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1. Energy Harvesting Communication Using
Finite-Capacity Batteries With Internal Resistance
Authors: Rajshekhar Vishweshwar Bhat, Mehul Motani, and Teng Joon Lim

Goal: Analyze the impact of battery internal resistance on design and
performance of energy harvesting communication systems (rate).

Application: Where nodes are to communicate Ns channel symbols
per frame over a fading channel.

Approach: Employ dual path architecture and derive compact
expressions for optimal time and power splitting ratios.

Figure: Dual path communication
Figure: Frame structure
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Maximum achievable rate for TX over an AWGN channel with gain h,
symbol energy P, and unit received noise PSD is R = log(1+ hP)
bits per channel symbol.

Offline policy (single frame)

R(ρ, αa, αb, γ, db) = γRa + (1− γ)Rb

Offline policy (Group of frames)

Ravg(ρ,αa,αb,γ,db) =
1

N

N∑
i=1

R(ρi , αai , αbi , γi , dbi )

Optimal Online Policy: Stochastic dynamic programming, where
state in frame n is sn = (Cn,Hn,Bn−1)

R∗
on = max

π∈Π

1

N

N∑
n=1

E [R(Cn,Hn,Bn−1, ρn, αan , αbn , dbn)|s1, π]
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Offline single frame rate optimization problem:

P0 : maximize
ρ,αa,αb,γ,db

R(ρ, αa, αb, γ, db) (1a)

subject to (d̃b − c̃b)(1− ρ)τ − Bρτ − B0 ≤ 0 (1b)

B0 + Bρτ − (d̃b − c̃b)(1− ρ)τ − B ≤ 0 (1c)

0 ≤ ρ ≤ 1 (1d)

αc ≤ αa, αb ≤ 1 (1e)

0 ≤ db ≤ Dp (1f)

(1− αb)db = 0 (1g)

Objective: Optimize time and power splitting ratios

Through an offline policy, assuming non-causal knowledge of
harvested power and fading channel gains.

Through sub-optimal policies when only statistics of energy arrivals
and channel gains are known.
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Contributions:

Formulate a single frame optimization problem and derive compact
expressions for optimal time and power sharing ratios, while
incorporating the effects of battery internal resistance.

Formulate an offline (non convex) optimization problem and propose
an iterative algorithm to solve it.

Solve for the optimal online policy by using stochastic dynamic
programming. Also, propose three sub-optimal on-line algorithms
which are practically feasible.

Show via numerical simulations that the optimal policy designed for
an ideal battery performs poorly when the internal resistance is not
negligible
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Figure: Optimal rate and time splitting ratios
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2. Online Ski Rental for ON/OFF Scheduling of Energy
Harvesting Base Stations
Authors: Gilsoo Lee, Walid Saad, Mehdi Bennis, and Fumiyuki Adachi

Goal: Minimize the operational costs (transmission delay and energy
consumption) of a celluar network, in the presence of complete
uncertainty of the energy harvesting process at the SBSs.

Motivation: Co-existence of SBSs with MBS boosts the capacity and
coverage, but densifying the cellular network significantly increases
energy consumption. Due to the uncertainty of energy arrival and the
finite capacity of energy storage systems, self-powered SBSs must
smartly optimize their ON and OFF schedule.

Figure: System Model
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Approach:

The operational cost of the BSs are computed in terms of
transmission delay and energy consumption

The original problem is decomposed into a set of distributed online
optimization problems that are run at each SBS.

The resulting problem is solved by a novel approach based on the ski
rental problem. DOA (benchmark) and ROA (practical) are the two
schemes used.

Assumptions:

SBSs and the MBS will use different frequency bands.

Each UE can be connected with only one of the BSs at a certain time
t within a period of T.

Energy harvesting is assumed to be done irrespective of whether an
SBS is turned ON or OFF.
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System model

State of BS

σj(t) =

{
1, if SBS j is turned ON at time t,

0, otherwise.
(1)

Network Performance between UE i and SBS j

γij(σ(t)) =
Ptx
j σj(t)hij∑

j ′∈Bon\{j} P
tx
j ′ σj ′(t)hij ′ + ρ2

(2)

User association: j∗(i ,σ(t)) = argmaxj∈Bon(t)γij(σ(t))

Set of UEs associated with BS j : Ij(σ(t)) = {i | j∗(i ,σ(t)) = j , ∀i}

Achievable data rate of UE i

cij(σ(t)) =
B

|Ij(t)|
log2(1 + γij(σ(t))) (3)
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0, otherwise.
(1)

Network Performance between UE i and SBS j

γij(σ(t)) =
Ptx
j σj(t)hij∑

j ′∈Bon\{j} P
tx
j ′ σj ′(t)hij ′ + ρ2

(2)

