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Unlabeled Sensing With Random Linear Measurements

Jayakrishnan Unnikrishnan, Saeid Haghighatshoar, and Martin Vetterli

m Setup: System of linear equations
y = Ax

where A € R™*" when observations are unlabeled
We have access to all entries of y, but not their labels

Unlabeled Sensing

m Main result: When A has iid entries drawn from a continuous
distribution, then x can be recovered exactly w.p. 1, without
knowledge of labels of y, if m > 2n



m An example.
0 1 " T2
mlet A= 1|1 0|,and x= { 1}. Theny = |z
T2
1 0 1
m In this case, x can be recovered exactly, by counting the number of
times an entry appears in the unordered observations.

m However, it can be shown that there exist A € R3*2 for which
different x give rise to the same unordered observation.

m Unique recovery of x is guaranteed if A is a 2n x n matrix with iid
entries from a continuous probability distribution.
Proof constructive, uses a combinatorial algorithm



Linear Regression With Shuffled Data: Statistical and Computational Limits of

Permutation Recovery

Ashwin Pananjady, Martin J. Wainwright, and Thomas A. Courtade

m Setup: Noisy linear model with unknown permutation
y =II"Ax" +w

where A € R™ ¢ II* is an unknown permutation, x* is the
unknown signal and w is additive Gaussian noise

m Random design setting is considered: A has iid AV(0, 1) entries

m Contribution: Conditions on n, d and SNR under which IT* is
exactly /approximately recoverable



m Upper bound obtained by analyzing the ML decoder

(arz, %ar) = arg min ||y — TTAx||3
IeP,xcR4
m No polynomial-time algorithm known for permutation recovery

m Lower bound obtained by connecting to decoding over Gaussian
channel



Restricted Isometry Property of Gaussian Random Projection for Finite Set of

Subspaces

Gen Li and Yuantao Gu

m Goal: Study restricted isometry property of Gaussian random
matrices for the compression of two subspaces

m Motivation: Compressive Subspace clustering
m Label data points that are assumed to be drawn from a union of
subspaces model

m Only a compressed version of the data points is available

m Main result
The distance between two subspaces remains almost unchanged
whp after random projection if the ambient dimension after
projection is sufficiently large.

6/12



(c) Principal angles decrease after compression



m Main result
Consider a set of L subspaces &1, ..., X, € RV, each of dimension
no more than d. If these subspaces are projected onto R™ by a
Gaussian random matrix ® € R™*N,

X3y ={y:y=0x, xe X}, iclll,
and d << n < N, then we have
(1 - e)D*(X;, X)) < D*(V;, ¥)) < (1L +€)D*(X;, &;), Vi j
with probability at least

 2dL(L - 1)

1 ;
(e— Dn

where D denotes the projection F-norm distance between
subspaces.



Sketched Subspace Clustering

Panagiotis A. Traganitis and Georgios B. Giannakis

m Subspace clustering: Label non-linearly separable data generated
from a union of subspaces model, when no ground truth is
available

m Current methods are computationally complex

m This paper deals with performing clustering when a sketched
version of the data is given

m Model
X; = ij] ‘f‘/J/] +v;, Vx; € S],
where
{x;}N | are D-dimensional data vectors
S1,...,SE are the k subspaces of dimension dq,...,dg

CJ € RP*di ig a basis for S7
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m Goal is to find the subspace assignment vector m; for each x; under
the constraints m;; > 0 and E]- mij = 1

m Hard clustering: 7; € {0, 1}*, membership to a single subspace

m Soft clustering: m; € [0,1]%, an entry of m; can be thought of as
probability of belonging to a subspace

m Sketch-SC algorithm
m A modification of the standard sparse-SC algorithm

A
miniZmize 1 Z]l1 + §||X —-XZ|3
st. Z'1=1, diag(Z) =0

Final labels obtained by post processing Z
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m Sketch-SC

m Generate JLT mtarices Ry and Ry

m Form sketched data matrix X = R X
» Form dictionary B = XR»

m Solve

A~ -
minimize | Al| + §||X — BA|3
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