JW: TCOM Mar. 2015

Chandra R. Murthy

Asymptotic Analysis of SU-MIMO Channels with Transmitter Noise and Mismatched Joint Decoding

- Hardware impairments: binoisy model y = H(x+v) + noise
- Impact on achievable rate derived
 - Used the replica method to evaluate mutual information
 - See Appendix B in the paper (nice summary of the method itself)
- Impact of mismatched detection/decoding
 - Receiver ignores the HW impairments
- Conclusions:
 - Impact of HW impairments significant only at high modulation orders
 - Mismatched decoding: minor compared to HW impairments

Quick, Decentralized, Energy-Efficient One-Shot Max Function Computation Using Timer-Based Selection

- Determine max. of sensor readings
 - Sensors are clustered
 - Computation over two timer + contention-based stages:
 - Nodes to cluster-heads
 - Cluster-heads to fusion nodes
- Optimization: min. avg. time to find max.
 - Subject to a failure probability constraint
- Analysis: scalable (to number of nodes) and robust (to knowledge of the number of nodes) algorithm
 - Asymptotic analysis of the expected selection time

Mutual Information Analysis on Spatial Modulation Multiple Antenna System

- Computation of the theoretical TPM and MI of the ML antenna detector, with Gaussian input symbols
- SM-MISO: error probability and MI in closed-form
 - Complex Gaussian signaling: Pr(antenna decoding error) does not -> 0 as SNR -> infinity. So, poor perf. at (very) high SNRs
 - Real Gaussian signaling: overcomes the above drawback, but poor performance at low SNR
 - Constant modulus signaling: meets perf. of V-BLAST at low SNR
- Multiple rx antenna SM: union bound of error probability and lower bound on MI
- Compared with V-BLAST: V-Blast outperforms SM, but not by much w/complex Gaussian input signaling

Outage Minimization via Power Adaptation and Allocation in Truncated Hybrid ARQ

- HARQ with repetition and incremental redundancy, and
 - Conventional 1 bit ACK/NACK feedback
 - Multi-bit feedback of state of receiver
- Goal: minimize long-term outage probability
 - Constraints: peak and average power
- Approach: dynamic programming
 - Approximate closed-form solution in high SNR obtained using geometric programming
- Results:
 - Advantage of multi-bit quantization over one-bit fb
 - Power optimization leads to significant gains

Others

- Cooperative multi-cell MIMO downlink precoding with finite-alphabet inputs
- Mobile communication systems in the presence of fading/shadowing, noise, and interference
- Energy detection technique for adaptive spectrum sensing
- Improper signaling for symbol error rate minimization in K-user interference channel