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Minimax Optimal Sparse Signal Recovery With Poisson Statistics

M. H. Rohban, V. Saligrama, and D. M. Vaziri
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Goal: Derive bounds on the `2 recovery error of the sparse recovery
problem with Poisson noise

Setup: Observations y1, . . . , yn modeled as

yi ∼ Poisson(λ0,i + a>i w∗), i ∈ [n],

where λ0,i : rate of background Poisson noise

A =


−a>1 −

...
−a>n −

 : n × p sensing matrix

w∗ : parameter to be estimated, k−sparse.
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Contributions:
Upper bound: based on analysis of an `1-constrained
Maximum-Likelihood estimator

ŵ = arg min∑
i
wi≤s; ∀i,wi≥0

Q(w),

where

Q(w) = 1
n

n∑
i=1
−yi log(λ0,i + a>i w) + λ0,i + a>i w.

Lower bound: using Fano’s method
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Recursive Recovery of Sparse Signal Sequences from Compressive
Measurements: A Review

N. Vaswani and J. Zhan
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Goal: Recursive dynamic recovery of sparse signal sequences
Applications in MRI, audio reconstruction

Setup:
MMV setting, support set of the signals varies with time

yt = Atxt + wt ,

with At ∈ Rnt×m and noise wt bounded.

Slow support change ≡ Partial support knowledge

True support, N = T ∪∆u\∆e ,

where
T : erroneous support
∆u = N\T : set of missing support entries
∆e = T \N : set of extra entries in T .
Solution using Least-Squares CS-Residual, Modified-CS, Weighted-`1
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Contributions
Reformulation of the recursive recovery problem as recovery with
partial support knowledge
Recursive dynamic versions of previously known algorithms
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Type I and Type II Bayesian Methods for Sparse Signal Recovery
Using Scale Mixtures

R. Giri and B. D. Rao
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Power Exponential Scale Mixture (PESM) family of distributions to
model sparsity-inducing priors
PESM family can be represented as

p(x) =
∫

p(x/γ)p(γ)dγ =
∫

PE (x ; p, γ)p(γ)dγ,

where

PE (x ; p, γ) = pe−
( |x|

γ

)p

2γΓ
(

1
p

) .
For example, p = 1 gives the Laplacian distribution.
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Contributions
Introduce the PESM family–can be used to represent several
sparsity-promoting distributions.

Establish connections between SSR algorithms and PESM framework.
In particular, Reweighted `1 minimization ≡ MAP estimation using
generalized t-distribution.

Derive EM inference procedure for PESM family.
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M. Korki, J. Zhang, C. Zhang, and H. Zayyani
Distributed Recovery of Jointly Sparse Signals Under Communication
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