User association: j∗(i ,σ(t)) = argmaxj∈Bon(t)γij(σ(t))

Set of UEs associated with BS j : Ij(σ(t)) = {i | j∗(i ,σ(t)) = j , ∀i}

Achievable data rate of UE i

cij(σ(t)) =
B

|Ij(t)|
log2(1 + γij(σ(t))) (3)
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System model

Transmission Delay:

For TX K bits b/w BS j , UE in Ij(t) at time t:

ϕj(σ(t)) =
∑

i∈Ij (σ(t))

K

cij(σ(t))
. (4)

Power Consumption:

ψj(σ(t)) =
|Ij(σ(t))|

M
(1− q)Pop

j + qPop
j (5)

where q - Weight b/w utilization-proportion and fixed power

consumption, Pop
j - max power consumption of a fully utilized BS

Operational Expenditure of SBS:

rj(σ(t)) = αDϕj(σ(t)) + αPψj(σ(t)), (6)
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System model

The Operational Expenditure of MBS (worst case) can be divided
into per-SBS costs

Φ
Ij (0)
0 =

∑
i∈Ij (0)

K
Bm
I log2(1 + γi0(0))

. (7)

Ψ
Ij (σ(0))
0 =

|Ij(σ(0))|
M

(1− q)Pop
0 + qPop

0 . (8)

Operational SBS Penatly / MBS expenditure:

bj = αB

(
αDΦ

Ij (σ(0))
0 + αPΨ

Ij (σ(0))
0

)
T (9)
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System model

ON/OFF Scheduling as an Online Optimization Problem

min
σ(t),x

J∑
j=1

(∫ uj

0
rj(σ(τ))σj(τ)dτ + bjxj

)
, (10)

s.t. σj(t) + xj ≥ 1, 0 ≤ t ≤ uj , ∀j ,
σj(t) ∈ {0, 1}, 0 ≤ t ≤ uj , ∀j ,
xj ∈ {0, 1}, ∀j

Proposition - (10) can be decomposed into j subproblems

min
σj (t),xj

∫ uj

0
rjσj(τ)dτ + bjxj , (11)

Competitive ratio of an online algorithm is defined by

κ = max
uj

βALG(uj)

βOPT(uj)
, ∀uj , (12)
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Online ski rental:

βOPT(uj) =


rjuj , 0 ≤ uj ≤

bj
rj
,

bj ,
bj
rj

≤ uj ≤ T .
(13)

DOA: SBS j is turned OFF at a predetermined time tj , 0tjT

βDOA(uj)

βOPT(uj)
=


rjuj

min{rjuj , bj}
, 0 ≤ uj ≤ tj ,

rj tj + bj
min{rjuj , bj}

, tj ≤ uj ≤ T ,
(14)

when uj = tj =
bj
rj
, κ is minimized to 2.

ROA: κ is minimized to e
e−1 = 1.86
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Contributions:

Novel approach to optimize the ON/OFF schedule of self-powered
SBSs, formulating the problem as one of minimizing network
operational costs during a period.

Proposed DOA, ROA is shown to achieve the optimal competitive
ratio for the approximated problem. Using the proposed ROA, each
SBS can autonomously decide on its ON time without prior
information on future energy arrivals.

Simulation results show that both delay and ON/OFF switching
overhead are significantly reduced when one adopts the online ski
rental approach.

Numerical result: Compared with a baseline approach, ROA can yield
performance gains reaching up to 15.6% in terms of reduced total energy
consumption, up to 20.6% in terms of per-SBS network delay reduction,
and can reduce up to 69.9% the total cost.
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3. Fundamentals of Modeling Finite Wireless Networks
Using Binomial Point Process
Authors: Mehrnaz Afshang, and Harpreet S. Dhillon

Goal: Establish a generic mathematical framework to characterize the
performance of an arbitrarily located reference receiver in a finite wireless
network (based on two TX-selection policies).

TX selection policy
Uniform - ad hoc networks
k-closest - Cellular networks

Locations of serving nodes -
Uniform BPP in a finite ball of
radius rd

Assume noise negligible
compared to interference
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System Model

PDF of TX locations

f (yi ) =


1

πr2d
∥yi∥ ≤ rd

0 otherwise.

