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Complete Dictionary Learning Over the Sphere

Ju Sun, Qing Qu and John Wright

m Goal: Given p samples from R", Y = [y1,...,yp], find a concise
representation for these samples. That is, find:
a complete (square and invertible) matrix A € R"*",
and a sparse coefficient matrix X € R"*P,
such that Y ~ AX when n < p.

m Usual approach
in |V — AX||%Z + )| X
min | 17+ Al Xy

st. Ae A

m Objective non convex in A, X; A typically non convex too

m For a permutation matrix IT and a diagonal matrix ¥ with diagonal
entries in {+1,—1}:
(A, X) and (AITZ, S7MIT X) result in the same objective value:
combinatorially many global minima
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m A different formulation:

m Rowspace(Y) = Rowspace(X), rows of X are sparse vectors in the
known subspace Rowspace(Y)

m First recover rows of X, then recover A

min |l¢'Y|o st. ¢'Y #0
q

m Replace above formulation with a convex objective and a spherical
constraint

1y
min 3" hula"w) st ol = 1,
=1

where hy,: a convex, smooth appproximation to |[.|
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m Contributions

m Geometric characterization of the objective, explanation for the
effectiveness of non convex heuristics

m First efficient algorithm that provably recovers A, X where X can
have O(n) non zeros per column

m Under the assumption that X;; = Q;;V;;, with Q;; ~ Ber(¢) and
Vi; ~ N(0,1) (denoted X, < BG(0)):
For 0 € (0, %), given Y = Ay Xy with Ap a complete dictionary and
Xy ud BG(0), there exists a polynomial-time algorithm that
recovers Ag and Xg (upto sign, scale and permutation) with high
probability.
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Bayesian Group Testing Under Sum Observations: A Parallelizable
Two-Approximation for Entropy Loss

Weidong Han, Purnima Rajan, Peter I. Frazier and Bruno M. Jedynak

m Setup
m 0 € R¥ containing locations of k objects, k > 1 is known

m Choose subsets A; of R, query the number of objects in each subset
and obtain a sequence {X;} of noiseless answers

m Formally, for the nt* question A,,, the answer X, is
X, = ]lAn(Gl) + ...+ ]1An(0k)
m Bayesian setting: 6; wd fo with joint density po = II¥_, fo(6;)

m Goal: Devise a method for choosing questions so that 8 can be
found as accurately as possible form a finite budget of questions
(accuracy measured in terms of entropy of posterior distribution of

0)



m Prior work
m k =1 case: noiseless, noisy, Bayesian setting considered

m k> 1 case: Group testing: “Is ANS # p7”
Subset guessing: “Is S C A?”
Binary answers, non-Bayesian setting

m Contributions

m A non-adaptive dyadic policy and an adaptive greedy policy for
noiseless group testing under sum observations.
Both algorithms based on minimizing the expected entropy of the
posterior on 6.

m Dyadic policy: shown to be optimal among non adaptive policies
Greedy policy: at least as good as dyadic policy, strictly better in
some cases.
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The dyadic policy

// -
folu)
prior
0 u 1
| Ao | A4 ‘ n=1
I Ao | Az | Az ‘ Aza ‘ n=2
| Aa.0 | .1 I Aaz | fa3 |“3_< | A5 ‘ Aag ‘ Az ‘ n=3

Prior density fy with support [0, 1]. The question set A,, is the union of
the shaded subsets.
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Sparse Signal Processing with Linear and Non-Linear Observations: A Unified
Shannon-Theoretic Approach

Cem Aksoylar, George K. Atia and Venkatesh Saligrama

m Setup
m Set of N variables/features X, ..., Xy, outcome Y (both known)

m Only k variables, indexed by S C [N] (unknown), relevant for
predicting outcome Y

m Latent random quantity Sg affecting observations
P(Y|X,Bs,8) = P(Y|Xs,Bs, 5)

m Goal: Given T sample pairs {X;, Y;}7_;, observation model
P(Y|Xg,Bs,S) and prior p(fg), find necessary and sufficient
conditions on 7" in order to recover S with arbitrarily small error
probability
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m Contributions
m Necessary and sufficient conditions on T for various sparsity models
(sparse linear regression, binary regression, group testing, models
with missing data)
m Results for both linear and non-linear models in a unifying manner



Other interesting papers

m Sensing Tensors With Gaussian Filters. S. Chrétien and T. Wes

m Blind Recovery of Sparse Signals From Subsampled Convolution.
K. Lee, Y. Li, M. Junge, and Y. Bresler

m Compressive Sampling Using Annihilating Filter-Based Low-Rank
Interpolation. J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee
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