linear model with unknown permutation

y = Π∗Ax∗ + w

where A ∈ Rn×d, Π∗ is an unknown permutation, x∗ is the
unknown signal and w is additive Gaussian noise

Random design setting is considered: A has iid N (0, 1) entries

Contribution: Conditions on n, d and SNR under which Π∗ is
exactly/approximately recoverable
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Upper bound obtained by analyzing the ML decoder

(Π̂ML, x̂ML) = arg min
Π∈P,x∈Rd

‖y−ΠAx‖22

No polynomial-time algorithm known for permutation recovery
Lower bound obtained by connecting to decoding over Gaussian
channel
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Restricted Isometry Property of Gaussian Random Projection for Finite Set of
Subspaces

Gen Li and Yuantao Gu

Goal: Study restricted isometry property of Gaussian random
matrices for the compression of two subspaces

Motivation: Compressive Subspace clustering
Label data points that are assumed to be drawn from a union of
subspaces model

Only a compressed version of the data points is available

Main result
The distance between two subspaces remains almost unchanged
whp after random projection if the ambient dimension after
projection is sufficiently large.
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(a) Data points from three clusters

(b) Susbspace clustering after compression

(c) Principal angles decrease after compression
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Main result
Consider a set of L subspaces X1, . . . ,XL ∈ RN , each of dimension
no more than d. If these subspaces are projected onto Rn by a
Gaussian random matrix Φ ∈ Rn×N ,

Xi
Φ→ Yi := {y : y = Φx, x ∈ Xi}, i ∈ [L],

and d << n < N , then we have

(1− ε)D2(Xi,Xj) ≤ D2(Yi,Yj) ≤ (1 + ε)D2(Xi,Xj), ∀i, j

with probability at least

1− 2dL(L− 1)
(ε− d

n)2n
,

where D denotes the projection F-norm distance between
subspaces.
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Sketched Subspace Clustering

Panagiotis A. Traganitis and Georgios B. Giannakis

Subspace clustering: Label non-linearly separable data generated
from a union of subspaces model, when no ground truth is
available

Current methods are computationally complex

This paper deals with performing clustering when a sketched
version of the data is given

Model
xi = Cjyj + µj + vi, ∀ xi ∈ Sj ,

where
{xi}Ni=1 are D-dimensional data vectors
S1, . . . , Sk are the k subspaces of dimension d1, . . . , dk

Cj ∈ RD×dj is a basis for Sj
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Goal is to find the subspace assignment vector πi for each xi under
the constraints πij ≥ 0 and

∑
j πij = 1

Hard clustering: πi ∈ {0, 1}k, membership to a single subspace

Soft clustering: πi ∈ [0, 1]k, an entry of πi can be thought of as
probability of belonging to a subspace

Sketch-SC algorithm
A modification of the standard sparse-SC algorithm

minimize
Z

‖Z‖1 + λ

2 ‖X −XZ‖
2
2

s.t. Z>1 = 1, diag(Z) = 0

Final labels obtained by post processing Z
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Sketch-SC
Generate JLT mtarices R1 and R2
Form sketched data matrix X̃ = R1X
Form dictionary B̃ = X̃R2
Solve

minimize
A

‖A‖+ λ

2 ‖X̃ − B̃A‖
2
2
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