TX-Selection Policies and Propagation Model

SIR =
hℓ∥x0 − yℓ∥−α∑

yi∈Φa\yℓ hi∥x0 − yi∥−α
,

Coverage Probability

Pc = E[1{SIR ≥ β}] = P(SIR ≥ β),

Sequence of distances from TX to RX

PDF : fWi
(wi ) =

2wi

r2d
; 0 ≤ wi ≤ rd
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Conditional PDF of the sequence

fWi
(wi |ν0) =

{
fWi,1

(wi |ν0), 0 ≤ wi ≤ rd − ν0

fWi,2
(wi |ν0), rd − ν0 < wi ≤ rd + ν0,

where fWi,1
(wi |ν0) = 2wi

rd 2
and fWi,2

(wi |ν0) = 2wi
πrd 2

arccos(wi
2+v02−rd

2

2v0wi
)

Coverage Prob - Uniform TX-Selection Policy

P
(u)
ref (ν0) =

∫ rd−ν0

0
L(u)
I (βrα|ν0)fWi,1

(r |ν0)dr

+

∫ rd+ν0

rd−ν0

L(u)
I (βrα|ν0)fWi,2

(r |ν0)dr ,

Coverage Prob - k-closest TX-Selection Policy

P
(k)
ref (ν0) =

∫ rd−ν0

0
A(βrα, r , ν0)f

(k)
R,1 (r |ν0)dr

+

∫ rd+ν0

rd−ν0

B(βrα, r , ν0)f (k)R,2 (r |ν0)dr ,
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Contributions:

Developed a comprehensive framework for the performance analysis of
finite wireless networks.

Derived expressions of coverage probability corresponding to two TX
selection policies, with an arbitrarily-located reference receiver.

Application of results to evaluate following parameters:

Diversity loss due to SIR correlation
Optimal # links that can be simultaneously activated to maximize NSE
Optimal caching probability, to maximize the total hit probability in
cache-enabled finite networks

Extensions of work:

Modeling - analyze Matern cluster process.

Systems - performance analysis of indoor communication and
hotspots.

Study performance of mmWave communication systems with receiver
experiencing blocking interference.

Prabhasa K (IISc) Journal Watch 13th May, 2017 20 / 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contributions:

Developed a comprehensive framework for the performance analysis of
finite wireless networks.

Derived expressions of coverage probability corresponding to two TX
selection policies, with an arbitrarily-located reference receiver.

Application of results to evaluate following parameters:

Diversity loss due to SIR correlation
Optimal # links that can be simultaneously activated to maximize NSE
Optimal caching probability, to maximize the total hit probability in
cache-enabled finite networks

Extensions of work:

Modeling - analyze Matern cluster process.

Systems - performance analysis of indoor communication and
hotspots.

Study performance of mmWave communication systems with receiver
experiencing blocking interference.

Prabhasa K (IISc) Journal Watch 13th May, 2017 20 / 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contributions:

Developed a comprehensive framework for the performance analysis of
finite wireless networks.

Derived expressions of coverage probability corresponding to two TX
selection policies, with an arbitrarily-located reference receiver.

Application of results to evaluate following parameters:

Diversity loss due to SIR correlation
Optimal # links that can be simultaneously activated to maximize NSE
Optimal caching probability, to maximize the total hit probability in
cache-enabled finite networks

Extensions of work:

Modeling - analyze Matern cluster process.

Systems - performance analysis of indoor communication and
hotspots.

Study performance of mmWave communication systems with receiver
experiencing blocking interference.

Prabhasa K (IISc) Journal Watch 13th May, 2017 20 / 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contributions:

Developed a comprehensive framework for the performance analysis of
finite wireless networks.

Derived expressions of coverage probability corresponding to two TX
selection policies, with an arbitrarily-located reference receiver.

Application of results to evaluate following parameters:

Diversity loss due to SIR correlation
Optimal # links that can be simultaneously activated to maximize NSE
Optimal caching probability, to maximize the total hit probability in
cache-enabled finite networks

Extensions of work:

Modeling - analyze Matern cluster process.

Systems - performance analysis of indoor communication and
hotspots.

Study performance of mmWave communication systems with receiver
experiencing blocking interference.

Prabhasa K (IISc) Journal Watch 13th May, 2017 20 / 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Other Interesting Papers

Low-Rank Spatial Channel Estimation for Millimeter Wave Cellular
Systems.
Parisa A. Eliasi, Sundeep Rangan, and Theodore S. Rappaport

MIMO Energy Harvesting in Full-Duplex Multi-User Networks.
Ho Huu Minh Tam, Hoang Duong Tuan, Ali Arshad Nasir, Trung Q.
Duong, and H. Vincent Poor

Proactive Eavesdropping via Cognitive Jamming in Fading Channels.
Jie Xu, Lingjie Duan, and Rui Zhang

Joint Precoding and RRH Selection for User-Centric Green MIMO
C-RAN.
Cunhua Pan, Huiling Zhu, Nathan J. Gomes, and Jiangzhou Wang

Load Optimization With User Association in Cooperative and
Load-Coupled LTE Networks.
Lei You and Di Yuan

Prabhasa K (IISc) Journal Watch 13th May, 2017 21 / 21


