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1. MISO Channel Estimation and Tracking from Received
Signal Strength Feedback
Authors: Tianyu Qiu , Xiao Fu , Nicholas D. Sidiropoulos , and Daniel P. Palomar

Goal: Estimate the channel using Received Signal Strength (RSS) /
Channel Quality Indicator (CQI) feedback.

All existing and emerging wireless communication systems provide
basic Received Signal Strength (RSS) / Channel Quality Indicator
(CQI) feedback to compensate for temporal channel variations.

It can track the vector MISO channel from RSS/CQI feedback alone
if one employs time-varying beamforming and phase modulation
together with phase retrieval ideas from optics and crystallography..

Three efficient algorithms that cover different model assumptions are
proposed to track the vector MISO channel on the transmitter side
using only RSS/CQI feedback.
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1. Problem Statement

We first consider a MISO channel.

z(m) = wH(m)h(m)s(m) + v(m) ∈ C

y(m) = |z(m)| = |z(m)s∗(m)| = |wH(m)h(m) + v(m)s∗(m)|, ∀m
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1. Proposed Algorithms

Here, v(m) ∼ CN (0, σ2
v ). RSS is given by |z(m)|2 and is related to CQI by

(|z(m)|2 − σ2
v )/σ2

v .

y(m)e jφ(m) = wH(m)h(m) + n(m), ∀m

min
{h(m),φ(m)}Mm=1

M∑
m=1

|y(m)e jφ(m) −wH(m)h(m)|2

Recursive Phase Retrieval
A. Forgetting Factor Based Formulation

min
h,{φ(m)}Mm=1

M∑
m=1

λM−m|y(m)e jφ(m) −wH(m)h|2

B. An Efficient Recursive Algorithm

min
h,ϕM

‖Dλ
MDy

Me jϕM −Dλ
MWMh‖2

2

Vaibhav Baranwal (IISc) Journal Watch 7th Apr, 2018 4 / 19



1. Proposed Algorithms

h(m) = αh(m − 1) + u(m), ∀m = 1, 2, ...

(h(M), {φ(m)}m) = arg min
h,ϕM

‖C−1/2
M (Dy

Me jϕM −Dα
MWMh)‖2

2

Generalized Maximum Likelihood Estimation-One step Gradient
(GMLE-G)

Generalized Maximum Likelihood Estimation-One step Gradient
(GMLE-D)

Vaibhav Baranwal (IISc) Journal Watch 7th Apr, 2018 5 / 19



2. Beyond Massive MIMO: The Potential of Positioning
With Large Intelligent Surfaces
Authors: Sha Hu , Fredrik Rusek , and Ove Edfors

It considers the potential for positioning with a system where antenna
arrays are deployed as a large intelligent surface (LIS), which is a
newly proposed concept beyond massive multi-input multi-output
(MIMO).
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2.Signal Model
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2. CRLB

We denote an useful parameter, τ = (R/z0)2,

Terminal on the CPL

Terminal not on the CPL

Phase uncertainity in analog circuits of the LIS
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2. CRLB

Deployment of the LIS
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3. Atomic Norm Minimization for Modal Analysis From
Random and Compressed Samples
Authors: Shuang Li, Dehui Yang, Gongguo Tang, and Michael B. Wakin

Modal analysis is the process of estimating a system modal
parameters, such as its natural frequencies and mode shapes.

There is a growing interest in developing automated techniques for
structural health monitoring (SHM) based on data collected in a
wireless sensor network.

In order to conserve power and extend battery life, however, it is
desirable to minimize the amount of data that must be collected and
transmitted in such a sensor network.

The paper highlights the fact that modal analysis can be formulated
as an atomic norm minimization (ANM) problem, which can be
solved efficiently and in some cases recover perfectly a structure mode
shapes and frequencies.
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3. Atomic Norm

Suppose a data matrix X = [x1, . . . , xN ] of size M × N.

xi =
K∑

k=1

ck,ia(fk)

a(f ) = [e j2πf 0, . . . , e j2πf (M−1)]T

A(f , b) = a(f )b∗

A = {A(f , b) : f ∈ [0, 1), ‖b‖2 = 1}

‖X‖A = inf {t > 0 : X ∈ t conv(A)}
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3. Priliminary

x∗(t) =
K∑

k=1

Akψ
∗
ke

j2πFk t

T = {t1, . . . , tM} = {0,Ts , . . . , (M − 1)Ts}
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3. Measurement Schemes

A. Modal Analysis for noiseless signals:-
It considers five measurement schemes:-

uniform sampling

X̂ = arg min
X
‖X‖A s.t.,X = X ∗

synchronous random sampling

X̂ = arg min
X
‖X‖A s.t.,XΩS×[N] = X ∗ΩS×[N], ΩS ⊂ T

asynchronous random sampling

ΩA ⊂ T × [N]

Vaibhav Baranwal (IISc) Journal Watch 7th Apr, 2018 13 / 19



3. Contd.

random temporal compression

yn = Φnx
∗
n , n = 1, . . . ,N.

X̂ = arg min
X
‖X‖A, s.t.

yn = Φnx
∗
n , n = 1, . . . ,N,

X = [x1, . . . , xN ],

random spatial compression

ym = 〈X ∗T (:,m), b̃m〉 = 〈X ∗T (:,m), b̃m ẽTm 〉, m = 1, . . . ,M, b̃m ∈ CN×1, em ∈ RM×1

X̂ = arg min
X
‖X‖A, s.t. ym = 〈XT (:,m), b̃m ẽTm 〉, 1 ≤ m ≤ M
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3. Modal Analysis for Noisy Signals

Y = X ∗ + W ,

entries of W satisfy CN (0, σ2) and we consider the following atomic norm
denoising problem:

min
X

1

2
‖Y − X‖2

F + λ‖X‖A
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4. Sketched Subspace Clustering

The immense amount of daily generated and communicated data
presents unique challenges in their processing.

Subspace clustering (SC) is a relatively recent method that is able to
successfully classify nonlinearly separable data in a multitude of
settings.

SC methods incur prohibitively high computational complexity when
processing large volumes of high-dimensional data.

The paper introduces a randomized scheme for SC, termed as
Sketch-SC, tailored for large volumes of high-dimensional data.
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4. Problem Statement

Consider the following optimization problem

min
A∈C

h(A) + λL(X − BA)

B is an appropriate D × n basis matrix (dictionary), h(A) is a a
regularization function of the n × N matrix A. L(.) is an appropriate loss
function, and C is a constraint set for A.
For SSC, LSR and LRR, B = X , n = N and h(.) is ‖.‖1,

1
2

2

F
, ‖.‖∗, and L(.)

is 1
2‖

2
F ,

1
2‖

2
F and 1

2‖
2
F or 1

2‖2,1 respectively. Constraint for SSC is
C = {A ∈ RN×N : AT1 = 1; diag(A) = 0}, while for LSR and LRR, we
have C = RN×N .
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4. High-Dimensional Data

X̂ = R̂X and B̂ = X̂R

min
A

h(A) + λL(X̂ − B̂A)

Here, R̂ be a d × D JLT matrix, where d << D
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